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Abstract
We present a closed form solution to the problem of registration of fully overlapping 3D point clouds undergoing unknown
rigid transformations, as well as for detection and registration of sub-parts undergoing unknown rigid transformations. The
solution is obtained by adapting the general framework of the universal manifold embedding (UME) to the case where the
transformations the object may undergo are rigid. The UME nonlinearly maps functions related by certain types of geometric
transformations of coordinates to the same linear subspace of some Euclidean space while retaining the information required
to recover the transformation. Therefore registration, matching and classification can be solved as linear problems in a low
dimensional linear space. In this paper, we extend the UME framework to the special case where it is a priori known that
the geometric transformations are rigid. While a variety of methods exist for point cloud registration, the method proposed in
this paper is notably different as registration is achieved by a closed form solution that employs the UME low dimensional
representation of the shapes to be registered.

Keywords Rigid transformations · Registration · Parameter Estimation · Deformable templates · Point clouds

1 Introduction

Registration of 3D point clouds has been an active research
subject with a vast range of applications from problems
in computer vision, robotics and autonomous navigation,
to medical imaging. There are many approaches to the 3D
point cloud registration problem. One of the most commonly
practiced approaches is to extract and match spatially local
features (e.g., [25,31,47,55,57,58]).

Many of the existing methods are adaptations to 3D of
image processing solutions, such as variants of 3D-SIFT
[15,35] and the Harris keypoint detector [48]. In 3D, with
the absence of a regular sampling grid, artifacts, sampling
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noise and the challenging nature of salient geometry (edges
are not common in 3D as in images, for example), keypoint
matching is prone to high outlier rates and localization errors.
Hence, the alignment estimated by keypoint matching usu-
ally employs outlier rejection methods such as RANSAC
[18] and Guaranteed Outliers Rejection [8], or directly solve
an optimization problem such that outliers are discarded
directly during optimization as in Fast Global Registration
[62] and TEASER [54]. These registration algorithms are
usually followed by a refinement stage using local optimiza-
tion algorithms [6,36,44,61].

Refinement algorithms employ numerical optimization
to iteratively minimize an objective function measuring the
distance between points in the observation and assumed
correspondence points in the reference model [6,61], or
between points in the observation and the surface of the
model [6,36,44].

The Iterative Closest Point algorithm (ICP) [6,61] is
the standard algorithm in this category. It constructs point
correspondences based on spatial proximity followed by a
transformation estimation step. Over the years, many vari-
ants of the ICP algorithm have been proposed in attempt to
improve the convergence rate, robustness and accuracy of the
algorithm. In [10] for example, not all points in both models
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Fig. 1 Registration of a noisy StanfordBunnymodel undergoing a rigid
transformation (parameterized by rotationmatrixR and translation vec-
tor c) to a noise free reference, using theRigidTransformationUniversal
Manifold Embedding (RT-UME). First, models are embedded in a low
dimensional linear space using (6) resulting in UME matrices H and
G. Since the embedding is covariant with the transformation, the rigid
transformation is estimated in the UME space and applied to the noisy
point cloud for registration

are taken into account, and the number of obtainedmatches is
trimmed according to an assumed overlap between the mod-
els undergoing registration. This approach overcomes bias in
the registration that is due to the closest point paradigm fail-
ure (i.e., when there is partial overlap the closest pointmay be
in fact very far). Other variants of the ICP algorithm attempt
to improve the formation of correspondences by including
additional information such as surface normals, or varying
the direction of closest point search, etc. (see [45] for a review
of ICP variants). By definition, the ICP like any other iter-
ative numerical optimization method (e.g., [36,44,50,60])
requires a good initial alignment, otherwise registration may
converge to a local minimum of the objective function. In
addition, as presented in [45], not all variants are appropriate
to all data types, and the algorithm should be matched to the
data type for optimal performance.

Registration methods are not restricted only to methods
based on the extraction and matching of keypoints. In [37],
for example, an initial alignment is found by employing a
matched filter in the frequency space of local orientation
histograms [28]. In [17], an initial alignment is found by
clustering the orientations of local point cloud descriptors
followed by estimating the relative rotation between clusters.
In [1] and [38], the algorithm searches for congruent sets of

four co-planar points between point clouds to create point
correspondences. In [7], a registration procedure based on
Fourier–Mellin transform is derived. It is a three step proce-
dure where an SO(3) Fourier transform implemented using
spherical harmonics is employed to estimate the rotation. In
the second step using the Mellin transform, the scale is esti-
mated, and finally the translation. A different approach is
to approximate the surface using Gaussian Mixture Models
(GMM) and perform registration on the GMMmodels rather
than directly on the point clouds, e.g.,, [9,14,39] and the
recent learning based DeepGMR [59]. The GMM modeling
methods tend to be computationally expensive as each point
in the point cloud is assumed to be the center of amodel com-
ponent. Another drawback is that the final result depends on
the model initialization which is usually random.

More recently, deep learning algorithms have employed
the PointNet architecture [20] as a building block for 3D
registration [3,33,52]. [33] is a scene flow solution which by
definition assumes a small movement between point clouds.
Similarly, [3] is an adaptation of the Lucas & Kanade image
registration technique [34] to 3D using the PointNet archi-
tecture. [52] adopts the standard approach of creating point
correspondences by training a differentiable soft matching
function instead of the usual ”hard” matching. While being
more robust to the initial alignment than ICP, these methods
are applicable only when the transformation is of a small
magnitude. Other learning methods employ different defi-
nitions of 3D convolutions to extract and match features for
creating point correspondences, [5,13,22], followed by stan-
dard outlier rejection and registration procedures. In [12],
putative matches are treated as six-dimensional points, and
the correspondences are estimated by directly processing the
six-dimensional geometry while estimating the probability
of each putative match to be an inlier.

A different family of registration algorithms is plane-
based registration where planes are detected and matched
between point clouds [23,32,43,51]. Suchmethods, however,
generally assumea small transformationbetween scans (e.g.,,
successive scans from a moving LIDAR scanner).

The method proposed in this paper is notably different as
registration is performed using a global closed form solution
that employs the UME low dimensional representation of the
shapes to be registered. As a result, an efficient and accurate
registration scheme is achieved where no initial alignment is
required.

More specifically, in this paper we show that enforcing
a rigid deformation constraint on the Universal Manifold
Embedding (UME) [27], derived for the case where the geo-
metric transformation is affine, results in an accurate and
computationally efficient closed form solution to the prob-
lem of registration of fully overlapping 3D point clouds
undergoing unknown rigid transformations, as well as for
detection and registration of sub-parts undergoing unknown
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rigid transformations. It is also shown that the suggested
formulation enables simple perturbation analysis of the esti-
mator performance in the presence of noise. Such an analysis
enables a simple derivation of an unbiased estimator of
the transformation parameters. The presented method is
independent of the initial pose of the point clouds, and
robust to varying data sampling rates. Since the UME low
dimensional representation is also independent of the data
dimensions, it can handle large data sets with linear compu-
tational complexity, which is a major limitation for existing
methods.

Since the UME (and hence the rigid transformation UME)
is an operator defined on functions of the coordinates, in
order to enable registration, these functions need to be invari-
ant to the transformation. Hence, as a pre-processing step
each point in the point cloud is assigned a value by defining
an SE(3)-invariant “coloring” function on the point cloud.
There are different methodologies for defining an SE(3)-
invariant coloring function on a point cloud. In the examples
discussed in the following sections, two specific choices of
an SE(3)-invariant coloring function are evaluated: The local
curvature estimated using the volume curvature descriptor,
[21], and the signed distance of the point from the plane
passing through the point cloud center of mass, such that the
plane normal is the axis of smallest variation of the point
cloud.

