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Parameter Estimation of 2-D Random
Amplitude Polynomial-Phase Signals

Joseph M. Francos and Benjamin Friedlandeiow, IEEE

Abstract—Phase information has fundamental importance in productl; (n,m)I3(n,m) of these two images, the interfero-
many two-dimensional (2-D) signal processing problems. In this metric SAR (INSAR) signal is obtained. The phase of this 2-D
paper, we consider 2-D signals with random amplitude and a |\sAR signal is proportional to the elevation of the scattering
continuous deterministic phase. The signal is represented by a . h d H d el . d -
random amplitude polynomial-phase model. A computationally point on the ground. Hence, ground elevations an t?.”a'n
efficient estimation algorithm for the signal parameters is pre- Maps can be produced from the INSAR data [5], [6]. A critical
sented. The algorithm is based on the properties of the mean consideration in producing the three-dimensional (3-D) terrain
phase _differencing c_)peratpr, which is_introdgped and analyzgd. maps is the need to perform 2-D phase unwrapping of the
Assuming that the signal is observed in additive white Gaussian .o e signal phase to enable a meaningful interpretation of
noise and that the amplitude field is Gaussian as well, we derive . . ..
the Cramér-Rao lower bound (CRB) on the error variance in the data. Ideally, in the absencg of noise an(_:i phase_ ahasm_g, we
jointly estimating the model parameters. The performance of the could unwrap the phase function by following an integration
algorithm in the presence of additive white Gaussian noise is path and adding multiples di= to the phase whenever a
illustrated by numerical examples and compared with the CRB.  sydden drop fromr to —7 occurs. To ensure that no phase-

aliasing occurs, the original scene must be properly sampled
I. INTRODUCTION so that phase differences between two adjacent samples are

HASE inf tion has fund tal i ; . smaller thanx rad. This requirement cannot be generally
information has fundamentat importance in man%’atisfied, and hence, in the presence of noise and phase

one- and two-dimensional (1-D and 2-D) signal procesg;iasing, this simple phase unwrapping method is inadequate.

ing problems. When dealing with 2-D signals, estimates o . L
the phase are required in different applications such as 2-DIn this paper, we address the problem of estimating the

S : . . “parameters of such 2-D signals. More specifically, we consider
homomorphic signal processing, magnetic resonance im re 2-D signals with random amplitude and a continuous
ing (MRI), [1]-[3], optical imaging, [4], and interferometric g P

: .~ phase function. In these signals, the phase is the information
synthetic aperture radar (INSAR), [5], [6]. In processin f interest, whereas the random amplitude is a multiplicative

nonstationary 1-D signals, as well as in the case of nonhomo—ilse that highly complicates the phase estimation. Since

geneous multidimensional signals, the phase contains usefol 4 . .
> . . ; o continuous functions can be approximated by polynomials,
information. In 1-D signals, the first derivative of the phasé . . . .

a natural choice for modeling the signal phase is by a 2-

is the instantaneous frequency of the signal, whereas for myl- : . . : .
q Y g 5) polynomial function of the coordinates. Having estimated

tidimensional data, the partial derivatives of the phase alo ) . : .
each of the spatial axes provide the local spatial frequencyH(?F. phase Of. the signal, '.t IS a stra|g.htforvvard task tp obtain
estimates of its local spatial frequencies as well. In this paper,

the analyzed field. e address separately the cases where the random amplitude

Recently, an algorithm for estimating the shape of a 3- dis of d th h th litud
object, based on a single image of its textured surface, Ked IS of a nonzero mean an € case where the amphitude
d is a zero mean field. A good example of a positive

been presented [13]. The algorithm employs a nonparamel1 ) ! . : :
estimation method to compute the local phase function of tﬁ@pl!tUde f|-eld is that of the INSAR 'mage. Assuming the
plitude field of each of the SAR imagds(n,m) and

bject i . The local ph inf tion is th I
ovject image © loca’ phase information 15 fhen employ 2(n,m) has a Rayleigh probability density function, the

for calculating the normal to the object surface. ; N . .
In SAR imaging, the amplitude of the received compleﬁgp“twe ofly (n, m)I3(n,m) has an exponential probability
’ nsity function.

valued 2-D image is proportional to the backscattering We will deri ionally effici lqorithm
the illuminated points. In interferometric SAR, two images ve will derive a computationally efficient agorlt m tor
I1(n,m) andI»(n,m) are obtained from two different anten-€stimating the parameters of 2-D random-amplitude polyno-

nas illuminating the same target point. Taking the conjugatdj@l Phase signals. Such an algorithm can serve as a basic
building block in processing INSAR data. The proposed
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estimate the parameters of 1-D random amplitude polynomial- .

phase signals. The algorithm derived here is based on the ‘\ 04
properties of a 2-D mean phase difference operator, which AVERN
is defined in the next section. ‘\ ‘\ (.3)
The paper is organized as follows. In Section Il, we define \. \Q\' 2.2)
the parametric model of the observed signal, define the 2-D SRS N
mean phase difference operator, and present some properties of \. \Q \. \\. (3.1)
the operator. In Section Il we present a parameter estimation ANEASUNERN
algorithm based on the 2-D mean phase difference operator ) \Q L ] \.\ \Q (4,0)
N AN ~ AN

and its properties. In the first part of this section, we present
the algorithm for the case of a nonzero mean random amplitude
field, and in the second part, we present a modification for thig. 1. Triangular support of total-degree 4. Diagonal lines indicate layers
case of a zero mean amplitude field. These algorithms requir&rough 4.

knowledge of the observed signal moments, which are not

available to us. Therefore, in Section 1V, we describe a methgghplitude field{w(n,m)}. In this section, in order to simplify

for applying the mean phase difference operator when we @@ presentation, we discuss the case in which there is no
given a single observed realization of the field. In Section \4pservation noise. Hencg(n,m) = v(n,m).

we address the problem of estimating the parameters of the
random-amplitude polynomial phase signal in the presenceé)f
observation noise. In Section VI we derive the exact Gram
Rao lower bound (CRB) on the accuracy of estimating the Next, we define the two polynomial phase difference opera-
model parameters for a polynomial phase signal with Gauss#@ks: Which we denote by BDand PD,,. We start with a brief
random amplitude. This derivation is then specialized for tieuristic explanation of the idea behind the operators.

