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Abstract

We derive an explicit relation between local affine approximations resulting

from matching of affine invariant regions and the epipolar geometry in the

case of a two view geometry. Most methods that employ the affine relations

do so indirectly by generating pointwise correspondences from the affine re-

lations. In this paper we derive an explicit relation between the local affine

approximations and the epipolar geometry.

We show that each affine approximation between images is equivalent

to three linear constraints on the fundamental matrix and that the linear

conditions guarantee the existence of an homography, compatible with the

fundamental matrix. We further show that two affine relations constrain

the location of the epipole to a conic section. Therefore, the location of the

epipole can be extracted from 3 regions by intersecting conics.

The result is further employed to derive a procedure for estimating the

fundamental matrix, based on the estimated location of the epipole. It is
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shown to be more accurate and to require less iterations in LO-RANSAC

based estimation, than the current point based approaches that employ the

affine relation to generate pointwise correspondences and then calculate the

fundamental matrix from the pointwise relations.

Keywords: epipolar geometry, affine invariant regions, fundamental

matrix, homographies

1. Introduction

Solving the geometry of a stereo rig is a preliminary step in solving many

problems in computer vision such as image registration, structure from mo-

tion and object tracking. Luong and Faugeras [1] showed in 1995 that the

geometry of two uncalibrated cameras can be described by a 3 × 3 singular

matrix called the fundamental matrix. The fundamental matrix provides the

correspondence between points in each image to lines in the other image and

therefore greatly simplifies the task of finding correspondence points between

images. Furthermore, once the fundamental matrix is known, a correspon-

dence of points between the images allows for reconstruction of a 3D scene

up to a projection ambiguity [2].

The fundamental matrix can be estimated from correspondence of points

between two images [3]. Each point correspondence yields a linear constraint

on the location of the epipole; since the matrix is only determined up to

scale, a correspondence of 8 points [4] results in a linear estimation of the

matrix. An estimation of the fundamental matrix based on a correspondence

of 7 points can be calculated by exploiting the singularity of the matrix [2].

It was further shown by Faugeras [5] that a correspondence of 6 points limits
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the location of the epipole to a 3rd order rational curve.

In recent years, several methods have been proposed for matching of small

regions between images [6],[7],[8],[9]. Region correspondence methods usually

assume that the geometric deformation between the images can be approxi-

mated locally by an affine transformation. Furthermore, affine normalization

of the regions provides an approximation of a point correspondence and the

local derivatives of the deformation between the images at the point of the

correspondence [10]. We denote such a correspondence of points along with

the derivatives of the deformation between the images at the point of corre-

spondence by the name affine correspondence.

The additional information available in the affine correspondence is rarely

used for the calculation of the fundamental matrix. Methods that do employ

information from affine correspondences try to convert the affine correspon-

dence into point correspondences. Generally, since an affine transformation is

determined by 3 points, it seems that it is roughly equivalent to the matching

of 3 points between images. In [11],[12],[13],[14] local affine approximation

is used for generation of additional points. However, affine correspondences

and point correspondences are different mathematical entities; there is no

equivalence between an affine correspondence and a certain number of point

correspondences. For example, 4 points of correspondence between images

fully determine an homography between the images [2] whereas an affine

correspondence and a single point correspondence do not fully determine an

homography (we show in Section 3 that the direction of the transformation of

an arbitrary point by an homography relative to the center of the affine cor-

respondence is known from the affine correspondence. Therefore, the point
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correspondence only contributes a single constraint instead of two).

A non pointwise approach for calculating an affine fundamental matrix

was presented in [15]. The method treats the affine correspondences as

matched ellipses between the two images. It is shown that matching of two

ellipses between images is sufficient for calculation of an affine fundamental

matrix. However, the affine fundamental matrix has only 4 degrees of free-

dom as opposed to 7 in a general fundamental matrix. Such a model assumes

that the camera centers are at infinity; it is therefore more suitable for nar-

row field of view cameras. Furthermore, notice that one degree of freedom is

discarded from the affine correspondence as matched ellipses only determine

an affine correspondence up to a rotation factor [10].

To the best of our knowledge, there is no theoretical work that derives

explicit constraints from affine correspondences on the epipolar geometry. In

this paper, we offer a different point of view on the relation between affine

correspondences and the epipolar geometry. We treat the affine correspon-

dence as the derivative of an homography caused by a plane tangent to the

surface viewed by the two cameras at the point of correspondence. The com-

patibility requirement between an homography and a fundamental matrix

[2] is then employed for deriving constraints on the fundamental matrix. We

prove that an affine correspondence yields 3 linear constraints on the fun-

damental matrix; we further prove that the linear constraints are sufficient

conditions for an homography compatible with the fundamental matrix to

exist. Therefore, 3 affine correspondences are sufficient to fully determine

the fundamental matrix.