We demonstrate the performance of the proposed method
using examples of 3D topographic point-cloud registration
through extensive numerical evaluation and comparison with
state-of-the-art methods. In the evaluation, we consider the
case of fully overlapping point clouds, where their relative
pose is unknown, as well as an illustrative example of sub-
part detection and registration where one point cloud is fully
contained in the other. In the latter, an observed topographic
model acquired byLIDARor usingmultiview3D reconstruc-
tion techniques is to be registered to a reference topographic
model (for example, in the form of a DTM) of a larger area
where it is assumed to be completely contained in the refer-
ence model. The presented method is shown to outperform
the results achieved by state-of-the-art algorithms in both
setups.

1.1 Contribution

The contribution of this paper is twofold. First, we establish
the framework for utilizing the Universal Manifold Embed-
ding [27] when processing noisy 3D point clouds, providing
a constrained closed form solution to the problem of reg-
istering 3D point clouds related by a rigid transformation.
Second, the proposed method is shown to provide an accu-
rate and robust building block for point cloud registration
methods.

1.2 Organization

The rest of this paper is structured as follows. In Sect. 2,
brief technical background required for the derivation of the
proposed solution is provided. In Sect. 3, the derivation of
the UME for the special case of a rigid transformation is
presented. In Sect. 4, model mismatch is analyzed and an
unbiased estimator is derived. In Sect. 5, the Rigid Transfor-
mation UME, derived in Sect. 3, is adapted to the case where
the objects undergoing rigid transformation are point clouds.
In Sect. 6, experimental results are provided, and in Sect. 7,
we provide our conclusions.

2 Background

Next, we briefly review the two methodologies that form the
basis of the framework presented in this paper. These are the
UME [27] and the closed form solution for registration of
point clouds from known correspondences [4,30].

2.1 Closed Form Solution for Registration of Point
Clouds from Known Correspondences

In [29,30], a closed form solution for the problem of recover-
ing the transformation between two sets of points in different
Cartesian coordinate systems is derived. More specifically,
the problem is defined by

rr ,i = sRrl,i + r0, i = 1, ..., n (1)

where {rl,i }ni=1 is the “left hand” (or reference) set of points
mapped to the “right hand” (or observed) set of points
{rr ,i }ni=1 by a transformation defined by s, R and r0. The
goal then is to find R, r0 and s such that we minimize

n∑

i=1

||ei ||2 =
n∑

i=1

||rr ,i − sRrl,i − r0||2 (2)

In [30], it is shown that the translation r0 that minimizes
the sum of squared errors is the difference between the cen-
troid of {rr ,i }ni=1 and the rotated centroid of {rl,i }ni=1, i.e.,

r0 = 1
n

n∑
i=1

rr ,i − 1
n sR

n∑
i=1

rl,i . The rotation that minimizes

the sum of squared errors is shown to be the matrix maxi-

mizing tr{RTM}, where M =
n∑

i=1
r′
r ,i , r′T

l,i (here, r
′
r ,i , r′

l,i

represent the centered versions of rr ,i and rl,i ).M is shown to
have a decomposition M = US where U = M(MTM)−1/2

is a unitary matrix and S is a semi-positive definite matrix.
It is then shown by analyzing the eigenvalues of the matrix
M that R = U is the matrix minimizing the sum of squared
errors. The solution for R, however, is only guaranteed to
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be a unitary matrix and therefore, can yield a rotation and
reflection rather than only rotation. This issue is addressed
in Sect. 3.2.

2.2 The UME–Universal Manifold Embedding

In this section, we briefly review the principles of the UME
[27] for observations related by an affine transformation. Let
O be the space of observations. Let Φ be the group of affine
transformations, and let S be a set of known objects. Every
observation is the result of applying a geometric deformation
φ ∈ Φ to an object s ∈ S. The parameters of the affine
transformation completely specify the action of the group
of geometric transformations the object may undergo. We
denote by φs ⊂ O the set of all possible observations on an
object s. Thus, φs is the orbit of s under Φ.

The universal manifold embedding is a map T : O →
H from the space of observations into a low dimensional
Euclidean space, H , such that the set T (φs) is a linear sub-
space of H for any s. Thus, the UME reduces the dimension
of any problem concerning the multiplicity of appearances
of objects from the high dimensional space of observations
O to the low dimensional linear space H and allows for the
usage of classical linear theory in solving the highly nonlin-
ear problems of deformable object detection and registration.

Next, themapping T is described:Consider the casewhere
the finite support functions h(x), g(x) are observations on the
same object related by an affine transformation, i.e.

h(x) = g(Ax + c) ,A ∈ GL(n), c, x ∈ R
n (3)

Let y = Ax + c, x = A−1y + b where b = −A−1c. Let
y′ = [1, yT ] then x = Dy′T where D = [

b;A−1
]
is an

n × (n + 1) matrix.
Also, let P ∈ N and let wl , l = 1, . . . , P be a set of

bounded, Lebesguemeasurable functionswl : R → R. Since
by definition h(x) = 0, x /∈ supp(h), and similarly for g, by
a change of variables we obtain the following identities:

∫

Rn

wl ◦ h(x)dx =
∣∣∣A−1

∣∣∣
∫

Rn

wl ◦ g(y)dy (4)

∫

Rn

xTwl ◦ h(x)dx =
∣∣∣A−1

∣∣∣
∫

Rn

y′DTwl ◦ g(y)dy (5)

Let f be some observation on a deformable object. Its UME
matrix is given by

T( f )

=

⎡

⎢⎢⎢⎢⎣

∫

Rn
w1 ◦ f (y)dy

∫

Rn
y1w1 ◦ f (y)dy . . .

∫

Rn
ynw1 ◦ f (y)dy

.

.

.∫

Rn
wP ◦ f (y)dy

∫

Rn
y1wP ◦ f (y)dy . . .

∫

Rn
ynwP ◦ f (y)dy

⎤

⎥⎥⎥⎥⎦

(6)

LetD′ = [e1;DT ], where e1 = [1 0 ...0]T , be the matrix
representation of an affine transformation in homogeneous
coordinates. Rewriting (4), (5) for l = 1, . . . , P in a matrix
form by row stacking (4) and (5) for every l, and using the
notation G = T(g), H = T(h), we have:

GD′
∣∣∣A−1

∣∣∣ = H . (7)

To find the matrix D′ (and thus recover the parameters of the
affine transformation), we notice that (7) is in fact an over
determined linear equation system. Hence, the least squares
solution for D′ are given by

D′ = |A| [GTG]−1GTH (8)

Remark 1 The set of matrices of the structure defined above
for D′ is homomorphic to the affine group with matrix mul-
tiplication as the group operation.

3 The UME for Rigid Transformations

In the following, we derive the Rigid Transformation Univer-
salManifold Embedding (RT-UME) estimator of the rotation
and translation relating two functions defined onRn . In Sect.
5, we consider the special case where n = 3 and the problem
is the registration of 3D point clouds.

