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Abstract

We present a novel outlier rejection scheme for point
cloud registration using SE(3) voting on local transfor-
mation estimates with a dual consensus constraint. Point
cloud registration is commonly performed by matching key-
points in both point clouds and estimating the transfor-
mation parameters from these matches. In the presented
method, each putative matching pair of points is equipped
with a local transformation estimate using the Rigid Trans-
formation Universal Manifold Embedding. Putative match-
ing pairs with similar local estimates are then clustered to-
gether and the global transformation between point clouds
is estimated for each cluster. Finally, the cluster with the
majority of the votes such that the average of local trans-
formations agrees with its associated global transformation
is selected for completing the registration. This approach
successfully deals with up to 99.5% outliers where state of
the art fails.

1. Introduction

Registration of point cloud measurements of 3D objects
has been an active research subject with a vast range of ap-
plications in computer vision, robotics, autonomous navi-
gation and more. A point cloud P is a finite set of points
in R3. In many applications these points are samples from
a physical object, O ⊆ R3 (we may think of it as a sur-
face in 3D). Viewing point clouds as sets of samples, the
registration problem may be formulated as follows: Let
O ⊆ R3 be a physical object and T (x) = Rx + t a
rigid map (R ∈ SO(3) is a rotation matrix and t ∈ R3

is a translation vector). We consider the transformed ob-
ject T (O) := {T (x) : x ∈ O}. Let P and Q be two
point clouds sampled from the objectO and the transformed
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Figure 1. Outlier rejection using SE(3) voting on local transfor-
mation estimates between putative matches (see, Section 5). (a)
Bunny models with 45o angle between scans. Blue points mark
the detected key-points, red lines mark all putative matches af-
ter initial matching. Each putative match is equipped with a lo-
cal transformation estimate between matching points. (b) Bunny
scans after outliers rejection using SE(3) voting. Blue lines mark
the detected inlier matches. (c) Scatter plot of Euler angles of
the local transformation estimates. Rotation estimates of correctly
matched key-points are clustered together (in red box), while false
matches are randomly distributed.

object T (O), respectively. In the registration problem, ad-
dressed in this paper, the goal is to estimate the transforma-
tion parameters R and t given only P and Q.

When there is no assumption on the initial pose of the
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models undergoing registration, the standard registration
pipeline is composed of three principal steps: key point de-
tection and matching (e.g. [13, 19]); outlier rejection and
initial registration (e.g. [5, 2, 16]); and finally, local opti-
mization (e.g. [1, 14]). When sampling of the point clouds
is sparse, non uniform, and noisy, which is the case in prac-
tice, key-point detection and matching is a difficult task that
often results in more than 95% outliers. Due to this high
outlier rate, standard methods such as RANSAC [5] might
fail to find the correct consensus set (as seen in the presented
experiments). State of the art methods such as TEASER++
[16] can efficiently handle very high outlier rates, however
they still rely only on the geometry constraint between key-
points, giving way to finding false consensus sets (see, Fig-
ure 5).

In this paper, we show that by imposing a dual con-
sensus requirement on the putative key-point matches, out-
liers are accurately rejected in the presence of up to 99.5%
false matches. More specifically, by adapting the Rigid
Transformation Universal Manifold Embedding (RTUME)
[3] to a local key-point descriptor, key-point to key-point
local transformation is simultaneously estimated with the
distance between the key-point descriptors. For correctly
matched key-points these local estimates are also estimates
of the unknown underlying transformation between the
point clouds. Therefore, the local transformation estimates
corresponding to correctly matched key-points form a clus-
ter of rigid transformations among randomly distributed
rigid transformations of false matches (see, Figure 1). In
the presence of extremely high outlier rates however, local
transformation estimates of false matches might form false
clusters. Therefore, a dual consensus is imposed, i.e., a set
of matches must agree both on local transformations and the
global transformation estimate between the matched key-
points themselves. These local and global transformation
estimates are independent (for false matches) and therefore
the probability of finding a false set of matches that agrees
on both is low, leading to a robust and accurate outlier re-
jection scheme.

The contribution of this work is therefore twofold:

• We introduce a new local descriptor for matching key-
points on point clouds. This is the RTUME local
descriptor which jointly estimates the similarity and
the transformation between local neighborhoods of the
key-points.