In the case where two affine correspondences are known, a one dimensional
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family of solutions exists; we show that in this case the location of the epipole

is constrained to a conic. We employ the result to calculate the location of

the epipole from 3 pairs of affine correspondences by intersection of conics.

The proposed method shows an improvement of up to an order of magnitude

in the accuracy of estimating the fundamental matrix over using 3 points

from each region with the traditional normalized 8 points algorithm. We

also employ the proposed method for calculation of the fundamental matrix

from matching hypotheses with low inliers rate by using Locally Optimized

RANSAC [16]. In such cases the proposed methods showed comparable and

slightly better results than the state of the art, point based, method [11].

2. Constraints on the Fundamental Matrix from an Affine Corre-

spondence

A surface viewed by a pair of cameras induces a set of correspondence

points between the viewed images. An affine correspondence (u0,u
′
0, A0)

between a pair of images is a pair of corresponding pixel coordinates (u0,u
′
0)

along with the local derivatives at the point of correspondence, A0 =
du′

du
|uo

.

The matrix A0 may be regarded as the Jacobian matrix of the homography

that represents the point correspondence on a 3D plane, tangent to the viewed

surface at the correspondence point (see Figure 1).

An homography, H, is said to be compatible with a fundamental matrix,

F , if and only if HTF is an anti-symmetric matrix [2]. Therefore, a known

homography between a pair of images yields 6 linear constraints on the funda-

mental matrix. However, an affine correspondence does not fully determine

an homography. In Section 2.2 we wish to determine the constraints on the
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Figure 1: An affine correspondence as the derivatives of an homography. The homography

represents the correspondence between two cameras along the tangent plane of the viewed

surface (at the point of correspondence); the affine correspondence consists of the point of

correspondence along with the derivatives of the homography at the correspondence point.

fundamental matrix resulting from an homography which is not fully known,

as only the affine correspondence (u0,u
′
0, A0) is known.

2.1. Homography as an affine correspondence with 2 unknown terms

LetH be an homography that represents the image correspondence caused

by a world plane viewed in a pair of images; also let (u0,u
′
0, A) be an affine

correspondence between the images of the world plane. As shown next, the

affine correspondence determines the terms of an homography H up to two

unknowns terms. We denote the terms of A as

A =


 a1 a3

a2 a4


 (1)
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and the terms of the homography H, expanded in homogeneous coordinates,

as

H =




h1 h4 h7

h2 h5 h8

h3 h6 h9


 (2)

The relation between H and A is expressed by the derivatives of the homog-

raphy H at u0. Let ux and uy represent the first and second coordinates of u

( u = (ux, uy)
T ) and u′ the transformation of u by H. The derivative du′

x

dux

|u0

is expressed as

d

dux

(
h1ux + h4uy + h7

h3ux + h6uy + h9

)
|u0 =

h1(h3u0,x + h6u0,y + h9) + h3(h1u0,x + h4u0,y + h7)

(h3u0,x + h6u0,y + h9)2
(3)

We limit the discussion to the case where u0 = 0 and u′
0 = 0 (The general

case can be reduced to this case by a shift of coordinates). Since u0 = 0 and

u′
0 = 0 then, using (2), h7 = h8 = 0 and, using (1) we have

a1 =
du′

x

dux

|u0 =
h1

h9
(4)

A similar calculation relates a2, a3, a4 to h2, h4, h5 respectively. Since the

matrix H is only determined up to a scale factor, we can set h9 = 1, therefore

H takes the form

H =




a1 a3 0

a2 a4 0

h3 h6 1


 (5)

leaving only 2 unknown parameters. In the general case where u0 6= 0 and

u′
0 6= 0 the same relation applies after shifting the coordinates systems. Let
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Su be a shift of the coordinates system:

Su =




1 0 ux

0 1 uy

0 0 1


 (6)

The homography in this case is achieved by shifting (5):

H = Su′

0




a1 a3 0

a2 a4 0

h3 h6 1


S−u0 (7)

We conclude that u0,u
′
0 and A explicitly determine the form of an homogra-

phy, leaving two undetermined degrees of freedom.

2.2. Constraints on the fundamental matrix from affine correspondences

As previously mentioned, an homography forms 6 linear constraints on

the elements of the fundamental matrix. If only an affine correspondence is

known, the 6 equations contain two parameters, h3 and h6, that describe the

unknown terms of the homography. We show next that the 6 equations are

equivalent to 3 linear equations on F and one polynomial equation.