case where the observations are known to be at a high signalconsider the signal given by (2) and (3), and assume
to-noise ratio (SNR). In Section VI we illustrate the operatiofp” the moment thatn and » are continuous variables and
of the proposed algorithm in the presence of observation nof§@t w(n,m) = A, where A is some positive deterministic

using some numerical examples and Monte Carlo simulatiog@nstant. Differentiating the phase of the observed sighal
times along then axis andS — P times along the: axis (in any

order as long as the total number of differentiation operations
in both axes isS) results in a 2-D complex exponential signal.
In this section, we define the phase difference operator apdcan be shown that the spatial frequenty,) of this
present some of its basic properties. We start with a descriptigsmplex exponential is a function of two of the coefficients
of the type of signal for which the operator was designed. of the highest layes + 1 of the phase polynomial parameters
and other known quantities. By estimating the frequency of
A. Signal Model the complex exponential (using standard frequency estimation

Let {y(n,m)} be a discrete 2-D random field consisting ofechn.iques), we obtain estimates of two .Of the coefficients'of
the sum of a random amplitude polynomial-phase signal aHi¢ highest layer of the phase polynomial model. Repeating

(0,0)

Mean Phase Differencing Operators

Il. PHASE DIFFERENCE OPERATOR

additive white Gaussian noise. More specifically this procedure for ald < P < S, all the coefficients of the
highest layer of the phase model are estimated.
y(n,m) = v(n,m) + u(n,m), Having completed the estimation of the phase parameters in

n=0,1,...,N—-1, m=0,1,...,M —1 (1) the highest layer, their contribution to the signal phase can be
eliminated, thus resulting in a polynomial phase signal of total-
where degreeS. By repeating this entire process for all the layers in
. the phase model, all the phase parameters are estimated. The
= . v 2
v(n,m) = wln,m) eXp{};ld)jJ’l(n’m)} @) details of how that works will be presented later.
Pst1(n,m) = Z c(k, O)n"m (3)  Since, in our problem, the variablesandm are discrete,
(k)el phase differentiating will be replaced by phase differencing.
We next define the basic phase differencing operators.
andI = {0 < k,fand0 < k+/¢ < S+ 1}. We call
{0 <k s kel s 541} Definition 1 [8]: Let 7,, and 7,, be some strictly positive

a 2-D polynomial oftotal-degreeS + 1 [8].
ds41(n, m) POy 9 +1[8] integers. Define

Intuitively, we might think of the phase polynomigk (n,m)
as if it has S “layers” since increasingS by one adds a A
layer of additionalS + 2 parameters to the phase model. To PDp [v(n, m)] = v(n,m)
further illustrate the definition, we depict, in Fig. 1, a triangular n=0,1,....,N—-1, m=0,1,....M—-1 (4)
support of total-degree 4. .

The amplitude field{w(n,m)} is an ergodic, real-valued, and in general
strict sense homogeneorendom field. The observation noise
u(n,m) is assumed to be complex valued, zero mean, circular®Dpo [v(n, m)]
white Gaussian noise. It is assumed to be independent of the = PD,,,,—1, [v(n, m)][(PD,o—v [v(n,m +7,)])*  (5)
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where the resulting 2-D signal PR [v(n,m)] exists for where
n=01...,.N—-1,m=0,1,...,.M — 1 — ¢g7,,. Similarly ws = (—1)SC(P+ 1,5 — P)(P + 1)(S — P)!TrI;Tri_P

(12)
vs =(=1)°¢(P,S+1—-P)PY(S+1-P)rlr>-T  (13)
andys (7, 7) is neither a function ofn nor n. It was also

and shown that applying? times, in arbitrary order, the operator
V, and K — P times the operato¥,, to ¢(n, m) yields

PD, o [v(n, m)] = v(n,m)

n=0,1,....,N—1, m=0,1,....,M—1 (6)

PD, o [u(n,m)] Krlrooo P
— _1\PT4
2 Py [u(n, m))(PDyis o [0+ 7y m)])" Voo me-nl#mnm)l= 2 3 () <p )
n=01.... N—-1—pr,, m=0,1,.... M—1. (7)
K-P
<y, P(n+pTn, m+qTm).
Definition 2: Let p andg be some positive integers. Define (14)
PO [v(n,m)] & E{PDyr[v(n, m)]} (8)

C. Alternative Representation of tR®,, and PD,,, Operators

PD A
PDam [v(n, m)] = E{PDym [u(n, m)]}- ©) Based on the properties of th€,, and V,, difference
operators and Definition 1, it can be easily verified that

We shall call these operators theean phase differen¢®PD) applying P times the phase difference operator B and
S — P times the phase difference operator,RD to the signal

operators.
The operators are called “phase differencing operators(,, ) yields a unique result, irrespective of the order in

since they perform an operation that is equivalent to phaggich the operators were applied#6n, m). In the following,
differentiation of a continuous parameter 2-D phase [8]. Latgfe denote the resulting signal by PB, ,,s— = [v(n, m)].

in this section, we provide an alternative representation andpefine ’

interpretation of the operato®D,,,;[-] and PD,«)[-]. Note __

that applying any of the operatoRD,,,[-] or PD,u[-] to PD,yr) pnes— [v(n,m)] = EAPD,) e [v(n, m)]}-

a 2-D random amplitude polynomial phase signal of total- (15)
degreeS + 1 results in aconstant amplitudéin m andm) Lemma 1:

2-D polynomial phase signal of total-degr§e

Some of the properties of the MPD operator are more easily S-r (P ()
proven using the properties of tHe,, and V,, difference  PDue) me—m[v(n,m)] = ES [] {H [ (n
operators, which were introduced in [9]. Next, we repeat the 7=0 ip=0
definitions and briefly summarize the main properties of these (5-P)

operators.

Definition 3: Let 7,,, andr,, be some strictly positive inte-
gers. TheV,,-difference operatoof a 2-D functiong(n, m)
is a linear operator defined by (16)

S
+PTn, M+ q7m)]

where we define

Vrn [(/)(ﬂ, m)] = (/)(ﬂ, m) - d)(nv m+ Tnl) (10) (*(P+q))
v (n+ prm,m+ qrm)

i.e., V,, is a difference operator along the axis. Similarly, _ {U(” +pTn,m+qm),  p+qeven 17)

the V,-difference operatoris defined by V., [¢(n,m)] = V(0 4 pTa, M A qT), p+ g 0dd.