Assume that O is the space of n dimensional functions
from R

n to R. As an example, one may consider a finite
support point cloud, where for each point in the point cloud
we also measure the object gray-level value at this point.
Assuming further that the objects undergo rigid geomet-
ric transformations of coordinates, Φ becomes the special
Euclidean group in n dimensions, SE(n). In [16], the Rigid
Transformation UME for the noise-free case, derived in this
section, is derived using a slightly different estimator.

Since SE(n) is a subgroup of the affine group, the map-
ping T : O → H in (6) is still valid. The coordinate
transformation, however, is now different. As the geometric
transformation is assumed to be rigid, the matrix A becomes
an orthonormal matrix with determinant of 1, i.e., a rotation
matrix. Let us denote this rotationmatrix byR. In this special
case of a rigid deformation, D′ will be denoted by D′(R, c)
to distinguish the notation from the one used in the case of
affine transformations.
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Let x′ = [1, xT ]. Using this homogeneous coordinates
notation, we have x′ = y′D′(R, c), and hence, when

h(x) = g(Rx + c) (9)

(7) is rewritten in the following form:

GD′(R, c) = H (10)

where D′(R, c) is given by:

D′(R, c) =
[
1 −cTR
0 R

]
(11)

and b = −RT c.
Thus, (10) establishes the basic relation of theRigidTrans-

formation UME (RT-UME). Clearly, a solution for D′(R, c)
cannot be found by applying the least squares solution given
in (8), as there is no restriction on the solution to provide a
rigid transformation.Wenext show that by enforcing the rigid
transformation constraints in formalizing the least squares
estimate of D′(R, c) in (8), the solution is obtained along
similar lines to the ones employed in [30]:

Define the errormatrixE = GD′(R, c)−H. LetEi denote
the i-th row of E. Thus,

Ei =
⎡

⎣

∫

Rn
wi ◦ h(x)dx − ∫

Rn
wi ◦ g(y)dy

∫

Rn
xwi ◦ h(x)dx − RT

∫

Rn
ywi ◦ g(y)dy − b

∫

Rn
wi ◦ g(y)dy

⎤

⎦
T

(12)

and

||Ei ||2 =
∥∥∥∥∥∥

∫

Rn

wi ◦ h(x)dx −
∫

Rn

wi ◦ g(y)dy

∥∥∥∥∥∥

2

+

+

∥∥∥∥∥∥∥

∫

Rn

xwi◦h(x)dx − RT
∫

Rn

ywi◦g(y)dy − b
∫

R2

wi◦g(y)dy

∥∥∥∥∥∥∥

2

(13)

The first term is independent of the deformation param-
eters; therefore, it is enough to minimize the sum over the
second term. Define

gi =
∫

Rn

yTwi ◦ g(y)dy (14)

hi =
∫

Rn

xTwi ◦ h(x)dx (15)

mi =
∫

Rn

wi ◦ g(y)dy (16)

Minimizing the sum of squared errors (13) for all i =
1, . . . , P is equivalent to minimizing

P∑

i=1

∥∥∥hi − giR − bTmi

∥∥∥
2

(17)

This minimization highly resembles the minimization prob-
lem (2) solved in [30], with the exception that the translation
term is multiplied by the mass coefficients mi . The property
of the translation being identical for all i in (2) is critical in
the procedure of solving (2) in [30]. However, following [29],
(17) can be rewritten as a weighted sum of squared errors,

P∑

i=1

m2
i

∥∥∥∥
hi
mi

− gi
mi

R − bT
∥∥∥∥
2

(18)

which is then solved for the desired R and b using the pro-
cedure described next.

3.1 Finding the Translation

Using the weighted centroid of hi and gi , we obtain their
weighted-and-centered versions:

hci = hi
mi

−
∑P

j=1m jh j
∑P

j=1m
2
j

, gci = gi
mi

−
∑P

j=1m jg j
∑P

j=1m
2
j

(19)

In addition, define

bc = bT −
∑P

j=1m jh j
∑P

j=1m
2
j

+
∑P

j=1m jg j
∑P

j=1m
2
j

R (20)

Using these definitions, the sum in (18) can be written as

P∑

i=1

m2
i

∥∥hci − gciR − bc
∥∥2 (21)

Following similar lines to [30], it can be shown that bc = 0
minimizes (21). Therefore, substituting bc = 0 into (20) we
have

b =
[∑P

j=1m jh j
∑P

j=1m
2
j

−
∑P

j=1m jg j
∑P

j=1m
2
j

R

]T

(22)
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3.2 Estimating the Rotation

In order for R to minimize (18), it is required to maximize

P∑

i=1

m2
i h

c
iR

T (gci )
T = tr{R

P∑

i=1

m2
i (h

c
i )

T gci } (23)

Define

M =
P∑

i=1

m2
i (h

c
i )

T gci (24)

LetGc = [(gc1)T , . . . , (gcP )T ]T , andHc is similarly defined.
Rewriting the definition of M in a matrix form, we have:
M = (Hc)TWGc where W is a P × P diagonal weight
matrix with the i-th term on the diagonal beingm2

i . Note that
M is a square matrix. In contrast to the solution forR in [30],
where R is only guaranteed to be unitary (i.e., a reflection
may also occur), we adopt the solution method found in [4]
and [40], where a rotation is guaranteed. LetM = USVT the
singular value decomposition of M. From [4], the rotation
matrix maximizing tr{RM} is given by

R = VCUT , C = diag{1, 1, ..., 1, det(UVT )} (25)

Substituting the estimated R into (22) completes the esti-
mation of the rigid transformation.

4 Model Mismatch

In this section, it is shown that the presence of observation
noise introduces bias to the constructed UME matrix. Then,
given the noise statistics, an unbiased estimator is derived. In
order to keep the generality of the derivation, it is presented
for functions defined on R

n , where the special case of R3 is
easily concluded.

4.1 The Effect of Noise on the UMEMatrix

Let h̃(x) = h(x)+n(x) be a noisy observation, where n(x) is
the additive noise to the observation and h(x) is a noise-free
observation defined in (3). Following [27], it is concluded that
the nonlinear left-compositions {wi }Pi=1 must be designed
such that the result of their application is covariant with the
geometric transformation, and hence, they cannot be func-
tions of the coordinates. Hence, it is natural to choose the
nonlinear {wi }Pi=1 functions as indicator functions of level-
sets of h(x). As a consequence, we perform the RT-UME
noise analysis, presented next, for the case where the nonlin-
ear left-compositions {wi }Pi=1 are the indicator function on

h(x) such that

wi (h(x)) = 1[li ,hi ](h(x)) (26)

where li , hi ∈ R are the low and high boundary values
for the i-th indicator function. Let H̃ be the UME matrix
constructed from a noisy observation h̃(x). (Recall that H
and G are the UME matrices constructed from a noise free
observations h(x) and g(x)). The i-th row of H and sim-
ilarly of H̃ are therefore given by

∫

Rn
x′1[li ,hi ](h(x))dx and

∫

Rn
x′1[li ,hi ](̃h(x))dx, respectively. Hence, in the presence of

noise the sum of squared errors becomes

P∑

i=1

||H̃i − Gi D
′(R, c)||2 (27)

Proposition 1 Define the UME error matrix

eH = H̃ − H . (28)

In addition, define the following sets:

X (i)
in = {x ∈ supp(h)|1[li ,hi ](h(x)) = 1, 1[li ,hi ](̃h(x)) = 1}

(29)

X (i)
out = {x ∈ supp(h)|1[li ,hi ](h(x)) = 0, 1[li ,hi ](̃h(x)) = 1}

(30)

X (i)
miss = {x ∈ supp(h)|1[li ,hi ](h(x)) = 1, 1[li ,hi ](̃h(x)) = 0}

(31)

The i-th row of eH , denoted by eH ,i is given by

eH ,i =
∫

X (i)
out

x′dx −
∫

X (i)
miss

x′dx (32)

Proof See Appendix A

Therefore, the error in the UME matrix is caused by
observation samples that, due to the noise, migrate across
the boundaries of the indicator functions, such that they are
included or excluded from the integration where they should
not have. Figure 3 illustrates using the example of Fig. 2, an
example of a correct integration area and the change in the
integration area caused by noise.

