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Abstract

Consider a 3-D object and the orbit of equivalent ob-
jects turned out by the rigid transformation group. The
set of possible observations on these equivalent objects is
generally a manifold in the ambient space of observations.
It has been shown that the rigid transformation universal
manifold embedding (RTUME) provides a mapping from
the orbit of observations on some object to a single low
dimensional linear subspace of Euclidean space. This lin-
ear subspace is invariant to the geometric transformations
and hence is a representative of the orbit. In the classifi-
cation set-up the RTUME subspace extracted from an ex-
perimental observation is tested against a set of subspaces
representing the different object manifolds, in search for
the nearest class. We clarify the way in which level-set
functions, computed at each quantization level in an ob-
servation, serve as a basis for the invariant subspaces in
RTUME. In the presence of observation noise and random
sampling patterns of the point clouds, the observations do
not lie strictly on the manifold and the resulting RTUME
subspaces are noisy. Inspired by the ideas of Locality Pre-
serving Projections and Grassmannian dimensionality re-
duction, we derive an optimal companding of the level-set
functions yielding the Grassmannian dimensionality reduc-
tion universal manifold embedding (GDRUME). We evalu-
ate the proposed method in a classification task on a noisy
version of the ModelNet40 dataset and compare its perfor-
mance to that of PointNet classification DNN. We show that
in the presence of noise, GDRUME provides highly accu-
rate classification results, while the performance of Point-
Net is poor.

This research is supported by NSF-BSF Computing and Communi-
cation Foundations (CCF) grants, CCF-2016667, CCF-1712788 and BSF-
2016667.

Figure 1. Illustration of our proposed method- 3D point clouds
of different objects colored by a transformation invariant color-
ing function are embedded in a high dimensional Grassmannian
manifold Gr(Q, 4), by the Rigid Transformation Universal Mani-
fold Embedding (RTUME). Grassmannian dimensionality reduc-
tion (GDR) is used to find a lower ambient space Grassmannian
manifold Gr(M, 4) where M < Q, to preform better separation
between different objects.

1. Introduction

Detection and classification of whole objects or parts
thereof are elementary building blocks in solving 3-D vision
problems, from object classification, to part segmentation,
to keypoint detection and matching for point cloud regis-
tration. However, an object to be detected may present it-
self subject to a-priori unknown geometric transformations.
Hence an understanding of the set of all possible observa-
tions of that single object is essential. As a result of the
action of geometric deformations, the set of observations of
an object is generally a manifold in the observations space.
Thus, although the data may be sampled and presented in
a high-dimensional space, in fact the intrinsic complexity
and dimensionality of the observed physical phenomenon
are low.

Universal manifold embedding (UME) [6, 15], is a
methodology for constructing a matrix representation of an
observation such that it is covariant with the transformation,
and then using this representation to identify a linear sub-
space that is invariant to affine coordinate transformations
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of the observation. The covariant UME matrix representa-
tion obtained by this procedure may be inverted for the pa-
rameters of the geometric transformation. This framework
has been recently expanded to address the registration of 3D
point clouds related by a rigid transformation, [4]. Practical
application of the method requires a high-quality estimate
of the invariant subspace for each of K objects, and each of
these subspaces must be estimated from one or more ver-
sions of an object, imperfectly imaged in one or more of its
representative poses.

Since the classifier performance highly depends on the
choice of the set of functions composing the UME opera-
tor, we wish to find the optimal set of functions, that best
separates the UME matrix representation of each class (ob-
ject) from those of the other classes, while minimizing the
distance between observations from the same class. In this
paper we address these issues by extending the theory of
universal manifold embedding and Grassmannian dimen-
sionality reduction:

1. We clarify the way in which level-set functions, com-
puted at each quantization level in an observation,
serve as a basis for the invariant subspaces in RTUME.

2. Building upon the ideas of Locality Preserving Pro-
jections, [8], and Grassmannian dimensionality re-
duction, [19], we derive an optimal companding of
the level-set functions yielding the Grassmannian di-
mensionality reduction universal manifold embedding
(GDRUME).

3. In the presence of observation noise, and random sam-
pling patterns, the observations do not lie strictly on
the manifold and the resulting RTUME subspaces are
noisy. The derived analytic solution for designing the
GDRUME operators is equivalent to simultaneous de-
noising of all the object manifolds.