P(n,m) — ¢(n + 7, m). Proof: The proof is an immediate extension of Lemma
It is straightforward to show, using the definitions and thg in [9]. O

linearity of the operators, that the difference operations areTheorem 1:Let PD,(#) ,,s—» [v(n,m)] be the 2-D sig-

commutative, i.e.,.V,[Vu[d(n,m)]] = Vau[Va[p(n,m)]]. nal obtained by successively applying, in some arbitrary

Hence, applying” times theV,, difference operator anfl— P sequenceP times the operator PDy,[-] and S — P times
times theV,,, difference operator te(n,m) yields a unique the operator PR, [] to the signal (2). Then, the signal
result, irrespective of the order in which the operators weRD,,(r) ,(s—» [v(n,m)] is a 2-D exponential given by
applied tog(n,m). In the following, we denote the resulting

signal by Vs s m[¢(n, m)]. Let ¢psy1(n,m) be a 2-D P mis—r [v(n, m)]

polynomial of total-degre& + 1. Then, it is shown in [9] that = PD,(p) s [w(n, m)]
-exp{jlwsn + vsm + vs (7, Tm )]}
Vo) mis—p [psy1(n,m)] = wsn +vsm +vs(7n, Tm) n=0,1,...,N—-1— Pr,

(11) m=0,1,....M—1—(S—P)r, (18)
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where We now present an algorithm for sequentially estimating the
ws = (—1)5e(P 11,5 — P)(P+ IS — P)lilr5-D parameters{c(k,ﬁ). | 0 < k,4;0 < k+¢ S_S + 1} of thg_
2-D random amplitude polynomial phase signal, where & is
(19) priori known that the amplitude field has a nonzero mean.
vs =(=1)°c(P,5+1-P)P(S+1-P)lr7r>7" (20)  Theorem 1 implies that applying® times the operator
while both PD,cr s [w(n, m)] and vs(7,, 7.,,) are nei- PD,ay and S — P times the operator PR, to v(n,m),
ther functions ofm nor . followed by taking the expectation of the resulting signal, we
Proof: Consider the 2-D signal obtain the 2-D exponential (18). We can thus reduce any 2-D
nonhomogeneous, random-amplitude polynomial-phase signal,

P mis—m fw(n, m)] - expljlwsntrsmtas(mn, mlll - \poge phase is of total-degréer1, to a 2-D sinusoidal signal

= PDy») pmis—» [w(n, m)] whose frequency iGus, s ). Hence, estimatingus, vs) using
exXplJVo2) ms—p) [dsp1(n, m)]} any standard frequency estimation technique results in an
s-P P estimate ok(P+1,5— P) andc(P, S+1— P). In this paper,
= P_Dn(m,m(sfm [w(n, m)] - exp {j Z Z(_l)Hq we estimate the frequency of the exponential using a search
7=0 p=0 for the maximum of the absolute value of the 2-D discrete
Fourier transform (2-D DFT) of the signal.
N <P> <S - P>¢S+1(ﬂ + prn,m A+ qu)} Note from (19) and (20) that the phase coefficients can be
p q estimated unambiguously (i.e., with no aliasing) as long as
S—-r pr
= PDur) mes-m fw(n,m)] [T T] exp{i(—l)p” (P +1,5—P)| < d 5 (22
q=0 p=0 (P+ 1S - P)irlry,
P\(S-P
X <p ) < q )%H(n + P, m qu)} and similarly fore(P, S 4+ 1 — P). However, since a parametric
s.p¢p model is fitted to the observed signal, the phase function itself
_ (P can be sampledinder the Nyquist rate because the phase
=E 1;[0 {1;[0 [w (n 4 prm,m estimation is not performed through a waveform-based proce-
! P dure. Therefore, phase differences between adjacent samples
"7 may be greater tham rad without affecting the ability of
—l—qm)](i)} the algorithm to estimate the phase parameters, as long as
the constraint (22) is satisfied. In other words, the proposed

c PP phase-estimation algorithm can perform very well when phase

1:[ H {[ (s (n + aliasing due to low sampling and noise are present. This point
. PP+ T Py T is further illustrated in Section VII.

(1:

p=0 Thus, having estimateds andrs in (19) and (20), we have

(G

q

_1\p+a (P)
+ gr) YT } @s

(rPr+1,5-P)= 23
« ) (=1)S(P+ DS — PP " @3)
s-p( P ot and
- (P9 y
5 1l {H{[U (o {P,S+1-P)= - (@9
7=0 Lp=0 (=1)5PY{S+1—-P)\vlry
0
p. )] }(ﬁ ) ’ which constitutes an estimate of two of the parameters of the
" highest order layef + 1 of the phase model parameters (i.e.,

thosec(k, £)’'s for which0 < k, ¢ : k+ /4= 5+ 1).

=PD,(») y(s-m[v(n, m)] (21) Recall, however, that ths + 1 layer hasS + 2 parameters
where the first equality is due to (11), the second equaliff)at need to be estimated. This can be achieved by repeating
is due to (14), and the last equality is due to Lemma in€ procedure described above, assuming some arbitiefor
Since {w(n,n)} is a strict sense homogeneous random fiel@!l 2’ such thatd < P < 5. Note that this procedure results
its statistics are invariant to a shift of the origin. Hence, it§ repeated estimation of some of the phase parameters. Let
moments of any order are independentandm but, rather,
are functions of coordinate differences. O

Q
poln,m) =" &k,Q — kyn*m?* (25)
Ill. PARAMETER ESTIMATION ALGORITHM k=0

A. Estimation Procedure for a Nonzero Mean Amplitude Fielganote the estimate@th layer of the phase function.
Consider the signal given by (2) and (3), whefeis a Multiplying v(n,m) by exp{—jw¥s+1(n,m)} results in
non-negative integer, which is assumed initially to be knowa. new random amplitude polynomial phase signal whose
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total degree isS. By applying to the resulting signal abound on the total degreg. In the presence of observation
procedure similar to the one used to estimate the parameteotse, we decide that(k,¢) = 0 whenever|é(k, £)| is not
of the S + 1 layer, we obtain an estimate of th& + 1 considerably higher thafiCRB[c(k, £)]}=.

parameters in theS layer. Multiplying the 2-D random-

amplitude polynomial phase signal of total degigewhich B Estimating the Parameters of Signals

was obtained in the previous step, byp{—j¥s(n,m)}, with a Zero Mean Amplitude
we obtain a new random-amplitude polynomial-phase signal

whose total degree i§ — 1. Adopting the approach described above for the case of

In general, letv™+1(n,m) denote the 2-D signal Where3|gnals with zero mean amplitude welds estimates of all the
phase parameters excefj0, 0) and the first layer parameters

s + 1 denotes thecurrent total degree of its phase poly- . .
nomial. The phase parameters are sequentially estimat%(g’ 1) ande(1,0). To see this, consider a zero-mean random

layer after layer, for alls = S,....0. For each layer, the amplitude polynomial phase signal whose total degree is 1, i.e.,

algorithm is a two-stage procedure. In the first stage, the, v _ .00 m) - explile(1. 0)n + c(0. 1)m + (0. O)}.
parameters of layes + 1 are estimated by finding, for all (n.m) = w(n.m) - exp{ile(1,On +(0.1) (©. 2]2}7)
0 < P < s, the maxima of the absolute value of the DFT 0&jpce {w(n,m)} is a zero mean random field, applying to

D s+1
PD,r) s [0 (n,m)]. In the second stage, the alreadyg;g random-amplitude exponential signal the MPD operator

reduced order 2-D random-amplitude polynomial phase sigqﬁbn(o) .o [] results in a zero signal for all andm. Hence,
is multiplied by exp{—js+1(n,m)}. .