In the following, it is shown that the presence of an additive
observation noise results in bias of the least squares solution
for the translation and rotation.

4.2 Mean UME Error Matrix

The analysis in Sect. 4.1 dealt with characterizing the error
in a single realization of the observation. In this section,
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we derive an expression for the mean UME matrix error
E (eH ) given the unobservable noise free function h(x) and
the noise statistics. This expression is then used to “explain”
and thus eliminate significant components from the noise
related estimation errors. More specifically, it is shown that
by embedding the statistical model in the constrained least
squares solution, an unbiased estimator is achieved. In the
following, it is assumed that the probability distribution of
the additive noise is known. Therefore, one can find the prob-
ability of a certain x ∈ supp(h) to belong X (i)

miss or X
(i)
out . Let

us denote the probability for a point x to become an “outlier”
point with respect to the function h(x) and the noisemodel by
P(i)
out (x; h(x)) = P(x ∈ X (i)

out ) and similarly for a “missed”
point P(i)

miss(x; h(x)) = P(x ∈ X (i)
miss).

Definition 1 The domain of 1[li ,hi ](h(x)) is characterized by
the following sets

X (i)
above = {x ∈ supp(h)|hi < h(x)} (33)

X (i)
wi thin = {x ∈ supp(h)|li < h(x) ≤ hi } (34)

X (i)
below = {x ∈ supp(h)|h(x) ≤ li } (35)

Lemma 1 The mean UME error matrix E (eH ) is given by

E(eH ,i ) =
∫

X (i)
above ∪ X (i)

below

x′P(i)
out (x; h(x))dx −

∫

X (i)
wi thin

x′P(i)
miss(x; h(x))dx

(36)

Proof See Appendix B.

Following Definition 1, let

Y (i)
above = {y ∈ supp(g)|g(y) > hi } (37)

Y (i)
wi thin = {y ∈ supp(g)|li < g(y) < hi } (38)

Y (i)
below = {y ∈ supp(g)|g(y) < li } (39)

Since in general E(eH ,i ) 	= 0, we conclude that H̃ is a biased
estimate of H. Assuming the noise distributions given g(x)
or h(x), are identical, i.e., the conditional probability dis-
tribution is independent of the observed function, we also
have,

E(eG,i ) :=
∫

Y (i)
above ∪ Y (i)

below

y′P(i)
out (y; g(y))dy −

∫

Y (i)
wi thin

y′P(i)
miss(y; g(y))dy

(40)

4.3 Compensating for the Bias

Next, it is shown that themean estimated rotation and transla-
tion may be found using the mean UME observation matrix.

This in turn allows us to show that an unbiased estimator may
be realized by evaluating a “reference” mean UME matrix,
i.e.G+ E(eG) and employing it in the least squares problem.

Proposition 2 Let h̃i , gi and mi be defined as in (17). In
addition, let

{R̂, t̂} = argmin
{R,t}

P∑

i=1

||̃hi − giR − mi t||2 (41)

{R̄, t̄} = argmin
{R,t}

P∑

i=1

||E (̃hi ) − giR − mi t||2 (42)

then E(R̂) = R̄ and E(t̂) = t̄

Proof See Appendix C

Proposition 2 implies that the expectation of the estimated
transformation parameters when they are estimated from
the noisy UME matrix using (41) is equal to the estimates
obtained from the mean UME matrix using (42). It is thus
concluded that the estimation bias can be eliminated by sub-
tracting E(eH ) from H̃ in (41). However, h(x) is unknown
and therefore, E(eH ) is unknown as well. On the other hand,
E(eG) is known, and the relation between E(eH ) and E(eG)

is given next:

Proposition 3 Assuming that h(x) = g(Rx + c), we have
that

E(eH ,i ) = E(eG,i )D′(R, c) (43)

Proof Note that

Yabove = RXabove + c (44)

Ywi thin = RXwi thin + c (45)

Ybelow = RXbelow + c (46)

By a change of variable x′ = y′D′(R, c) in (36)
E(eH ,i )

=
∫

Y (i)
above∪Y (i)

below

y′D′(R, c)P(i)
out (y; h(RT y − RT c))dy

−
∫

Y (i)
wi thin

y′D′(R, c)P(i)
miss(y; h(RT y − RT c))dy

=

⎛

⎜⎜⎝

∫

Y (i)
above ∪ Y (i)

below

y′P(i)
out (y; g(y))dy −

∫

Y (i)
wi thin

y′P(i)
miss(y; g(y))dy

⎞

⎟⎟⎠D′(R, c)

= E(eG,i )D′(R, c)


�
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Corollary 1 Let H̃ be the UMEmatrix of some noisy observa-
tion h̃ andG a knownUMEmatrix of a noise-free observation
g on the same object. Then, E(H̃) = (G + E(eG))D′(R, c)

Proof Following (28), we have that eH = H̃ − H. Hence,
E(H̃) = H + E(eH ) 
�

Corollary 1 implies that instead of subtracting E(eH ) from
H̃ in (27), the estimation bias can be eliminated by adding
E(eG) to G. We can therefore replace (27) by a modified
least squares problem that provides an unbiased RT-UME
estimator:

{RU , tU } = argmin
{R′,t′}

P∑

i=1

||H̃i − (G + E(eG,i ))D
′(R′, t′)||2

(47)

From corollary 1, we have

G + E(eG) = E(H̃)D′(R−1,−R−1c) (48)

Substituting in (47), we get

{RU , tU }

= argmin
{R′,t′}

P∑

i=1

||H̃i − E(H̃i )D
′(R−1,−R−1c)D′(R′, t′)||2

(49)

Then, following Remark 1, by change of variables where

D′(R′′, t′′) = D′(R−1,−R−1c)D′(R′, t′) (50)

(49) is rewritten as

{R′
U , t′U } = argmin

{R′′,t′′}

P∑

i=1

||H̃i − E(H̃i )D
′(R′′, t′′)||2 (51)

thus providing an equivalent minimization problem. Apply-
ing proposition 2 to this case, we obtain E(R′

U ) = In
and E(t′U ) = 0. However, from (50) R′

U = R−1RU and
tU = t′U + RUR−1b. Therefore,

E(RU ) = R (52)

E(tU ) = b (53)

By evaluating a “corrected” mean UME matrix from the
available noise free reference function and employing this
result in the least squares problem, bias errors are compen-
sated for and an unbiased estimator is achieved in (47).

5 Estimation of Rigid Transformations of
Point Clouds

In this section, we present a novel approach to point cloud
registration: Since point clouds are usually just sets of coor-
dinates in R

3 with no obvious functional relation imposed
on them, the first step in the proposed framework is to define
a function that assigns each point in the point cloud with
a value (scalar or vector valued), invariant to the action of
the transformation group. This “invariant coloring” of the
point cloud enables, in the second stage the application of
the RT-UME estimator for estimating the rigid transforma-
tion between two point clouds.

