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Dynamic Spatial Predicted Background

Yaniv Tocker™, Rami R. Hagege, and Joseph M. Francos

Abstract— We present a novel method for online background
modeling for static video cameras - Dynamic Spatial Predicted
Background (DSPB). Our unique method employs a small subset
of image pixels to predict the whole scene by exploiting pixel
correlations (distant and close). DSPB acts as a hybrid model
combining successful elements taken from two major approaches:
local-adaptive that propose to fit a distribution pixelwise, and
global-linear that reconstruct the background by finding a
low-rank version of the scene. To our knowledge, this is the first
attempt to combine these approaches in a unified system. DSPB
models the scene as a superposition of illumination effects and
predicts each pixel’s value by a linear estimator comprised of only
5 pixels of the scene and can initialize the background starting
from the 5th frame. By doing so, we keep the computational
load low, allowing our method to be used in many real-time
applications using simple hardware. The suggested prediction
model of scene appearance is novel, and the scheme is very
accurate and efficient computationally. We show the method
merits on an application for video FG-BG separation, and how
some of the main existing approaches may be challenged and how
their drawbacks are less dominant in our model. Experimental
results validate our findings, by computation speed and mean
F-measure values on several public datasets. We also examine
how results may improve by analyzing each video individually
according to its content. DSPB can be successfully incorporated
in other image processing tasks like change detection, video
compression and video inpainting.

Index Terms— Background modeling, foreground-background
separation, motion detection, spatial prediction, video analysis.

I. INTRODUCTION

HE use of cameras has become increasingly common in a

variety of fields in recent years. As a result, the need for
video analysis algorithms has risen to automate tedious manual
tasks, such as: intelligent surveillance cameras, autonomous
driving, gesture recognition, efc. All these applications have
in common the need to initially detect the object of interest
in a video, noted as “Foreground” (FG) and to separate them
from the irrelevant static information, the background (BG).
Therefore, background modeling received a lot of attention in
past decades and many approaches were suggested.

In spite of the huge effort invested in this direction, there
currently isn’t a single algorithm to solve the FG-BG sepa-
ration problem and this is mainly due to the significant chal-
lenges arising from the richness of natural scenes. Illumination
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changes (gradual or sudden) and dynamic background (e.g.
waving trees) are some of the major concerns caused by
real-life scenarios. Implications also arise from the cameras
themselves, such as automatic camera adjustments, camera
jitter and sensor noise. Some requirements of such a system
are determined by the user as to how they should be dealt
with; Should a parking car be incorporated into the BG or
not? Are shadows part of the object or irrelevant? It is worth
mentioning that since most surveillance cameras hardware is
basic, there is a need to keep the computational load as low
as possible, as in all video analysis applications, in order to
deliver real-time performance. A foreground detection system
is normally comprised of 3 components: (a) The background
model initialization, typically reconstructing the background
image somehow (b) creating the foreground mask, that is
simply a binary image marking the foreground pixels, and
(c) background maintenance - a necessary step to keep the
background model relevant to the current scene content as the
video advances.

In this paper, we focus our attention on handling illumina-
tion changes (gradual and sudden), as they are considered to
be the main source of variation in videos that does not arise
from foreground objects [1], [2]. We present a novel method
for online background estimation that models the scene as
a superposition of the light sources. The model was briefly
described in [3]. Section 2 discusses various background sub-
traction methods and their relative advantages. In Section 3 we
present our method and discuss its innovations - handling
illumination changes, creating the BG model as early as the
5th frame, while requiring a minimal computational load.
Section 4 describes comparisons to state-of-the-art methods,
presenting both quantitative and qualitative results on public
benchmark datasets. We conclude our findings in Section 5.

II. RELATED WORK

Background modeling has been an active field of research
during the past decades, yielding a plethora of algorithms and
systems that can be found in surveys like [4]-[7]. A basic
assumption which derives from the nature of the FG-BG
separation problem is that the vast majority of a scene’s
content is composed by the background, while the foreground
part exhibits objects that pass through the scene. Most methods
reconstruct the BG image in some way and compare the
obtained image to raw frames in order to mark FG pixels.
Others treat the video as anomaly detection system and refer
to the FG-BG separation as a change detection problem. The
created BG model needs to be initialized and for this purpose
many methods are reviewed in [8]. Afterwards, the scene

1057-7149 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Joseph Francos. Downloaded on May 14,2022 at 18:02:02 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-2520-702X
https://orcid.org/0000-0001-9436-956X

5518

undergoes some changes (e.g. illumination changes, state
change of objects efc.). Thus, the BG model is updated. This
phase can be very resource-consuming in naive approaches
that keep conducting the same procedure as in initializing
the BG over and over again. Hence, implementing a learning
rate to incrementally absorb the new frame’s information is
popular in many methods [2], [9], [10]. We divide the rich
literature coarsely into local-adaptive, global-linear, hybrid
models and learning based. Local-adaptive methods form a
pixelwise statistical model of the scene. Hence, these meth-
ods do not explicitly construct a BG image but try to find
the main trend pixelwise. Local-adaptive methods consider
a given video stream as a bundle of individual 1D signals.
By doing so, the spatial information remains untreated, except
for some modern methods that consider neighbor pixels recent
history. Typically, the first frames of each video are used
to train a model for each pixel by empirically estimating
statistic measures that suite the chosen model. The number of
frames used for training impacts the model’s ability to explain
the variability among each pixel. Ideally, the first frames
shouldn’t contain any foreground objects, but this assumption
is far-reaching and almost never is obtained in real scenarios.
After the model is constructed, next frames are classified and
the model parameters are updated constantly, mostly using
a learning rate. Simple operations calculated on a temporal
sliding window include average [11], median [12] or his-
togram analysis [13]. Applying popular filters (Kalman [14],
Chebyshev [15] and Wiener [16]) express the same idea by
obtaining the low frequencies and reconstructing the BG image
from them. Parametric methods model pixel distributions and
calculate the probability of a new sample belonging to it and
classify the pixel according to the outcome. The simplest form
of this approach assumes each pixel is derived from a unimodal
Gaussian distribution [17], where the mean and variance are
calculated empirically using the training set. The probability
density function (pdf) parameters are continuously updated
as the video stream keeps delivering frames for classifica-
tion. These simple methods are very easy to implement and
barely have any computational requirements in compare to
more sophisticated methods. However, they cannot describe
enough the variations arises from the richness of most natural
scenes (e.g. moving background or illumination changes).
Thus, employing a more elaborated pdf, like a Gaussian Mix-
ture Model (GMM) is more popular. The Gaussians number
directly affects computational demands, as for each its parame-
ters need to be empirically evaluated and constantly updated.
The first GMM was introduced by Stauffer and Grimmson [9]
in the late 90’s and since then many improvements have
been suggested to make GMM more durable and accurate.
In [10] for each pixel color and texture features are added
and used to comprise the GMM. A popular extension [18]
estimates for each pixel how many Gaussians should be in
the model. By doing so it keeps the method flexible and
avoids overfitting where a simple model can be used, while
allowing more complexity to other pixels that tend to fluctuate.
GMM-based methods are capable of explaining the majority of
BG variations that appear in most outdoor scenes, particularly
where minor gradual illumination changes are exhibited along
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with repetitive motions (e.g. waving branches and sea waves).
GMM in all its versions along with the other pixelwise meth-
ods, struggle with handling the case of when in the training
phase the data appears differently in compare to the scene
content later on. For instance, if FG objects are present during
the training phase, then the objects will get partially absorbed
into the BG model (this is better known as “ghost-like” effect).
Moreover, in indoor scenarios sudden illumination changes
appear often (e.g. screens and light switches) and severely
alters the scene’s appearance leading to many false detections.
To handle this issue, GMM can use an aggressive learning
rate but this also results in blending FG object pixels to the
BG model. Using non-parametric methods has the advantage
of not forcing a specific distribution to pixels distribution,
whereas the question if a Gaussian distribution or another fits
the data in a statistically significant manner is hardly ever
asked. In [19] the histogram is smoothed using Kernel Density
Estimation (KDE). However, applying this technique by a
sliding window is very time consuming. More non-parametric
methods are based on preserving each pixel’s recent BG
values. Sample consensus is used in [20] to maintain and
update each pixel’s model. The visual background subtractor
(ViBe) [21] is more robust to gradual illumination changes
since it has a stochastic strategy to maintain the BG model
by randomly neglecting a sample from a cached memory with
recent BG values when adding a more recent one to it. Another
interesting point the authors make is that neighboring pixels
tend to express the same intensity distributions. They exploit
this observation if a pixel is set to be FG then the BG model
at its location is set by a value from neighboring pixels. The
downside of these methods is that they need to store past
values for each frame (20 is a reasonable number), which is
a luxury that is not plausible when considering a method to
be embedded on simple hardware like surveillance cameras.
More methods that use the surrounding pixels around each to
better estimate the correct BG value suggest to use Principal
Component Analysis (PCA) on spatial blocks [22], [23]. This
way, the computational needs are reduced as the classification
of each block is homogeneous. Codebooks methods are used
by establishing codewords for each pixel that describes the
BG. The codewords are actually features extracted from the
training frames. Kim et al. [24] use a unique color distortion
metric based on RGB values and their acceptable limits, while
in [25] the temporal and spatial context are represented in
the codewords. The created codebooks serve as a compressed
version of the BG. The performance speed of these methods
relies on the size of the codebook which trades-off between
the models accuracy.