The derivation is performed for the case where u0 = u′
0 = 0 ( As men-

tioned before, the general case can be reduced to this case by shifting the

coordinate system). By (5) the anti-symmetric requirement on HTF results
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in 6 equations:

f9 = 0 (8)

f6 + a3f7 + a4f8 + h6f9 = 0 (9)

f3 + a1f7 + a2f8 + h3f9 = 0 (10)

a3f4 + a4f5 + h6f6 = 0 (11)

a1f1 + a2f2 + h3f3 = 0 (12)

a1f4 + a2f5 + h3f6 + a3f1 + a4f2 + h6f3 = 0 (13)

Substituting (8) to (9) and (10), the non linear terms vanish. Therefore, three

linear equations are formed. The linear equations can be simply formulated

as

f9 = 0 (14)

 f3

f6


 = −AT


 f7

f8


 (15)

An homography H, compliant with a fundamental matrix F , must also

satisfy the non linear equations (11)-(13). Note that h3 and h6 in (11) and

(12) can be expressed as rational functions of the terms of F . They can

therefore be substituted into equation (13) to yield

a1f4 + a2f5 + a3f1 + a4f2 −
f6
f3
(a1f1 + a2f2)

−
f3
f6
(a3f4 + a4f5) = 0 (16)

The rational equation can be expressed in a polynomial form by multiplying
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(16) by f3f6:

f3f6(a1f4 + a2f5 + a3f1 + a4f2)− (f6)
2(a1f1 + a2f2)

− (f3)
2(a3f4 + a4f5) = 0 (17)

Equations (11)-(13) therefore result in a single third order polynomial equa-

tion in the terms of F .

Since by definition det(F ) = 0, we next show that (17) is in fact re-

dundant. Given a non singular homography matrix H, the anti-symmetric

requirement imposed at the beginning of our derivation also implies that

det(HTF ) = 0 and therefore det(F ) = 0. The requirement that det(F ) = 0

forms a third order polynomial equation in the terms of F . Therefore, any

solution of (17) must result a singular F . Indeed, by substituting (14)-(15)

into (17), equation (17) can be rewritten in the form

det(A)det(F ) = 0 (18)

Again, since A is invertible, a solution only exists if det(F ) = 0. This is

however a general property of the fundamental matrix as all fundamental

matrices are singular. Therefore, the linear equations (14)-(15) are sufficient

to guarantee the existence of an homography, H, with derivatives A at u0

and a fundamental matrix F that is compatible with H. To conclude, each

affine correspondence results in 3 linear equations on the terms on the funda-

mental matrix F . Moreover, an homography, compatible with a fundamental

matrix can always be calculated from an affine correspondence if the linear

constraints (14)-(15) are met.
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3. Deriving an Epipolar Constraint from a Pair of Affine Corre-

spondences

As a result of the previous section, the fundamental matrix cannot be fully

determined by a pair of affine correspondences: The fundamental matrix

has 7 degrees of freedom. Since each affine correspondence yields 3 linear

equations on the fundamental matrix, a pair of affine correspondences should

result in a one dimensional family of solutions to the fundamental matrix.

It was shown by Faugeras [5] that 6 points of correspondence constrain the

location of the epipole to a cubic. An interesting question is: What does a

pair of affine correspondences tell us about the geometry of the corresponding

image pairs ? In this section, we show that 2 affine correspondences constrain

the location of the epipole to a second order rational curve.

Let (u1,u
′
1, A1) and (u2,u

′
2, A2) denote two affine correspondences. As

shown in Section 2, each affine correspondence may be expressed through

the derivatives of an homography at the specific point of correspondence.

We denote the homographies as H1 and H2. The line connecting u1 and u2

plays an important role in the derivation of the epipolar constraint presented

here; we denote the transformations of the vector u1 − u2 by A1 and A2 as

v1 = A1(u1 − u2) and v2 = A2(u1 − u2).

We denote a general point on the line connecting u1 and u2 as

x(β) = u1 + β(u1 − u2) (19)

A transformation of x(β) by H1 and H2 to the points x′(1)(β) and x′(2)(β)

respectively, yields a linear constraint on the epipole location as by the defi-

nition of the epipolar line the epipole and the two points should be collinear
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Figure 2: An illustration of the epipolar line constraint from a point x transformed by

two homographies H1 and H2 to the points x
′(1) and x

′(2) respectively. An homography

Hi represents the correspondence of points on a world plane πi in the two cameras. The

line connecting x
′(1) and x

′(2) is an epipolar line of the camera C ′

(see Figure 2). The epipolar line connecting x′(1)(β) and x′(2)(β) can therefore

be formalized as

l(β) =


 x′(1)(β)

1


×


 x′(2)(β)

1


 (20)

and the location of the epipole, e, obeys the rule eT l(β) = 0.

Equation (20) forms a pointwise constraint on the location of the epipole.

Since an affine correspondence also consists of derivatives we wish to exploit

the derivatives to further constrain the location of the epipole. A second line

is therefore generated by relating infinitesimal movements of x′(1)(β) and

x′(2)(β) caused by an infinitesimal movement of x(β). The configuration is
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illustrated in Figure 3. Since the epipole location does not depend on β, the

infinitesimal relation is formalized by taking the derivative of eT l(β) = 0.