There are different methodologies for defining an SE(3)-
invariant “coloring” function on a point cloud. In the exam-
ples discussed in the following, two specific choices of an
SE(3)-invariant coloring function are evaluated: The first is
the local curvature estimated using the volume curvature
descriptor [21] or by the surface variation descriptor [26].
The second is the signed distance of the point from the plane
passing through the point cloud center of mass, such that the
plane normal is the axis of smallest variation of the point
cloud. (The axis is found using principal component analy-
sis.) These choices of SE(3)-invariant coloring functions are
examples, and other alternatives can be formulated. In fact,
any invariant point cloud descriptor can be used. See an illus-
tration using the signed distance and the volume curvature
descriptor in Fig. 2. Figure 3 depicts the integration error
in the presence of additive noise, using the signed distance
function. We note that this choice is highly suitable for pro-
cessing aerial LIDAR scans as in those scans, the axis of
smallest variation can be easily found and provides useful
geometric information for constructing the UME matrices.
This is demonstrated in the experiments presented in Sect.
6 where the proposed method achieves better performance
than state-of-the-art methods when performing registration
of aerial LIDAR scans.

The second challenge in adapting the RT-UME for pro-
cessing point clouds is in evaluating the integrals defining
the UME operator. Since the Lebesgue measure of the point
cloud inR3 is zero, integration is performed using the count-
ing measure instead, resulting with sums. Let P ⊂ R

3 be a
point cloud, and f (x) : R3 �→ R be the SE(3)-invariant col-
oring function on the point cloud. In the special case where
3D point clouds are considered, (6) becomes

T(P)

=

⎡

⎢⎢⎢⎢⎣

∑

x∈P
w1 ◦ f (x)

∑

x∈P
x1w1 ◦ f (x) . . .

∑

x∈P
x3w1 ◦ f (x)

.

.

.∑

x∈P
wP ◦ f (x)

∑

x∈P
x1wP ◦ f (x) . . .

∑

x∈P
x3wP ◦ f (x)

⎤

⎥⎥⎥⎥⎦

(54)
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Fig. 2 SE(3)-invariant coloring functions for the construction of aUME
matrix (54). Left: using the volume curvature descriptor [21]. Right:
using the signed distance function. The function maps each point to
the signed distance of the point from the plane passing through the
point cloud center of mass, such that the plane normal is the axis of the
smallest variation of the point cloud

Fig. 3 An example of correct and erroneous integration due to additive
noise (32). Left: Correct part of the integration area. Right: Erroneous
part of the integration area

The complete registration process for 3D point clouds is
depicted in Fig. 1 and described next:

Given two point clouds Q and P of the same object,
related by a rigid transformation and possibly noise, the
transformation parameters are estimated using the follow-
ing procedure. First, an SE(3)-invariant coloring function is
applied to the two point clouds. Next, corresponding RT-
UME matrices, HQ and HP , are constructed for each point
cloud using (54). Since the transformation betweenQ andP
is preserved by their corresponding UME matrices (10), the
transformation relating the point clouds is estimated using
(25) and (22) or by solving (47) when observation noise is
present. Figure 4 provides several examples of registration
between noisy observations and reference point clouds.

6 Experimental Results on Topographic
Point Clouds

The experiments were conducted in several steps, presented
here. At each of the following steps of the experiments, the
performance of the presented method was compared with
state-of-the-art baseline methods for varying noise and sam-
pling rates. First, basic experiments validating the capability
of the proposed method to register point clouds of topo-
graphic maps using the process described in Sect. 5 were
conducted. In these experiments, the point clouds are of the
same observed area (i.e., full overlap between objects); how-
ever, the relative pose is unknown. In the following, this setup
is referred to as the complete object registration. This setup
provides the basis for the more realistic scenario detailed fur-
ther on, while demonstrating the advantage of the proposed
method over state of the art for this type of data.

Next, a more realistic set up is given as an illustrative
example, simulating the problem of registering an observed
SfM topographic model to a reference topographic model.
In these experiments, only the general area from which the
SfM was acquired is known. It is assumed to be completely
contained in the reference model (see Fig. 8). This setup
is referred to as observation to reference registration. The
observation to reference setup is further verified with real
data experiments in Sect. 6.4.4.

In the following sections, the baseline for comparison is
detailed, followed by details of the conducted experiments
in the two scenarios. While the generation of the data sets is
similar in the two setups, details of the data sets are given in
each section separately for the sake of clarity.

6.1 Baseline

The presentedmethod is comparedwith a number of state-of-
the-art point cloud registration algorithms. The parameters of
the baselinemethodswere tuned by trial and error to optimize
performance while limiting the running times to a maximum
of few minutes for each point cloud pair. The first algorithm
is a recent variant of the ICP called the globally optimal
ICP (GOICP) [56], and the GOICP is expected to achieve
the same accuracy as ICP when ICP is given a good initial
position.GOICPwas employedwith no trimming since in the
complete object registration scenario, full overlap is assumed
between models, and similarly, in the observation to refer-
ence registration task, the moving point cloud is assumed to
be fully contained in the reference. The convergence thresh-
old was selected per noise level such that running times are
no more than a few minutes for each pair of point clouds.

The second algorithm is the Super4PCS [38]. Super4PCS
is a state-of-the-art algorithm which is independent of the
initial pose and works well even when only little overlap is
available, as reported by the authors. The Super4PCS algo-
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initial pose

registration re-
sult

initial pose

registration re-
sult

Fig. 4 Registration of noisy point clouds to a reference model using the unbiased RT-UME estimator (Sect. 4.3). Top, from left to right: Bunny,
Lucy and Dragon models from ”The Stanford 3D Scanning Repository”, and a bike model from [11]. Bottom: examples of topographic point clouds
used in Sect. 6

rithm creates correspondences based on congruent sets of
co-planar four points sets and performs registration based on
these correspondences. For the complete object registration,
Super4PCS was run with 4 minutes time limit, down sam-
pling was set to 2000 points and the overlap parameter was
set to 0.5. For the observation to reference registration, time
limit was set to 10 minutes, down sampling was set to 9000
points and the overlap parameter was set to 0.3. The over-
lap parameter in Super4PCS affects the size of the congruent
sets, and we found it performs better with this setting rather
than assuming full overlap as in GOICP.

The third algorithm is the JRMPC [14] where registra-
tion is achieved by approximating the surface usingGaussian
mixture models. While several GMM-based algorithms exist
(e.g., [39]), JRMPC does not assume the GMM centers
are the points of the point clouds, significantly improving
the computational requirements (when dealing with high-
resolution LIDAR data the computational requirements of
[39] become prohibitive). JRMPC was initialized with ran-
dompoints, related to the size ofmodels.Maximum iterations
were set to 100.

The fourth algorithm is a standard key point matching
algorithm implemented in Open3D [63]. Key points are

found by down sampling the point clouds, and then, FPFH
[46] descriptors are computed to create an initial set of
matches in the down sampled point clouds, followed by an
extensive RANSAC procedure.