Global-linear methods main advantage is by acquiring the
BG model at the frame level. These methods apply dimension
reduction techniques to the FG-BG separation problem as they
estimate a low rank version of the scene. In the most basic
form, PCA is used for the BG reconstruction and the FG
mask is created by thresholding the difference between the
video frame and the BG image [26]. PCA creates an eigen
background - a linear model that spans over the eigenimages
of the data is was trained on. The eigenimages usually describe
the possible illumination conditions, as they are the main
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source of variation in the data. Hence, these methods tend
to deal well with illumination changes (gradual or sudden).
Applying simple PCA results in having many outlier values
in the FG mask and also “ghost-like” effects, as a result of
FG objects that do not pass fast enough through the scene and
are partially absorbed into the BG model. Vosters et al. [2]
suggest using the simple PCA model to create the BG, and
further utilize a statistical illumination model [27] that models
the distribution of the ratio of intensities using a GMM in
order to better classify FG pixels. Robust PCA (RPCA) [28]
handles outliers by forcing a division of the original frame
into a BG image (low rank version of the scene) and another
sparse matrix that represents FG objects. In their work they
use principal component pursuit (PCP) as their solution to
the RPCA problem. Some other methods treat the problem as
a matrix [29] or tensor [30] completion task with respect to
energy loss minimization criteria. In [31] graph-cut is used
on the low-rank component of the video stream to better
handle background variations. RPCA-based solutions have
gained much popularity and became a thriving sub-criterion
among the global-linear methods. Some surveys review solely
RPCA-based method [32], [33] and demonstrate the various
metrics and optimization methods used. Subspace learning
yields a very good distinction quality by obtaining a linear
subspace of the original video. It can deal with scenarios that
express sudden and gradual illumination changes which are
popular in indoor videos (e.g. light switches and screens).
In spite of the mentioned benefits, applying such methods
requires substantial computational resources due to the need to
batch-process many frames and compute complex operations
(e.g. inverting each batch’s cross-correlation matrix). More-
over, each batch must be acquired in advance which dramat-
ically effects the ability to perform in real-time. If a scene
undergoes many lighting variations, which is typically the case
for long videos as in surveillance cameras, in order to model
illumination changes correctly there is a need to reconstruct
the BG with many eigenimages or else the model’s capacity
to describe the illumination changes drastically diminishes.
Learning-based methods apply traditional machine learn-
ing techniques for FG-BG separation. Support Vector
Machine (SVM) is used to classify pixels after the training set
batch while constructing a density function based on varying
features. In [34] inter-frame difference and optical flow are
used, while [35] use Haar, color and gradient features. Neural
Networks (NN) tackle the issue as a supervised learning prob-
lem, in which weights of the network are learned and serve as
self-learned features. In a significant work, Maddalena et. al
present the Self-Organizing Background Subtraction network
(SOBS) [36] that learns motion patterns in the HSV color
space on the image sequences. An updated version adds
a spatial coherence mechanism to maintain the BG model
(SC-SOBS) [37] that rejects many false detections. The idea
to apply Deep Neural Networks (DNN) and Convolutional
NN (CNN) architectures on FG-BG separation problem has
intrigued researchers since they gained much popularity due
to their success in object detection tasks on the ImageNet
dataset classification challenge [38] by Krizhevsky ez. al [39].
CNN/DNN differ from traditional NN by having more hidden
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layers in the network’s architecture and by using images spatial
information. Due to the many layers in DNN frameworks,
a large portion of the BG variability can be explained. In [40]
the authors suggest a ground-truth generation method where
some objects need to be marked by the user and then the
network classifies each pixel by feeding it a 31 x 31 patch
around it. Braham and Droogenbroeck [41] apply CNN in
a pioneering work by using some scenario-specific training
frames in order to teach the network the BG variations. The
authors use a 27 x 27 patch to calculate the FG probability
of each pixel. CNN methods main virtue is by not requiring a
complex modeling procedure - the network learns themselves
how to model the scene. The downside of the mentioned
DNN methods is that they are scene-specific, so the networks
need to be retrained on new scenarios. Also, patch processing
is very resource consuming. DNN architectures for FG-BG
separation continues to be an active field of research and is
constantly evolving. We refer the reader to the recent work
of Bouwmans et. al [42] that reviews and compares recent
advancements.

Another research topic with tight relations to the presented
one addresses the BG-FG separation problem while allowing
cameras to be freely moving. In this way, there is a need to
estimate the camera’s motion along with local motion patterns
that differ from the predicted global one in order to classify
pixels as FG or BG. Feature points trajectories, geometric
camera movement using homographic transformations and
obtaining the camera’s fundamental matrix transformations,
are some of the techniques used to infer the motion patterns
in the scene. Reference [43] adapts a multi-label process
by assigning a unique foreground layer for each foreground
object. Next, a probability is set using a Bayesian filtering
framework and labeling is done using a graph-cut on a Markov
Random Field (MRF). Sugimura et al. [44] suggest using a
subset of the scene pixels and estimate their motion using
optical flow to create “motion seeds”. These seeds are used
to establish motion boundaries that help differentiating FG
objects motion in compare to the global motion of the camera.
An interesting point the authors make is that when the scene
is partially stationary for a long period, as in surveillance
cameras, due to the lack of motion it is hard to differentiate
the FG from the BG, therefore a different scene appearance
modeling should be applied.