Therefore, eT dl
dβ
(β) = 0 where

dl

dβ
(β) =




dx′(1)

dβ
(β)

0


×


 x′(2)(β)

1


+


 x′(1)(β)

1


×




dx′(2)

dβ
(β)

0


 (21)

Figure 3: An illustration of epipolar constraints from two affine correspondences. The

first linear constraint is formed by the line connecting the point x(β = 0) as seen by

H1, (x′(1)|β=0), and as seen by H2, (x′(2)|β=0). A second constraint is formed by an

infinitesimal movements of β around 0 as the line connecting x
′(1)|β=0+ǫ and x

′(2)|β=0+ǫ

.

If all the terms of (20) and (21) were known, then the epipole location

could be determined as the intersection of the two lines. In the following

derivation we evaluate (20) and (21) at β = 0; the quantities at β = 0

correspond to the transformations of u1 by the two homographies. The terms

x′(1)|β=0 and
dx′(1)

dβ
|β=0 can be expressed directly by the affine correspondence
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(u1,u
′
1, A1) as:

x′(1)|β=0 = u′
1 (22)

dx′(1)

dβ
|β=0 = v1 (23)

We therefore remain with two unknown terms dx′(2)

dβ
|β=0 and x′(2)|β=0. The

remaining terms are calculated from the affine correspondence (u2,u
′
2, A2).

Since the local derivatives of H2 at u2 are known, the line connecting u1 and

u2 is transferred by H2 to the line that pass through u′
2 in the direction of

v2. In Appendix A we show that given a parameterization to the line:

x′(2)(β′) = u′
2 + β′v2 (24)

the relation between the parameterizations (19) and (24) is a one dimensional

homography; we denote it as t(β) = β′ = (1+β)
(1+β)(h3,h6)(u1−u2)+1

. If the one

dimensional homography, t, was known, we could easily extract the missing

parameters for (20) and (21).

A one dimensional homography can be determined by two pairs of cor-

responding points and a derivative (see Appendix B). By the affine corre-

spondence (u2,u
′
2, A2) we have from (A.3) that t|β=−1 = 0 and dt

dβ
|β=−1 = 1.

In order to complete the puzzle, a single point correspondence on the line

is still missing. However, as no more corresponding points along the line

(24) are known, we set a parameter, α, that determines the location of the

transformation of u1 by t. By defining the missing match as α = t|β=0 we

have that

x’(2)|β=0 = u′
2 + αv2 (25)
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In Appendix B, we explicitly calculate the homography and show that dt
dβ
|β=0 =

α2. A simple use of the derivatives chain rule then yields

dx′(2)

dβ
|β=0 = α2v2 (26)

Equations (22),(23),(25) and (26) determine all the terms of (20) and (21)

at β = 0. We can therefore write the location of the epipole as

e = l(0)×
dl

dβ
(0) (27)

=




 u′

1

1


×


 u′

2 + αv2

1






×




 v1

0


×


 u′

2 + αv2

1


+


 u′

1

1


×


 α2v2

0






At a first glance, the curve may seem like a 3rd order rational curve.

However, the third order term cancels out as a cross product of two vectors of

the same direction. We show in Appendix C that the curve parameterization

in equivalent to:

e = α2k2


 u′

1

1


+ (αdet(v1,v2)− k1)


 u′

2 + αv2

1


 (28)

where ki = det(vi,u
′
1−u′

2). The epipole is therefore located on a second order

rational curve - a conic parameterized by α. Note that we have only used

partial information from the affine correspondence, as only the derivatives in

the direction of the line connecting u1 and u2 were used for the calculation

of the conic constraint.
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3.1. Classification of the Conic

A classification of the conic (28) to an ellipse, hyperbola or parabola can

be derived directly from the representation of the conic in non homogeneous

coordinates:

en =
α2k2u

′
1 + (αdet(v1,v2)− k1)(u

′
2 + αv2)

α2k2 + αdet(v1,v2)− k1
(29)

The denominator of (29) is a second order polynomial with discriminant

∆ = det(v1,v2)
2 + k1k2 (30)

A second order curve can be classified by the number of its intersections with

the point at infinity (which is equal to the number of the distinct roots of

the denominator). The conic is therefore an hyperbola if the denominator of

(29) has two distinct roots (∆ > 0 ), a parabola in the case where the two

roots are equal (∆ = 0) and an ellipse is no roots exist (∆ < 0).

3.2. Properties of the Conic

Some interesting properties of the conic constraints can be derived from

(28). We next show that the conic passes through u′
1 and u′

2 and that the

directions v1 and v2 are tangents to the curve at the point u′
1 and u′

2 respec-

tively (see Figure 4).