; ) . i the algorithm proposed for estimating the parameters of higher
Using this procedure, we obtain estimates for all the phaﬁﬁ/ers is useless in the case whérer # = 1. We must
parameters except(0,0). The signal resulting from this \herefore resort to an alternative algorithm for estimating these
processing is denoted WO)(”{TP)- If the amplitude field 5 ameters. Next, we redefine the oper®Dy, ) ,.,«; to avoid
{w(n,m)} is known to be positive for al(n,m) (e.g., the ihis problem. ’
amplitude field is exponentially distributed) then, by taking the pefinition 4: Let 7., and,, be some strictly positive inte-
average of the imaginary part of the logarithm%) (n, m), gers. Define ’ ’
we obtain an estimate far(0,0). In general, the amplitude
field can assume both negative and positive values. HencRD, ) ,,,«; [v(n,m)] = E[v(n, m)v(n—+1,, m+1,)]. (28)
¢(0,0) can only be estimated up to a magnitudefactor.

More specifically, we assume that0, 0) € [0, 7). Thus, let For the case in whichu(n,m) is a random-amplitude
JJ(O)(n m) = polynomial phase signal of total degree 1, we have that
Im{ log(v(o)(n, m)) }, Im{ log(v(o)(n, m))} >0 W)nm)’m@ [v(n,m)]
Im{log(v@(n,m))} + 7, Im{log(v/¥(n,m))} < 0.

= E[w(nv m)w(n + T, m + 7_m)] ' exp{j[QC(l, 0)”
+ 2¢(0, )ym + (2¢(0,0) + ¢(1,0)7, + ¢(0,1)7n)]}-
(29)

(26)

Taking the average of/®)(n,m), we obtain an estimate
for ¢(0,0). We have thus completed the estimation of all
the coefficients of the 2-D phase polynomial of total degreg .o {w

; X . " (n,m)} is strict sense homogeneouk|w(n,m)
S + 1. It should be noted that if the amplitude is positive, thgj(n 4 mpm + )] IS neither a function ofn nor m.

estimation algorithm of the phase parametersdentical to Hence,PD,w, ., [v(n,m)] is a constant amplitude exponen-
the algorithm derived in [8] foconstamamplitude_ polyr_lomial tial whosenfrérauency i€2¢(1,0),2¢(0,1)). The exponential
phase signals, even though here we are dealing fadom  ¢roq ency can be estimated using any standard frequency
amplitudes. The estimation problem when(n,m)} is a zero  ggtimation technique. Finally;(0,0) is estimated using the
mean random field is discussed in Section III-B. rocedure that was described in Section IlI-A for a random
Once the phase parameters were estimated, the randgmjivde field that is not necessarily positive. The algorithm

amplitude of the polynomial phase signal is obtained by muliig "the case of a zero-mean amplitude is summarized in
plying the observed signal by 7¢(™) whereg(n, m) is the Taple |.
estimated phase. Sindev(n,m)} is @ homogeneous random

field, its parameters can be estimated using any standard

algorithm (see, e.g., [14] for the case whefe(n,m)} is V. ESTIMATION OF THE OBSERVED SIGNAL MOMENTS
an autoregressive field and [16] for the case wHetén, m)} The algorithms presented in Section Il are formulated in
is a moving-average field). terms of high-order moments of(n,m). In this section,

Finally, we note that for a 2-D random amplitudeve address the problem of estimating the moments of this
polynomial phase signalu(n,m) of total degree S, nonhomogeneous field when only a finite single observed
PD,(r) ,(s—p [v(n,m)] is neither a function of. nor m. As  realization of the field is available. Clearly, since the field is
we show in Section VI, the CRB on the phase parametatenhomogeneous, it is also nonergodic. Hence, a straightfor-
is independent of their values. These two properties allomard replacement of ensemble averages by spatial averages is
for relatively simple order estimation in cases where thmpossible.
polynomial total degreé is unknown, but the amplitude field More specifically, we are interested in estimating
is a priori known to be Gaussian. Assume an arbitrary UppéTDn(m’m(sfp) [v(n,m)],n=0,1,...,N=1-Pr,,m =0,1,
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TABLE |
ESTIMATION ALGORITHM FOR A ZERO-MEAN AMPLITUDE FIELD

Let S+ 1 denote the total-degree of the observed signal phase.

s=38, vV (n,m)=v(n,m), n=0,...,N—1, m=0,..., M — L.

While s > 1 ( s+ 1 is the layer index)

for P=0,...,s { find all the parameters of the s + 1 layer )

(&, Bs) = argmax lDFT (ﬁn(m’m(s—m [0+ (n, m)}) !
(w,v)

P +1,8~ D)= w

e H)!(;p)szT:p

6P st 1= P ChrGn mea
end
o (n,m) = v, m) - exp{—J ey emss1) &, O)nFmt}
s=s-1
end

(wr, 1) = argmax
(wyv)
@1

DFT <ﬁn<m,m(0) [7«’(1) (n, m)l) |

£

é(1,0) =

w0

#0,1) =

[SIAS

v (n,m) = vDfn,m) - exp{—f T pppewn lk, Ointm?)
8(0,0) = wh; TN ML 80 (n,m)

win,m) = v (n,m) - exp{—3&0,0)}

...,M —-1—(S— P)7,,. From Theorem 1, we have that

W)n(m,rn(S*P) [U(TL, m)] = E{PDn(m,rn(S*P) [w(n, m)]}
-exp{jlwsn + vsm + vs]}.

(30)
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is given by

ﬁ)n<P>,m<S—P> [v(n, m)]
1
(N — Pr,)(M — (S — P)7,,)
N—1-Pr, M—1—(5—P)7m

>, > PDury s [0k, £)]

k=0 £=0

x exp{—jlwsk + vsl + vs|}

-exp{jlwsn + vsm + vs|}
1

(N = Pr)(M — (S — Pyrp)
N—1—-Pr, M=1—(5—P)7pn

Z Z PD,,r) mes—r [v(k, £)]

k=0 £=0

x exp{—jlwsk +vs}

-exp{jlwsn + vsm]}. (32)

__Note that (32) is the 2-D Fourier series expansion of
W)n(P)ml(sfp) [v(n, m)]. The series has a single term. The co-
efficient of this term is the 2-D Fourier transform applied to the
signal PD,c#) s [v(n, m)], evaluated at some frequency
(ws,vs), and scaled by a constant. Sineg and vs are
unknown, this expression has to be evaluated fofwadl, vs).