III. DSPB: A DYNAMIC SPATIALLY PREDICTED
BACKGROUND MODEL

A. Theoretical Foundations

Cameras acquire images according to the amount of light
perceived on each detector in a sensor-matrix array that repre-
sents each pixel’s intensity value. Therefore, handling gradual
and sudden illumination changes remains key challenges in
any image and video processing algorithm. In this section we
aim to model a given scene as a function of its light sources
and show that it can be expressed as a linear combination of a
subset of the scene’s pixels. To do so, we need to understand
the function of light sources for the incoming light to the
camera. This is better known as Bidirectional Reflectance
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Distribution Function (BRDF), which is merely the relation
between the light emitted by a source partially absorbed in an
object and the amount of light reflected by it that the camera
acquires.

Appearance modeling under different illuminations for
object recognition and analysis was investigated by acquiring
images with an object in the same pose under different lighting
conditions, and then reconstructing the scene using a projec-
tion matrix, such as PCA [45] and harmonic spheres [46].
In both works the authors use a linear approximation to
minimize the energy loss to some extent. In other cases,
appearance models were based on a-priori knowledge of the
content of the scene. This a-priori knowledge can be: the 3D
structure of the observed object [46], the reflectance properties
of the observed surface and the type of illumination in shape
from shading [47] and photometric stereo [48]. Linear models
for scene appearance modeling for separation of foreground
objects is used extensively [26], [28], [33]. Theoretically,
the use of linear models can be explained as a superposition
of light sources. The measured image can be expressed as a
linear combination of the different individual light sources.
Basri and Jacobs [46] provide a theoretical explanation why
we can assume that a 9D model should suffice for modeling a
scene appearance in the vast majority of scenarios. In practice
we see that even fewer dimensional models are enough in
many cases. In [49], Hagege discusses extensively how the
background can be modeled as a linear function of the scene’s
light sources. We elaborate on the notions presented there
to form a FG-BG separation method. In our work, a key
assumption is that the illumination in the scene is influenced by
a finite number of independently varying static light sources.
In such a case, the background model can be analyzed using
a linear model [49]. In fig.1 we show how strong correlations
among pixels are, as 3 randomly chosen pixel pairs values
are shown during a short video clip in a static scene as
illumination changes are caused by a single varying light
source. A linear fit on each pair almost fits perfectly to each
pair. This demonstration lays the foundations for predicting
a pixel’s value by knowing another’s history and modeling
the illumination effects of the given scene. A predictor for
the measurements of each pixel is built based on a subset of
other pixels in the scene. We call the pixels used for prediction
“control pixels”. Each predictor is constructed by exploiting
the correlations between measurements of the observed and
control pixels. To our knowledge, our work is the first to
exploit pixel correlations (far or near) to predict the scene. The
correlations are calculated empirically and therefore not based
on any assumptions about the type of illumination sources,
potential locations, or the type of material (Lambertian or not)
in front of the camera.

B. Model Formation

The measurements of a single pixel p in image I can be
written as

I(p) =M"A 1)

where M? is a row vector describing the contributions of each
light source power to the total outcome. Each element of M?”
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(a) 3 randomly taken pixels pairs and their values with a linear fit

stands for the spatial distributions of the light sources and
the effects of their BRDF’s on the scene. We assume that
the changes in the illumination powers are the only ones in
the scene, beside foreground objects. Given the light sources
powers A, we assume that the measurements of two pixels are
independent. We argue that given a set of N pixels { pk}]]cv=l
measurements, any other pixel in the scene can be estimated.
the set { pk},é’:1 when used in eq.1 forms N equations in the
form:

I(pr) = MP*A 2

we set I{Pk}szl as a column vector, where [I{Pk}szl]k =

I(py) and M € RN*N where [M]; = MP*, to get the matrix
form of the previous equation.

I =MA 3)

{Pk}]z(vzl

We assume the matrix M is of full rank (which is empirically
evaluated in [49]), therefore matrix M 1is invertible, yielding:

a1
A=M 1{pk}iv:1 “4)

Since the measure of any pixel is given by Eq. 1, then using
the previous equation, we get

I(p)=MPA :MI’M—ll{pk}kN=1 (5)
Let us denote T = MPM~', T € RN and we get
I(p) = TI{PHQ’:] (6)

Eq. 6 indicates that any pixel of an image is linearly dependent
and well approximated by any other N pixels. This implies that
correlations between pixels have valuable information (fig. 1)
that can be used to predict the scene. The last equation can be
rearranged to establish direct relations of the chosen control
pixels { pk}]]cv=l to all the pixels in a given image I at time ¢:

L =TI, W, @)

where T € RM*N denotes the weight of each control pixel in
each of the M pixels of the scene.

In real scenarios, eq 7 isn’t plausible directly, since there
isn’t a way to obtain 7 or T, and the fact that we omitted
the statistical correlations between pixels of the observation
set { pk},?’:l. However, this framework serves as a theoretical
explanation that predicting pixel measurements linearly from
other pixels of the scene should behave well. In practice,
the solution can be found by solving a minimization problem,
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of finding a linear subspace that is similar to a given frame
with respect to the Ly norm.

min|{Z; — AL,,v |l ®)
where I, € RM*! is a given image in column stack fashion
at time ¢, [ € RV*! are the observations at control

{Phis
pixels locationslz and A € RM*N i the coefficients matrix.
The least-squares solution of Eq.8 can easily be retrieved.
However, such a solution is computationally demanding and
requires storing all the observed images. An online version can
be achieved by constructing the optimal linear estimator [50]:

I; =By, + Covgp - (Covp)™" - (P, — Ep) ©)

o P e RVX! [P]y = py is the vector of control pixels and
P; is their value at time .

o [E;,: The empirical Expectation of all pixels.

o [Ep: The empirical Expectation of { pk}f{\’:1 control pixels.

e Covp: The empirical Covariance matrix of P

e Covy p: The empirical Cross-Covariance matrix of P

with all other pixels.

All the values mentioned above are calculated empirically on
the training set which is taken as the first few frames of the
video stream. By using the linear estimator for each pixel,
the complete frame is estimated and models the background
image, since it describes how the scene should appear based
on the lighting conditions exhibited in the scene and has no
relation to modeling foreground objects.

An example of the process using a control set of 3 pixels
(red, blue & green) to estimate another (in pink) is shown
in fig 2. The upper sub images show cases in which the control
pixels estimate a pixel, once as BG (a) and as FG (b). Lower
subfigures show the control pixel’s measurements during the
video stream (c) and the observations of the pink pixel (d) are
compared to the estimated ones (in black). Points where there
is a large deviation between black and pink pixels indicate that
outlier values are measured and are suspected to derive from
the presence of a FG object.