The registration result of each baseline algorithm as well
as of theRT-UME is then used as an initialization for ICP reg-
istration. ICP is by far themost commonly used algorithm for
registration once an initial alignment is available. Since fea-
ture extraction and matching algorithms (e.g., [21,46,55]),
and others (e.g., [37,38]), are complemented with ICP, this
provides a fair and wide baseline. Moreover, the application
of ICP to refine the initial registration by the compared meth-
ods provides insight as to how well each algorithm performs
as an initializer for ICP and evaluates the overall performance
achieved by refining the outcome of each of these algorithms
using ICP. In the presented experiments, we use the MAT-
LAB implementation of ICP, assuming full overlap and using
point to plane metric.

6.2 Performance Evaluation

The registration performance of the tested methods is com-
pared using two criteria: mean and standard deviation of the
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absolute registration error (i.e., rotation and translation esti-
mation errors), and success rate. A registration is said to be
successful if the rotation angle error is below 5o and if the
centroid reprojection error is under 5 meters.

6.3 Complete Object Registration

In the basic experimental setup, the topographic models are
of the same observed area (i.e., there is full overlap between
objects). Nevertheless, this setup proves to be challenging to
state-of-the-art methods due to the relatively “flat” nature of
the point clouds and their large size. As shown in the follow-
ing examples, the proposed RT-UME method efficiently and
accurately deals with these difficulties.

6.3.1 Data Sets

All the synthetic experiments were conducted on data gen-
erated from OpenTopography open source LIDAR database
with the exception of the one data source that was acquired
commercially. TheLIDARdata sets [2,24,41,42,49,53] cover
large areas with extremely high resolution. For this setup,
more than hundred experimental data set pairs (referred to as
the moving and fixed point clouds) were generated from the
original LIDAR databases, each covering an area of approx-
imately one square kilometer and re-sampled uniformly to 5
meter resolution. Data sets were chosen to represent a variety
of terrain topologies such as high steepmountains, small hills
and creeks. Figure 4 depicts examples of the data set used
from each category together with generated data set pairs and
registration outcome for this setup.

To evaluate the performance of the RT-UME, we present
three types of experiments for this setup. First, the moving
point cloudwasmisaligned by a random rigid transformation
and corrupted with additive Gaussian noise with increas-
ing standard deviation (Sect. 6.3.2). Then, the moving point
cloud was misaligned by a random rigid transformation and
randomly down sampled (Sect. 6.3.3). Finally, both down
sampling and noise were applied (Sect. 6.3.4).

6.3.2 Performance in the Presence of Noise

In this part of the experiments, for each observation and refer-
ence pair, the observationwasmisalignedwith a random rigid
transformation and corrupted by an additive Gaussian noise.
The tested standard deviation of the noise ranged between
0.5 and 10 meters. First, we compare the RT-UME with the
unbiasedRT-UMEestimator derived in Sect. 4.3. In this com-
parison,MonteCarlo simulationswere performed to estimate
the error statistics. Using Fig. 5, we conclude that in the pres-
ence of a significant amount of noise, the average error and
the success rate of the unbiased RT-UME estimator are con-
siderably better than for the RT-UME.

Next, we compare the performance of the RT-UME to that
of few popular baseline methods. In terms of average esti-
mation error, it is concluded using Fig. 6 that for low noise
levels, RT-UME , Super4PCS and FPFH+RANSAC regis-
tration perform similarly, while GOICP has a larger average
error. However, as noise increases the accuracy decreases in
all methods except the unbiased RT-UME where we experi-
ence only a small decrease in accuracy. Refining the results
of all the methods by applying ICP provides performance
improvement, except for GOICP where as expected no sig-
nificant performance gain is achieved. The larger average
error in GOICP can be explained by a small amount of badly
failed registration results (see, Fig. 6c where GOICP has rel-
atively high success rate).

In terms of success rate, it is concluded from the results
depicted in Fig. 6c and f that the unbiased RT-UME per-
forms better than the alternativemethods.GOICPhas slightly
lower success rate.Moreover, usingFig. 6c and fwe conclude
that while without the ICP refinement stage, most methods
fail to reach a successful registration, all methods (with the
exception JRMPC) provide a good initial registration for ICP,
as demonstrated by the jump in success rates after the ICP
refinement. Throughout all experiments, the unbiased RT-
UME outperforms the other methods while maintaining the
high performance even when significant noise is present.

6.3.3 Performance with Random Down Sampling

In this part of the experiments, for each observation and ref-
erence pair, the observation was misaligned with a random
rigid transformation and randomly down sampled. The tested
down sampling rate ranges between 1 (no down sampling) to
0.05 of the original number of points. All but the RT-UME
and JRMPC use a down sampling strategy as part of the algo-
rithm. Therefore, as seen in Fig. 7 the accuracy of the baseline
methods is similar for the varying sampling rates except at
the lowest sampling rate of 0.1 and 0.05 where success rates
and accuracy of all methods decrease. The RT-UME, which
is an integral operator, is expected to be less accurate when
sampling rates are low. Indeed its average error increases as
the sampling rate decreases, however, its accuracy and suc-
cess rates are better than those of the other methods up to the
lowest sampling rate where most of the compared methods
perform similarly. Comparing the accuracy with or without
the ICP refinement stage,we conclude thatwith the exception
of GOICP all methods benefit from applying ICP.

6.3.4 Performance with Down Sampling and Noise

In this part of the experiments, we present in detail a
representative setup where the observations are randomly
down sampled to 0.25 of the original number of points
and the additive noise standard deviation is 10 meters. The
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Fig. 5 RT-UME estimation mean of the absolute error and success
rate as functions of observation noise standard deviation. (a) Rotation
estimation error, (b) Translation estimation error and (c) success rate.

The unbiasedRT-UME significantly outperforms theRT-UMEat higher
noise levels. Note that the unbiasedRT-UMEalso provides a good initial
alignment for ICP even at the highest noise levels
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Fig. 6 RT-UME and baseline methods mean of the absolute error and
success rates as functions of observation noise standard deviation with
and without ICP. (a, d) Rotation estimation error, (b, e) Translation esti-
mation error and (c, f) success rate. The unbiased RT-UME performs
better than the alternatives at higher noise levels. Compared with the

baseline methods, ICP has little contribution to the unbiased RT-UME.
The large increase in success rate for the baseline methods indicates
that while being less accurate than the RT-UME they are capable of
properly initializing the ICP algorithm. JRMPC was excluded from the
plots due to the high average error
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Fig. 7 RT-UME and baseline methods mean of the absolute error and
success rate as functions of observation down sampling rates with and
without ICP. (a, d) Rotation estimation error, (b, e) Translation estima-
tion error and (c, f) success rate. The unbiased RT-UME outperforms
the compared methods up to the lowest sampling rates where all meth-

ods perform similarly. The large increase in success rate for the baseline
methods when followed by an ICP refinement stage indicates that while
being less accurate than the RT-UME, they are useful to properly ini-
tialize the ICP algorithm. JRMPC was excluded from the plots due to
the high average error

results are presented in Table 1. In this setup, the RT-UME
performed best. In fact, in terms of success rate and transla-
tion estimation accuracy the performance of the unbiased
RT-UME on its own is better than after performing ICP.
GOICP performance was the second best. Super4PCS and
FPFH+RANSAC gained most by performing ICP, which is
consistent with the previous experiments where the success
rates before ICP were very low, but increased significantly
after employing ICP.

The high success rate of the RT-UME together with the
low computational complexity provides the basis for the next
step, where the observed area of the model is searched within
the larger reference.