Thus, in the estimation algorithm, we replace theAMPD
operatorPD, which is using ensemble moments, with Big
operator, which is using sample moments. More specifically,
the step in which we evaluatey,, ;) is now replaced by

(W5, 7,) = argmax |DFT(%n(p>7m(sfp> [U(S'H)(n, m)] )|

(w;v)

The term E{PD,(#) ,,s-r [w(n,m)]} of (30) is a high- (33)

order moment of a strict sense homogeneous and ergodic o _ -
random field. Therefore, it can be consistently estimated biging the definition of the DFT, it can be verified that

replacing the ensemble average with sample average. Hen€ maximization in (33) is achieved when the abso-
lute value of the single coefficient in the Fourier se-

PD,#) ms—p [w(n, m)] ries expansion OfPD,r) - » [T (n,m)] is maxi-
1 mized. In other words, evaluating the Fourier transform of
(N — Pr,))(M — (S — P)1) PD,r) mes—e [vETD(n,m)] for all (w,») and setting
N—1—Pr, M—1—(5-P)7,

XD, > PD,,r) (s [w(k, £)] (&0, 7,) = argmax [DFT(PD,cr) i) [0 (n,m)] )|
k=0 =0 (w,v)

1 (34)

(N —=Pr,)(M — (S — P)rn)
N—1-P7r, M=1—(5—P)7,

DD

is equivalent to estimatingu., ;) using (33). In conclusion,
when only a single realization of the field is observéd,
and 7, are estimated by finding the maxima of the DFT
k=0 =0 of PD,,r) .-y [v*11)(n, m)]. Substitution of the estimates
rexp{—jlwsk +vsl+s]} into (23) and (24) provides the desired estimates of the
where the last equality can be verified by following the stef@lynomial phase parameters.

of the proof of Theorem 1 with th@D operator replaced by Using the derivation of thé&D estimator in (31) and (32),
the PD operator. Thus, an estimateRi,») ,,,cs—m [v(n,m)] itis clear that sincgw(n,m)} is a strict-sense homogeneous

PDn(P)Jn(S—P) [U(/f, K)]

(381
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and ergodic random field w_herews andys are given by (19) and (20), respectively. Both
lim ﬁj e [v(5+1)(n,m)] PD,.(r) mis—p [w(n,m)] andvys(r,, ) are neither functions
NM—oo 0T of m nor n.
=PD,r) o) [U(S'H)(n, m)] (35) Proof: Consider the 2-D signal PRe) ,.s-# [y(n, m)].

which is (see Theorem 1) eonstantamplitude exponential From the recursive definition of the PD operator in Definition
with the correct frequenciw,, ). In other words, the ergod- 1. @ Well as from (16), we note that for any complex valued
icity of {w(n,m)} guarantees that a¥§ — oo and M — oc, field {y(n,m)}

(ws,7s) = (ws, vs). Note, however, that when the dimensionsp
of the observed field are finite, in order f¢&,,7s) to be
correctly estimated, the Fourier series coefficient in (32) has sS-r(r P (P a
to be nonzero and slowly varying relative (@,, , ). Clearly, = "+ pra,m+gmn)]
these requirements are satisfied when the mean component ¢=0 {p=0

of the amplitude signal is larger than its standard deviation. (37)
Furthermore, the foregoing discussion implies that even in ) _

cases where the amplitude fieldn, m) is nonergodic, but the Therefore, each shifted versigin + pr,., m + qr,a) of the
coefficient in (32) is nonzero and slowly varying as a functiofPServed signal that appears in the product forms generated

of frequency, the phase parameters are correctly estimat@y 2PPlying the operator BDr, s [] 10 y(n,m), is either
despite the violation of the ergodicity assumption. conjugated or unconjugated boéverappears in both forms

An alternative view point of the motivation in adopting thd©" any S or P. Beca}cuse{u(n,m)} is a circular Gaussian
statistic PD,cs) s [0+ (n, m)] in (34) is the following: Whlt(Z noise field,E{u"(n,m)} z: 0 for any positivek, and
From the derivation of the estimator and the proof of Theorefal % (7 +Tn, m 47 )[u" (n, m)]"} = 0, unlessr, = 7., =0,

1, it is clear that the weighting termexp{—j[wsk + vsé + andk = 2. Moreovc_er, S!ﬂCdu(n,m)} is circular Gaussian and
vs]} in (31) and (32) suppresses the oscillatory behavigf'© mean, :_;1II of its high-order moments can be expressed as
of the sample moment. Since in our application we aféinctions of its second-order moments. Recall Ytat, m) =
interested in detecting the frequency of this oscillation aric(”am) + u(n,m). Because{w(n,m)} and {U(ﬂ,m)} are
not in estimating the moments themselves, we shall use ipdependent, and the second-order moments of shifted versions
statistic PDy(r) ,,s— [0+ (n, m)], which is expected to of u(n,m) never involve both conjugated and unconjugated
demonstrate an oscillatory behavior. versions of the same sample, we conclude that all terms that

Since the principle of operation of the MPD operatoinvolve high-order moments af(n,m) vanish. Hence
PD,,cr) mes—r and that oPD, ) ,,,0y are identical (except that
the first employs conjugated products, Whereas( the IIoater usBaPPncms mes—m [y(n. m)l} = E{PDycr) is—m [v(n, m)]}-
unconjugated products for fields with a zero mean amplitude), (38)
the foregoing conclusions hold also for the problem of esti-

matingPD, o) .,y [v(n,m)] from a single observed realization o , 0 )
of a 2-D signalu(n,m) of total-degree one. Hence, when the We therefore conclude that the estimation algorithm derived

algorithm summarized in Table | is applied in practice, iz in Section Il can be appliethutatis mutandiso the estimation

operators should be replaced by PD operators as conclu@éﬁblem in the case of nqisy observations. Moreover, foIIo_vv-
from (34). ing the arguments of Section IV, we conclude that by replacing

ensemble averages with sample averages (i.e., replacing the

V. ESTIMATION IN THE PRESENCE OFOBSERVATION NOISE  PD operators by PD operators), the same algorithm can be

In Theorem 1, it is proved that in the absence of observati@pplied when only a single noisy realization of the observed
noise, the signaPD,,») ,,cs—» [v(n, m)] is a 2-D exponential field is available.
given by (18)—(20). Next, we show that a similar result holds
for the more general case in which the observed signal consists VI. CRB OF A 2-D RANDOM AMPLITUDE
of the sum of a random amplitude polynomial phase signal and POLYNOMIAL PHASE SIGNAL IN NOISE
additive white Gaussian noise (1)—(3).