The structure of this paper is as follows: In Section 2
we provide the basic definitions and properties of the rigid
transformation universal manifold embedding. Then, in
Section 3 we define the problem of detection and classi-
fication on the Grassmannian manifold. In Section 4 we
consider the problem of finding the optimal UME as an
optimal selection of weight coefficients for the Fundamen-
tal UME representation. In Section 5 we present our pro-
posed method for Grassmannian optimization - GDRUME.
Finally, Section 6 includes experimental results.

2. Problem Formulation
Consider a 3-D object s ∈ {s1, · · · , sK}, and an orbit of

equivalent objects formed by the action of the transforma-
tion groupG = SE(3). An observationX(sk) on object sk
will be denoted Xk and the set ψk = {α ◦ sk, α ∈ G} will

denote the orbit of possible appearances of sk turned out by
the group G. There exists one such orbit for each object sk.
Our aim is to nonlinearly map each observation Xk, taken
from the orbit ψk, to a matrix representation T(Xk). This
matrix is to be linearly covariant with the parametrization
of G; Its column space, which we denote by 〈T(Xk)〉 is
to be G-invariant. In other words, the orbit ψk is mapped
into a linear subspace 〈T(Xk)〉, such that the mapping is
G-invariant.

It has been shown [15] that in the case where the obser-
vations on an object are determined by an affine geometric
transformation of coordinates the UME operator returns
a basis T(X) that is covariant with the coordinate transfor-
mation, and a subspace 〈T(X)〉 that isG-invariant. That is,
the set of all possible observations on an object under group
action G is mapped by the UME operator into a single lin-
ear subspace which is invariant to the geometric transforma-
tion. Since the Special Euclidean group is a subgroup of the
Affine group, in this paper we adapt this general framework
for classification and detection of 3-D point clouds.

2.1. The RTUME Descriptor

The universal manifold embedding (UME) maps every
observation X from the orbit of s to a matrix T(X) ∈
T (M,n + 1), such that T(X) is covariant with the ge-
ometric transformation, and where T (M,n + 1) is the
space of M × (n + 1) real-valued matrices, and M the
dimension of the embedding Euclidean space. The map
Q : T (M,n+1)→ Gr(M,n+1), where Gr(M,n+1) is
the Grassmann manifold of n + 1-dimensional linear sub-
spaces of M -dimensional Euclidean space, maps T(X) to
its column space 〈T(X)〉. Thus, the UME maps the orbit of
s into the G-invariant subspace 〈T(X)〉 ∈ Gr(M,n+ 1).

Considering the special case of rigid transformations of
3-D objects, the Rigid Transformation UME (RTUME) [4]
is a mapping of functions to matrices. It is covariant with
rigid transformations of coordinates, i.e. the RTUME ma-
trices of functions on R3 related by a rigid transformation
of coordinates are related by the same rigid transformation:
Given a function h : R3 7→ R, the RTUME matrix repre-
sentation of h(x) is given by

T(h) =
∫
R3

w1 ◦ h(x)dx
∫
R3

x1w1 ◦ h(x)dx . . .
∫
R3

x3w1 ◦ h(x)dx

...∫
R3

wM ◦ h(x)dx
∫
R3

x1wM ◦ h(x)dx . . .
∫
R3

x3wM ◦ h(x)dx


(1)

where wi, i = 1, ...,M are measurable functions aimed at
generating many compandings of the observation.

Let h(x) and g(x) be two functions related by a rigid
transformation of coordinates such that h(x) = g(Rx +
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t). The RTUME matrices T(h) and T(g) constructed from
h(x) and g(x) as in (1) are related by the relation

T(h) = T(g)D−1(R, t) (2)

where D(R, t) is given by:

D(R, t) =

[
1 tT

0 R−1

]
(3)

Since T(h) and T(g) are related by an invertible trans-
formation that is a re-expression of the rigid transfor-
mation relating the observations, we say that the basis
T(g)D−1(R, t) is covariant with the rigid transformation.
Hence it provides a method for estimating the transforma-
tion that relates any two observations. Furthermore, since
T(h) and T(g) are related by a right invertible linear trans-
formation, the column space of T(g) and the column space
of T(h) are identical. Their bases are different, but their
range spaces are identical.