The point u′
2 is shown to be on the conic by setting α = 0 in (29),

hence en(0) = u′
2. Also en(

k1
det(v1,v2)

) = u′
1. The derivatives of the curve

can be calculated from the inhomogeneous representation (29). By taking

the derivatives of en relative to α, one can easily show that den
dα

(0) ∼= v2

and den
dα

( k1
det(v1,v2)

) ∼= v1 where the symbol ∼= represent equality up to a scale

factor.
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Figure 4: Conic constraint on the epipole generated from two affine correspondences. The

green and blue lines mark the directions of v1 and v2 respectively. Note that the curve

passes through u
′

1 and u
′

2 and is tangent to v1 and v2. The epipole e
′ is located on the

conic constraint.

4. Experiments - Fundamental Matrix Calculation by Conic Inter-

sections

In this section we describe experiments for calculating the fundamental

matrix using conic constraints. Given three affine correspondences, each

affine correspondence contributes a conic constraint on the location of the

epipole. The epipole can therefore be located by intersection of conics; the

fundamental matrix is then calculated from the affine correspondences and

the known location of the epipole.

We perform two sets of experiments. In Section 4.2 we test the accuracy

of the proposed method in a synthetic scenario: Three regions are placed on

three planes viewed by 2 cameras. The measurements are then contaminated
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with additive noise. We measure the accuracy of the proposed method, com-

pared with the results of the normalized 8 points algorithm [17] on 3 points

extracted from each region. In Section 4.3 we compare the proposed method

with the point based method described in [11] for estimating the fundamental

matrix from matching regions extracted by MSER [7]. We use both meth-

ods in a Locally Optimized RANSAC (LO-RANSAC) [16] robust estimation

process. The compared methods are used for initial estimation of the funda-

mental matrix; each time the number of inliers is increased, the fundamental

matrix is re-estimated from the new set of inliers, using the normalized 8

points algorithm on a larger number of regions. We measure the average

number of iterations required by LO-RANSAC with each of the methods.

We first describe the method we use for calculating the fundamental ma-

trix.

4.1. Calculation of the Fundamental Matrix from Affine Correspondences

Once the epipole location is known, we use the following method for calcu-

lating the fundamental matrix: LetH1 be an homography and let (u1,u
′
1, A1)

be an affine correspondence on the homography (the homography is not fully

determined; the affine correspondence and the homography are related by

(7)). Also let (u2,u
′
2),(u3,u

′
3) be two additional correspondences unrelated

to H1. We employ the point correspondences (u2,u
′
2) and (u3,u

′
3) to deter-

mine two additional constraints on H1 and therefore fully determine H1.

Each additional point correspondence onH1 is determined by the intersec-

tion of two lines. The first line is the transformation of the line connecting u1

to u2 by H1; it is transformed to a line parameterized as u′
1 + γA1(u2 − u1).

The second line is calculated by the epipolar geometry. According to the
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epipolar geometry, u2 is transformed by H1 to a location along the line con-

necting u′
2 and the epipole e′ (similarly to the scenario in Figure 2). The

intersection of the lines yields an additional point correspondence on H1 (see

Figure 5); we denote it as u
′(1)
2 . An additional point u

′(1)
3 is found by the same

method applied to (u3,u
′
3) . Once the additional correspondences are calcu-

lated, the homography H1 can be calculated from (7) using the constraints

implied by the affine correspondence (u1,u
′
1, A1) and the two points of corre-

spondence (u2,u
′(1)
2 ),(u3,u

′(1)
3 ). (Note that each of the point correspondences

only contributes a single new constraint, as the direction of the transforma-

tion of the point by the homography relative to u′
1 is already known from

the affine correspondence). Since the fundamental matrix is directly deter-

mined by the epipole and an homography [2], we therefore have an alternative

method to the normalized 8 points for calculation of the fundamental matrix

F as F = [e′]xH1.

4.2. Comparison of the Conics Intersections Method with the Simulated Points

Method

As mentioned above, most methods that do employ additional informa-

tion from affine correspondences (such as [12] and [11]) do so by extracting

additional point correspondences. A minimal number of 3 correspondences

is required in order to represent the affine relation. Since an affine corre-

spondence is only a local approximation of an homography, the simulated

correspondence points are placed near the point of affine correspondence.

We conducted a computer simulation to test the accuracy in calculating the

fundamental matrix from points simulated by the affine transformation ver-

sus calculation from the conic constraints presented here.
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Figure 5: Additional correspondence points on an homography H1 with a known affine

correspondence (u1,u
′

1, A1). The correspondences, u
′(1)
2 and u

′(1)
3 , are extracted by the

intersection of epipolar lines and the transformation by H1 of the lines that connect u1 to

u2 and u1 to u3. The epipolar lines are marked as dashed lines.

In the experiment, three groups of nearby points are viewed by two cam-

eras. Each group consists of three points and is located on a different plane.