C. Relations to Other Image Representation Models

The suggested appearance model is strongly related to other
linear subspace reconstruction methods that also take place in
video compression. A common way to do so is by coding the
data using a linear subspace:

m
Il = Bally= [l = > aiBilla
i=1

(10)

where {o;}7", € R and {B;}], € RN*1 are the weights and
basis images set that span the image space. I € RV*! is the
current frame in column stack fashion and N is the number
of pixels in each frame.

m turns out to be the number of control pixels used
to form the frame prediction, as shown further on in this
section. For convenience we denote: a = [ajaz . ..am]! and
B =B B..By]

Rearranging eq. 9 yields:

I, —Ej, = Covy,p - (Covp) ™' - (P, —Ep) (1)
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Fig. 2. An example of 3 control pixels (red, green & blue) predicting another
(in pink). BG value (a) and FG (b) examples from the video. (c) control pixels
measurements during the video sequence, and (d) shows the predicted values
compared to measured ones.

and set I = I; —Ej, and P* = (P —Ep) to get

I = Covy,p -inv(Covp) - P* (12)

while the dimensions of I and P* match /; and P corre-
spondingly, since these are merely their values without the
empirical expectation. C = Covy, p - inv(Covp) yields:

I*~C-P* (13)

Note that C € R¥*” and P* € R™*! have the same
dimensions as a and B in Eq 10.

From here we conclude that matrix C can be considered as
a set of basis images (as columns) and their weights for each
frame that form the linear combination is vector P* which is
the control pixel set values in the current frame without their
empirical expectation. Mathematically, the suggested predictor
acts as a projection of the observed image into the subset of the
potential scene appearance, as given by the scene appearance
model. It is important to mention that the basis images as
vectors are highly correlated. This isn’t surprising, since each
of them can be thought of as the estimation of the current
frame using a single control pixel. The estimated image is
considered to be the background image, so we expect that each
estimation should have similar behavior, but under different
illumination conditions. Thus, the set of basis images does
not exactly span the image space, since its components are
not orthogonal. To achieve this, further processing is needed,
like applying PCA or the Gramm-Schmidt process on the basis
images set.

D. Model Limitations

The estimator quality depends on the following:

(a) Illumination changes among the video stream- To con-
struct an estimator of /; based on the control pixels set,
we need to have enough observations under various light
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conditions. In natural scenes there are many light variations
(gradual or sudden), like screens (phones, TV etc.), windows
and sunlight (which is often partially occluded by clouds).
Thus, most surveillance camera’s typical scenarios produce
enough variability to enable the usage of the proposed method.

(b) Number of control pixels- if we have a prediction
scheme based on N pixels, we need to have N images
such that their linear combination with coefficients I{Pk}iil
constitutes the prediction of the scene appearance. The esti-
mation of these N basis images is the statistical approxima-
tion of I{Pk}ﬁy:l in all image locations. Using more control
pixels leads to more accurate results. However, enlarging
their amount also increases the computational demand, as the
number of parameters to be empirically estimated also rises.
In Section 4-D we examined a large range of values for
the control pixels set size and empirically found that 5 con-
trol pixels are sufficient to correctly estimate the BG in a
satisfying manner.

(c) Specific control pixel locations- A different choice of
control pixels produces a different scene appearance model;
yet, different scene appearance models should span approxi-
mately the same linear space. The scene appearance predictors,
however, behave differently in the presence of errors and
outliers; For example, some predictors may completely fail
as a result of occlusions. The accuracy of the predictions
as a function of location using any specific predictor is not
uniform, namely, there are pixels with smaller and larger
errors. The use of more than one scene appearance predictor
creates regions in which one predictor is statistically better
than another scene appearance predictor. This information can
be used to create an overall better predictor. In light of these
observations, we improve our model’s robustness by taking
a few independent sets of control pixels. De facto, we take
3 control sets: (P1 = {p,l},ivzl, P, = {p,%},lcvzl, P = {pi}f{v:])
to form 3 linear predictors. Each control pixel is unique and
is used in one control pixel set solely- ((Pl NP,N P3) = VJ).
The scene’s prediction is done independently for each set,
yielding 3 candidates at the pixel level for the background
model. In the presence of a disturbance (e.g. noise or occluded
control pixels) it is unlikely that all 3 different estimators will
predict the same value at a specific pixel. To avoid picking
an unreliable value, we use the 3 candidates median value.
By doing so, durability to occlusions by outlier rejection is
achieved which enhances our model performance.

(d) The scene’s content- Neighboring pixels tend to express
the same spatial and temporal behaviors [21]. Thus, using
near pixels to estimate their surrounding area may deliver
better predictions. Segmenting an image into clusters, blocks
or super-pixels exists in some prior works. [22] performs PCA
on image fragments and classifies them homogeneously in
order to reduce computational time, while [51] segments the
scene into super-pixels and then uses a density-based spatial
clustering (DBSCAN) to form megapixels. A probability is
set to each megapixel of belonging to the BG. We suggest
dividing the image content into areas that express the same
characteristics and to construct a predictor from control pixels
in a specific area to estimate pixels that solely belong to the
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Fig. 3. (a) Original image, clustered to 6 parts in (b). (c) shows 2 random
pixels taken from each cluster as control set.

Fig. 4. FG-BG Separation results: (a) original frame, (b)- BG, FG results
before using heuristics (c) and after (d).

same region. Due to the fact that the vast majority of the
scene does not change during a video stream, it is sufficient
to divide the image at the start of the video without any update
to the cluster borders. To give respect to the surroundings of
each pixel, we use k-means clustering on the median image of
the first 10 frames, while the used features are pixel cartesian
coordinates and color levels. The number of clusters and pixels
that assemble the control set are parameters that require tuning
and are further discussed in the Section 4-D. At the end of the
process, the predicted background image is built as a mosaic
by a superposition of the different individually predicted image
clusters. The clustering process is demonstrated in Fig. 3 as an
image frame is divided to 6 parts and from each part 2 control
pixels are randomly chosen as the control set for estimation
of the matching cluster.

To conclude, the results of applying the mentioned heuristics
are shown in Fig 4, where appears an image (a), its estimated
BG (b) and FG before adding the mentioned heuristics (c) and
after (d). Notice how many misclassified pixels as FG, mainly
in the upper-right image section (c) are rejected and a more
accurate version of the FG is obtained (d).

E. Background Initialization & Maintenance

Typically, the first frames of a video stream serve as a
training set for initializing the background model, as many
popular techniques need at least dozens of frames [19], [24]
to do so. There seems to be a trade-off between the desire to
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have a BG model as soon as possible and the need of gathering
enough samples in order to produce a more statistically
accurate parameters prediction. Furthermore, the training set
doesn’t necessarily avoid being contaminated by noise or FG
objects. Thus, some FG pixels that appear in the training
set may be partially absorbed into the BG model creating
ghost-like effects. Since we are using N pixels in the control
set, N measurements would yield a linear dependency, so we
need only N past frames to train our background model.
The size of the control set is a parameter we tuned in our
experiments and found that N = 5 is suffice. A common
frame rate for video is 30 fps (frames per second), so we
can initialize our BG model after 0.167 seconds. Setting up
a BG model is an important feat [8] and being able to do it
so early is one of the suggested method’s main advantages in
compare to other leading methods.

A scene’s BG is expected to change during a video, caused
by local state change (e.g. a parking car) or illumination
changes. In the case where dynamic visual information sud-
denly turns into static (and vice versa), if the model was calcu-
lated before the BG has changed, then there is a need to update
the BG model to avoid misclassifications. Modifying the
predictors adaptively improves considerably the accuracy of
the constructed models. A robust system needs to detect these
situations and absorb them into the BG model. We achieve this
by defining a learning rate variable a € [0, 1] which updates
our model parameters in each consecutive frame.