• Using the two information types provided by the local
RTUME descriptor we propose a novel outlier rejec-
tion scheme, based on a voting scheme on the transfor-
mation manifold and a dual consensus constraint.

The rest of the paper is structured as follows. The prob-
lem is formally defined in Section 2. A short survey of re-
lated work is provided in Section 3. The technical back-

ground required for the derivation of the proposed method
is presented in Section 4, where the RTUME [3] is derived
and adapted to the framework of local point cloud descrip-
tors. The proposed method for outlier rejection is then pre-
sented in Section 5. Experimental results and comparisons
with existing methods are presented in Section 6. Finally, a
discussion and our conclusions are provided in Section 7.

2. Problem Definition
Consider an object O, and an orbit of equivalent ob-

jects formed by the action of the transformation group
G = SE(3). An observation on object O will be denoted
P ⊂ R3 (i.e. the point cloud of samples from the surface of
O) and the set ψ = {α ◦ O, α ∈ G} will denote the orbit of
possible appearances of the object due to the action of the
group G. There exists one such orbit for each object O.

Since in practice the sampling of point clouds from
different angles results with different sampled points and
partially overlapping point clouds, we define subsets
{Pi}Li=1 ⊂ P with corresponding orbits {ψi

P}Li=1, formed
by the intersection of P with balls around key-points of P ,
where the key-points are denoted by {pi}Li=1.

Given two observations of an object P,Q related by an
unknown rigid transformation T ∈ G s.t. Q = T (P), the
subsets of observations {Pi}Li=1, {Qk}Mk=1 and their corre-
sponding key-points {pi}Li=1, {qk}Mk=1 we solve the prob-
lem of matching corresponding subsets (and thus matching
corresponding key-points), such that key-points from P and
Q and their corresponding subsets are related by the under-
lying transformation between observations. i.e. we find the
dual consensus set, denoted by Cdual ⊂ N × N, such that,
ideally, in the absence of sampling noise,

qk = T (pi), ∀(i, k) ∈ Cdual (1)
Qk = T (Pi), ∀(i, k) ∈ Cdual (2)

We call (1) the global consensus as it requires all the key-
points to globally agree on the same transformation, and (2)
the local consensus as it requires each subset to individu-
ally agree on the same transformation. Thus, the registra-
tion framework we address in this paper employs a dual-
consensus constraint where we require the solution to agree
both on the local and global constraints. This is in contrast
to existing key-point matching algorithms where only the
global consensus is employed.

Applying an adaptation of the RTUME [3] to {Pi}Li=1

and {Qk}Mk=1, joint estimation of the rigid transformation
relating pairs of subsets of P and Q, and the measure of
similarity between them is derived. The transformation-
distance pairs of each putative match enable the derivation
of the proposed dual-consensus outlier rejection method,
aimed to achieve point cloud registration in the presence of
very high rates of false matches. Figure 3 depicts a simple
example of the complete algorithm.
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3. Related Work
There is a variety of works aimed at outlier rejection and

model estimation in general (e.g. [5, 15]) and for point cloud
registration in particular (e.g. [4, 16]). In the following a
brief summary of the most commonly practiced approaches
and those related to our work is presented.

3.1. Random Sample Consensus (RANSAC)

RANSAC [5] is one of the most commonly employed
outlier rejection algorithms. RANSAC is an iterative algo-
rithm where at each iteration the minimal set of samples
required for estimating the model is randomly selected and
a candidate model is estimated. When a minimally selected
set is composed of inliers, a larger set of inliers is expected
to fit into the candidate model while outliers are expected
to deviate from it. The best set in consensus with the same
model is considered the inliers set and is used to estimate
the model.

One of the most notable drawbacks of RANSAC is that
it relies on random selection of the minimal sample set.
Therefore the probability of finding a minimal set of inliers
drops significantly when outlier rate is high.