Theorem 2:Let PD, ) ,,s-# [y(n,m)] be the 2-D sig-
nal obtained by successively applying, in some arbitra
sequence P times the operator PDy,[-] and S — P times
the operator PR, [-] to the signal (1). Then, the signal
PD,(r) ms—r [y(n, m)] is the same 2-D exponential given by
(18), i.e.,

WD,L(P>,m(S—P> [y(n,m)]

Dyr) mis—m [y(n, m)]
S—P )

In this section, we derive the CRB on the variance of the
error in estimating the amplitude and phase parameters when
{Ke signal is observed in white additive Gaussian noise, i.e., the
observed field isy(n,m)} given by (1)—(3). The amplitude
w(n, m)} is assumed to be a real-valued, Gaussian field.

A. Problem Formulation

= WDn(P>,nl(S—P> [w(n7 m)] Define
) eXp{j[an + Vst + ,VS(TN’TW/)]} y = [y(070)7 e 7y(07M - 1)7y(17 0)7 e
n=0,1,...,N—1— P, y(1, M —1),...,...,y(N —1,0),...

m=0,1,.... M —1—(S—P)r,, (36) y(N -1, M - D)% (39)
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The vectorw is similarly defined. Let all the phase parameterSince u’?, uf, and w are Gaussian and independegt,is
of ¢s be assembled, layer by layer, into a veator Gaussian as well. Lefx denote the mean vector of, let
r i i i I
¢ = [¢(0,0); (0, 1), (1, 0); (0, 2), (1, 1) denote its covariance matrix, and let

«(2,0%..., . ¢(0,8),...,e(S, 07 (40) X = [g} (44)
where we use “;” to distinguish layer from layer. Henees H
an 525+ dimensional vector. us
In addit.ion, Iett_ be gnNM x 2 matrix such that each row w=muXlym (45)
of t contains a pair of indice@:, m), wheren =0, ..., N —1;
m =0,...,M—1, and the rows are lexicographically ordered@nd
ie., o2
I= XRwXT + 712]\@4 (46)
t=
00 ... 0 1 ... 1 ... N-11%Y wherely, is an NM-dimensional column vector of ones,
01 ... M=1 0 ... M—=1 ... ... M-1| = andony is a2NM identity matrix.
(41) Let
T
We will use the following shorthand vector notation for er=[01,....(N-1] @1y (47)

functions of space: Given a scalar functigffn,m), we er=1y®1[0,1,..., (M- 1)]" (48)
denote the column vector consisting of the valueg @f, m), ) ) . .
n=0...N—1m=0,..M--1by f(t). Using where 1,; and 15 are M-dimensional andV-dimensional

this notation, we denote the vector of phase values of th8IUMN vectors of ones, respectively, ands the Kronecker
signal by ¢(t). Hence, we can defind = diag{cos ¢(t)}, product. In other wordss, is the first column of, ande; is
B = diag{sin¢(t)}, wherecos (t) andsin¢(t) are MN- 1tS second column. Define

dimensional column vectors. T = (diag{e; })* (49)

Lety® = Rely}. y/ = Im{y}, ¥ = y*" y/']". Ina i

similar way, we define the noise vectar In this derivation, and similarly
it is assumed that the amplitude field has a constant mean ¢ ¢
denoted bym,,. The covariance matrix of the vectox Ty = (diagle2})". (50)

is denoted byR., and is assumed to have some known | et A denote the log-likelihood function of the observation
parametric form, wherea is the parameter vector. At theyectory. The general expression for the Fisher information

moment, we will not specify the functional dependence @hatrix (FIM) of a real valued Gaussian process is given by
R, ona, but rather leave it implicit. As an example, we maye g., [15])

assume that it is the covariance matrix of a finite-dimensional )
moving-average (MA) field parameterized by the MA model g 9°A }

coefficients. 90 (k)06(¢)
The observation noise:(n,m) is an additive complex opt | on 1t p-1 ar r-1 or
valued, zero mean, circular white Gaussian noise of unknown™ 99(k)~  96(¢) Tl a0(k)” 000 |- (1)

variances2. Hence, the noise field can be writtermés, m) =
ui(n,m) + jus(n,m), with ui(n,m), and uz(n, m) being
independent, identically distributed, real-valued white Gau

To evaluate (51), we need to compute the derivativeg of
Szgr)dI‘ with respect to the various parameters of interest:

ian noise fields, with variance?/2 each. Bothu, (n, m) and o X1 52
uz(n,m) are assumed to be independent of the amplitude omy, M (52)
function w(n,m). op X
_Finally, we collect all of the unknown parameters into a ac(k, 0) = Mw ac(k,f)lNM (53)
single vectord, such that o
) — _—9 (54)
0 ={c,my,,a,0°}. (42) da(k)
a
The problem considered in this section can now be stated as a—NQ =0 (55)
follows. Given the measuremenfg(n,m)}, how accurately 8?
can the parameter vectér be estimated? I = 0 (56)
o ar JX ox7T
B. Derivation of the CRB = R, X" +XR,——— 57
De(k, 0) — ack, 0) tXRugmn O

Rewriting the measurements equation (1) in a vector form ar OR.
using real quantities only, we have Balk) = Falk)

. A 8 or 1
y= [B } wtu. (43) w = §I2NM- (59)

xT (58)
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We thus immediately conclude that where the third equality results from (67) and (70). Similarly,
2 using (73) and (58), we have that
_E A 0 (60)
Galk)dm, or 2 2 R
and r''— = Zhyy- =XD X7 v xT
B 2N 0 61 da(k) o2 o2 da(k)
a {8028mw} o (61) _ 2 x Ruyr_ 2 xp-1 Ry (76)
Taking the partial derivatives with respect to the phase param- o?" da(k) o? da(k)
eters yields ,
Using (51) and (54), we have
X
=H;,V (62)
ac(kv E) ’ aQA
i —-FE
where we define kg . {8c(k,£)8a(p)}
H,, = N+M ) :| 63 2
o [ 0 TRTY ©3) = 1<3 tr{Hk (VR Ry, }
-B 2\0? 7 da(p)
V= [ } (64) 1/ 9\2
. ooLa - —<—2> tr{Hk VR, XTxD~1 R }
Substituting (62) into (53) and (57), we have 2\o da(p)
p 172 IR,
=m,Hp V1y 65 = tr
i I ©9 3 <02) {xm. i}
ar 1/ 2 R
—— =H; VR, X" + XR, V'H,,. (66) N 1 9w o
8c(k,£) o\ 52 tr XR, V HkéXD aa(p)X
Next, we will use the following identities: 1/ 9\2 OR.,,
—1 T
XTX = VIV = Iyy (67) - 5(;) ”{X R VI, X5 3 X }
X'v=vIixX =0 (68) 1/2\2 L OR
i —1 T — w
XXT +VVT =Tyy (69) ta <02> tr{ Ry VI H, XD da(p) }
XTHy V=VIH, X =0 (70) =0 (77)
ViV = TR T, 0 h d (70) and th | fth
VTH, CH, V= T"+”T[+q. (72) where we have usg ( .)_an the commutative property of the
trace operator. Using similar arguments, we also have
Using (46) and the matrix inversion lemma (e.g., [8]), we
find that 9’A
4 Ny P Qi —
2 2 2 Ac(k, £)dc(p, q)