Miyy =aM; + (1 —a)Diq1 (14)

where M; is the model until frame i and D; represents the
parameters from the i’ frame. In our approach, we have two
adaptive elements: (a) The linear predictor itself that uses the
current control pixels values to estimate the scene. Doing so
enables the method to discern the changing illumination effects
by estimating how an image should look like by evaluating the
changes among the control set pixels and their relations with
any other pixel in the scene. (b) Learning rate update rules
adjusts the parameters in our model in an incremental fashion
to absorb changes. In fig. 5 we show an example on “Light
Switch” video taken from LIMU dataset [52]. The video
exhibits varying and sudden illumination changes. In such a
case, which is quite common for indoor surveillance cameras,
it is necessary to adapt the BG model by considering the
current illumination status in order to keep the BG model
relevant to the current scene’s condition. In the upper row
are some frames with diverse lighting conditions and the
corresponding BG estimation our method yielded beneath
them. Note how similar the BG images are to the original
frames. Also, where there is an FG object (2 right columns),
the BG remains intact.

F. Foreground Detection

Foreground Detection is typically referred as the “answer”
of a FG-BG separation algorithm. It creates a mask - a binary
video where 0’s mark BG locations and 1’s indicate FG pixels.
Traditionally this is obtained by hard thresholding the absolute
difference of a frame and its corresponding BG reconstruction

5523

using a fixed value which is chosen empirically (Eq. 15).

FGi=|Ii—BGi|>T (15)
Driven by the fact that each pixel’s distribution isn’t stationary,
we assume that its pdf can be approximated by a Gaussian with
time varying statistic moments. We calculate for every pixel
its first and second empirical moments of previous frames (up
to 150) and update the moments according to new observations
as the video advances. The decision to classify a new pixel
observation is done locally for each pixel by:

FG(xayat)zll(x,y’t)_BG(-xayatN > 3'0-(-xayat) (16)

where o (x, y, t) is the standard deviation of pixel (x,y) at
time ¢. This unique thresholding resembles outlier detection
mechanisms used in local-adaptive methods [9], [18], as for
every pixel in each frame the classification is done individually
according to its distribution. In the bottom row of Fig. 5 we
show the FG mask created for each frame.

G. Algorithm

Our model has the following parameters:

1) #.5 - Number of control sets.

2) #; - Number of clusters to divide the initial background.
3) #¢p - Number of control pixels.

4) a - Learning rate for model update.

Algorithm 1 DSPB

1: Choose model parameters {default: #., = 3,#; =
1, #cp =5,a =0.99}.

2: Given a video use first N frames for initialization.

3: Construct DSPB’s #., linear predictors using #., ran-
domly chosen pixels in #j image clusters.

4: Obtain DSPB’s model components (expectations and co-
variance matrices) empirically using the training set.

5: while N < i < frames do

6: BG; = model estimation

7: FG; = local outliers of |Frame; — BG,|

8

9

FG; = post processing of (F'G;)
: update DSPB’s model parameters with learning rate «
10: end while

IV. EXPERIMENTS & RESULTS

In the following section, we examine scenarios in which
global-linear and local-adaptive methods tend to struggle.
Later, we tune our method by optimizing the model parame-
ters, establish a post-processing technique for it and to other
compared algorithms. We end with an evaluation on a few
public datasets with other state-of-the-art methods and discuss
the outcomes. For all the experiments described in this chapter,
we used a computer with 4-cores, i7 processor with 16GB
RAM memory. The coding was done with MATLAB 2017a.
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Fig. 5.

A. Global-Linear Methods Analysis

One of global methods main merit is their ability to extract
the BG at the frame level, usually by processing a batch of
frames and minimizing some energy criteria. Hence, global
methods prefer the background to be static with minor gradual
changes. In long videos (e.g. surveillance cameras, which is
the main use for FG-BG separation) the illumination varies
continuously which results in a dynamic scene appearance
at different timestamps. A popular and representative global
method is to apply a version of PCA to distinguish the BG
by taking a large chunk of a video and extracting a low rank
image while requiring heavy computational resources, since
it is necessary invert an N x M matrix (assuming there are
N pixels in each image and M images). The computational
burden, in addition to the need to acquire a significant number
of frames in advance, make global methods unable to reach
real-time performance. Since frames are projected onto the
low rank version of the scene, global methods tend to handle
well with instant illumination changes, but gradual ones do not
match the linear components of the model. To demonstrate
the ability of global methods to hold a firm background
representation, we sampled an hour-long video of a beach
during sunset. In the video the sun changes its location
consistently and is occluded occasionally by clouds, resulting
in a video with both rapid and gradual illumination changes.
We took 7200 consecutive video frames, cropped a (100 x 100)
patch and computed its eigenvalues from 50 frames sampled
uniformly in different time intervals. The scenery is shown
in two frames in Fig. 6 (a) and (b). Notice how the sun is
occluded in different ways that result in changing illumination.
At the left-bottom corner a yellow rectangle marks the patch
we cropped from the images to analyze, as a few patch frames
demonstrate the different lighting conditions in Fig. 6 (c-e).
If the patch size was solely one pixel or had only lambertic
materials exhibited in it, then the dimension would have been
simply one. But as the patch gets bigger and holds more
objects with varying reflectivity properties, then there is a need
for a more complicated model to properly describe the changes
the scene undergoes.

In Fig. 7 we show the percentage that cumulative eigen-
values hold at different time interval sizes (as number of
frames). The trend is quite clear - as the time interval gets

Some of “Light Switch” frames with diverse illumination conditions, their background estimation and foreground mask.

Fig. 6. (a-b) Scene under different settings with tested patch in yellow at
bottom-left corner. (c-e) Patch examples with various lighting conditions.

% Energy in Principal Components Taken From Different Time Intervals
T
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Eigenvalues

Fig. 7. Energy percentage in cumulative eigenvalues as taken from different
interval sizes (in frames).

larger, more eigenvalues are needed in order to describe the
same percentage of energy of the total scene that smaller
intervals can explain using just a few. While the time interval
increases, more variations in the scene occur (derived from
different illumination conditions) and impairs the ability of top
eigenvectors to successfully describe the scene. To conclude,
the linear subspace created by global methods is usually able
to handle sudden illumination changes, since the BG model
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is trained on a large portion of the video which exhibited
these illumination conditions. The frames containing sudden
lighting changes lies on a component from the linear subspace
as spanned by the low rank components. The problem arises
while there are gradual illumination changes, because their
projections do not naturally fit a component in the low rank
representation. The solution to this situation might be reached
by accumulating more eigenimages to compose a richer rep-
resentation of the BG, but this results in more computational
demands and absorbing FG objects in the BG.