3.2. Mean Shift Clustering on Rotations and Trans-
lations

In [4], registration of point clouds is performed by clus-
tering local rotation estimates between putative matches us-
ing a mean shift algorithm. The work in [4] is closely re-
lated to the work presented in this paper as outliers are in
fact rejected using the local transformation estimates. How-
ever, the work in this paper is different in two key aspects.
First, the local rotation estimates in [4] are obtained from
the relative rotation between local reference frames. Local
reference frames have been shown to be extremely unreli-
able in the presence of noise, [17]. In the proposed method
we employ the RTUME transformation estimate which is
significantly more robust and provides the complete rigid
transformation estimate rather than just the rotation. Indeed,
in [4] clustering is performed to estimate the translation as
well, but only after the rotation has been estimated, while
using the estimated rotation. More importantly, the pro-
posed method utilizes the dual consensus constraint (see,
Section 5), effectively using both the global and local geo-
metric information to perform the registration while reject-
ing outliers when global and local estimates do not agree,
rather than employing only local estimates as in [4].

3.3. TEASER

In [16], registration in the presence of outliers is per-
formed using truncated least squares estimation and semi
definite relaxation (TEASER). The registration is broken
into three consecutive steps by transforming the key-point

matches into translation invariant measurements and then
into translation and rotation invariant measurements. First,
scale is estimated and outliers are rejected using an adaptive
voting scheme to solve a truncated least squares problem on
the translation and rotation invariant measurements. Then
rotation is estimated by solving a truncated least squares
problem on the translation invariant measurements using bi-
nary programming with semi definite relaxation. Finally,
the translation is estimated using a truncated least squares
method and the same adaptive voting scheme used for the
scale estimation. This paper and TEASER share a similar
notion in the sense that local estimates are used in a voting
scheme to reject outliers. However, TEASER employs only
scale estimates for outlier rejection, where in the proposed
method, the use of the local RTUME descriptor allows to
perform voting on the entire set of parameters defining the
SE(3) manifold rather than on scale estimates alone.

4. The Rigid Transformation Universal Mani-
fold Embedding and Estimation

The RTUME [3] maps functions defined on R3 to matri-
ces, such that the transformation relating the corresponding
RTUME matrices is the same as the underlying rigid trans-
formation of coordinates between the functions (see, (4) and
(7)). By mapping point clouds related by rigid transforma-
tions to corresponding RTUME matrices, the rigid transfor-
mation between point clouds and a measure of the similarity
between point clouds are estimated from their RTUME ma-
trices, as described next.

First, we present the RTUME mapping for general func-
tions on R3. Then we describe the required adaptations for
applying the RTUME to point clouds as a local descriptor
in Section 4.3.

4.1. The RTUME mapping

Let h : R3 7→ R be a finite support function and ψh the
orbit formed by the action of SE(3) on the domain of h.
The RTUME matrix representation of h(x) is given by

T(h) =


∫
R3

x̃w1 ◦ h(x)dx

...∫
R3

x̃wN ◦ h(x)dx

 (3)

where x̃ = [1 xT ] and wi, i = 1, ..., N are measurable
functions aimed at generating many compandings of the ob-
servation. (See Section 4.3.1 for the specific choice of wi,
i = 1, ..., N adopted in the numerical examples section).
Note that unlike the classical moment invariant methods
that use high-order moments and their nonlinear invariant
functions, the RTUME representation uses low-order mo-
ments of many compandings of the observation.
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Since {wi}Ni=1 are left-hand compositions, the operation
of {wi}Ni=1 on h is invariant to the underlying transforma-
tion while the first order moment conserves geometric infor-
mation of h, making the action of the operator T covariant
with transformation of coordinates, as described next.

Let h(x), g(x) ∈ ψh be two functions from the same
orbit such that

h(x) = g(Rx + t) (4)

By a change of variables y = Rx + t it follows that ỹ =
x̃D(R, t) where ỹ = [1 yT ] and

D(R, t) =

[
1 tT

0 RT

]
(5)

is the matrix representation of SE(3) in homogeneous co-
ordinates using matrix multiplication on the right. The
RTUME mapping of g(y) is therefore

T(g) =
∫
R3

ỹw1 ◦ g(y)dy

...∫
R3

ỹwN ◦ g(y)dy

 =


∫
R3

x̃D(R, t)w1 ◦ g(Rx + t)dx

...∫
R3

x̃D(R, t)wN ◦ g(Rx + t)dx



=


∫
R3

x̃w1 ◦ h(x)dx

...∫
R3

x̃wN ◦ h(x)dx

D(R, t) = T(h)D(R, t) (6)

The RTUME matrices T(h) and T(g) constructed from
h(x) and g(x) as in (3) are therefore related by the relation

T(h) = T(g)D−1(R, t) (7)

Since T(h) and T(g) are related by an invertible trans-
formation that is a re-expression of the rigid transforma-
tion relating the functions h and g, we say that the basis
T(g)D−1(R, t) is covariant with the rigid transformation.
Hence it provides a method for estimating the transforma-
tion that relates any two functions related by a rigid trans-
formation of coordinates.