6.4 Observation to Reference Registration

In this section, we demonstrate the applicability of the regis-
tration method derived using the RT-UME to the problem of
registration of an observed SfM topographic model to a ref-
erence topographic model. It is assumed that the observation
is completely contained in the reference model (see Fig. 8).
The observed model has an independent coordinate system,

and therefore, its location and pose relative to the reference
model are unknown. In addition, the observation is assumed
to be noisy, with different sampling rate than the reference
model.

Unlike the first scenario discussed in Sect. 6.3, where
both models were obtained from the same observed area,
in order to apply the method described in Sect. 5 in the cur-
rent setup, a simple search of the observed model within
the reference model is employed. The search method is as
follows. Let Q and P denote the observed and reference
models, respectively. First crop a portion of Q within a ball
of radius r , denoted byQr . This step allows for the resulting
shape boundaries to be invariant to 3D rotations. At each
point p ∈ P of the reference model, crop a portion of
the surface within a ball of the same radius r , denoted by
P

p
r . Next, registration between Qr and P

p
r is performed

as described in (5). Since the orientation of the model is
unknown, the UME matrices registration MSE (17), which
is invariant of the initial pose, is used as a fitting metric to
determine the best fit betweenP p

r andQr . The construction
of the UME matrix is of linear computational complexity;
thus, this search approach is fast. With very large data sets, a

123



Journal of Mathematical Imaging and Vision

Table 1 Complete object registration results of the compared methods. Observation was down sampled to 0.25 of the original number of points
and corrupted by Gaussian noise with 10 meters standard deviation

Method Rotation Error Mean
(deg)

Rotation Error
Standard deviation
(deg)

Translation Error
Mean (m)

Translation Error
Standard
deviation(m)

Success rate (%)

Unbiased RT-UME 2.06 2.25 2.05 1.23 89.19

Unbiased RT-UME+ICP 0.74 1.15 2.73 1.60 87.39

RT-UME 16.53 34.39 3.61 2.83 53.15

RT-UME+ICP 11.15 35.87 3.27 3.76 73.87

GOICP 2.75 17.15 4.02 2.87 68.46

GOICP+ICP 2.71 17.16 3.93 3.23 75.67

Super4PCS 8.44 25.60 21.10 15.34 1.80

Super4PCS+ICP 5.87 26.11 5.60 3.71 53.15

FPFH +RNASAC 15.79 43.35 16.22 13.92 9.00

FPFH +RANSAC+ICP 14.43 43.86 6.86 8.13 50.45

JRMPC 90.89 65.21 18.14 17.00 16.21

JRMPC+ICP 89.84 69.91 21.93 21.31 20.72

Bold values indicate the best achieved performance in each category.

faster search is achieved by employing an hierarchical search,
first searching over a rough grid, and then refining the search
near the best matching location (see Fig. 8c). The registration
result of all compared methods was used as a starting point
to ICP, similarly to Sect. 6.3.4. This gives insight both on
the accuracy of each method on its own, and to how well it
performs as initialization to ICP for an accurate final regis-
tration.

6.4.1 Synthetic Data sets

The generation of synthetic data sets for this setup is identical
to the generation of synthetic data sets for complete object
registration (See Sect. 6.3.4), except that in the present exam-
ple the reference is approximately four times the area of the
observation. The simulated observed SfM model covers a
portion of the area covered by each reference model, it is
randomly oriented and centered to the origin such that it is
detached from theoriginal coordinate system.Bothgenerated
reference maps and observed models were down sampled to

lower resolutions from the original LIDAR data to simulate
different sampling points and densities. Figure 8 depicts an
example of generated data sets: The observations were ran-
domly down sampled to 0.25 of the original number of points
and corrupted by additive Gaussian noise with 5 meters stan-
dard deviation.

6.4.2 Synthetic Data Results

The comparison criteria of the complete object registration
experiments were used here as well (see Sect. 6.3.4). Table 2
summarizes the results. In terms of average estimation error,
the unbiased RT-UME provided the best results with the low-
est average error. Before employing ICP, GOICP provides
the highest success rate. However, as expected, employing
an ICP refinement stage does not provide any additional
gain. On the other hand, the unbiased RT-UME followed by
employing the ICP refinement, reached more than 88% suc-
cess rate. This indicates that while the RT-UME success rate
is not as high before employing ICP, it provides an adequate

Fig. 8 (a) Reference point cloud with the observation at the correct
position (b) Reference and observation point cloud initial pose (c)
Registration error map over the search points, darker color indicates

lower registration error (d) Final alignment after applying the RT-UME.
Alignment error: 2.17o, reprojection error: 2.8 meters
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Table 2 Observation to reference registration results of the compared methods

Method Rotation Error Mean
(deg)

Rotation Error
Standard deviation
(deg)

Translation Error
Mean (m)

Translation Error
Standard
deviation(m)

Success rate

unbiased RT-UME 7.12 14.32 17.59 30.55 20%

unbiased RT-UME+ICP 2.40 14.00 6.99 28.31 88.57%

GOICP 52.32 75.32 74.07 105.03 39.05%

GOICP+ICP 52.21 75.38 72.68 105.24 47.62%

Super4PCS 66.68 76.82 163.29 154.31 2.85%

Super4PCS+ICP 65.86 78.79 140.05 144.90 23.81%

FPFH 45.26 59.25 102.23 99.91 0.00%

FPFH+ICP 41.67 62.85 84.85 104.28 32.38%

JRMPC 89.21 56.74 142.29 93.87 0.00%

JRMPC+ICP 88.12 61.41 141.45 101.79 5.71%

Bold values indicate the best achieved performance in each category.

Fig. 9 (a) First real data reference point cloud (b) First real data observation point cloud (c) Second real data reference point cloud (b) second real
data observation point cloud

Fig. 10 Point to surface error histogram of the first model (Fig. 9a). (a) RT-UME and RT-UME+ICP vs Manual alignment (b) Super4PCS and
Super4PCS+ICP vs Manual alignment. While providing similar fit before ICP, the RT-UME clearly provides a better initialization for ICP
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D Real Data Registration Results

Reference and obser-
vation manual align-
ment

Registration results
with the RT-UME

Registration result
with JRMPC

Registration
result with
FPFH+RANSAC

Registration result
with GOICP

Registration result
with Super4PCS

Fig. 11 Registration results of the compared methods with real data
sets. The larger, purplemodel is the referencemap,while the green point
cloud is the SfM model. On the first row, the ground truth obtained by

manual alignment is presented, while in the rows below the registration
results with various methods are depicted
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initial registration for ICP. The large increase in success rate
after employing ICP is demonstrated by FPFH+RANSAC
and Super4PCS, as well. It is interesting to note that while
the average estimation error after employing ICP decreases
for most methods, the variance of estimation errors increase
in some cases. This is due to the fact that when the initial
registration fails, employing ICP can increase the estimation
error and contribute to larger estimation variance.

6.4.3 Real Data Sets

For real data experiments, a high-resolution DSM commer-
cial model (see, Fig. 9a and c) was used as a reference model.
Two SfM models generated with Multi-View Environment
[19] were used as observations. Each of the SfM models
was generated from an aerial sequence of images with dif-
ferent camera setups resulting with the models seen in Fig.
9b and d. Ground truth estimation was extracted manually.
The observed SfM model was also manually scaled before
attempting registration with any of the applied methods, in
order to separate the scale estimation problem from that of
estimating the rigid transformation.