B. Local-Adaptive Methods Analysis

Local methods treat the video sequence as an independent
collection of 1D signals. This self-sufficient approach analyzes
each pixel’s temporal behavior separately, while neglecting
any spatial information. State-of-the-art methods fit a GMM to
each pixel that is able to explain most of the pixel’s variability.
Almost each local method has a user-defined learning rate
o € [0,1] that adds adaptive qualities to the background
model and controls how a new value is proportionally absorbed
into the BG model to keep it relevant to the current scene
conditions. Local methods excel in dealing with dynamic
background (e.g. waving trees) and minor gradual illumination
changes. The problems start when the BG changes globally
in a manner that cannot be modeled by high frequencies.
Forcing a more aggressive learning rate may help adjust to
a new scene appearance but it also adds many false detec-
tions to the FG mask. The problem is more dominant for
indoor scenarios which often express rapid light changes (e.g.
screens and light switches) that impact the scene significantly.
To illustrate this issue, we used “light switch” video from
LIMU dataset [52] that is consist of people crossing an office
with sudden light changes. We fit various Gaussians and
learning rates based on the first 200 frames. In Fig. 8 (a-
c) we show 3 frames that express the BG, the BG under
sudden illumination change and a FG object and examine how
GMM classifies the latter two frames. Fig.8 (d) shows the
results for classifying Fig.8 (b) as columns represent number
of Gaussians used in the model for each pixel and rows
demonstrate the effect of different learning rate values. As
can be seen in fig.8 (a,b), the tested frame is significantly
different than the complete scene solely due to illumination
changes. Hence, we expect a low number of Gaussians to fail
in generalizing the light changes and consequently classify
many BG pixels as FG. Fitting 5 and 7 Gaussians reduces the
misclassification rate, but still there is a significant amount to
even consider using a GMM in these scenarios. The only way
GMM can handle better this situation is by applying a more
aggressive learning rate to absorb the changes by updating the
model parameters much faster by giving recent frames more
weight in the total BG representation. Enlarging the Gaussians
number does not improve enough the classification outcome.
This is understandable since the frames on which the models
were trained did not evidence such dramatic illumination
changes so pixel values are detected as anomalies. In Fig.8 (e)
the same setting was taken but with another frame with an
FG object and novel illumination conditions. Enlarging the
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Fig. 8. Testing the effect of different learning rates («) and no. of Gaussians
(N) in the pixel model: (a) Original frame. The scene under different lighting
conditions: (b) only BG, (c) with FG object, and their FG masks in (d) &
(e) respectively.

Gaussians number reduces the number of anomalies detected,
since the models are richer and can describe better the scene
variability. The best result is achieved at N = 5,7 and
o = 0.01,0.05 but when using these values in the pre-
vious tested frame there were many misclassified pixels.
Increasing the learning rate further helped handling the illu-
mination changes but it also distorts the result by adding
noise.

By observing these two test cases, we conclude that fitting
a pdf pixelwise is capable of dealing well with many changes
in the BG that can be modeled as repetitive interference
(e.g. moving trees or waves), but more drastic changes in the
scene, like illumination, causes the system to misclassify many
pixels and using a larger learning rate trades-off between a
better BG and a worse FG. The ideal learning rate value is
hard to tune for each video individually and remains one of
the major drawbacks in applying local methods for FG-BG
separation.
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C. Experiment Setup

1) Metrics for Evaluation: As stated by Goyette et al. [53],
it is not a trivial task to find the right metric to accurately
measure the ability of a method to distinguish between FG
and BG. If we consider BG segmentation as a classification
process, then we can recover the following four quantities:
True Positive (TP): The algorithm marks correctly a pixel as
FG; False Positive (FP): Pixels are set to be FG mistakenly;
True Negative (TN): A BG pixel is classified correctly as BG;
False Negative (FN): A pixel is classified to BG but it should
have been FG. Many evaluation metrics combine all or some
of the quantities. Specifically, we use:

o Precision: Pr = % € [0, 1], from all the algorithm

classifications as FG, the percentage it is correct.

e Recall: Re = TPTJr—I;N € [0, 1], from all the pixels that
should have been classified as FG, the percentage that the
algorithm classified correctly.

o F measure: F = zf;fi'g: e [0, 1]

o fps - Frames processed per second (real-time> 20 fps)

2) Compared Methods: In our experiments we compare
our method with a basic method and to more 8 popular
state-of-the-art algorithms: (1) Thresholding frame difference;
(2) Codebook algorithm [25]; (3) Kernel-Density Estima-
tion (KDE) [19]; (4) Linear Binary Pattern (LBP) [54];
(5) GMM (zGMM) [18] with a flexible amount of Gaussians;
(6) ViBe [21]; (7) SubSENSE [20]; (8) SC_SOBS [37];
(9) Augmented Lagrangian approach (ALM) as a representa-
tive of the RPCA family [55] that is considered to be a relative
fast RPCA-based method according to [56] which reviews
dozens of recent global methods. For ALM implementation
we use the available version at [57]. All the rest methods
implementations are taken from the BGS library [7] which
is a C++ library embedded with OpenCV using a MATLAB
wrapper.

D. Model Optimization

In our setup, we downsample the image resolution to half of
the original size (to 120 x 160) due to hardware limitations.
We are aware that this might leave small FG objects unde-
tected. However, most of real scenes passing objects aren’t
affected. To tune our method we use LIMU dataset [52].

In Table I we show the best parameter formation that yielded
the top F-measure value for each video separately, by scenario
(indoor/outdoor) and in total. It is interesting to see that each
video used a different parameter setup with similarity between
the values used in indoor scenes (videos 3,5) and a different
set of values for outdoor videos (1,2,4). The number of pixels
required for prediction varies from 5 to 15 and the learning
rate value is lower in indoor settings. To summarize, tuning
model parameters is a crucial step in developing a system. Due
to the richness of natural scenes, there is a unique parameter
set for each video. As default values, we recommend using:
{#es = 3,# = 1, #, = 5,a = 0.99}, and these values are
used in further experiments in this chapter.

E. Post-Processing Technique

Post-processing the obtained FG frames is typically rec-
ommended [58], mainly by morphological operations, due to
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TABLE I

ToP PARAMETER FORMATIONS RESULTS UNDER
DIFFERENT SCENE SETTINGS

Model Parameters Evaluation Metrics
Scene Hes #Hk Hep @ Pr Re F fps
Video#1| 1 3 7 0.9999 0.455 0.275 0.343 749
Video#2| 5 1 15 0.999 | 0.866 0.361 0.509 1264
Video#3| 3 1 5 099 0.888 0.371 0.524 347.8
Video#4| 5 10 5 0999| 091 0.417 0.571 256.5
Video#5| 3 1 7 099 0.749 0.731 0.744 173
Indoor | 3 1 5 099 0.796 0.559 0.624 217.96
Outdoor| 5 3 3 0.9995 0.684 0.349 0.461 91.77
Total 3 1 5 099 0.836 0.396 0.503 132.7

the many outliers that contaminate the FG mask. We apply
and compare the results of the following post-processing
strategies: raw FG, spatial medians (3 x 3,5 x 5,7 x 7),
morphological closing (using a square structure element with
4 pixels), morphological opening, filling holes (FG object with
BG “blobs” inside are “filled”), remove connected components
of 3 pixels or less, closing + filling holes and opening + filling
holes. In Table II we compare the methods mean F-measure
on LIMU dataset [52] using the mentioned post-processing
techniques and show the best strategy for each method in
bold. Applying morphological closing followed by filling
holes along with 5 x 5 median yields the best results on
the methods majority. This is not surprising, since in FG
objects not all the pixels inside are always classified as FG,
so filling the gaps enhance the amount of TP. Median filtering
using a small spatial window removes scattered false alarms
that helps methods with many outliers. All in all, for all
methods applying a post-processing technique improved the
mean F-value for about 0.05, which is a significant improve-
ment obtained almost effortlessly. From this point on while
reporting results we apply the best post processing strategy for
each method.