4.2. Joint Estimation of the Distance and Transfor-
mation between RTUME matrices

Using (7) we have that for any two functions taken from
the same orbit, their RTUME representations are linearly
related. Hence, for a given choice of {wi}Ni=1 their cor-
responding RTUME matrices form an equivalence class in
the space ofN×4 matrices. The distance between RTUME
equivalence classes is therefore a representation of the dis-
tance between orbits of functions. Let h(x) and g(x) be
two functions (not necessarily from the same orbit) and de-
note their corresponding RTUME matrices by H = T(h)

and G = T(g). Let [H] and [G] denote the equivalence
classes of RTUME matrices constructed from h and g. The
RTUME distance between the corresponding RTUME ma-
trices is given by

d(H,G) = min
Q∈[H]
P∈[G]

‖Q−P‖2F (8)

Alternatively, using (7), the elements of the equivalence
classes [H] and [G] can be written explicitly using the rep-
resentatives H and G as follows

d(H,G) = min
DH,DG∈SE(3)

‖HDH −GDG‖2F (9)

A closed form solution for (9) is found as described next.
First, the operation of DH and DG is represented as a com-
position of rotation and translation operations. Let hm0

denote the leftmost column of H, i.e., the zero order mo-
ment in (3) and Hm1 the three rightmost columns of H,
i.e., the first order moments in (3). Similarly define gm0

and Gm1 with respect to G. Also, let RH ,RG ∈ SO(3)
and tH , tG ∈ R3 be the rotation and translation compo-
nents of DH and DG. An equivalent formulation of (9) is
given by

‖HDH −GDG‖2F = ‖hm0 − gm0‖2F +

‖Hm1RH + hm0tH −Gm1RG − gm0tG‖2F (10)

The first term in (10) is independent of the transforma-
tion and therefore doesn’t affect the minimization problem.
By expanding the second term in (10) using the definition
of the Frobenius norm we have the following

‖Hm1RH + hm0tH −Gm1RG − gm0tG‖2F = (11)

‖Hm1‖2F + ‖Gm1‖2F
− 2 tr(Gm1RGR

T
HHT

m1)

− 2 tr(hm0tHRT
GG

T
m1) + 2 tr(gm0tGR

T
GG

T
m1)

− 2 tr(gm0tGR
T
HHT

m1) + 2 tr(hm0tHRT
HHT

m1)

+ tr(gm0tGt
T
Gg

T
m0) + tr(hm0tHtTHhT

m0)

− 2 tr(gm0tGt
T
HhT

m0)

The minimization of (11) is performed by first finding
the translations tH and tG that minimize the above expres-
sion as functions of RG and RH . The translations are found
by evaluating the derivatives of (11) with respect to tH and
tG. Then, substituting back these translations into (11) we
are left with an expression of the general form tr(ATR)
that has to be maximized in order to minimize (11). This is
a well studied problem and is solved following [12].

For RTUME matrices evaluated from functions taken
from the same orbit, D̂H, D̂G ∈ SE(3) that minimize (9)
form an estimate for the relative transformation between H
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and G. It follows from (7) that this is also an estimate for
the underlying transformation of coordinates

D̂H,G = D̂−1H D̂G (12)

This means that the distance between RTUME matrices
is jointly estimated with the underlying transformation of
coordinates. When used for local key-point registration,
this joint estimation enables the voting scheme for outliers
rejection described in Section 5.

4.3. The RTUME as local key-point descriptor

Consider the problem defined in Section 2. In the fol-
lowing, we describe how the RTUME is adapted for point
clouds in general and as a local key-point descriptor in par-
ticular.

4.3.1 The RTUME for point clouds

Since point clouds are sets of coordinates in 3-D with no
functional relation imposed on them a necessary step in
adapting the RTUME framework for point cloud processing
is to define a function that assigns each point in the cloud
with a value, invariant to the action of the transformation
group. Existing point cloud descriptors can be utilized to
this end (e.g. [13, 7, 8]) by assigning every point of the
point cloud with the descriptor value evaluated around it.
(See, Figure 2).

