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Abstract

We introduce a novel methodology for estimating the time-axis deformation be-

tween two observations on a time-warped signal. Since the problem of estimating the

warping function is non-linear, existing methods iteratively minimize some metric be-

tween the observation and an hypothesized deformed template. Assuming the family

of possible deformations the signal may undergo, admits a finite dimensional repre-

sentation, we show that there is a nonlinear mapping from the space of observations

to a low dimensional linear space, such that in this space the problem of estimating

the parametric model of the warping function is solved by a linear system of equa-

tions. We call the family of estimators derived based on this representation, Linear

Warping Estimators (LWE). The new representation of the problem enables an an-

alytic analysis of the behavior of the solution in the presence of model mismatches,

which is prohibitive when iterative methods are employed. The ability to achieve this

major simplification both in the solution and in analyzing its performance results

from the representation of the problem in a new coordinate system which is natural

to the properties of the problem, instead of representing it in the standard coordinate

system imposed by the sampling mechanism. The proposed solution is unique and

exact, as it provides a closed form expression for evaluating each of the parameters

of the warping model using only measurements of the amplitude information of the

observed and reference signals. The solution is applicable to any elastic warping re-

gardless of its magnitude. We analyze the behavior of the LWE in the presence of

noise, and obtain a minimum variance unbiased estimator for the model parameters,

by finding an optimal set of nonlinear operators for mapping the original problem

into a low dimensional linear space.
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1 Introduction

Registration is the procedure of bringing two or more observations on the same signal

to a common coordinate system. These signals are usually referred to as the template

(or reference) signal, and the observed signal. The difficulty of the registration problem

results from its most basic characteristic: although the template is known, the variability

associated with the object, due to the warping of the time axis is unknown a-priori, and

only the group of actions causing this variability in the observation can be defined, based for

example on the physical characteristics of the problem. This huge variability in the object

signature (for any single object) due to the tremendous set of possible deformations that

may relate the template and the observed signature, makes any detection and recognition

problem ill-defined unless this variability is implicitly or explicitly taken into account.

The fundamental settings of the problem are provided in [1]. There are two key elements

in a deformable template representation: A typical element (the template); and a family of

transformations and deformations, G, which when applied to the typical element produce

other elements. The family of deformations considered in this paper is extremely wide:

we consider homeomorphisms having a continuous and differentiable inverse, where the

derivative of the inverse is also continuous, and admits a finite dimensional representation.

Thus each template is associated with its orbit, induced by the group action on the

template. Hence, given the template, to be denoted by g, and measurements of an observed

signal denoted by h, registration becomes the procedure of finding the group element ϕ, that

minimizes some metric between the observation and the hypothesized deformed template

g(ϕ). In the absence of noise, the solution to the problem is obtained by applying each

of the deformations in the group to the template, followed by comparing the result to the

observed realization. However, as the number of such possible deformations is infinite, this

direct approach is computationally prohibitive. Hence, more sophisticated methods are

essential.

In principle, two possible methodologies for estimating the warping function may be

considered: explicit and implicit. An implicit method is one that finds some map ψ such

that, ideally, ψ (h, g, ϕ) = 0. All registration methods based on minimizing some metric,

are implementations of this basic idea, including the Dynamic Time Warping algorithm

(DTW), [8], [9].

The common principle in the implementation of all the implicit methods is the definition

of a cost function penalizing both the ‘distance’ between a deformed version of the template

1



and the observation, and a measure of the ‘size’ of the deformation. The aim is then to find

the deformation that minimizes the cost. More specifically, let d(h, g) be some metric on

the function space that contains h and g. A solution to the deformation estimation problem

is given by ϕ̂ = argminϕ∈G (d(h(x), g(ϕ(x))) +D(I, ϕ)), where D(I, ϕ) is a regularization

term specifying some a-priori knowledge about the distance of ϕ from the identity [1, 3].

In principle, in order to find the global minimum of d(h(x), g(ϕ(x))) +D(I, ϕ) one has to

check each and every element of G, which is usually impossible. Nevertheless, application

of some optimization procedure allows for finding a local minimum of this type of cost

function, (see e.g., [7], [5], [14]). Unfortunately, in general, there is no systematic way to

obtain the global minimum. This type of approach is applied, for example, in [6] (using a

very similar setting of the problem to the one discussed in this paper) in the framework

of word recognition in speech. More specifically, in [6] word recognition takes place by

comparing the pronounced word with a set of word templates. This word is assumed to be

obtained from one of the prototype words by a local change of speed in the pronunciation,

which results in a monotone time-warping plus an additive observation noise. For each

template the best time-warping function is obtained by minimizing a functional of the

above form that penalizes both its matching error (due to noise) and its departure form

the identity. Different hypotheses are then compared on the basis of the minimum value

of this functional, and the pronounced word is recognized as the template for which this

minimum value is the smallest.

On the other hand, in an explicit solution one obtains a map H (or an operator) such

that the unknown deformation can be expressed by ϕ = H (h, g). Obviously, an explicit

solution is preferable due to many reasons. These include, computational complexity as

optimization is avoided, and more importantly uniqueness of the solution. As indicated

above, the equality ψ (h, g, ϕ) = 0 may have more than a single solution. On the other hand

the explicit solution is always global in nature, since no local minimization operations are

involved. Many such global methods exist both for 1-D and 2-D signals (see, e.g., [17]

and the references therein) however their scope is restricted to a relatively small family of

transformations. Thus, in the case of images for example, there are explicit methods for

handling translation only, rotation only, or global scale (moderate factor) only, but they

turn into combined explicit/implicit methods for the combined transformation of rotation,

scaling and translation, [18]. Translation estimation is conveniently carried out in the

Fourier domain based on the phase shift of the Fourier transforms of the two images to be

registered, by employing the normalized phase-correlation algorithm, e.g., [19].

Since currently, no explicit methods for estimating an elastic time warping are known,
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the dynamic programming based DTW and its modifications (see, e.g., [11]) became the

standard state-of the art tool in estimating time warped functions, and in registering signals

whose time-axes are warped. The DTW provides the best piece-wise linear approximation

of the deformation function on a discrete grid, with respect to the defined metric. Yet, this

solution is also obtained by iteratively minimizing a metric, and hence is computationally

demanding. In speech recognition, DTW and its extension to the stochastic case in the

form of Hidden Markov Model (HMM), have become the standard tool for accommodating

different durations and pronunciations of the same phoneme or word, by the same, or by

different speakers [8, 9, 10]. DTW is extensively used in indexing of time series databases,

[12, 13], where the need is to find the best match to a query time series, from a large

collection of possible candidates.

More recently, in the context of decomposing signals into sparse linear combinations

of template signals drawn from a large finite dictionary, [15] points to the inherent diffi-

culty of dictionary based approaches in handling real signals that are subject to continuous

deformations of the time axis, where identification of the warping parameters, is critical

for finding the correct matches in the dictionary. Therefore, the common practice is to

construct a dictionary that represents the undeformed template functions and the transfor-

mations of each such template on some discretization of the deformations parameter space.

However, in general, in order to faithfully represent signals using the dictionary, a very fine

sampling of the parameter space is required, which leads to a very large and ill-conditioned

dictionary. The method proposed in this paper provides a key to how problems that involve

the estimation of time-warped signals, that are currently solved by optimization techniques,

can be solved analytically and linearly. Moreover, the new representation of the problem

enables an analytic analysis of the behavior of the solution in the presence of model mis-

matches, which is prohibitive when iterative methods are employed. The ability to achieve

this major simplification both in the solution and in analyzing its performance results from

the representation of the problem in a new coordinate system which is natural to the prop-

erties of the problem, instead of representing it in the standard coordinate system imposed

by the sampling mechanism.

Our goal in this paper is to find an explicit global operator H(h, g) such that for every

pair (h, g) for which h(x) = g(ϕ(x)) , ϕ ∈ G where G is the group of homeomorphic warps

admitting a finite dimensional representation, we have ϕ = H(f, g). To the best of our

knowledge there is no other method that is both explicit and is capable of recovering such

general class of warping functions. The center of the proposed solution is a method that

reduces the original high dimensional problem of evaluating the orbit created by applying
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the set of all possible homeomorphic transformations in the group to the template, into

a problem of analyzing a function in a low dimensional Euclidian space. In general, an

explicit modeling of the homeomorphisms group is impossible. Nevertheless we show in

this paper that in cases where the set of deformations, G, admits a finite dimensional

representation, there is a mapping from the space of observations to a low dimensional

linear space. In this setting, the problem of estimating the parametric model of the warping

function is solved by a linear system of equations in the low dimensional Euclidian space.