Note that unlike the classical moment invariant methods
that use high-order moments and their nonlinear invariant
functions for classification, the RTUME representation uses
only zeroth- and first-order moments of many compandings
of the observation. These produce a subspace representation
of the observation orbit, a subspace that may be used for
invariant detection-and-classification.

3. The Detection-Classification Problem and
The Distance Between Equivalence Classes

The RTUME uses the operator T to universally map a
manifold, generated by the set all rigid coordinate transfor-
mations of a 3-D object, into a G-invariant linear subspace.
That is, the RTUME operator maps every observation X
taken from the orbit {α ◦ s, α ∈ G}, to a point 〈T(X)〉 on
the Grassmannian Gr(M, 4).

In the RTUME framework the problem of detection and
classification of geometrically deformed objects is formal-
ized as follows: Given an observation Z, in the form of
a sampled point cloud, where its geometric deformation is
unknown, the problem is to determine whether Z = α ◦X
or Z = β ◦Y , for some α, β ∈ G, andX,Y some reference
observations of known objects.

Since the detection and classification are to be G-
invariant, we propose to compute T(Z) using (1) and mea-
sure the distance between the subspace 〈T(Z)〉 and the sub-
spaces 〈T(X)〉 and 〈T(Y )〉. That is, the observation Z is
determined to belong to the orbit ψs if the distance from
〈T(Z)〉 to 〈T(X)〉, where X is some representative obser-
vation on object s, is smaller than its distance to 〈T(Y )〉,
where Y is some representative observation on a different
object (and is small enough to be considered a detection).

Following [5], [3] we compute the distance between a
pair of subspaces as the extrinsic distance, evaluated using

the projection Frobenius-norm

dpF (〈T(Z)〉, 〈T(X)〉) = 1√
2
||PX −PZ ||F = || sinθ||2 (4)

where sinθ is a vector of sines of principal angles between
the subspaces. The matrix PX denotes the orthogonal pro-
jection matrix onto the subspace 〈T(X)〉.

Since the classifier performance highly depends on the
choice of the set of w-functions composing the operator T,
we wish to find the optimal set ofw-functions, that best sep-
arates the UME matrix representation of each class (object)
from those of the other classes.

4. Design of the RTUME Operator
4.1. Defining an SE(3)-invariant Function

As point clouds are sets of coordinates in 3-D with no
functional relation imposed on them, a necessary step in
adapting the UME framework for point cloud processing is
to define a function that assigns each point in the cloud with
a value, invariant to the action of the transformation group.
In the ideal case where finite support objects are considered,
sampling is dense and uniform, and there is no observation
noise - such functions can be defined in a relatively robust
and simple manner, e.g., distance from the point cloud cen-
ter of mass. However, when sampling of the point clouds
is sparse, non uniform, and noisy, which is the case in prac-
tice, evaluation of an SE(3)-invariant function from the ob-
served sampled point cloud, can be achieved only approx-
imately. The design of the RTUME operator presented in
the following sections, is aimed at handling these approxi-
mations.

4.2. Representation by Level-Sets

Assume we are given an observation X(u), u ∈ R3,
where, in general, X(u) is evaluated from the raw point
cloud measurements using an SE(3)-invariant function such
as the distance of u from the object center of mass, or alter-
natively is provided by the measurement device, for exam-
ple as an RGB measurement at u. Further assume that the
values of X are uniformly quantized at levels {qi}Qi=1, so
that it may be written as

X(u) =

Q∑
i=1

qiI
X
i (u) (5)

where IXi (u) is the indicator function that equals 1 on
the level-set of u where qi−1 < X(u) ≤ qi, and zero
elsewhere. Since X(u) is SE(3)-invariant, the support of
IXi (u) for every i should be on the same surface points re-
gardless of the rigid transformation the object has under-
gone.
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The w operators must be designed such that the result
of their application is covariant with the geometric trans-
formation, and hence they are not functions of the coordi-
nates. The action of wm on X is simply to map the levels
qi into levels wm(qi), leaving the indicator functions IXi
unchanged. Then, each term in the matrix T(X) may be
written as