(a) (b)

Figure 2. Bunny model from the Stanford 3D scanning reposi-
tory, imposed with a function, invariant to rigid transformations.
(a) Using the surface variation descriptor from [8]. (b) Using the
volume curvature descriptor [7].

The second challenge in adapting the RTUME for point
clouds is in the integration. Even with the function defined
on each point of the point cloud, the Lebesgue measure of
the point cloud in R3 is zero. Therefore, integration is per-
formed using the counting measure instead, resulting with
sums. Let P ⊂ R3 be a point cloud, and h(x),x ∈ P
the function defined on the point cloud. Then, the RTUME

mapping for point clouds is given by

T(h) =


1
|P|

∑
x∈P

x̃w1 ◦ h(x)

...
1
|P|

∑
x∈P

x̃wN ◦ h(x)

 (13)

The factor of 1
|P| was added to compensate for the possibly

different sampling densities, which translates to a scale fac-
tor between the RTUME matrices in (7) unless normalizing
by |P|.

Following [18] the set {wi}Ni=1 is chosen as the set of
indicator functions, uniformly quantizing the values of the
function h defined on the point cloud. This choice yields
level-set functions, computed at each quantization level in
an observation. These level-set functions serve as a basis
for the invariant subspaces in RTUME.

4.3.2 The local RTUME point cloud descriptor

Using the notation defined in Section 2, let h(x) denote a
function defined on some point cloud P . Given a key point
pk ∈ P and its neighborhood Pk, the local RTUME de-
scriptor of pk is denoted by Hpk

. It is evaluated using a
local adaptation of (13), such that the sums are evaluated
locally on the subset Pk.

Given P and Q, with key-points {pi}Li=1 and {qk}Mk=1,
and the local subsets {Pi}Li=1 {Qk}Mk=1, corresponding sets
{HPi

}Li=1 and {HQk
}Mk=1 of local RTUME descriptors are

evaluated.
For these sets of key-points and their neighborhoods, de-

note the estimate of the local transformation between HPi

and HQk
evaluated using (12) by D̂Pi,Qk

. The distances
d(HPi

,HQk
) defined in (9) are invariant to rigid trans-

formations of the point clouds, and are therefore suitable
for estimating the local geometric similarity between key-
point neighborhoods for an initial matching (e.g. by nearest
neighbor search with respect to descriptor distances), while
the local transformation estimates are used next in the pro-
posed outlier rejection scheme.

5. Outlier Rejection Using Manifold Voting
and Dual Consensus

Let us, for simplicity of notation, denote the putative
matches and their corresponding local transformation esti-
mates by {pi,qi}Ni=1 and {D̂i}Ni=1, where N is the number
of putative matches. Also, denote the rotation quaternion of
the i-th local transformation estimate by q̂i and the transla-
tion element of the i-th local transformation estimate by t̂i.
For each local estimate, the voting is performed by evaluat-
ing its distances to all the other local estimates with respect
to the rotation distance and the translation distance. Next we
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obtain those local estimates that are within a certain thresh-
old as the consensus set of that local estimate. The rotation
distance can be any metric on SO(3) (see [11] for a survey).
In our experiments we use the following metric on rotation
quaternions

Φ(q1, q2) = arccos(|q1· q2|) (14)

More formally, the consensus set for the i-th local estima-
tion, by SE(3) voting, is defined as

Ci = {k ∈ N| Φ(q̂i, q̂k) < α ∩
∥∥t̂i − t̂k

∥∥
2
< β} (15)

where α and β are the thresholds for rotation and transla-
tion. The set of estimated inliers by voting is the largest set
of indices agreeing on the transformation up to the defined
threshold, i.e.