The proposed solution is unique and exact, as it provides a closed form expression for

evaluating each of the parameters of the warping model using only measurements of the

amplitude information of the observed and reference signals. The solution is applicable to

any elastic warping regardless of its magnitude. We call the family of estimators derived

based on this representation, Linear Warping Estimators (LWE). Due to their low memory

and computational requirements, LWE greatly simplify the solution to any application in

which estimation of time-warped signals is involved, some of which were mentioned above.

In fact, when long observations on time-warped signals are considered, the computational

and memory requirements of the implicit optimization methods, are prohibitive, leaving

the LWE as the only practical option for solving this problem as we illustrate using some

numerical examples in Section 4.

The structure of the paper is as follows: In Section 2 we rigorously define the problem of

estimating the homeomorphic deformation in the absence of observation noise, its setting,

and derive the algorithmic solution for the parameters of the warping function. To simplify

the notation and the accompanying discussion we present the solution for the case where the

observed signals are one-dimensional. The derivation for higher dimensions follows along

similar lines, [20]. In Section 3 we rigorously analyze the structure of the space of non-linear

operators applied to the observed warped signals in order to map the original nonlinear

problem into a linear problem in the deformation model parameters. In addition to the

huge variability in the object signature due to the unknown deformations, the observations

are also noisy, in general. In Section 4 we analyze the behavior of the proposed solution for

estimating the deforming function in the presence of noise, and obtain minimum variance

unbiased estimator for the model parameters. Assuming further that the observation noise

is Gaussian, a maximum likelihood estimator is also derived for the high SNR regime.
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2 Explicit Evaluation of Time Warps

In this section we shall briefly set the mathematical framework we adopt in order to formal-

ize the analysis of the deformation estimation problem. This framework enables accurate

representation and analysis of our problem, leading to rigorous criteria on the existence

and uniqueness of the solution, and under some mild restrictions to be explained below to

the derivation of an explicit solution.

2.1 Problem Statement

We note that due to the inherent physical properties of the problem, it is natural to

model and solve it in the continuum. Inherently, the mapping ϕ of R into itself is of

a continuous nature, as is the physical phenomenon of geometric deformation of real-life

objects it represents. Thus, if we impose a discrete model (e.g., x ∈ Z), we find that, in

general, the natural ϕ to consider is incompatible (as for “almost all” x ∈ Z, ϕ(x) /∈ Z).
Thus, in contrast with existing methods such as DTW, the problem and its solution are

formulated in the continuum, while the sampling and quantization effects that accompany

the digital implementation of the method, are handled as noise contributions.

Let M denote the space of compact support, bounded, and Lebesgue measurable (or

more simply, integrable) functions from R to itself. Let G be a group representing the

set of elastic deformations the function may undergo. In this paper it is assumed that G
is the group of homeomorphisms such that each element of the group has a continuous

and differentiable inverse, where the derivative of the inverse is also continuous. G is said

to act as a transformation group on M if there is a mapping G ×M → M , denoted by

(ϕ,m) 7→ m ◦ ϕ = m(ϕ(x)) such that (m ◦ ϕ1) ◦ ϕ2 = m ◦ (ϕ1 ◦ ϕ2) for every ϕ1, ϕ2 ∈ G and

m ∈M ; and if m ◦ e = m for all m ∈M , where e is the identity element of G.

For a given m ∈M , the set {m ◦ ϕ : ϕ ∈ G} is called the orbit of m. It is the entire set

of possible observations on the object – the result of applying to it any of the deformations

in the group. The stabilizer of the function m ∈ M with respect to the group G is the set

of group elements ϕ ∈ G such that m ◦ ϕ = m, i.e., the set of group elements that map m

to itself.

Thus the group G naturally defines an equivalence relation on M in terms of the orbits

of M induced by the action of G: Any two functions h and g are equivalent if they are on

the same orbit, i.e., if there exists some ϕ ∈ G such that g ◦ ϕ = h.
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In the framework of the present paper it is assumed thatM is in fact a subset of the set

of compact support, bounded, and Lebesgue measurable functions from R to itself, such

that for all functions in M the stabilizer is trivial and includes only e, the identity element

of G. Thus, uniqueness of the solution to the defined problem is guaranteed in the sense

that if h, g ∈ M such that they are on the same orbit, then there exists a single ϕ such

that g ◦ ϕ = h.

Thus, given two functions h, g ∈M such that

h(x) = g(ϕ(x)) . (1)

our problem is to determine ϕ(x).

Next, let C(X) denote the set of continuous real-valued functions of X onto itself, where

the norm is the standard L2 norm. By the above assumption every ϕ−1, (ϕ−1)′ ∈ C(X).

Since C(X) is a normed separable space, [21], there exists a countable set of basis functions

{ei} ⊂ C(X), such that for every ϕ ∈ G,

(ϕ−1)′(x) =
∑
i

aiei(x) . (2)

In other words, it is assumed that every element in the group and its derivative can be

represented as a convergent series of basis functions of the separable space C(X). Our goal

then, is to obtain the expansion of ϕ−1(x) with respect to the basis functions {ei(x)}. In

practice, the series (2) is replaced by a finite sum.

More specifically, in all the analysis that follows, the amplitude value 0 represents no

object. Without limiting the generality of the derivation it is assumed that the support of

g(x) is [a, b] and we want to model warping within the template but with fixed ends; more

accurately we are looking for a time warp ϕ(x) such that ϕ(a) = a and ϕ(b) = b yet within

the interval the warp may be elastic. Hence, the finite-dimensional model of the inverse

warp is given by ϕ−1(x) = x +
P∑
i=1

aiEi(x) with Ei(a) = Ei(b) = 0 ∀i and ei(x) = dEi(x)
dt

.

Let a = [a1, . . . , aP ]
T be the vector of the deformation parameters.

Remark 1. We consider time warping functions that can be modeled as a subset of some

finite dimensional linear space of differentiable functions, and we choose to model the

inverse warping. Note that if we consider the two functions g(x) and h(x) in the relation

h(x) = g(ϕ(x)) as having the same role then this relation is equivalent to the relation

h(ϕ−1(x)) = g(x) and therefore modeling of the warping or its inverse are equivalent. When

the roles are different, for example when g(x) is some known template function, while h(x)
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is the observation, it becomes more natural to model ϕ−1(x) instead of modeling ϕ(x).

This is because the time warp ϕ(x) represents a map from the coordinate system where

h(x) is measured to the coordinate system of g(x). However h(x) is subject to an unknown

wrappings and therefore the meaning of a fixed map defined on its coordinate system is

ambiguous. On the other hand, ϕ−1(x) models a map from the coordinate system of g(x)

which is fixed, as g(x) is the reference template.

2.2 The Fundamental Solution

Let W be the space of bounded measurable functions (operators) from R into itself.

Lemma 1. Let h(x), g(x) ∈ M be two functions such that h(x) = g(ϕ(x)) with dϕ−1(x)
dx

=
P∑
i=1

aiei(x). Then, every w(y) ∈ W provides a single linear constraint on the elements of a

in the form
∞∫

−∞
w (h(x)) dx =

P∑
i=1

ai
∞∫

−∞
ei(x)w (g(x)) dx.

Proof: Let z = ϕ(x). Then ϕ−1(z) = x. Using a change of variables

∞∫
−∞

w (h(x)) dx =

∞∫
−∞

w (g(ϕ(x))) dx =

∞∫
−∞

(
ϕ−1(z)

)′
w (g(z)) dz =

P∑
i=1

ai

∞∫
−∞

ei(z)w (g(z)) dz

(3)

Repeating this procedure by applying a family of Lebesgue measurable, left-hand com-

positions {wi}Ni=1 ∈ W , to the known relation h(x) = g(ϕ(x)), and rewriting it in a matrix

form we obtain
∫
w1(h(x))

...∫
wN(h(x))

 =


∫
e1(x) w1(g(x)) . . .

∫
eP (x) w1(g(x))

...
. . .

...∫
e1(x) wN(g(x)) . . .