The angle between the first two planes varies in the simulations, the third

plane is perpendicular to the two other planes. The configuration is illus-

trated in Figure 6. A fundamental matrix is estimated once from the nine

points of correspondence using the normalized eight points method and once

from the epipole location and an affine correspondence as described above.

We measure the accuracy in the estimation of the fundamental matrix in

the presence of noise. The location of each group of points is shifted by a

white Gaussian noise. The locations within the groups are also shifted by

noise, relative to the distance between the points in the groups. Let ui
j be

the j point of the group i. Also let ξ be the distance between the points in
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Figure 6: Three groups of three points used for comparison of direct calculation of the

fundamental matrix with the proposed method. Each group is located on one plane. The

angle between two of the planes is α. The fundamental matrix is calculated for two cameras

viewing the configuration.
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each group. The coordinates of each point are perturbed by noise so that

ũi
j = ui

j + γ(ni + ξni
j) (31)

where γ determines the magnitude of the noise and ni, i = 1..3 , ni
j, i =

1..3, j = 1..3 are zero mean uncorrelated Gaussian random variables. The

distance between the estimations of the fundamental matrix by each of the

methods and the theoretical matrix is measured by normalizing each matrix

to have a unit norm (since the matrices are only determined up to scale)

and taking the Hilbert-Schmidt norm of the difference of the matrices. Our

method produces up to 9 solutions (up to 12 intersections of the three conics

where 3 of the intersections are located on the correspondence points) ; we

therefore choose the fundamental matrix that minimizes the geometric dis-

tance between the 9 matched points and the corresponding epipolar lines by

that fundamental matrix.

We conducted 1000 experiments for each value of γ. The proposed method

provides higher accuracy than the calculation of the fundamental matrix

by the normalized 8 points algorithm using the 9 point correspondences.

The results for angles of 60o,120o and 180o between the first two planes are

presented in Figure 7. The results obtained by the proposed method are

more accurate than the point based method. The improvement depends on

the angle between the planes; the greatest improvement was measured in

the two planes scenario ( 180o between the first and second plane ) where it

reached an order of magnitude. An example of the calculated epipole location

and the conics is displayed in Figure 8.
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(c) α = 180o

Figure 7: Estimation of the fundamental matrix by conic intersection and by using the

normalized 8 points method from 9 points. The x axis represents the noise standard

deviation (relative to the size of the region) and the y axis represents the error in the

fundametal matrix (hilbert schmidt norm of matrices). The results are an average of 1000

experiments.

4.3. Matching with Low Inliers Rate

Calculation of the fundamental matrix requires correspondence of points

or regions. In most cases, a correspondence between images is not known;

only hypotheses for correspondences are known. A correct calculation of

the fundamental matrix must rely only on correct hypotheses. The prob-

lem of separating the correct hypotheses (inliers) from the incorrect hy-

potheses (outliers) is usually tackled by robust statistical methods such as

RANSAC[18].

In a RANSAC based solution, hypotheses are chosen at random and the

fundamental matrix is calculated from the chosen hypotheses. The rest of

the hypotheses are then used to vote for the correctness of the model. Since

all hypotheses used for the calculation should be correct, the inliers rate and

the number of hypotheses required for calculating the fundamental matrix

greatly affect the number of attempts that should be done until a successful

calculation is made. For example, point based methods that only employ the
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Figure 8: Calculation of the epipole by conic intersection and by the normalized 8 points

method from a noisy observation. The yellow circles mark the location of the feature

groups, the green rectangles mark intersection of conics, a red rectangle marks the in-

tersection closest to the epipole (chosen as the intersection that minimizes the geometric

distance of the points from the epiploar lines) and a blue rectangle marks the location of

the epipole calculated by the normalized 8 points method. The true location of the epipole

is marked by a red circle.
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center of mass of the regions require a minimum of 7 points for calculation

of the fundamental matrix; if the inliers rate is 10%, an average of 1 ×

107 attempts are required for obtaining a successful guess. Therefore, such

methods are only applicable when the inliers rate is high.

In this section we demonstrate the use of the epipolar conic constraint

for calculating the fundamental matrix in the presence of low inliers rate.

As the proposed method only relies on the correspondence of 3 regions, it

is applicable to cases where the initial inliers rate is low. We compare the

proposed method with [11]. The method presented in [11] also employs the

affine approximation from the matched regions. It does so by representing

each matched region by 3 points. Therefore, the fundamental matrix can be

calculated from 3 corresponding regions (9 points).

As in [11], Locally Optimized RANSAC [16] is used for robust estimation

of the fundamental matrix. In such an estimation scheme, in each iteration

the model is calculated from 3 regions either by the proposed method or by

[11]. If the number of inliers in the current iteration is higher than in all

the previous iterations, the local optimization process is employed. The

structure of the LO-RANSAC is described in Algorithm 1.