2
I''= vy — X[ S5XT'X + R,;1> x*
02 2NM 02 <02 02 = m%u [1£rA4VTHk7gI‘_1Hp7qV1Nj\4:|

_ 2y 2 x(1 7 R _1XT EAY T T
= slevw ——3 vvt 5 Ry, +t5l 2 tr{H, VR, ,X"H, ,VR, X"}
2 2 T 1/21\2
= ;IQN]W - ;XD X (73) + 5 <§) tr{Hk7[VR“,XTXR“,VTH]@’,I}
where the second equality results from (67), and we define )
2 1 2 T —1 T
D= Tya 4+ %R;l. (74) - §<§> tr{H; VR, X'"XD 'R, V'H, ,}
. 1 2 2
Using (73) and (66), we have that . <_2> tr{XR., VT Hy (H, VR, X}
r-t or _ 312NM _ 2 xXp-1xT ’
delk,f) - \o® = o7 (2 xR VT HL XRLVTH
x (Hi( VR, X7 + XR,, V' Hy ) Toloz) MXRV HEXROVIH, )
2 2 1/ 92\?
= S5 Hu VR X! + — XR, VI Hyy T2 <§) tr{XR, V'H, XD'R,V'H, .}
2
- XD 'X'H, VR, X" 1/ 9\2
022 ’ -3 <—2> tr{XD'R,,V'H; H, , VR, X"}
22
- ;XD*XTXRU,VTHW e
2 2 - (%} r{XD'R,VT'H,  XR,V'H,
= S H VRWXT + S XR, VI Hy, 2 <02> { o ral
g g 2
1/2
- %XD*lRwVTHk,e (75) T35 <;> tr{XD 'R, V'H XD 'R,V H, .}
g
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2 .
_ 2777;0 1%, VIH (Tovi — XDPXT)H, , V1y ] symmetric property of(,‘;’i(m andD~!, we obtain
o ’ ’

9 _pl_oA
+ py tr{H;,VR,R,V'H, } da(k)da(L)
2 1/2Y° OR. OR.
- ~tw{H;, VR, D 'R, VTH R w T W~ T
— tr{Hy Pt 2 <g2> tr{Xaa(k)X X oalt)™ }
+ %tr{RwVTHMHmVRw} 172 ir dR,, XTXD-1 IRy o1
% . ; 2\ 02 da(k) da(l)
_ gtl’{D RwV HkJHp’qVRw} ~ 1 3 2tr XD_1 8Rw - 8Rw XT
2m? - 2\ o2 da(k) da(l)
= 0_2 []'NJ\IV Hk7ng7qV1]\r]\4 1 9 2 aR R
_ = 1 T -1 W~ T
— 15V H XD X H,,, V1] T3 <0> ”{XD gah) X0 G ® }
2
+ S tr{H VR, (Iyy — DR, VIH, ) 12 Qtr OR,, IR,
% ) B ~2\02 da(k) da(l)
+ —tr{RwV Hk,ZHp,qVRw(INJ\l -D )} < 9 )2“_{ R, . R, }
_ 2mw 15, THT o? ) da(k) "~ Oa(f)
o? 1/ 2 IR, dR
4 —| = D! = . 1
ta - tr{H; VR (Iny — DR, VIH,, .} T2 <02> ’ { da(k) 8a(£)} (81)
M—1 Finally, substituting (55), (59) and (75) into (51) while using
— 2mw Z k+p Z mit (70), and the commutativity of the trace operator, gives
n=0 m=0 { aQA }
- ek Noa2
tr{T“PTWR (Iyar — D YR, } (78) delk, )90
where we have used (67) and (70); the commutative property — <i2> tr{Hk,gVRwXT}
g

of the trace operator; the symmetric propertylf ,, H, .,

(V)

. i i 1
and Rw,_and the diagonality ofl; , and H,,. The last (L) w{H. VR, XTXD'X"}
equality is due to (72). o? ’
Using (52), (56), (65), and (70), we have 1\?2 -
B %A +{ = tr{XR, V' Hy }
a {ac(k,z)amw} 1\2
CouT ., ow - <§> tr{XR,, V' H; XD X"}
EECN) My 2
2mw T 1T (X tr{XD 'R,VTH, ]}
= [1]\’]\/IV Hk [(IQN]\/[ — XD™*X )X].N]\/[] o2 X w ot
2mw T 1\? 1 T -
= [1in VIHL X1yy + (= ) r{XD 'R, V'H; XD X’}
g
— 1NJ\IV Hk[XD IXTX].N]w] =0. (82)
=0. (79) In addition
2
Additionally, using (52), (56), and (67), we find that _pl oA
92A da(k)da?
_E{ ==
(2] i
_ On -1 ot o? da(k)
IMey, IMmy, 1\2 OR.,
5 <—2> tr{xa p XTXD_1XT}
= S 1AW X @y — XD X)X yvy] =/ a(k)
2 (LY wfxpr Buxr
= ; I:].,-]Z\WTA/IXTX]-N]VI - 1£TA4XTXD_1XTX1ATA4] 0_2 aa(k)
2 _ 1\° IR,
= % — 1%, D1y — XD 2 XTXD !XT
o2 [ NMANM NM I\M] + <0_2> tl’{ Dalk)
NM NM
1 dR, 2 dR,
= |NM - D~ - gy w2 w -1
a2 2> Dk (80) = tr{aa(k)} = "{ da(k) }

k=1 (=1
Using (54), (67), the trace operator commutative property, 1 r{Dl IR, Dl} 83)
the invariance of the trace operator to transposition, and the da(k)
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The FIM entry that corresponds to the noise parameter is givean be computed using their known functional dependence on

by the (estimated) parameters. Next, we derive the CRB on the
local phase and frequency functions.
—E{ [N } Since the local phase defined in (3) is a differentiable func-
do20a2 tion of the phase parameter vectgrthe CRB onps(n,m) is

related to the CRB ot by (e.g., [17])

CRB(¢s(n, m)) = g” CRB(c)g (85)