∫
eP (x) wN(g(x))



a1
...

aP

 (4)

In the sequel, let w denote a vector whose elements are functions, and wk denotes the

function in the k′th row of w. (Hence, when such a vector is left multiplied by a matrix of

scalars, the elements of the resulting vector are linear combinations of functions.)

Thus let e = [e1(x), . . . , eP (x)]
T and let w = [w1(x), . . . , wN(x)]

T . Also, let

G(g, e,w) =


∫
e1(x) w1(g(x)) . . .

∫
eP (x) w1(g(x))

...
. . .

...∫
e1(x) wN(g(x)) . . .

∫
eP (x) wN(g(x))

 (5)
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and let

h(h,w) =


∫
w1(h(x))

...∫
wN(h(x))

 (6)

Rewriting (4) we have

h(h,w) = G(g, e,w)a (7)

We have just proved the following theorem:

Theorem 1. Let ϕ(x) be an element of the group of homeomorphisms such that dϕ−1(x)
dx

=
P∑
i=1

aiei(x). Let h(x), g(x) ∈ M be two functions such that h(x) = g(ϕ(x)). Then, given h

and g, the deformation ϕ(x) can be uniquely determined if there exists a set of functions

{wN}Ni=1 ∈ W , such that the matrix G(g, e,w) is full rank. Then,

a = [G(g, e,w)]−1h(h,w) (8)

In Section 3 we elaborate on the meaning of [G(g, e,w)]−1 for N > P . Also, note from

(8) that we have found an explicit solution for the unknown deformation parameters a. In

fact, there could be an infinite number of choices of the functions in the set {wi}Ni=1 leading

to the same solution for a. Section 3 is devoted to a detailed analysis of the relations

between the solutions obtained by different choices of the set of functions {wi}Ni=1.

Remark 2. Note that the elements of the matrix G(g, e,w) depend only on the template

and its coordinate system and thus have to be evaluated only once. In fact G(g, e,w)

represents all the information in the template, required for finding the warping parameters.

Thus G(g, e,w) forms a “sufficient representation” of the template (similarly to the

notion of sufficient statistics), so that the template itself is not needed in order to uniquely

determine the warping function once G(g, e,w) has been evaluated.

Remark 3. The application of a set {wi}Ni=1 to g(x) yielding G(g, e,w) is in fact a projec-

tion from the space of compact support, bounded, and measurable functions to the space

of N × P matrices. The following theorem states that the subset of functions g ∈ M ,

for which there exists a set {wi}Ni=1 such that G(g, e,w) is full-rank, is dense in M in the

supremum norm. Hence, for every g, or for an infinitesimal modification of it, the matrix

G(g, e,w) is invertible.

Theorem 2. Let g ∈ M . Then for every ϵ > 0, there exist some function g1 ∈ M such

that ||g − g1||∞ < ϵ, and a set {wi}Ni=1 such that G(g1, e,w) is full rank.
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Proof. The proof follows the same lines as in the case where the transformation is affine,

[2], Theorem 2, and hence omitted.

Remark 4. The practical implication of Remark 3 is that for a function g ∈ M , there

exists a set {wi}Pi=1 such that G(g, e,w) is full-rank, if and only if the range of g contains

at least P distinct values.

3 The Structure of the Space of Solutions

Lemma 1 implies that given a geometric transformation model expressed by the transfor-

mation group G and a function g(x) ∈ M , each w ∈ W yields a linear constraint on the

parameters {ai}Pi=1 defining the transformation h(x) = g(ϕ(x)) such that the constraints

depend on the template g(x) but not on the deformation ϕ ∈ G. In fact, {ai}Pi=1, the set of

parameters defining the space of possible deformations G, defines an P dimensional coordi-

nate system on G. Since the dimension of the space of parameters is P , we can find at most

P independent linear constraints on the model parameters. Therefore, in the coordinate

system whose axes are the {ai}’s, we may plot the linear constraint imposed by each w ∈ W .

For example, consider the geometric transformation model ϕ−1(x) = ae1(x) + be2(x). Ap-

plying Lemma 1 to h(x) = g(ϕ(x)), we find that each w ∈ W produces a single constraint

of the form
∞∫

−∞
w(h(x))dx = a

∞∫
−∞

e1(x)w(g(x))dx+b
∞∫

−∞
e2(x)w(g(x))dx and that the slopes

imposed in the (a, b) domain by each w ∈ W are independent of the geometric transfor-

mation parameters. Obviously, the intersection point of the linear constraints in the (a, b)

domain provide the deformation parameters.

Since the dimension of W is much larger than P , in most of the cases we have linearly

independent w’s which nevertheless create exactly the same linear constraints. At first it

may seem that these w’s provide redundant information. However, the linear independence

of the w’s implies linear independence of the related functionals. This linear independence

suggests that constraints which coincide on the orbit, but not outside it, can be applied

to achieve robustness of the linear constraints when model mismatch occurs due to noise

for example. A different interpretation of this observation is the following one: As shown

in the previous section, in the deterministic case all choices of the set of functions {wi}Pi=1

are equally optimal as long as G(g, e,w) is full rank. Obviously, in the presence of noise

different choices of the set {wi}Pi=1 shall yield different performance in estimating the de-

formation model parameter vector a. Thus, in order to enable optimal selection of the set

{wi}Pi=1, we must first analyze the structure of the function space W .
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Thus, the goal of this section is to decompose the spaceW into a direct sum of subspaces

representing “particular solutions” and “homogenous solutions” (borrowing the terminol-

ogy from the classical linear theory as explained below).

Lemma 2. For any matrix A ,G(g, e,Aw) = AG(g, e,w) and h(h,Aw) = Ah(h,w)

Proof.

[AG(g, e,w)]i,j =
N∑
k=1

ai,k

∞∫
−∞

ej(x)wk(g(x))dx =

∞∫
−∞

ej(x)

(
N∑
k=1

ai,kwk

)
(g(x))dx = [G(g, e,Aw)]i,j

and similarly for proving that h(h,Aw) = Ah(h,w).

Lemma 3. For any matrix B,we have G(g,Be,w) = G(g, e,w)BT

Proof.

[
G(g, e,w)BT

]
i,j

=
N∑
k=1

bj,k

∞∫
−∞

ek(x)wi(g(x))dx =

∞∫
−∞

(
N∑
k=1

bj,kek(x)

)
wi(g(x))dx = [G(g,Be,w)]i,j

Corollary 1. For any matrices A and B, we have G(g,Be,Aw) = AG(g, e,w)BT

Thus, choosing different bases either for the functions that are the elements of w or e we

obtain different constraints on the model parameters. Yet, as the corollary implies, these

are no more than different representations of the same information on the constraints. In

the following, we shall take advantage of this property in order to obtain more convenient

representations of the constraints.

Definition 1. Let g ∈ M . A P dimensional vector of functions w is independent with

respect to e if G(g, e,w) = I.

Lemma 4. Fix e. For a set of functions {wi}Pi=1 ∈ W such that G(g, e,w) is invertible

there exists a corresponding set of functions {w̃i}Pi=1 ∈ W where w̃i ∈ span
(
{wi}Pi=1

)
such

that G(g, e, w̃) = I.

Proof. Set A = G−1(g, e,w). Then using Lemma 2, I = AG(g, e,w) = G(g, e,Aw) =

G(g, e, w̃) where w̃ = Aw.
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We therefore conclude that starting with any arbitrary choice of left-hand compositions

{wi}Pi=1, such that the corresponding G(g, e,w) is invertible, there exists an “equivalent”

set of left-hand compositions {w̃i}Pi=1 which is independent with respect to e.

Obviously, there is a dual to Lemma 4, where instead of linearly transforming w, we

could change the basis functions of the warping:

Lemma 5. Fix w. For a set of functions {ei}Pi=1 spanning the space of warping functions,

such that G(g, e,w) is invertible there exists a corresponding set of functions {ẽi}Pi=1 where

ẽi ∈ span
(
{ei}Pi=1

)
such that G(g, ẽ,w) = I.

Note however, that in the following analyzes we fix the basis functions {ei}Pi=1 represent-

ing the space of time warps. We next decomposeW into a direct sum of P linear subspaces

of particular solutions, each one providing the constraints on a single model parameter

ak, and an additional subspace spanning the constraints on the homogenous solutions, as

explained below.

Definition 2. Let w be some function in W . Fix {ei}Pi=1 to be the set of basis functions

spanning the space of time warps, and g is the template function. Define the operator

Dg,e(w) =

[∞∫
∞
e1(x)w(g(x))dx · · ·

∞∫
∞
eP (x)w(g(x))dx

]T
. Hence, for fixed g, e, we have that

Dg,e(w) is a linear map from W to RP .