6.4.4 Real Data Results

For the real data experiments, an additional criteria for perfor-
mance evaluation is employed: The point to surface distance
between the registered observation and the reference was
averaged over 1000 randomly selected points. The RT-UME
method was successful in the registration of both models,
while none of the baseline methods succeeded with the
exception of Super4PCS being successful in initializing ICP.
Figure 11 in Appendix D summarizes the registration results
of the real data relative to a manual alignment. Figure 10
provides a comparison between the point to surface regis-
tration error histograms of the RT-UME-based registration,
Super4PCS and manual alignment with and without ICP.
While without ICP refinement, the distance between the reg-
istered observation to the reference was similar for RT-UME
and Super4PCS, it is shown in Fig. 10 that the RT-UME
provides a better initialization for ICP. These results further
verify the ability of the RT-UME to perform fast, robust and
accurate registration of topographic point clouds, where an
observation is contained within a larger reference model.

7 Conclusions

Wehave presented theRT-UME, a closed form solution to the
problem of registration of fully overlapping 3D point clouds
undergoing unknown rigid transformations, as well as for
detection and registration of sub-parts undergoing unknown
rigid transformations. The solution is obtained by adapting

the general framework of the universal manifold embedding
to the case where the transformations the object may undergo
are rigid. For the casewhere the observations are subject to an
additive noise with known parameters, an unbiased estima-
tion scheme is derived. The experimental results, performed
both on synthetic and real data, indicate that the proposed
RT-UME provides higher registration accuracy than state-
of-the-art methods, while both eliminating the need for an
initial registration and reducing the computational complex-
ity.
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A Proof for proposition 1

Proof First, notice that

∫

Rn

x′1[li ,hi ](h(x))dx =
∫

X (i)
in ∪ X (i)

miss

x′dx =
∫

X (i)
in

x′dx +
∫

X (i)
miss

x′dx

(55)
∫

Rn

x′1[li ,hi ](̃h(x))dx =
∫

X (i)
in ∪ X (i)

out

x′dx =
∫

X (i)
in

x′dx +
∫

X (i)
out

x′dx

(56)

Adding and subtracting
∫

X (i)
miss

x′dx to (56), we obtain

∫

Rn

x′1[li ,hi ](̃h(x))dx

=
∫

X (i)
in

x′dx +
∫

X (i)
miss

x′dx −
∫

X (i)
miss

x′dx +
∫

X (i)
out

x′dx (57)

substituting (55) in (57)

∫

Rn

x′1[li ,hi ](̃h(x))dx =
∫

Rn

x′1[li ,hi ](h(x))dx

−
∫

X (i)
miss

x′dx +
∫

X (i)
out

x′dx (58)

Hence,

∫

Rn

x′1[li ,hi ](̃h(x))dx −
∫

R2

x′1[li ,hi ](h(x))dx =

123



Journal of Mathematical Imaging and Vision

∫

X (i)
out

x′dx −
∫

X (i)
miss

x′dx (59)


�
B Mean UME Error Matrix Detailed
Derivation

Following definition 1, we notice that

∫

X (i)
out

x′dx =
∫

X (i)
above∪X (i)

below

x′1[li−h(x),hi−h(x)](n(x))dx (60)

and similarly

∫

X (i)
miss

x′dx =

∫

X (i)
wi thin

x′1[hi−h(x),∞](n(x))dx + x′1[−∞,li−h(x)](n(x))dx

(61)

Therefore,

E

⎛

⎜⎜⎝

∫

X (i)
out

x′dx

⎞

⎟⎟⎠ =
∫

X (i)
above ∪ X (i)

below

x′E
(
1[li−h(x),hi−h(x)](n(x))

)
dx

=
∫

X (i)
above∪X (i)

below

x′P(li − h(x) < n(x) < hi − h(x))dx

=
∫

X (i)
above ∪ X (i)

below

x′P(i)
out (x; h(x))dx (62)

similarly it is found that

E

⎛

⎜⎜⎝

∫

X (i)
miss

x′dx

⎞

⎟⎟⎠ =
∫

X (i)
wi thin

x′P(i)
miss(x; h(x))dx (63)

Substituting (63) and (62) into (32) and taking the expectation

E(eH ,i ) = E

⎛

⎜⎜⎝

∫

X (i)
out

x′dx −
∫

X (i)
miss

x′dx

⎞

⎟⎟⎠

=
∫

X (i)
above ∪ X (i)

below

x′P(i)
out (x; h(x))dx −

∫

X (i)
wi thin

x′P(i)
miss(x; h(x))dx(64)

C Proof of Proposition 2

Proof The proof is a two step procedure. In the first step, the
rotation between two sets of points is found by minimizing
the sum of squared errors independently of the translation,
showing that E(R̂) = R̄. Next, using the result for the rota-
tion, it is shown that E(t̂) = t̄. Define h̃ci and gci , as in (19).

From (21) and (22), the solutions for R̂ and R̄ in (41) and
(42) can be written as

R̂ = argmin
R

P∑

i=1

m2
i ||̃hci − gciR||2 (65)

R̄ = argmin
R

P∑

i=1

m2
i ||E (̃hci ) − gciR||2 (66)

Thus, the estimated rotation is determined by the centered
UME matrices, and hence, it can be obtained independently
of the estimated translation. In addition, from (22) we have
that the translation is selected such that the estimation error
of (41) and (42) is determined completely by (65) and (66).
Define the estimation errors

eres,i = h̃ci − gci R̂ (67)

ēres,i = E (̃hci ) − gci R̄ (68)

Taking the expectation of both sides of (67), and substituting
(67) into (68), we have

gci R̄ + ēres,i = gci E(R̂) + E(eres,i ) (69)

Taking the m2
i weighted average of (69), we have

∑P
i=1 m

2
i g

c
i∑P

i=1 m
2
i

E(R̂) +
∑P

i=1 m
2
i E(eres,i )

∑P
i=1 m

2
i

=
∑P

i=1 m
2
i g

c
i∑P

i=1 m
2
i

R̄

+
∑P

i=1 m
2
i ēres,i∑P

i=1 m
2
i

(70)

Since the solution is obtained using the weighted-and-
centered versions h̃ci , g

c
i , it can be easily shown using the

definition of the centering process in (19) that
∑P

i=1 m
2
i eres,i∑P

i=1 m
2
i

=
0 and

∑P
i=1 m

2
i ēres,i∑P

i=1 m
2
i

= 0. Thus, (70) becomes

∑P
i=1 m

2
i g

c
i∑P

i=1 m
2
i

E(R̂) =
∑P

i=1 m
2
i g

c
i∑P

i=1 m
2
i

R̄ (71)

Assuming gci are not all zeros

E(R̂) = R̄ (72)
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As for the translation, let us evaluate the mean translation
from (41) by substituting (22):

E(t̂) = E

[∑P
j=1m j h̃ j

∑P
j=1m

2
j

−
∑P

j=1m jg j
∑P

j=1m
2
j

R̂

]T

=

=
[∑P

j=1m j E (̃h j )
∑P

j=1m
2
j

−
∑P

j=1m jg j
∑P

j=1m
2
j

E(R̂)

]T

=

=
[∑P

j=1m j E (̃h j )
∑P

j=1m
2
j

−
∑P

j=1m jg j
∑P

j=1m
2
j

R̄

]T

= t̄ (73)

where the last equality is due to the definition of (42). 
�

D Real Data Registration Results
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