Cvoting = argmax
C∈{Ci}Ni=1

|C| (16)

While this voting scheme provides an acceptable solu-
tion for moderate to high outlier rates, in the case where out-
lier rates are extremely high the following dual consensus
is employed: For each consensus set, the global transfor-
mation between the key-points associated with that consen-
sus set is estimated using the least squares estimator, [10].
Let D̂C,i be the estimated global transformation from the
matches in the i-th consensus set. Let DC,i be the aver-
age of local transformations in the i-th consensus set. The
average rotation of local transformations is obtained using
the L2-mean on SO(3) from [9] while the translation is ob-
tained by an average on R3. A voting consensus set is ac-
cepted only if the rotation and translation distances between
DC,i and D̂C,i are below a certain threshold. i.e. the dual
consensus set is

Cdual = argmax
C∈{Ci}Ni=1

|C|

s.t. Φ(q̂C , q̄C) < α and
∥∥t̂C − t̄C

∥∥
2
< β (17)

Where q̂C and t̂C are the rotation quaternion and transla-
tion corresponding to D̂C , and q̄C and t̄C are the rotation
quaternion and translation corresponding to DC , while α
and β are thresholds for determining the similarity required
between the local estimates average and the global estimate
of the transformation.

The threshold values depend on the nature of the prob-
lem being solved. Our experimental results indicate that
when the observed 3-D scans are accurate, the threshold for
rotation clustering and dual consensus can be chosen to be
as small as 3o. With more challenging data such as point
clouds obtained from handheld RGB-D cameras or surface
from motion, a more conservative threshold of 15o − 20o is
employed, as the majority of outliers is still rejected even

with larger thresholds. Setting the threshold value on the
translation is more complex as the translation error is cou-
pled with the rotation error. Figure 3 depicts a simple ex-
ample of the complete registration pipeline.

6. Experimental Results
In the following we present some experimental evalua-

tion of the proposed method both in terms of robustness to
outliers and in terms of the resulting registration accuracy.
For registration accuracy we compare the results with a
Matlab implementation of RANSAC [15] using a maximum
of 10, 000 trials and TEASER++ [16]. We use the Stan-
ford Bunny model from the Stanford 3D scanning repos-
itory to create partially overlapping point clouds, trans-
formed by random rigid transformations. Then, the sur-
face variation descriptor [8] is used to define a function on
each point cloud (see, Figure 2). Key points are uniformly
sampled on each point cloud. The local RTUME descrip-
tor is then constructed for each key point as described in
Section 4.3.2. Initial matches are then acquired by choos-
ing the N matches with lowest RTUME distance (9), where
N is chosen per experiment to control the outlier rate. By
increasing N , more false matches are allowed. Then, us-
ing the ground truth transformation the numbers of correct
and false matches are selected to provide the desired out-
lier ratio for the test. For each outlier rate the experiment
was repeated 100 times with a random transformation and
matches, at each. Figure 5 depicts the experimental setup
and results for a single realization of the data.

6.1. SE(3) voting vs. dual consensus

In this part of the experiments we compare the perfor-
mance of the SE(3) voting with and without the dual con-
sensus in terms of matching precision (defined by the ratio
between the number of correct matches and the total num-
ber of matches). RANSAC is also included for comparison.
From Table 1 it is concluded that when outlier rates are very
high (more than 95%), randomly distributed local estimates
of outliers may create false clusters of transformations as
evident by the lower accuracy obtained when SE(3) dual-
consensus voting is not employed.

6.2. Registration Accuracy

In this part the registration accuracy is evaluated in the
presence of varying outlier rates. For registration with the
proposed method, we employ a two-stage procedure where
RANSAC is employed following an outlier rejection stage
implemented by the SE(3) dual-consensus voting. Since
the number of false matches is drastically reduced by the
dual-consensus voting procedure, the residual outlier rate is
very low as indicated in Table 1, and hence, the probability
for successful registration is significantly increased. To fur-
ther evaluate the registration accuracy we adopt the registra-
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Figure 3. A simple example of the proposed registration scheme. On the left, two scans of the bunny models with three detected key-points.
Note that the models are imposed with the surface variation descriptor as described in Section 4.3.1). A ball with a radius of 10 times the
point cloud resolution is used to crop patches around each key-point (seen to the right of the scanned models). For each key-point and
its neighborhood patch, corresponding sets {HPi}3i=1 and {HQk}

3
k=1 of local RTUME descriptors are obtained as described in Section

4.3.2. Then the RTUME distances and the corresponding transformations are estimated for all possible pairs using Section 4.2. In this
example key-point pairs with RTUME distance below 0.01 were selected as putative matches. As seen in the RTUME distances histogram,
this threshold results with three inliers and two outliers. Then, using the dual-consensus SE(3) voting, described in Section 5, the two
outliers are rejected. The cluster of estimated rotations is seen contained in the red box of the rotations scatter plot, containing the three
inliers (R̂i,k denotes the rotation element of D̂i,k). The cluster of translations is omitted for simpler illustration. In this example the largest
cluster is indeed the correct one. In terms of dual-consensus, this cluster is accepted since the errors between the average of local estimates
and the global estimate are approximately 5o for the rotation and 7 times the point cloud resolution for the translation. Then, using this
estimated set of matches the transformation is estimated and the two scans are registered as depicted on the right.