The local optimization is performed in an iterative manner. In each

iteration of the local optimization, a new model is calculated by performing

RANSAC on all matched regions with error (distance of the center of mass

of the regions from the corresponding epipolar line) lower than K · θ from

the previous model. The value of K is decreased until the final model is

calculated for K = 1. Since the inlier rate is high in this phase (we start

from the initial model calculated from the 3 regions), we use more than 3
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Repeat until the probability of missing a set of inliers falls under a

predefined threshold (As in standard RANSAC)

1. Select a random sample of 3 matched regions and calculate the

fundamental matrix from the regions.

2. Calculate the number of inliers Ik, i.e., the data points their error is

smaller than predefined threshold θ.

3. if a new maximum of inliers has occurred ( Ik > Ij for all j < k), run

local optimization and store the best model.

Algorithm 1: A general scheme of a LO-RANSAC robust estimation.

regions for the calculation. As advised in [16] , min(Ik/2, 14) matches are

used for calculating the fundamental matrix using the normalized 8 points

algorithm. For compatibility with the experiment in [11], only the center of

mass of the regions is used for the local optimization.

We use the Daisy dataset [19],[20] and the Leuven city hall dataset

[21],[22] to compare the performance of the methods. The Daisy dataset

contains 4 pairs of images. The Leuven city hall dataset contains a sequence

of 6 images; we calculate the epipolar geometry of the first image with any

other image.

We extracted MSER [7] regions from each image. Given a region Ω ∈ R2

with a center of mass at µ, it is shown in [10] that a coordinate system, u(n),

invariant to affine transformations, can be determined from the second order
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Image pair #Hypotheses #Inliers Rate #Conic Iterations #3 Points Iterations

daisy1 313 16.3 % 1566 1627

daisy2 365 22.5 % 497 504

daisy3 378 14.3 % 2376 2462

daisy4 260 14.6 % 2348 2456

leuven2 2448 68.8 % 13 13

leuven3 1521 45.0 % 51 52

leuven4 1053 23.7 % 381 386

leuven5 986 12.4 % 2700 2720

leuven6 945 9.4 % 7209 7585

Table 1: Mean number of LO-RANSAC iterations using the proposed (conic) method and

by extraction of 3 points from each region.

moment matrix of the region, such that

u(n) = RM− 1
2u (32)

where R is an unknown rotation matrix and M = 1
|Ω|

∫
Ω
(x− µ)(x− µ)Tdx.

We use the SIFT descriptor [23] both to detect the unknown rotation (by the

dominant gradient location of the image at Ω) and to describe the image in

the affine normalized coordinates system. We then create match hypotheses

by the similarity of the SIFT descriptor.

The affine normalization of the regions is also used to determine an affine

transformation for each match hypotheses (for the proposed method) and to

determine 3 points of correspondence (for [11]). The first point is the center

of mass of the matched regions, two additional points of correspondence are

the transformations of unit vectors in the directions of the x axis and the y
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(a) daisy 1, 16.3 % inliers (b) daisy 3, 14.3 % inliers

(c) leuven 4, 12.4 % inliers (d) leuven 6, 9.4 % inliers

Figure 9: Calculated epipolar lines of pairs with low inliers rate using the proposed method.
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axis in the normalized coordinate systems to the coordinate systems of the

images.

We perform 100 experiments for each pair of images and measure the

average number of iterations required by the LO-RANSAC algorithm. The

results are summarized in Table 1; examples of the pairs of images with

epipolar lines calculated using the proposed method are shown in Figure 9.

The proposed method produces comparable and slightly better results than

the state of the art, point based, method. Note that in this experiment the

methods are not compared directly as an additional phase of estimation from

more than three points is needed. Hence, the improvement over the point

based method is not as big as in the synthetic experiment. The additional

phase is required as the affine relations are not estimated with sufficient

accuracy. Thus, comparison of the results of the synthetic experiment, to

those obtained on real data leads to the conclusion that higher precision

in estimating the local affine features is essential in order to achieve the

potential performance gain of the proposed method, over the point the based

method. Since the parameters of the local affine features are estimated by

the MSER based procedure with only a limited accuracy, both the proposed

method and the point based method can only serve as initializers in a Lo-

RANSAC framework, and both provide comparable performance in this task.

We are currently investigating new methodologies for improving the accuracy

in estimating the parameters of local affine models from small image patches.
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5. Conclusion

Although affine correspondences are widely used for obtaining matches

between images, a comprehensive analysis of the constraints on epipolar ge-

ometry from affine correspondences has not been previously conducted. This

paper provides a detailed analysis of the problem.