Thus, rewriting (3) using these notations we have
∞∫

−∞
w (h(x)) dx =

P∑
k=1

ak[Dg,e(w)](k).

As indicated above, {ai}Pi=1 the set of parameters defining the space of possible deformations

G, can be interpreted as defining an P dimensional coordinate system on G. In this setting,

the elements of the vector Dg,e(w) are the coefficients of the linear constraint expressed in

the coordinate system defined by {ai}Pi=1. In other words, we map each element w ∈ W

into the coefficients of the linear constraint on the elements of a.

Let 1i = [0, ..., 0, 1, 0, ...0]T be the P dimensional vector with 1 in the i′th entry only,

and let 0 = [0, ..., 0, 0, 0, ...0]T .

Definition 3. The space Wi =
{
w ∈ W |

∫
ej(x)w(g(x))dx = 0 i ̸= j

}
is the space of

constraints on ei only. In other words Wi = [Dg,e(w)]
−1(span(1i))), and every

function w ∈ Wi is a particular solution for ai. Also, define W0 = Ker (Dg,e) =

[Dg,e(w)]
−1(0). Thus W0 is the space of homogeneous constraints with respect to the

template g and the set of basis functions {ei}Pi=1.
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Lemma 6. For every i ̸= j we have Wi ∩Wj =W0.

Proof. Let v ∈ Wi ∩ Wj where i ̸= j. Then Dg,e(v) = α1i = β1j which holds only if

α = β = 0. Since Dg,e(v) = 0, by definition v ∈ W0

All the constraints imposed by functions in W0 are actually null constraints. In other

words the information they give us is of the form 0 = 0. These constraints are clearly

redundant in the exact (deterministic) cases. Nevertheless, by using such constraints we

extend the space of possible solutions. As we show in the following chapters, the key to

achieving optimality and stability in estimating the deformation model lies in the behavior

of solutions that are identical in the absence of noise, but which are very different in the

presence of deviation from the exact models.

For any nonzero constraint w ∈ Wi we can find ai explicitly: Since
∫
w (f(x))dx =

ai[Dg,e(w)](i) we have that ai =
∫
w(f(x))dx

[Dg,e(w)](i)]
.

Consider next the subset of W such that w ∈ [Dg,e(w)]
−1(1i). Each of the functions

in this subset is a particular solution for ai. Thus for every w ∈ [Dg,e(w)]
−1(1i), we have

ai =
∫
w (f(x))dx. We therefore call [Dg,e(w)]

−1(1i) the space of particular solutions for

ai. Note however that any function w ∈ [Dg,e(w)]
−1(1i) yields a different functional on

M . Yet in the absence of noise, they all provide the same solution for ai in the form

ai =
∫
w (f(x))dx.

Definition 4. Let α(x) be some real function defined on M and let wp ∈ W be some opera-

tor. Then, for some g(x) ∈M and for any operator w ∈ W such that
∞∫

−∞
α(x)w(g(x))dx ̸=

0, we define an operator Qα
w : W →W such that

Qα
w[wp(z)] = wp(z)−

1
∞∫

−∞
α(x)w(g(x))dx

( ∞∫
−∞

α(x)wp(g(x))dx

)
w(z) (9)

The operator Qα
w is a linear operator. The next lemma shows that it is also a projection

operator.

Lemma 7. For any w ∈ W such that
∞∫

−∞
α(x)w(g(x))dx ̸= 0, and for every wp ∈ W the

operator Qα
w(wp) has the property that

∞∫
−∞

α(x)Qα
w[wp(g(x))]dx = 0. Moreover, for every

wp ∈ W we have that Qα
w(wp) is a projection operator.
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Proof. The lemma follows from direct calculations, and verifying that Qα
w(Q

α
w(wp)) =

Qα
w(wp).

Therefore Qα
w(wp) is called the projection operator on the space independent of α(x),

and we denote by Qα
w(W ) the subset of operators in W that are independent of α(x).

Note from (9) that in order to project wp ∈ W to the space independent of α(x) using

w ∈ W , we actually find an element w1 ∈ span(w) where w1(z) =

∞∫
−∞

α(x)wp(g(x))dx

∞∫
−∞

α(x)w(g(x))dx
w(z) such

that
∞∫

−∞
α(x)wp(g(x))dx =

∞∫
−∞

α(x)w1(g(x))dx and then subtract this w1 from wp.

Next, considering the special case where α(x) = ei(x) we have that for some wp ∈ W

and for any operator w ∈ W for which
∞∫

−∞
ei(x)w(g(x)dx ̸= 0 the operator Qei

w is such

that
∞∫

−∞
ei(x)Q

ei
w (wp(g(x)))dx = 0. Thus Qei

w (W ) is the space of constraints on all the

parameters except ai, as for ai these constraints are always null. Note the similarity of this

procedure to the Gram-Schmidt procedure.

Theorem 3. Let {w̃i}Pi=1 be an independent set as defined in Definition 1. Then for

every i, the space of constraints on ei, denoted by Wi, has the direct sum representation

Wi = W0⊕span(w̃i), where W0 is the space of homogeneous constraints and span(w̃i) (i.e.,

the space of particular solutions for ai) is a 1-D space spanned by the function w̃i.

Proof. Let w ∈ Wi. Next, we evaluate the projection of this w ∈ Wi on the space indepen-

dent of ai, i.e., on Q
ei
w̃i
(w) and verify that indeed Qei

w̃i
(w) imposes a homogenous constraint:

For every j

∫
ej(z)Q

ei
w̃i
(w)[g(z)]dz =

∫
ej(z)

w(g(z))−
∞∫

−∞
ei(x)w(g(x))dx

∞∫
−∞

ei(x)w̃i(g(x))dx

w̃i(g(z))

 dz

=

∫
ej(z)w(g(z))dz −

∞∫
−∞

ei(x)w(g(x))dx

∞∫
−∞

ei(x)w̃i(g(x))dx

∫
ej(z)w̃i(g(z))dz

= 0 (10)

13



as both
∫
ej(z)w(g(z))dz = 0 and

∫
ej(z)w̃i(g(z))dz = 0 since both w, w̃i ∈ Wi, which is the

space of constraints on ei only. The above argument holds for every j ̸= i. Evaluating (9)

in the case where i = j yields that
∫
ei(z)Q

ei
w̃i
(w)[g(z)]dz = 0. Hence, Dg,e(Q

ei
w̃i
(w)) = 0.

In other words application of Qei
w̃i
(w), with w ∈ Wi, to g(x) yields a P dimensional null

vector. Hence, Qei
w̃i
(Wi) ⊂ W0. On the other hand, as every w ∈ W0 yields a zero constraint

with respect to every ek, while Q
ei
w̃i
(W ) only yields zero constraints on ei, it is clear that

W0 ⊂ Qei
w̃i
(Wi). Hence, W0 = Qei

w̃i
(Wi). Finally, by rewriting (9 ) we have that for any

w ∈ W we obtain w(z) = Qei
w̃i
[w(z)]+

∞∫
−∞

ei(x)w(g(x))dx

∞∫
−∞

ei(x)w̃i(g(x))dx
w̃i(z). Since all the operators Q

ei
w̃i
(Wi)

provide null constraints on ei while by definition w̃i yields a non-zero constraint on ei, we

conclude that Qei
w̃i
(Wi) ∩ span(w̃i) = 0, and hence that Wi = Qei

w̃i
(Wi)⊕ span(w̃i)

Corollary 2. Every operator w ∈ Wi can be uniquely decomposed into the direct sum

representation w = w0 + aw̃i where {w̃i}Pi=1 is an independent set and w0 is an operator,

not necessarily unique, in W0.

The aim of the next discussion is to show that the foregoing conclusion regarding oper-

ators in Wi can be generalized to the entire space W . More specifically, we will show that

any operator w ∈ W admits a unique direct sum representation: w = w0 +
P∑
i=1

biw̃i where

w0 ∈ W0, and {w̃i}Pi=1 is an independent set of particular solutions for the elements of a.

Definition 5. Let {wi}Pi=1 be some set of operators, and let w ∈ Wi be some other operator.