F. LIMU Dataset

LIMU dataset [52] contains 5 videos with (240 x 320)
resolution, while 4 videos have 5000 frames and another 2800.
The dataset contains 3 videos from traffic surveillance cameras
and two indoor scenes with varying illumination. Ground
truth is available every 15 frames starting from the 500th
frame. Table II summarizes the metric results for each method
and the mean F-measure with relation to the computational
speed (frames processed per second) are exhibited in Fig. 9,
as they are the two main considerations while choosing a
FG-BG method. From all the tested methods, RPCA had the
largest F-measure, but also was the less performing method
by its runtime - 0.48 fps. The tested RPCA method, ALM,
is relatively fast in its domain, but the fact that it mainly
serves as an offline analysis (or the very least acquires a
large batch before processing it) makes it an unappealing
choice for embedding on surveillance cameras and could fit
other usages where online analysis is not crucial. Most other
methods achieved F-measure result between 0.55-0.6. As we
examine the computation speed, we can notice that all except
RPCA perform in real time pace (above 30 fps). DSPB turns
out to be the fastest method which is even more impressive
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TABLE II

F VALUES FOR FG-BG METHODS ON LIMU DATASET WHILE TRYING VARIOUS POST-PROCESSING TECHNIQUES, THE BEST
STRATEGY MEAN VALUES ON THE WHOLE DATASET ARE BELOW THE THICK LINE
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Method FrameDiff | Codebook KDE LBP zGMM ViBe SuBSENSE | SC_SOBS | RPCA DSPB
Raw 0.3981 0.4738 0.5403 0.5879 0.5161 0.4121 0.5685 0.5665 0.6586 0.5356
3x3Med 0.3829 0.5502 0.5687 0.5919 0.5097 0.3775 0.5678 0.5917 0.7226 0.5138
5x5Med 0.3593 0.5649 0.5721 0.5942 0.4951 0.3485 0.5650 0.6012 0.7200 0.4809
7x7Med 0.3384 0.5635 0.5681 0.5935 0.4757 0.3215 0.5615 0.5997 0.7048 0.4491
Closing 0.4478 0.4853 0.5543 0.5879 0.5478 0.4393 0.5686 0.5778 0.6865 0.5728
Opening 0.3286 0.5350 0.5496 0.5893 0.4754 0.3529 0.5682 0.5778 0.6825 0.4786
Holes 0.4051 0.4795 0.5451 0.5879 0.5182 0.4128 0.5685 0.5707 0.6700 0.5378
LowCC 0.3902 0.5047 0.5539 0.5882 0.5119 0.4026 0.5685 0.5692 0.6917 0.5292
Close+Holes 0.4790 0.4895 0.5662 0.5879 0.5743 0.4522 0.5686 0.5879 0.6892 0.5952
Open+Holes 0.3412 0.5505 0.5644 0.5893 0.4831 0.3554 0.5682 0.5912 0.6875 0.4844
mean-F 0.4790 0.5649 0.5721 0.5942 0.5743 0.4522 0.5686 0.6012 0.7226 0.5952
Pr 0.6681 0.4589 0.5713 0.6898 0.5496 0.5856 0.5725 0.5094 0.7663 0.8475
Re 0.3734 0.7347 0.5729 0.5219 0.6014 0.3683 0.5648 0.7332 0.6836 0.4587
ps 217.2349 184.6500 162.8817 | 81.6114 | 190.5797 | 207.7631 35.1585 141.0229 0.4827 | 252.1294
Mean F-value in LIMU dataset ‘Intersection’ (in the figure columns 1, 2 & 4 from the left)
0'75$ ‘ I I "T+ FrameDiff are outdoor scenes, while ‘Camera Parameter’ and ‘Light
0.7} + Codebook switch’ are indoor (3 & 5 from the left). RPCA remains in
] KDE ) . . .
3 0.65! + LBP the top 5 methods in all videos, which shows the superior
E + 2GMMm performance of global methods but as discussed before, they
r 067 A + o . O A :::E"SENSE lack in computation speed. Among the local methods it is very
E 055 * A SOBS notable that their results are much higher on outdoor scenes in
= sl g A en compare to indoor ones. This observation matches the descrip-
' + *'7 tive experiments done in section 4-B. LBP and simple frame
0.45 : : : : : i i i
0 50 100 150 200 250 300 difference performed relatively well. on the indoor scenes'and
frame processed per second surpassed many local methods. This is understandable since
LBP is a popular texture feature based method, that consid-
Fig. 9. LIMU mean F-value and frames processed per second. ers the surrounding area around each pixel, so illumination
changes are handled well. Frame difference literally subtracts
\ Methods F-value for each video in LIMU consecutive frames that eliminate illumination changes in a
ool *+ FrameDift very simple way. DSPB is in tbe top 3 mfithods .at ind(.)or
osl 8 2 5 scenes as it utilizes pixel correlations to predict BG in varying
o 3 T 2 i o light situations. When dealing with outdoor scenes, DSPB
LT + . . . . .
o o5l I )\ *| & sesensel reached a decent place in the middle as illumination changes
goﬁ» + 4 + . o Rooa are less dominant. By reviewing DSPB’s general performance,
foal & ] it verifies our claim that it acts as a hybrid model of global and
03l % 1 | local methods.
0.2 + + 1
&
0.1 A s 1 G. I2R Dataset

Bus Evening Bus Morning Camera Parameter Intersection

Video Name

Lightswitch

Fig. 10. LIMU mean F-value for FG-BG methods on each video separately.

considering it was implemented in MATLAB while the other
methods implementations are in C++4-. It is a significant feat
since low resource demanding methods allow further video
analysis algorithms to be embedded on surveillance cameras,
as FG-BG separation is typically just the first phase in an
image processing pipeline.

Due to the rich and various scenarios in LIMU dataset,
it is intriguing to investigate results on each video individ-
ually. Fig 10 shows the F-measure of each video separately
and sheds more light on the strengths and weaknesses of
each method. The videos ‘Bus Evening’, ‘Bus Morning’ and

I2R dataset is comprised of 9 videos with resolution
of (120 x 160) and a varying number of frames between
523-3584 as ground truth is available for 20 frames in
each video. The scenes described are mainly outdoor with
repetitive motions (e.g. waving trees, water ripples fountains
and escalators). A few other scenes are taken from sur-
veillance cameras indoors while video 6 exhibits illumina-
tion changes [59]. Thus, we expected in this dataset that
local-adaptive method will surpass global-linear and DSPB in
their performance, as the scenes are more oriented to their
strengths. During the experiment we neglected “bootstrap”
video as it appears also in Wallflower set as tested in the
next section. In Table III we show the F-measure of each
video separately, followed by the whole dataset mean per-
formance by F-measure, Precision, Recall and fps. As antic-
ipated, local-methods show their advantage while handling
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TABLE III
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METHODS F-MEASURE ON EACH VIDEO ON I2R DATASET. BELOW THE THICK LINE ARE MEAN METRICS ON THE DATASET