We have proved that each affine correspondence yields 3 linear constraints

on the fundamental matrix. Furthermore, if the linear constraints are sat-

isfied, the affine correspondence can be completed to an homography. By

using the homography structure it is shown that although two affine corre-

spondences do not fully determine the fundamental matrix, they constrain

the location of the epipole to a conic. A simple parameterization of the conic

by the affine correspondences was derived along with the properties of the

conic. This further demonstrates that an affine correspondence is not equiv-

alent to a 3 point correspondence, as in the case of 6 corresponding points

(3 from each affine correspondence) it was shown by Faugeras [5] that the

epipole is constrained to a cubic instead of a conic.

The conic constraint on the epipole was employed for calculation of the

fundamental matrix from 3 affine correspondences. Experiments on synthetic

data show that the calculation by intersection of conics is more accurate than

the direct calculation by using the normalized 8 points method on points

simulated from the affine correspondences. We further showed that since only

3 regions are required for calculating the fundamental matrix, the proposed

method can be used for matching in scenarios where the inlier rate is low.

However, as current affine estimation methods from small image patches

are not accurate enough to enable accurate estimation of the fundamental
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matrix, on real data both the proposed and the simulated data methods can

only serve as initializers for point based estimation from a larger number

of points. Thus, comparison of the results of the synthetic experiments, to

those obtained on real data leads to the conclusion that higher precision in

estimating the local affine features is essential in order to achieve the potential

performance gain of the proposed method, over the point the based methods.

Appendix A. One Dimensional Homography Between Line Param-

eterizations

We show here that the relation between the line parameterization β and

β′ in (19) and (24) is a one dimensional homography. As shown in (7) H2

can be represented as

H2 = Su′

2




a1 a3 0

a2 a4 0

h3 h6 1


S−u2 (A.1)

where a1, ..., a4 denote the terms of A2. The image of a point x(β) = u1 +

β(u1 − u2) by the homography H2 is

H2


 x(β)

1


 = Su′

2




a1 a3 0

a2 a4 0

h3 h6 1





 (1 + β)(u1 − u2)

1


 (A.2)

Recalling that v2 = A2(u1 − u2) we can rewrite (A.2) by treating (h3, h6) as

a 2D vector as

Su′

2


 (1 + β)v2

(1 + β)(h3, h6)(u1 − u2) + 1


 ∼=


 u′

2 +
(1+β)

(1+β)(h3,h6)(u1−u2)+1
v2

1




(A.3)
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where ∼= represents equality up to a scale factor. The relation between β to

β′ is therefore a one dimensional homography.

Appendix B. One Dimensional Homography Calculation from Deriva-

tive and Points

We next show that a one dimensional homography can be calculated from

2 points and a derivative: A general form of a 1-D homography is given by

β′ =
aβ + b

cβ + 1
(B.1)

If β′ = 0 corresponds to β = 0 , then b = 0 and dβ′

dβ
|β=0 = a. In the general

case, where β0 correspond to some β′
0 and the derivative at β0 is

dβ′

dβ
|β=β0 = a,

we can express the one dimensional homography in homogeneous coordinates

as

t =


 1 β′

0

0 1





 a 0

c 1





 1 −β0

0 1


 (B.2)

In section 3, two parameterizations of a corresponding line by the homogra-

phy H2 are given by (19) and (24). By the affine correspondence (u2,u
′
2, A2)

we have that β′(β = −1) = t|β=−1 = 0 and dt
dβ
|β=−1 = 1. Substituting into

the general homography (B.2), the homography t is therefore given by

t =


 1 0

0 1





 1 0

c 1





 1 1

0 1


 =


 1 1

c c+ 1


 (B.3)

where c is yet to be determined. By the chosen parameterization t|β=0 = α,

hence c = 1
α
− 1. Since the homography is now fully parameterized by α, we

can compute the derivative of t at β = 0; we therefore have that dt
dβ
|β=0 = α2.
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Appendix C. Curve Reparameterization

Let a,b,c,d be some known vectors in R3, where e = (a×b)× ((c×b)+

(a× d)). A reformulation of e can be written as

e = (a×b)×(a×d)+(b×a)×(b×c) = [a · (b× d)] a+[b · (a× c)]b (C.1)

We can use the formulation to rewrite equation (27): Let a =


 u′

1

1


 ,

b =


 u′

2 + αv2

1


 , c =


 v1

0


 and d =


 α2v2

0


 , the term b × d is

rewritten as

(b× d) =




 u′

2

1


+ α


 v2

0




× α2


 v2

0


 = α2


 u′

2

1


×


 v2

0




(C.2)

Thus the term that multiply α3 in (27) cancels out. Moreover, since a · (b×

d) = det(a,b,d) = α2k2 and b · (a × c) = det(b, a, c) = αdet(v1,v2) − k1

then equation (27) can be written more compactly as

e = α2k2


 u′

1

1


+ (αdet(v1,v2)− k1)


 u′

2 + αv2

1


 (C.3)
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