Tm,j =

∫
R3

wm ◦X(u)ujdu

=

Q∑
i=1

wm(qi)

∫
R3

IXi (u)ujdu =

Q∑
i=1

wm,iF
X
ij (6)

where wm,i = wm(qi). This makes the moments FX
ij =∫

R3 I
X
i (u)ujdu, the point cloud features of fundamental

interest. Moreover, we can now write the moment matrix
T(X) as

T(X) = WTFX ; WT = {wm,i} ∈ RM×Q (7)

where FX = {FX
ij } ∈ RQ×4 may be called the Fun-

damental RTUME representation matrix (FUME) for point
cloud X . Since M ≤ Q, the role of W is to transform
the subspace 〈FX〉 ⊂ Gr(Q, 4) to the subspace 〈GX〉 ⊂
Gr(M, 4). A single W has to serve for all the orbits
ψ1, . . . , ψK .

The FUME representation uses zeroth-order and first-
order moments of many level-sets of the observation. These
produce a matrix representation of the observation orbit that
may be used for covariant estimation and invariant classifi-
cation.

However when differently sampled and noisy observa-
tions on the point clouds are considered (6) no longer holds
due to the presence of noise and X(u) evaluated from the
point cloud is noisy as well. Hence, letting ũ = u+ n, (6)
should be rewritten as

Tm,j =

∫
R3

wm ◦ X̃(ũ)ũdũ =

Q∑
i=1

wm,iF̃
X
ij (8)

We have thus reduced the problem of finding an optimal set
of RTUME representations for the K objects, to a problem
of finding W.

4.3. The Optimal RTUME Operators

We next wish to find the optimal set of w-functions, that
best separates the RTUME matrix representation of each
class (object) from those of the other classes. It is assumed
that we have a set of K objects, such that for each object N
observations are available. Applying the RTUME operator
(1), using a set of functions, W, chosen to be the indictor
functions on the level-sets of the quantization levels, i.e.,
W = IQ, we find the fundamental RTUME representation
for each of the observations. Next, we wish to find an im-
proved alternative for this choice of W.

4.4. Locality Preserving Projections

In the language of a generic problem of linear dimen-
sionality reduction, the problem of finding the optimal w-
functions is the following: Given a set of N observations
from each of K different orbits, and the FUME matrices
{Fk,j}k=K,j=N

k=1,j=1 evaluated from these observations, where
〈Fk,j〉 ∈ Gr(Q, 4), find a transformation matrix WT ∈
RM×Q that maps these points on the Grassmann to a set of
points {〈Yk,j〉}k=K,j=N

k=1,j=1 ∈ Gr(M, 4) where Gr(M, 4) is a
Grassmann of a smaller ambient space such that Yk,j ”rep-
resents” Fk,j , where Yk,j = WTFk,j and the mapping W
is designed such that observations from the same orbit gen-
erate close together subspaces and observations from differ-
ent orbits generate subspaces that are as far as possible from
each other. Note that a sufficient condition that guarantees
that all 〈Yk,j〉 are indeed points on Gr(M, 4), i.e., that the
dimension of the subspace remains 4 despite the reduction
in the dimensionality of the ambient space is that W has a
full column rank, or alternatively, to choose the columns of
W to be orthonormal.

4.5. Related Work

Grassmannian dimensionality reduction (GDR) is often
employed in the framework of Grassmannian discriminant
analysis (GDA), [19]. There are two common paradigms for
discriminant analysis using GDR: kernel based and Grass-
mannian optimization. Kernel based method first embed the
Grassmann manifold into a high dimensional Hilbert space
by using a kernel function, followed by a learned mapping
into a lower dimensional space. In [7], the discriminant
analysis on the lower dimension Hilbert space is done by us-
ing LDA and can be followed by a K-NN for classification.
However, kernel-based methods do not fully utilize the ge-
ometric structure of the manifold. This led to an alternative
paradigm, the Grassmannian optimization approach, which
is adopted in this work as well. This approach exploits the
Riemannian geometry of the Grassmann manifold by using
gradient based methods defined on the Riemannian mani-
fold.