Method | FrameDiff | Codebook KDE LBP zGMM ViBe SuBSENSE | SC_SOBS | RPCA DSPB
Video 1 0.2971 0.2027 0.1457 0.7988 0.3496 0.4967 0.7876 0.1990 0.4816 0.3772
Video 2 0.4393 0.8021 0.4637 0.7049 0.7500 0.7102 0.9037 0.8896 0.7909 0.4466
Video 3 0.2850 0.4860 0.1955 0.5449 0.6262 0.6214 0.6960 0.3397 0.7691 0.3008
Video 4 0.3415 0.4233 0.4315 0.7678 0.5305 0.6271 0.8255 0.3869 0.5534 0.6462
Video 5 0.5348 0.5824 0.2881 0.5187 0.6737 0.6717 0.8091 0.6878 0.6570 0.5266
Video 6 0.3880 0.4080 0.2007 0.3624 0.1941 0.1499 0.3126 0.2303 0.7238 0.5655
Video 7 0.6263 0.5601 0.4061 0.5949 0.6677 0.5382 0.7376 0.6074 0.7648 0.6210
Video 8 0.1868 0.8471 0.8684 0.3897 0.8862 0.8617 0.9049 0.8468 0.4870 0.3988
mean-F 0.4729 0.5672 0.4138 0.5997 0.6348 0.5958 0.7662 0.5755 0.6787 0.5221
Pr 0.4563 0.4251 0.2649 0.5072 0.6198 0.7191 0.7714 0.4217 0.6266 0.6316
Re 0.4907 0.8522 0.9455 0.7334 0.6505 0.5086 0.7610 0.9058 0.7403 0.4450
fps 258.7768 268.2934 221.9644 | 84.4726 | 295.3513 | 348.4463 344911 176.3129 0.9291 | 222.7974
TABLE IV
MEAN METRIC VALUES ON WALLFLOWER DATASET (WITHOUT VIDEO #5) BY METHODS
Method | FrameDiff | Codebook KDE LBP zGMM ViBe SuBSENSE | SC_SOBS | RPCA DSPB
mean-F 0.4211 0.5084 0.6539 0.7883 0.5827 0.5198 0.7170 0.6012 0.5949 0.5034
Pr 0.6196 0.4134 0.5155 0.8099 0.6130 0.7039 0.7264 0.5400 0.6647 0.6969
Re 0.3190 0.6601 0.8937 0.7677 0.5552 0.4120 0.7078 0.6781 0.5383 0.3940
fps 73.2652 183.8477 109.0932 | 52.7992 | 187.7175 | 219.5518 19.3017 111.9749 0.2938 | 86.2614

disturbances with a repetitive manner, due to their ability
to model them as high frequencies in the model fit phase.
SuBSENSE and RPCA seem to yield the highest results as
they also lead in consuming computational resources. RPCA’s
frame rate leaves it to serve as on offline analysis, while
SubSENSE is on the brink of performing in real time. Other
methods including DSPB are capable in processing hundreds
of frame per second in the current resolution which shows
their strength.

H. Wallflower Dataset

Wallflower dataset [16] has 7 short videos with a reso-
Iution of (120 x 160) and varying number of frames (from
250-5000). Each video demonstrates a different challenge for
FG-BG separation. The dataset has only 1 frame of ground
truth, therefore, we use this set to show a visual result. The
videos are designed to challenge FG-BG methods in extreme

conditions as they exhibit problematic situations:
1) Bootstrap - No clean frames for training (FG objects are

in the scene from the start)

2) Camouflage - Static FG covers dynamic BG.

3) Foreground Aperture - State change: BG to FG.

4) Light switch - Sudden illumination changes.

5) Moved Object - State change: FG to BG.

6) Time of Day - Gradual illumination changes.

7) Waving Trees - Dynamic BG.

Since video #5 (“Moved object”) ground-truth frame has
only BG pixels, it isn’t possible to calculate Pr, Re and
F-measure. Thus, the mean measures in Table IV and indi-
vidually examined video graph (Fig 12) are shown without it.

In Table IV the mean F-measure is presented. We added
the mean results table mainly for the sake of completeness of
our work, but the fact that it is based on a single ground-truth
image per video makes the numbers less meaningful, hence,
we focus more on the visual results. To demonstrate a better

how methods perform, we show in Fig. 11 the obtained
FG masks in comparison to the original and ground-truth.
The original frame from each video is in the left column,
followed by the ground-truth (hand segmented) and then the
tested algorithms FG masks. From a general point of view,
it is clear why BG-FG separation is not considered to be a
solved problem - each method has its merits and drawbacks,
while performing well in some scenarios and lacking in
others. Videos 4 and 6 exhibit illumination changes, sudden
and gradual correspondingly. Note how local methods deal
with the sudden light change: zGMM classifies most of the
scene as FP, while ViBe absorbs the values very aggressively
and incorporates the FG into the BG model. Again, LBP
and simple frame difference show their strength in handling
varying illumination conditions, as well as RPCA and DSPB.
Video 1 doesn’t have clean frames for training, resulting in the
BG model being mixed with FG objects. This makes it hard
for classifying as all methods express this difficulty. Dynamic
BG covered by a static FG is demonstrated in Video 2. In the
video, a person enters the scene and covers a flickering screen.
Since the FG object stays for a decent amount of time, RPCA,
DSPB and frame difference already absorbed a large portion
of it (besides the edges) into the BG. Local methods seem
to handle better this disturbance as their absorption strategy
is slower. If the FG object stays longer it will get eventually
absorbed into the BG model due to the usage of learning rates.
On the other hand, Video 5 demonstrates a situation where a
BG object moves to a new location and should be merged back
to the BG after the change. Here learning rates achieve this
goal, but it is interesting to witness how successful methods
on Video 2 lacked performance on Video 5 (except for LBP).
In Video 7 there are repetitive BG disturbances as waving
trees grasp a large part of the video. Here local methods have
their opportunity to shine and ViBe, zGMM, SuBSENSE and
LBP seem to work well. The mean F-measure value for each
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Fig. 11. Wallflower videos visual results. Rows indicate videos. Columns: (a) Original frame, (b) Ground Truth, (c) Frame difference, (d) Codebook, (e) KDE,
(f) LBP, (g) zGMM, (h) ViBe, (i) SUBSENSE, (j) SC_SOBS, (k) RPCA, (I) DSPB.
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Fig. 12.
(besides #5).

F-value for each video individually on Wallflower dataset

video (except 5) is shown in Fig 12. The results reinforce the
visual investigation in the previous paragraph and mostly agree
with the insights about analyzing LIMU and I2R datasets but
taken to the extreme, due to the design of Wallflower dataset.
RPCA, DSPB and LBP are more successful in scenes with
illumination changes, while local methods perform better on
outdoor scenes, especially when dynamic background appears.

V. CONCLUSION

In this work we introduced a novel FG-BG separation
method. DSPB is derived by a physical model of how illu-
mination forms a scene. Hence, the suggested background
estimation method can handle well with illumination changes
(sudden or gradual), which are considered to be the main
source of variation in a given scene that does not derive from
foreground objects. Due to the inherent simplicity of DSPB,
it can deliver real-time performance using basic hardware,
which makes it tractable for usage on surveillance cameras
that are the main use of such a system. The main novelties

of our system are: (1) The use of pixel correlations - far
or near, (2) Creating an initial BG model as soon as the
5th frame, (3) A computationally tractable method (4) Using
spatial information combined with pixel temporal statistics,
yielding a hybrid model that incorporates desired qualities
from local and global methods. Modeling a scene appear-
ance accurately despite large illumination variations has many
potential applications. The suggested prediction model of
scene appearance is novel, and the scheme is very accurate
and efficient computationally. We show the method merits on
an application for video FG-BG separation, but it may be
successfully incorporated in other image processing tasks like
change detection, video compression and video inpainting.
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