Define the operator M{wi}Pi=1
: W → W

M{wi}Pi=1
[w(z)] =

P∑
i=1

∫∞
−∞ ei(x)w(g(x))dx
∞∫

−∞
ei(x)wi(g(x))dx

wi(z). (11)

In the special case where {w̃i}Pi=1 is an independent set (11) reduces to

M{w̃i}Pi=1
[w(z)] =

P∑
i=1

(∫ ∞

−∞
ei(x)w(g(x))dx

)
w̃i(z). (12)

As we show next, given some independent set {w̃i}Pi=1 one can employ the operator

M{w̃i}Pi=1
in order to decompose any constraint into its components on the above independent

set.

Theorem 4. For any independent set {w̃i}Pi=1, some function g(x) ∈M , and some w ∈ W ,

the map L{w̃i}Pi=1
[w(z)] = w(z)−M{w̃i}Pi=1

[w(z)] is a projection of w on W0.
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Proof. Let us evaluate the k-th element of the vector Dg,{ei}Pi=1

(
M{w̃i}Pi=1

(w)
)
:

[
Dg,{ei}Pi=1

(
M{w̃i}Pi=1

(w)
)]

k
=

[
Dg,{ei}Pi=1

(
P∑
i=1

(∫ ∞

−∞
ei(x)w(g(x))dx

)
w̃i(z)

)]
k

=

∫ ∞

−∞
ek(x)

P∑
i=1

(∫ ∞

−∞
ei(x)w(g(x))dx

)
w̃i(g(x))dx

=
P∑
i=1

(∫ ∞

−∞
ei(x)w(g(x))dx

)∫ ∞

−∞
ek(x)w̃i(g(x))dx

=

∫ ∞

−∞
ek(x)w(g(x))dx =

[
Dg,{ei}Pi=1

(w)
]
k

(13)

where the forth equality is due to the fact that {w̃i}Pi=1 is an independent set. Hence,

Dg,{ei}Pi=1

(
w −M{w̃i}Pi=1

(w)
)
= 0 and consequently L{w̃i}Pi=1

[w(z)] = w(z)−M{w̃i}Pi=1
[w(z)] ∈

Ker(Dg,{ei}Pi=1
). Since by definitionW0 = Ker(Dg,{ei}Pi=1

), we have that L{w̃i}Pi=1
(w)(z) ∈ W0.

On the other hand w(z)− L{w̃i}Pi=1
[w(z)] is by definition M{w̃i}Pi=1

[w(z)] which by (12) is a

linear combination of non-zero constraints, and hence has a null intersection with W0.

In other words Theorem 4 asserts that L{w̃i}Ni=1
is a projection operator on W0 as for all

w ∈ W, L{w̃i}Ni=1
(L{w̃i}Ni=1

(w)) = L{w̃i}Ni=1
(w), L{w̃i}Ni=1

(W ) = W0. Finally, since for every

w ∈ W0 and for every i,
∫∞
−∞ ei(x)w(g(x))dx = 0, we conclude that M{w̃i}Pi=1

(w) = 0 and

hence L{w̃i}Ni=1
is the identity map on W0.

Theorem 5. Let the subspace defined by span(w̃i) be denoted by W̃i. Fix g and the basis

functions in e and assume there exists some set of operators {wi}Pi=1 ∈ W such that the

corresponding matrix G(g, e,w) is full rank. Then W admits the following direct sum

representation W = W̃1 ⊕ W̃2 ⊕ · · · ⊕ W̃P ⊕W0.

Proof. Choose some w ∈ W . By the assumption that G(g, e,w) is full rank, there exists

an independent set {w̃i}Pi=1 ∈ W . Using Theorem 4 we have that w(z) = M{w̃i}Pi=1
[w(z)] +

L{w̃i}Pi=1
[w(z)] and that M{w̃i}Pi=1

[w(z)]+L{w̃i}Pi=1
[w(z)] ∈ W̃1⊕ W̃2⊕· · ·⊕ W̃P ⊕W0. Hence,

W ⊂ W̃1⊕ W̃2⊕· · ·⊕ W̃P ⊕W0. On the other hand, W̃1⊕ W̃2⊕· · ·⊕ W̃P ⊕W0 ⊂ W

We have thus shown that any constraint w ∈ W can be represented by w = w0+
P∑
i=1

biw̃i

with w0 ∈ W0. Therefore there is a multiplicity of constraints that are equivalent, although

their homogeneous components are different.

Finally, we address the practical problem of constructively finding the elements of the

decomposition. Suppose we are given some finite dimensional subset WM ⊂ W , expressed
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in terms of a basis WM = span
(
{wi}Mi=1

)
, and suppose that the matrix G(g, e, {wi}Mi=1) is

full rank. Hence, the geometric deformation can be estimated using the operators in WM .

Assume that we wish to describe the decomposition ofWM into particular and homogenous

constraints. Taking a subset of {wi}Mi=1 such that G(g, e,w) is invertible and constructing

an independent set {w̃i}Pi=1 we obtain a particular solution for each one of the parameters

in a. All that remains to be done is to provide a concrete description of W0 ∩WM in terms

of the basis functions to yield an explicit description of the homogeneous constraints within

WM .

Theorem 6. Let {wi}Mi=1 be a set of operators such that WM = span
(
{wi}Mi=1

)
. Let

{w̃i}Pi=1 ∈ WM be an independent set. Then, W0 ∩WM = span

({
L{w̃i}Pi=1

(wi)
}M

i=1

)
.

Proof. Using Theorem 4 we have that span

({
L{w̃i}Pi=1

(wi)
}M

i=1

)
⊂ W0 ∩ span({wi}Mi=1).

Next, let w ∈ W0 ∩WM . As w ∈ WM it admits the representation w =
M∑
i=1

biwi. Since

L{w̃i}Pi=1
(w) is a linear operator, L{w̃i}Pi=1

(w) =
M∑
i=1

biL{w̃i}Pi=1
(wi). However, for every w ∈

W0, L{w̃i}Pi=1
(w) is the identity map, i.e., L{w̃i}Pi=1

(w) = w. Hence, w = L{w̃i}Pi=1
(w) =

M∑
i=1

biL{w̃i}Pi=1
(wi) ∈ span

({
L{w̃i}Pi=1

(wi)
}M

i=1

)
.

We have thus derived a constructive procedure for representing the space W0 ∩WM in

terms of a set of basis functions, and hence a complete representation of any set of opera-

tors {wi}Mi=1 ∈ W in terms of a direct sum representation of particular and homogeneous

constraints. In this representation each particular constraint w̃i provides a solution for a

single deformation model parameter ai.

3.1 Numerical Example: Piecewise Linear Deformations

Let [A,B] be the support of the template g(t), and let r(t) =


t 0 < t < 1

0 t ≤ 0

1 t ≥ 1

. Let {ci}Ki=0 be

some division of [A,B] such that A = c0 < c1, . . . , ci < ci+1, . . . , cK = B. Let Ek(t) = (ck −
ck−1)r(

t−ck−1

ck−ck−1
). The piecewise linear transformation is then defined by ϕ(t) =

∑K
k=1 akEk(t)

where we assume for simplicity that ϕ(A) = 0, while ak is the slope of the function on the

kth interval. The corresponding division of the range of ϕ(t) (which is the domain of
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ϕ−1(t)) is given by c̃i =
∑i

k=1 ak(ck − ck−1). The slope of the inverse transformation on the

kth interval is then given by 1
ak
. Hence, ϕ−1(t) =

∑K
k=1(ck − ck−1)r(

t−
∑k−1

l=1 al(cl−cl−1)

ak(ck−ck−1)
), and

therefore it belongs to the same space of functions defined by the forward transformation.

Thus the representation of the deformation function, or its inverse, are equivalent. As

already indicated in Section 2.1, ϕ−1(t) models a map from the coordinate system of g(x)

which is fixed, as g(x) is the reference template. Hence, in the following example the

deformation is defined in terms of the inverse transformation ϕ−1(t).

Example 1: To illustrate the results and conclusions of the derivation in the preceding

sections we consider the following example. Figure 1 provides four different examples (one in

each row) of deformations of the same template and the results of the estimation procedure.

The leftmost figure in each row depicts the template and the deformed observation. The

error between the observed signal and its reconstruction obtained by applying the estimated

deformation ϕ̂(x) to the template, is shown to its right. The figures on the right depict

the errors in estimating the deformation: ϕ(x) − ϕ̂(x), and its derivative: ϕ′(x) − ϕ̂′(x),

respectively. In order to approximate the above derivation, performed in the continuum, the

observations are densely sampled (10000 points on [0, 1]) and their amplitude are quantized

into 232 levels. The deformation is piecewise linear over a random number K of intervals.