A method that employs Grassmannian optimization for
GDR is the Projection Metric Learning (PML) on the Grass-
mann manifold [9]. PML learns a mapping f : Gr(D, q)→
Gr(d, q) where D > d by optimizing a discriminant func-
tion, designed to minimize the Grassmannian projection
distances of within-class subspace pairs while maximizing
the projection distances of between-class subspace pairs.
The optimization problem is eventually reduced to the
search for a symmetric PSD matrix P that minimizes the
cost function. A similar approach is the Joint Normaliza-
tion and Dimensionality Reduction on Grassmannian [13],
that employs Grassmannian optimization to learn a map-
ping from a Grassmann manifold with high ambient space
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to a Grassmann with a lower ambient space. The procedure
employs a discriminant function with an affinity matrix for
encoding the within-class and between-class information.
This method is eventually reduced into finding a matrix W
on the Stifel manifold. Similarly, to the PML the input data
is represented on the Grassmann manifold by applying the
SVD.

In [10], the framework of GDR and the use of Grass-
mannian optimization are expanded to construct GRNet, a
deep neural network that works directly on the Grassmann
manifold.

5. RTUME Design Using Grassmannian Di-
mensionality Reduction

We are given a training set of N labeled point clouds
(observations) {Xi, ki}Ni=1, ki ∈ {1, . . .K} for each one
of K different objects (classes), where observations of the
same object differ by a rigid coordinate deformation, sam-
pling pattern, and white additive Gaussian noise. FUME
matrix is generated for each observation {Fi}Ni=1. The col-
umn space of each FUME matrix is a point in Gr(Q, 4).
Inspired by [13], we want to solve an optimization problem
that will map FUME matrices belonging to the same orbit
(class) to close points on a Grassmannian of a reduced di-
mension ambient space, and those from different classes to
be far apart. Therefore we formulate the next optimization
problem:

min
W∈RQ×M

L(W) =

N∑
i,j=1

Gijd
2
pF (〈Qi(W)〉, 〈Qj(W)〉)

subject to WTW = IM
(9)

where Gij is an affinity matrix created from the dataset
and {Qi(W)}Ni=1 are orthogonal matrices given by the QR-
decomposition of WTFi. Due to the constraint on W
this optimization problem is solved over the Stiefel man-
ifold St(Q,M). Enforcing this constraint guarantees that
we avoid degeneration of the solution to the trivial one.

5.1. The Affinity Matrix

We would like to encode the structure of the data by
an affinity function. Because our problem is supervised,
by making use of the data labels we create an affinity ma-
trix that favours observations from the same class, so that
the choice of W by the cost function makes them “closer”
and penalizes observations from different class so that the
choice of W by the cost function tends to separate them.

[G]ij = gw(Xi,Xj)− αgb(Xi,Xj) (10)

where α > 0 is a trade-off factor between the
within-class information and the out-of-class information,

gw(., .), gb(., .) are binary functions defined as follows:

gw(Xi,Xj) =

{
1, Xi ∈ Nw(Xj)orXj ∈ Nw(Xi)

0, otherwise
(11)

gb(Xi,Xj) =

{
1, Xi ∈ Nb(Xj)orXj ∈ Nb(Xi)

0, otherwise
(12)

where Nw(Xi) is the set of kw nearest neighbors of Xi

that share the same label as Xi which we name within-
class neighborhood, and Nb(Xi) is the set of kb nearest
neighbors of Xi that have different label from Xi which
we name between-class neighborhood. The neighborhood
is computed according to the distance (4) and its size is de-
termined by cross validation, where usually kw is the size
of the smallest class in the train data set (kw = N if training
data has N samples for each object) and kb ≤ kw.

5.2. Solving The Optimization Problem

In order to solve (9) we used the framework of Rie-
mannian Conjugate Gradient (RCG) [3, 16, 17, 1], this is
a generalization of the Euclidean Conjugate Gradient on a
Riemannian manifold. The method was implemented using
Manopt [2]. In our case we solve the optimization problem
over the Stiefel manifold.

5.2.1 Finding The Gradient

We first find the cost function’s gradient on the Stiefel man-
ifold. In this case the gradient is defined as follows [3]:

∇L = LW −WLT
WWT (13)

[LW]i,j =
∂L

∂Wi,j
(14)

(14) describes the Euclidean gradient of the cost function
L(W), given by (see Appendix A for the derivation):

LW = −4
N∑
i=1

FiR
−1
i QT

i HiSi (15)

where (Qi,Ri) is the QR-decomposition of Yi = WTFi,
Si = IM −QiQ

T
i and Hi =

∑N
j=1[G]ijQjQ

T
j .