(a) δ(P,Q) = 1 (b) δ(P,Q) = 0.5 (c) δ(P,Q) = 0.1

Figure 4. Examples of different point cloud poses and the associ-
ated values of the metric used for evaluating registration accuracy.

tion accuracy metric from [6]. The advantage of this metric
is that registration accuracy is evaluated using a single num-
ber rather than by rotation and translation separately. Given
the same point cloud in different poses P and Q, with M
points {pi}Mi=1 and {qi}Mi=1 and p̄ the centroid of P the
distance between P and Q is evaluated by

δ(P,Q) =
1

M

M∑
i=1

‖pi − qi‖2
‖pi − p̄‖2

(18)

Outliers 90% 95% 99% 99.5%

SE(3) voting 0.92 0.91 0.57 0.38
SE(3) dual-consensus
voting 0.93 0.91 0.86 0.49

RANSAC 0.99 0.90 0.17 0.03
Table 1. Mean precision of matches after outlier rejection for var-
ious outlier rates using SE(3) voting with and without dual con-
sensus,(see, Section 5) compared to RANSAC. SE(3) voting with
dual-consensus scheme performs significantly better than simple
SE(3) voting and RANSAC when outlier rates are higher than
95%.

Figure 4 depicts some examples of the relative pose be-
tween point clouds and the associated values of δ(P,Q).
We employ this metric to evaluate the registration accu-
racy between the observation point cloud transformed by
the ground truth transformation and the estimated transfor-
mation. As seen in Table 2 the advantage of the proposed
method is in its robustness to high outlier rates such that reg-
istration accuracy remains approximately the same despite
the increase in outlier rates.
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initial pose
with matches
and varying
outlier rates
(indicated by
red lines)
registration
result using
SE(3)
dual-
consensus
voting fol-
lowed by
RANSAC

registration
result using
RANSAC

registration
result using
TEASER++

Figure 5. Experimental setup. Top row, a single realization of the source and target point clouds is presented for various outlier ratios
(from left to right: 75%, 95% and 99% outliers). Red lines depict the false matches while blue lines depict the matches found using SE(3)
dual-consensus voting. Bottom rows: registration result using SE(3) dual-consensus voting followed by RANSAC, RANSAC alone, and
TEASER++. Note that with 95% and 99% outliers RANSAC and TEASER++ failed the registration while SE(3) dual-consensus voting
followed by RANSAC is successful.

Outliers 90% 95% 99% 99.5%

SE(3) dual-consensus
voting 0.06 0.08 0.05 0.23

TEASER++ 0.03 0.04 0.96 1.25
RANSAC 0.05 0.14 0.65 0.47

Table 2. Mean registration accuracy evaluated using (18) with
various outlier rates, comparing the proposed method, RANSAC
and TEASER++. When outlier rates are very high the proposed
SE(3) voting with dual consensus outperforms the alternatives.

7. Discussion and Conclusions

We presented a novel outliers rejection method for point
cloud registration using a dual consensus paradigm. Lo-
cal transformation estimates between putative matches are
computed jointly with the distance between key-point de-
scriptors using the local RTUME descriptor. Since lo-
cal transformations of correctly matched key-points are ex-
pected to be the same, the local transformations are used for

majority vote in order to reject matches that deviate from the
majority of local estimates. To improve robustness when
high outlier rates are present, a set of matches is accepted
only if the average of local transformations agrees with the
global transformation estimated from the matching points.

In the presented experiments, the proposed method
proved to be robust even for an outlier rate of 99.5%. How-
ever, the experiments were conducted on synthetic data and
further experimental work is required using real data (e.g.
[6]) to further evaluate and validate the performance of the
proposed method.
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