The initial choice of the nonlinear operators is wi(y) =

1 (i−1)
K

< y ≤ i
K

0 otherwise
. Obviously,

integrals are replaced by summations of the sampled and quantized signals and hence we

observe small errors in evaluating them which result in small errors (of the same order as

the sampling step) in the estimated deformations.

Example 2: Next, we consider an example where the parameter vector of the inverse

deformation is given by a = [1.71, 1.54, 1.07, 0.79], and the interval division is given by

[0, 0.25, 0.5, 0.75, 1]. The template g(t) is depicted in Fig. 2. In this example we chose the

nonlinear operators such that wi(y) = yi, i = 1, . . . , 4. The four particular solutions w̃i(y)

corresponding to the four parameters in a for the initial choice wi(y) = yi are depicted in

Figure 3. The four particular solutions w̃i(y) corresponding to the four parameters in a for

the initial choice wi(y) = sin(2πiy) are depicted in Figure 4. In each case, and regardless

of the initial choice of the nonlinear operators, we have for every i that ai =
∫
w̃i(h(y))dy.

Example homogeneous constraints are depicted in Fig. 5.

17



Figure 1: From left to right, in each row: The template (red) and observation (blue); The

error in estimating the deformed observation: h(x)− g(ϕ̂(x)); The error in estimating the

deformation: ϕ(x)− ϕ̂(x); The error in estimating the deformation derivative: ϕ′(x)− ϕ̂′(x)

.

Figure 2: The template.

18



Figure 3: The four particular solutions for the initial choice wi(y) = yi. Blue: w̃1(y), the

particular solution for a1; Green: w̃2(y), the particular solution for a2; Red: w̃3(y), the

particular solution for a3; Cyan: w̃4(y), the particular solution for a4.

Figure 4: The four particular solutions for the initial choice wi(y) = sin(2πiy). Blue:

w̃1(y), the particular solution for a1; Green: w̃2(y), the particular solution for a2; Red:

w̃3(y), the particular solution for a3; Cyan: w̃4(y), the particular solution for a4.
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Figure 5: Example homogeneous solutions.

4 Observations Subject to Additive Noise: Unbiased

Estimation

In the presence of noise the observed data is given by

h(x) = g(ϕ(x)) + η(x) . (14)

Assuming that the noise has a zero mean, and that its higher order statistics are known,

we first address questions related to issue of the optimal choice of the set {wk} for each

template function g. We begin by adapting the solution derived in the previous section for

the deterministic case, to a least squares solution for the model parameters. In the presence

of noise the basic equation (1) becomes

∞∫
−∞

wk(h(x))dx =

∞∫
−∞

wk[g(ϕ(x)) + η(x)]dx

=

∞∫
−∞

wk[g(z) + η(ϕ−1(z))](ϕ−1)′(z)dz

=

∞∫
−∞

wk(g(z))(ϕ
−1)′(z)dz + ϵgk (15)
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where we define the random variable

ϵgk =

∞∫
−∞

(
wk[g(z) + η(ϕ−1(z))]− wk(g(z))

)
(ϕ−1)′(z)dz

=

∞∫
−∞

(
wk[g(ϕ(x)) + η(x)]− wk(g(ϕ(x)))

)
dx (16)

Substituting (3) into (15), we obtain the linear system of equations

∞∫
−∞

wk(h(x))dx =
P∑
i=1

ai

∞∫
−∞

ei(x)wk(g(x))dx+ ϵgk k = 1, . . . , N (17)

The system (17) represents a linear regression problem where the noise sequence {ϵgk} is

non-stationary since its statistical moments depend on the choice of wk for each k. The

regressors are functions of wk and the template g, and hence are deterministic. Provided

that the sequence of composition functions {wk} is chosen such that the resulting regressors

matrix is full rank, the system (17) is solved by a linear least squares method such that

the l2 norm of the noise vector is minimized.

The dependence of the noise sequence {ϵgk} on the choice of wk suggests that different

choices of the composition sequence {wk} may provide different solutions. We shall be first

interested in systems such that for each k, the linear constraint imposed by wk is unbiased

(and thus the “effective noise” that corresponds to each wk is zero mean).

4.1 Construction of Unbiased Linear Constraints

Consider the case where we choose wk(x) =
∑

l α
k
l x

l, and the additive noise is an i.i.d.

process with zero mean and variance σ2. We next evaluate the mean term, Eϵgk, of the

“effective noise”. To simplify the notation we will take advantage of the linear structure of

wk(x), and analyze first only the case where wk(x) = xk. Thus, in this case

ϵgk =

∞∫
−∞

{[g(z) + η(ϕ−1(z))]k − gk(z)}(ϕ−1)′(z)dz

=

∞∫
−∞

k∑
j=1

(
k

j

)
gk−j(z)ηj(ϕ−1(z))(ϕ−1)′(z)dz (18)
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Since the additive noise is i.i.d., E[ηj(ϕ−1(z))] = E[ηj(z)] for every j. Thus we have

Eϵgk =
P∑
i=1

ai

∞∫
−∞

ei(z)

(
k∑

j=1

(
k

j

)
gk−j(z)E[ηj(ϕ−1(z))]

)
dz

=
P∑
i=1

ai

∞∫
−∞

ei(z)

(
k∑

j=1

(
k

j

)
gk−j(z)E[ηj(z)]

)
dz (19)

Hence, for the case where wk(x) = xk, we can rewrite (17) in the form:

∞∫
−∞

hk(x)dx =
P∑
i=1

ai

{ ∞∫
−∞

ei(z)g
k(z)dz +

∞∫
−∞

ei(z)

(
k∑

j=1

(
k

j

)
gk−j(z)E[ηj(z)]

)
dz

}
+ ϵ̄gk

=
P∑
i=1

ai

{ ∞∫
−∞

ei(z)

(
k∑

j=0

(
k

j

)
gk−j(z)E[ηj(z)]

)
dz

}
+ ϵ̄gk (20)

where ϵ̄gk is a zero mean random variable. Comparing the expression in (20) to (3) and (4)

of the deterministic case, it is clear that
∞∫

−∞
ei(z)g

k(z)dz is the (k, i) entry of the matrix

G(g, e,w) for the choice wk(x) = xk, while the term
∞∫

−∞
ei(z)

(∑k
j=1

(
k
j

)
gk−j(z)E[ηj(z)]

)
dz

is a deterministic correction term for the (k, i) entry of G(g, e,w), due to the noise con-

tribution, such that the noise term ϵ̄gk has a zero mean. Thus, let P(ϵ, e,w) be the matrix

whose (k, i) entry is
∞∫

−∞
ei(z)

(∑k
j=1

(
k
j

)
gk−j(z)E[ηj(z)]

)
dz, and let ϵ̄ = [ϵ̄g1, . . . , ϵ̄

g
N ]

T . Then,

provided that Gϵ(g, e,w) = G(g, e,w)+P(ϵ, e,w) is a full rank matrix, there exists an un-

biased least-squares solution for a, such that the norm of ϵ̄ is minimized. Due to the linearity

of the constraints the above conclusion holds for the case where wk(x) =
∑L

l=0 α
k
l x

l, as well.

In this case, the (k, i) entry ofP(ϵ, e,w) is given by
∞∫

−∞
ei(z)

∑L
l=0 α

k
l

(∑l
j=1

(
k
j

)
gl−j(z)E[ηj(z)]

)
dz.

Extending the concept, developed in previous sections, of obtaining particular solutions

for each ai (constraints on ei only) to the case where the observations are noisy, we are

interested in obtaining unbiased particular solutions and thus an unbiased LWE. We have

the following:

Lemma 8. Let h(x) = g(ϕ(x)) + η(x), where η(x) is an i.i.d. process with zero mean

and variance σ2. For a set of functions {wk}Nk=1 ∈ W such that wk(x) =
L∑
l=0

αk
l x

l, where

Gϵ(g, e,w) is full rank, there exists a corresponding set of functions {w̃i}Pi=1 ∈ W where

w̃i ∈ span
(
{wi}Ni=1

)
such that for every i,

∫
w̃i(h(x)) = ai+ ϵi(g, w̃, e), and ϵi(g, w̃, e) has

zero mean.
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Figure 6: Noisy observation

Proof. SetA = (GT
ϵ Gϵ)

−1GT
ϵ . Then similarly to Lemma 2, I = AGϵ(g, e,w) = Gϵ(g, e,Aw) =

Gϵ(g, e, w̃) where w̃ = Aw. Let ϵ̃ = [ϵ1(g, w̃, e), . . . , ϵP (g, w̃, e)]
T . Rewriting (20) in a ma-

trix form and multiplying it from the left by A, the proof follows where ϵ̃ = Aϵ̄ and hence

is zero mean.