6. Experimental Results
We demonstrate the use of FUME and GDRUME in the

context of point cloud classification. We show that by using
GDRUME we can achieve better separation on the Grass-
mann manifold between deformed observations on objects
from different classes. We examine the two methods un-
der different noise conditions and varying number of points
in the point cloud. We compare our methods with the well
known PointNet deep neural network [14].
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Algorithm 1 GDRUME
Input: {Fi}Ni=1 ⊆ T (Q,n + 1), {ki}Ni=1 ⊆ {1, . . .K},

M ∈ N
Output: W ∈ St(Q,M)

1: Apply QR Decomposition to {Fi}Ni=1 → {Qi,Ri}Ni=1

2: {Fi}Ni=1 ← {Qi}Ni=1

3: Create Affinity matrix G from {Fi, ki}Ni=1 using (10)
4: Initialize W←W0 ∈ St(Q,M)
5: Compute L(W) according to (9)
6: Solve (9) using RCG [1]

Figure 2. Example of a point cloud from ModelNet40 colored by
distance from center of mass.

6.1. Data Set and Prepossessing

We evaluate our methods for the task of object separa-
tion and classification on the ModelNet40 dataset. Mod-
elNet40 contains CAD models of objects from 40 differ-
ent classes given as triangular meshes. We used a point
cloud representation of each object by sampling its mesh at
20, 000 uniformly distributed points. We normalized each
point cloud to the unit sphere to ignore potential scale dif-
ferences between the models. In the following experiment
we used a subset of ModelNet40, i.e., we took 10 different
models from each class, for each, we generated 150 dif-
ferent observations (100 for the training phase and 50 for
testing), each with different rigid transformation, random
sub-sampling and additive Gaussian noise. The rigid trans-
formations are composed of a random roll and yaw in the
range of [0, 180] degrees and random pitch in the range of
[0, 90] degrees. As for the noise, two noise levels are inves-
tigated: medium noise with std of 0.5 mesh resolution and
stronger noise with std of 0.8 mesh resolution. The mesh
resolution is estimated from the point cloud by sampling its
most dense regions. In order to employ the RTUME frame-
work, we need to define on each point cloud an SE(3) -
invariant function. However, since the two point clouds
are differently sampled and noisy every function which is
SE(3) - invariant in the noise-free case, will be noisy, as
well. In the experiments we employ the Euclidean distance
from center of mass.
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Figure 3. Distance histogram on the Grassmann manifold evalu-
ated using (4) between each pair of samples from the training set
of the medium level noise. Following the use of GDRUME, obser-
vations from the same class (in-class) are closer while observations
from different classes (out-of-class) are further apart. Setting the
decision threshold at the intersection point between the in-class
and the out-of-class histograms yields for the initial representation
by the FUME P̂ (out|in) = 0.044 and P̂ (in|out) = 0.037, while
after the GDRUME optimization both P̂ (out|in) and P̂ (out|in)
are null.

Method Accuracy [%]
PointNet [14] (Noisy train set) 1.28
FUME 90.03
GDRUME 91.87

Table 1. Accuracy comparison of PointNet, FUME, GDRUME on
deformed ModelNet40 dataset in the presence of the stronger noise
level, tested on point clouds with 2048 points.

6.2. Training

For every point cloud, the FUME matrix is evaluated us-
ing (1) with Q = 128. The desired reduced dimension is
d = 32 (The values of Q and d were experimentally set).
The training procedure is detailed in Algorithm 1. In Fig-
ure 3 we depict the measured distanced on the Grassmann
manifold between every pair of samples in the training set
- before and after the optimization. We repeated the train-
ing procedure for the two data sets: the medium and the
stronger noise.

6.3. Results Evaluation

Our evaluation has two parts: We examine the separation
performance on the Grassmann manifold generated from
the test dataset. We then examine the classification perfor-
mance of the FUME and GDRUME.

We repeat the same procedure for different numbers of
points in the point cloud and for different noise statis-
tics. We also compared our classification results to those
of PointNet on point clouds with 2048 (the maximal size
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PointNet enables).

Figure 4. Classification accuracy as a function of number of points
in the point cloud. Top: Medium noise level (0.5 meshR). Bot-
tom: Stronger noise (0.8meshR). Tested point cloud sizes are
[1024, 2048, 5000, 10000]

6.3.1 Separation Performance

As explained in Section 5, our aim is to map samples from
the same orbit to RTUME matrices of small distance on
the lower dimension Grassmann manifold while separating
samples from different objects as much as possible. As
shown in Figure 3, GDRUME achieves perfect separation
between the in-class and out-of-class samples on the train-
ing set.

In order to evaluate the generalization capabilities of our
methods, we compute the distance histograms between the
observations in the test set to those in the training set. We
observe from Figure 5 that compared to the FUME , the
GDRUME achieves better separation between the in-class
and out-of-class samples.

6.3.2 Classification Performance

In order to translate the separation methodology on the
Grassmann manifold to a classification procedure, we used
a nearest neighbor classifier between the test set and the
training set, i.e., the class of each observation in the test
is determined to be the label of its nearest neighbor in the
training set. We tested the classification performance un-
der two different noise statistics, for each we also tested the
effect of changing the number of points in the point cloud.
The results are evaluated using the estimated accuracy com-
puted as the ratio of the number of correct decisions to the
total number of trials. The results are depicted in Figure 4.

It can be seen that both the FUME and GDRUME meth-
ods achieve high accuracy. On smaller point clouds the
FUME preforms slightly better, but when the noise level in-
creases GDRUME achieves better results. Also, for a larger
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Figure 5. Distance histograms between training samples and test
samples from the medium noise dataset. Upper histogram: Setting
the decision threshold at the intersection point between the in-class
and the out-of-class histograms yields for the initial representation
by the FUME P̂ (out|in) = 0.1534 and P̂ (in|out) = 0.0274.
Lower histogram: Using GDRUME optimization P̂ (out|in) =
0.0355 and P̂ (in|out) = 0.0241.

number of points, the GDRUME outperforms the FUME.
We also conduct a comparison between our classifiers and
the PointNet classifier in the presence of stronger noise level
and rigid deformations. We used a trained PointNet model
and tested its performance on observations from the Mod-
elNet40 training set after applying the mentioned deforma-
tions. Although PointNet was evaluated on samples used for
its training, we conclude from Table 1 that it failed. Point-
Net performance is known to deteriorate in the presence of
observation noise, [14], and where the observations are sub-
ject to arbitrary SO(3) transformations, [18]. In our experi-
ment we test the classification performance in the presence
of both noise and arbitrary transformations, which may ex-
plain the relatively poor performance of PointNet. On the
other hand GDRUME employs integral operators that are
less sensitive to sampling differences and noise.

7. Conclusions
We have presented a novel approach for designing the

rigid transformation universal manifold embedding of 3D
point clouds towards optimizing its performance for detec-
tion and classification tasks. It has been shown that the
RTUME provides a mapping from the orbit of observations
on some object to a single low dimensional linear subspace
of Euclidean space. This linear subspace is invariant to the
geometric transformations. In the classification set-up the
RTUME subspace extracted from an experimental observa-
tion is tested against a set of subspaces representing the dif-
ferent object manifolds, in search for the nearest class. In
the presence of observation noise and random sampling pat-
terns of the point clouds, the observations do not lie strictly
on the manifold and the resulting RTUME subspaces are
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noisy. The proposed method employs Grassmannian di-
mensionality reduction to derive an optimal structure for the
universal manifold embedding, which we name GDRUME.
We showed that in the presence of noise, GDRUME pro-
vides highly accurate classification results.