Note that the system (20) represents a linear regression problem where the observation

noise is non-stationary, but with a zero mean. The regressors are functions of {wk}, the
template g, and the known statistics of the noise. Hence the regressors are deterministic.

4.1.1 Numerical Example

Example 1: Consider the same setting as in Example 2 of Section 3.1, yet in the present

case the observation is subject to an additive zero-mean white Gaussian noise with standard

deviation σ = 0.03. An example realization is depicted in Fig. 6. In this case we have

chosen again the nonlinear operators to be wi(y) = yi, i = 1, . . . 4. Following the derivation

in Section 4.1, we have for the setting of this example that

G(g, e,w) =


0.082 0.179 0.123 0.072

0.038 0.138 0.077 0.029

0.020 0.113 0.053 0.014

0.0122 0.096 0.039 0.007


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while the deterministic correction matrix due to the presence of noise is given by

P(ϵ, e,w) = 10−3


0 0 0 0

0.225 0.225 0.225 0.225

0.222 0.484 0.334 0.194

0.207 0.750 0.417 0.160


where for example, the first row of P(ϵ, e,w) results from substituting k = 1 which yields

for i = 1, . . . , 4, that
∞∫

−∞
ei(z)g

0(z)E[η(z)]dz = 0 since the noise is zero mean.

Example 2: The performance of the estimation algorithm is tested using a sequence

of 100,000 Monte-Carlo experiments. In each experiment, each of the deformation pa-

rameters (the interval slopes) is drawn from a uniform distribution on [1, 3]. Then, in

order to guarantee that the probability of shrinking the interval or expanding it are equal,

the slope parameter is substituted by its reciprocal with probability of 0.5. The bias

of the estimated parameter vector for the case where the estimates were obtained by a

least squares solution of the system (17) without introducing the bias correction is given by

[2.450, 0.045,−0.558,−1.958]. However, employing the unbiased linear constraints by incor-

porating the deterministic correction matrix into the solution and solving the system (20),

using the least squares method, we find that the bias of the estimated parameter vector is

now 10−3[0.253, 0.126,−0.290,−0.087] and the standard deviation [0.3114, 0.0173, 0.0775, 0.2550]

which verifies experimentally that indeed the estimator (20) is unbiased.

4.2 Minimum Variance Unbiased Estimators

Consider the setting defined in Lemma 8, i.e., we have that h(x) = g(ϕ(x)) + η(x), where

η(x) is an i.i.d. process with zero mean and variance σ2, and we have a set of functions

{wk}Nk=1 ∈ W such that wk(x) =
L∑
l=0

αk
l x

l, where Gϵ(g, e,w) is full rank. As concluded

in Lemma 8, there exists a corresponding set of functions {w̃k}Pk=1 ∈ W where w̃k ∈
span

(
{wk}Nk=1

)
such that for every k,

∫
w̃k(h(x)) = ak + ϵk(g, w̃, e), and ϵk(g, w̃, e) has

zero mean. Hence, we define

âk =

∫
w̃k(h(x)) (21)

to be our estimator of ak. Using Lemma 8 we also have that w̃k(x) admits the following

representation w̃k(x) =
L∑
l=0

pkl x
l. Our goal is therefore to find, jointly for all k, the coeffi-

cients of the minimum variance estimator of ak among all the unbiased estimators resulting
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from applying to the observed data operators of the form wk(x) =
L∑
l=0

αk
l x

l.

Due to the polynomial structure of w̃k we have following the same considerations as in

the previous section that

∞∫
−∞

w̃k(h(x))dx =

∞∫
−∞

L∑
l=0

pkl (h(x))
ldx =

∞∫
−∞

L∑
l=0

pkl (g(ϕ(x)) + n(x))ldx

=
P∑
i=1

ai

∞∫
−∞

ei(x)
L∑
l=0

pkl

(
l∑

j=0

(
l

j

)
g(x)l−jn(ϕ−1(x))j

)
dx

= VT
k a (22)

where Vk is a P -dimensional column vector whose ith entry is given by

[Vk]i =
∞∫

−∞
ei(x)

L∑
l=0

pkl

(
l∑

j=0

(
l
j

)
g(x)l−jn(ϕ−1(x))j

)
dx.

Using the notation defined in (6),
∞∫

−∞
w̃k(h(x))dx is the kth element of h(h,w) for the

above choice of {w̃k(h(x))}Pk=1. Hence, rewriting (22) in a matrix from we have h(h,w) =

Va , where VT
k is the k-th row of V.

Since for every k, âk =
∫
w̃k(h(x)) = hk(h,w) we have

cov(a) = E[(h(h,w)− E(h(h,w))][(h(h,w)− E(h(h,w))]T

= aTE[(V − E(V))][(V − E(V)]Ta (23)

Our goal in this framework is to find {w̃k(h(x))}Pk=1 such that tr{cov(a)} is minimized.

Therefore we have to evaluate E[(Vk − E(Vk))][(Vk − E(Vk)]
T .

By the construction in Lemma 8 w̃k is a particular solution for ak such that E[ϵk(g, w̃, e)] =

0. (This is since
∫
w̃k(h(x)) = ak + ϵk(g, w̃, e)). Hence, for i = k, E[Vk]k = 1, while for

i ̸= k,E[Vk]i = 0. Hence,

[Vk − E(Vk)]i =


∞∫

−∞
ei(x)

L∑
l=0

pkl

(
l∑

j=0

(
l
j

)
g(x)l−jn(ϕ−1(x))j

)
dx i ̸= k

∞∫
−∞

ek(x)
L∑
l=0

pkl

(
l∑

j=0

(
l
j

)
g(x)l−jn(ϕ−1(x))j

)
dx− 1 i = k

(24)

Then it can be easily verified that

25



Lemma 9.

E{[Vk − E(Vk)]n [Vk − E(Vk)]m} = (25)
∞∫

−∞
en(x)em(x)

L∑
l=0

pkl
l∑

q=0

(
l
q

) L∑
r=0

pkr
r∑

t=0

(
r
t

)
g(x)l+r−q−tσq+tdx n ̸= k or m ̸= k

∞∫
−∞

en(x)em(x)
L∑
l=0

pkl
l∑

q=0

(
l
q

) L∑
r=0

pkr
r∑

t=0

(
r
t

)
g(x)l+r−q−tσq+tdx− 1 n = m = k

Thus, we have expressed tr{cov(a)} in terms of the unknown coefficients {pkl }. By

using numerical minimization, such as the Newton-Raphson method, in order to minimize

tr{cov(a)} with respect to the unknown parameters, a minimum variance LSE for a is

found.

4.2.1 Numerical Example

Example 1: To illustrate the performance of the minimum variance LSE, we depict in

Figures 7-10 the results of applying the proposed minimum variance unbiased estimator for

signals observed with different deformations and different noise levels. Each of the figures

depict (from right to left) the template (red), the deformed template h(x) = g(ϕ(x))

(cyan); noisy observation (blue); Original and estimated deformed noiseless template: h(x)

and ĥ(x); The deformation and its estimate: ϕ(x) and ϕ̂(x); The deformation derivative

and its estimate: ϕ′(x) and ϕ̂′(x). Note that in each of the five examples the deformation

parameters are different as they are sampled from a random distribution, as detailed in

Example 2 of Section 4.1.1. In all the examples we have chosen the nonlinear operators to

be wi(y) = yi, i = 1, . . . 200, and we look for the minimum variance unbiased estimator of

a.

Example 2: Next, we consider again the same setting as discussed in Example 1 of

Section 4.1.1. We have chosen the nonlinear operators to be wi(y) = yi, i = 1, . . . 200, and

we look for the minimum variance unbiased estimator of a. The four particular solutions

w̃i(y) corresponding to the four parameters are depicted in Figure 11.