Appendix A - The Cost Function Euclidean
Gradient
Proof. In the following we use the abbreviated notation
Qi , Qi(W), where it is understood that Qi is a func-
tion of W. Recall that L(W) is given by (9), Qi,Ri are
obtained by the QR-Decomposition of Yi = WTFi and
G is given by (10). We will use the differential notations:
dy = tr(AdW) ⇐⇒ dy

dW = AT , [12, 11]. Let

Li,j(W) =
1

2

∥∥QiQ
T
i −QjQ

T
j

∥∥2
F

(16)

The differential ofLi,j(W), after using the trace properties,
can be written as:

dLi,j(W) = −2tr
(
QT

i QjQ
T
j dQi +QT

j QiQ
T
i dQj

)
(17)

Note that the two summands on the RHS are identical up to
a change of roles between i and j, therefore we will simplify
only the first one and the solution for the second is similar.
The differential of Yi is given by:

dYi = d(QiRi) = dQiRi +QidRi (18)

Since QT
i Qi = I we have that d(QT

i Qi) = 0, and hence

dQT
i Qi = −QT

i dQi (19)

i.e., dQT
i Qi is skew-symmetric. Left multiplying (18) by

QT
i and right multiplying by R−1i we have:

QT
i dYiR

−1
i = QT

i dQi + dRiR
−1
i (20)

Multiplying (20) by Qi on the left we have

dQi = dYiR
−1
i −QidRiR

−1
i (21)

Similarly, multiplying (20) by Ri on the right we have

dRi = QT
i dYi −QT

i dQiRi (22)

dRiR
−1
i is upper triangular matrix as a product of two up-

per triangular matrices. Hence, applying the tril operator on
(20), which returns the lower triangular part of a matrix, and
since dRiR

−1
i is upper-triangular we get:

tril(QT
i dYiR

−1
i ) = tril(QT

i dQi) (23)

Because QT
i dQi is skew-symmetric and by substituting

dYi = dWTFi and (21), we obtain

QT
i dQi =

(
QT

i dW
TFiR

−1
i

)
asym (24)

where we define (A)asym , (A)tril − (A)Ttril. Substituting
(24) to (20) and left multiplying by QT

i yields:

dRi = QT
i dW

TFi −
(
QT

i dW
TFiR

−1
i

)
asym Ri (25)

Substituting dRi into (18) and right multiplying by R−1i we
get:

dQi = SidW
TFiR

−1
i +Qi

(
QT

i dW
TFiR

−1
i

)
asym (26)

where Si , I − QiQ
T
i . Substituting (26) into the first

summand of (17) RHS yields

2tr
(
QT

i QjQ
T
j dQi

)
= 2tr

(
QT

i QjQ
T
j SidW

TFiR
−1
i

)
+ 2tr

(
QT

i QjQ
T
j Qi

(
QT

i dW
TFiR

−1
i

)
asym

)
(27)

Next we will introduce some useful identities:

(A)bsym , (A)tril − (AT )tril

tr
(
AT (B)asym

)
= tr

(
AT

bsym(B)
)

(28)

Applying (28) to the second summand of (27) RHS we get:

tr
(
QT

i QjQ
T
j Qi

(
QT

i dW
TFiR

−1
i

)
asym

)
= tr

((
QT

i QjQ
T
j Qi

)
bsym

QT
i dW

TFiR
−1
i

)
(29)

Since QT
i QjQ

T
j Qi is a symmetric matrix we have(

QT
i QjQ

T
j Qi

)
bsym

= 0, and hence the second summand
of (27) is zero. Finally, using the last result and the trace
properties, we re-evaluate (27) and substitute it into (17) to
obtain

dLi,j =− 2tr
(
SiQjQ

T
j QiR

−T
i FT

i dW
)

− 2tr
(
SjQiQ

T
i QiR

−T
j FT

j dW
)

(30)

Writing dLi,j using derivative notations we have:

dLi,j

dW
= −2

[
FiR

−1
i QT

i QjQ
T
j Si + FjR

−1
j QT

j QiQ
T
i Sj

]
The Euclidean gradient of the cost function is the weighted
sum over i, j:

dL

dW
=− 2

N∑
i=1

FiR
−1
i QT

i

 N∑
j=1

Gi,jQjQ
T
j


︸ ︷︷ ︸

,Hi

Si

− 2

N∑
j=1

FjR
−1
j QT

j

(
N∑
i=1

Gi,jQiQ
T
i

)
︸ ︷︷ ︸

,Bj

Sj

Since G is a symmetric matrix we have that for every i,
Hi = Bi, therefore the left sum and right sum are equal,
and we obtain (15).
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