Example 3: Finally, we repeat with the minimum variance unbiased LWE, the same

Monte-Carlo experiment described in Example 2 of Section 4.1.1. The standard deviation

of the estimation error using the minimum variance unbiased estimator of a is given by

[0.0460, 0.0121, 0.0287, 0.0372], which is smaller than that obtained by any of the previous

methods.

Example 4: As indicated in the Introduction, the DTW provides the best piece-
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Figure 7: From left to right: The template (red), the deformed template h(x) = g(ϕ(x))

(cyan); noisy observation (blue) where the noise standard deviation is 0.01; Original and

estimated deformed noiseless template: h(x) and ĥ(x); The deformation and its estimate:

ϕ(x) and ϕ̂(x); The deformation derivative and its estimate: ϕ′(x) and ϕ̂′(x) .
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Figure 8: From left to right: The template (red), the deformed template h(x) = g(ϕ(x))

(cyan); noisy observation (blue) where the noise standard deviation is 0.03; Original and

estimated deformed noiseless template: h(x) and ĥ(x); The deformation and its estimate:

ϕ(x) and ϕ̂(x); The deformation derivative and its estimate: ϕ′(x) and ϕ̂′(x) .
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Figure 9: From left to right: The template (red), the deformed template h(x) = g(ϕ(x))

(cyan); noisy observation (blue) where the noise standard deviation is 0.07; Original and

estimated deformed noiseless template: h(x) and ĥ(x); The deformation and its estimate:

ϕ(x) and ϕ̂(x); The deformation derivative and its estimate: ϕ′(x) and ϕ̂′(x) .
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Figure 10: From left to right: The template (red), the deformed template h(x) = g(ϕ(x))

(cyan); noisy observation (blue) where the noise standard deviation is 0.1; Original and

estimated deformed noiseless template: h(x) and ĥ(x); The deformation and its estimate:

ϕ(x) and ϕ̂(x); The deformation derivative and its estimate: ϕ′(x) and ϕ̂′(x) .
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Figure 11: The four particular solutions that provide the minimum variance unbiased

estimator. Blue: w̃1(y), the particular solution for a1; Green: w̃2(y), the particular solution

for a2; Red: w̃3(y), the particular solution for a3; Cyan: w̃4(y), the particular solution for

a4.
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wise linear approximation of the deformation function on a discrete grid, with respect to

the ℓ2 norm. This solution is in fact an efficient implementation of a grid search for the

deformation function, when both the template and the observed functions are provided on a

discrete grid. Hence, in terms of minimizing the ℓ2 norm for piece-wise linear deformations,

this solution is the optimal. However this optimality in performance is achieved at the

cost of huge memory and computational requirements as the algorithm holds a matrix

whose dimensions are MT ×MO where MT and MO are the lengths of the template and

the observed signals, respectively. Thus in cases where the length of the signal is long,

the memory and computational requirements of the DTW make it impractical. On the

other hand, the memory and computational requirements of the linear method proposed

in this paper are minimal: Only P functions {w̃k}Pk=1 and the observed signal need to be

stored, while the solution is computed based on the summation (integrals computations)

of P vectors (P = 4 in the examples). In the following example the lengths of the template

and observed signals were 1000 samples. The average computation time of the deformation

using the proposed LWE was 10000 times faster than that required by the DTW. In Figure

12 we compare the statistical performance of the proposed linear method with that of the

DTW, using a sequence of 100 Monte-Carlo experiments at each noise level. Since the

DTW minimizes the ℓ2 distance between the template and observed realization, while the

proposed method is parametric and hence minimizes the ℓ2 distance in the parameter space

of the deformation model, we chose to compare the performance of the two methods using a

metric that measures the maximal distance between the true and estimated deformations,

i.e., Q = ||ϕ(x) − ϕ̂(x)||∞, averaged over the set of Monte-Carlo experiments. In the

experiment we compare the performance of the proposed LWE for different choices of the

number of non-linear functionals employed, to that of the DTW. The number of non-linear

functionals employed varies from N = 5, which is very close to the minimal possible number

as the model order is P = 4, to N = 10 and N = 50. As expected, the performance of

the proposed LWE improves with increasing the number of employed nonlinear functionals.

The experimental results indicate that when the observation noise is low, and the number

of employed nonlinear functionals is larger than P which is the minimal number that

guarantees the existence of a solution in the deterministic case, the proposed linear method

outperforms the DTW in all aspects: accuracy, memory requirements, and computational

requirements. However, in cases where the observation noise is high, the DTW achieves

better performance than the proposed method. This is the result of restricting the proposed

method to use only small numbers of non linear functionals on the data. When the noise

level is high the computed functionals are noisy themselves, and thus a larger number of
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Figure 12: The averaged maximal distance between the true and estimated deformations,

i.e., Q = ||ϕ(x) − ϕ̂(x)||∞, for the DTW (solid line) and the proposed minimum variance

unbiased LWE as a function of the number, N , of employed non-linear functionals: N = 5

dashed-dotted line; N = 10 dotted line; N = 50 dashed line.

functionals is required in order to reduce the error of the linear solution. Since in the

experiment these numbers are held low, we observe the phenomenon of a larger estimation

error as the noise level increases. Obviously, if due to some reason the number of employed

non-linear functionals cannot be increased, the LWE based solution can always serve as an

initializer of the DTW based optimization, thus reducing significantly the computational

requirements of the DTW as the search performed by the DTW algorithm can now be

confined to the small region of deformations provided by the LWE estimate.

4.3 Analysis of the High SNR Case

In this section we analyze the proposed method assuming wk(y) = yk, when it is assumed

that the signal to noise ratio is high. Since h(x) = g(ϕ(x)) + η(x) we have under the high

SNR assumption that the contribution of high noise powers can be neglected, i.e.,

hk(x) ≈ gk(ϕ(x)) + k η(x)gk−1(ϕ(x)) (26)

33



Hence, the error term in (16) is approximated under the high SNR assumption by

ϵ̄gk = k

∞∫
−∞

η(x)gk−1(ϕ(x))dx k = 1, . . . , N (27)

Clearly, E[ϵ̄gk] = 0, k = 1, . . . , N . We next evaluate the error covariances of the system,

under the high SNR assumption. Let ϵ̃g = [ϵ̃g1, . . . , ϵ̃
g
N ]

T , and Γ = E[ϵ̃g(ϵ̃g)T ]. Thus, the

(k, l) element of Γ is given by

Γk,l = klE[

∞∫
−∞

η(x)gk−1(ϕ(x))dx

∞∫
−∞

η(y)gl−1(ϕ(y))dy]

= klσ2

∞∫
−∞

gk+l−2(ϕ(x))dx

= klσ2

∞∫
−∞

(ϕ−1(z))′g(z)k+l−2dz

= klσ2

P∑
i=1

ai

∞∫
−∞

ei(z)g(z)
k+l−2dz (28)

Rewriting (28) in matrix form we have

Γ = σ2
∑
i

aiui (29)

where

ui =


∞∫

−∞
ei(z)dz . . . N

∞∫
−∞

ei(z)g(z)
N−1dz

...
. . .

...

N
∞∫

−∞
ei(z)dz . . . N2

∞∫
−∞

ei(z)g(z)
2N−2dz

 (30)

Assuming further that the observation noise n(x) is Gaussian, we have under the high

SNR assumption that ϵ̄g is a zero mean Gaussian random vector with covariance matrix

Γ given in (29). Hence the log-likelihood function log p(h; a) of the observation vector h

is easily obtained. The MLE of the deformation model parameters can then be found by

maximizing log p(h; a) with respect to the model parameters a.
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5 Conclusions

We introduced a novel methodology for geometric deformation estimation of a known ob-

ject, where the deformation belongs to a known family of deformations. As a result of the

action of the set of all possible deformations in the family, the set of different realizations

of each object is generally a manifold in the space of observations. We showed that in

cases where the family of possible deformations the object may undergo, admits a finite

dimensional representation, there is a nonlinear mapping from the space of observations to

a low dimensional linear space. We have rigorously analyzed the structure of the nonlin-

ear operators achieving this mapping, and showed their decomposition into particular and

homogeneous solutions. As a result of the derived mapping, the manifold corresponding

to each object is mapped to a linear subspace with the same dimension as that of the

manifold. In this setting, the problem of estimating the parametric model of the warping

function is solved by a linear system of equations in the low dimensional Euclidian space.
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