1/1\° 1Y’ T
=52 tr{Lona )} — ) tr{XD X"}

_l’_
NM _ 8(/)5(n,m) 8¢5(n,m) 8¢5(n,m)
:7——tr{D_l}+2fi4"{D_lD_l}- (84) 87 70¢0,0) " 9c(0,1) 7 oc(1,0)

dps(n,m) Ops(n,m) T
dc(S —1,1) 8¢(S,0)

2
1/1
§<—Q> tr{XD'X"XD X"} where
a
1
04

We can now summarize our observations regarding the CRB
for a 2-D random amplitude polynomial phase signal. The
bounds on the parameter estimates of the phase, the amplitude = [1, 7,7, ..., n " tm, n]". (86)
mean, and the parameter vectoof the amplitude covariance

function are mutually d led. Moreover. the element 1EIn the case of continuous index fields, the local spatial
unction are mutually decoupled. Vioreover, the elements ﬁequencies are the partial derivatives of the local phase

the FIM are independent of the specific model of the amp"tuqﬁnction Thus, assuming for a moment and m to be
field since those of them which depend on the amplitude Sntinuc;us variables we have

functions of its mean and covariance matRy, only. Thus,
closed-form formulas for the CRB are obtained by substituting w(n,m) = 1 Ps(n,m)

into R,, the expression for the amplitude field covariance Y2 on
matrix, which is expressed in terms of the amplitude field _ 1 Z e(k, O)knF~Lm?
parameters. As an example, the expression for the covariance 2m (k.0)C (1<k0=E:1 <kt e<5)

matrix of a nonsymmetric half-plane 2-D moving average field (87)
is derived in [16].
Because the CRB for the phase is decoupled from the bOLﬁ"{?Jd

on the amplitude and noise parameters, it can be obtainedy(n,m) = iM
by inverting (78). The CRB for the phase parameters is 217r gm
independent of the specific parametric model used for the =5 Z ok, )enkm* =1
covariance of the amplitude field, as well as of the specific 4 (k,0)e{0<k;1 <L;1<k+L< S}
values of the phase parameters. Thus, all signals whose phase (88)
is of some total degreé, and whose amplitude have the
same mean and covariance functions, will have identicdence
values for the CRB on the phase parameters. The bounds CRB(w(n,m)) = hYCRB(c)h (89)
on the amplitude parameters and the noise variance are both ’ " "
independent and decoupled from the phase. where
The bound on the mean of the amplitude field is decoupled Buw(n,m) dw(n,m) dw(n,m)
from the bounds on the other parameters. It is a function only h, = 80(07 0y’ 8c(07 R 8c(170) Yoo
of the amplitude covariance and the observation noise vari- ’ ’ ’
ance. The CRB on the parameters of the amplitude covariance dw(n,m)  dw(n,m) ’ (90)
is independent of the phase function and of the amplitude mean 9c(S —1,1)" 9¢(S,0)

but is a function of the observation noise variance and trée

amplitude covariance. Note that the FIM block corresponding

to the parameters of the amplitude covariance and the obser- dw(n,m) _ iknk—lmé
vation noise isdentical to the block we would have obtained dc(k, £
if the amplitude field was not modulated b§*(*™). Hence, 1<
the CRB for these amplitude parameters is the same as if the .

modulation bye?#(*™) was not present. Similarly, the boung®'Milarly

)
ki 0<f 1<k+/£<S. (91)

on the noise variance is also decoupled from the bounds on the CRB(1(n,m)) = h CRB(c)h,, (92)
phase and mean and is identical to the bound obtained when
the modulation by’ is not present. where
Finally, we note that in many cases, we are interested ov(n,m) dv(n,m) Ov(n,m)
not in the phase or amplitude parameters themselves but in h,, = 9¢(0,0) * 9¢(0,1) ° de(1,0)

estimating some function of these parameters. For example, T
having estimated the model parameters, the amplitude field dv(n,m) Ov(n,m)
spectral density and the local phase and frequency functions de(S —1,1) d¢(S,0)

(93)
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C. CRB for High SNR

and Substituting (95) into (80), we get
81/( m) 1 . 9 NM NM
= —/n m g°A 1
( 0 " 2r —E{mmw}ZE:E:waxy (98)

<k 1< 1<k+(<5. (94) =1 =1

Using (58) and (96), we have

In this section, we specialize the general results derived! or < vVl L XR. 1XT>< IR, )
in the previous section for the case where the measurements Ja(k) da(k)
of the signal are known have high .SNR. In other W.OI’dS', we _ _QVVTX IRy © X7 4 XR_ IR
assume here that? — 0. Hence, a first-order approximation o da(k) da(k)
of D! yields w1 IRy
=XR ' Balk) (99)
2 where the last equality follows from (67) and (68). Hence
D! I — %R;l. (95) anA Y (67) and (68)
| gt )
Thus, (74) can be approximated by 1 XR-1 1 Ry, TXR-L IR, 1
2 v ga(k) v da(l)
B 9 9 o2 1 R-1 1 IR, IRy by JR,, 100
| N —alavm — §X<INM - ER'w:L)XT 2 { Y da(k) " oa(l) | (109

Note that (100) isidentical to the expression we would
have obtained if the amplitude field was zero-mean and was
measured directly (i.e., if the modulation by®™ did
not take place and the observations were noise free). Thus,
we can use here any available expression for the FIM of a

Substituting (95) and (96) into the equations of the nonzef__%al valued, zero mean, homogeneous Gaussian random field.
or example, if the amplitude was a nonsymmetric half-plane

elements of the FlM yields the FIM for the high SNR case. Iﬂ\ISHP) moving average field, we could use the expressions
particular, substituting (95) into (78), we have derived in [16]

The FIM entry that corresponds to the noise parameter is

2 _
= E(IQNM — XX+ XR !XT

2
= S VVI + XR X", (96)
a

E{ O?A } given by
Ac(k, K)ac(p q) 5 %A 1 2 T2 T
M—1 - ﬁ = —tr —QVV —QVV
2mw bt do2do 8 |o o
Z > m L (2 o ey
m=0 + —tr —VV XR X
2 8 02 e
{ k+PTé+(1R R—IR } 1 9
w w —1~7 T
o +§tr{XRw X' 5VV }
= Z By mt e 5 L (T TR, ) 4+ Lir{XR,IXTXR,IXT)
n=0 m=0 8 b b
- M-1 1 Tv2y , 1 1p-1
= —tr{(VV —tr{R_"‘R
_ w Z k+p Z £+q + “’ 0 0 t{Tk'H“T['F’I ?\?er{(l ) }+ 8 r{ W W }
’"—0, =—+-tr{R;'R;'}. (101)
2(m —1—7 Nl ket ML 20 8
= Z nktr Nyt (97)  similarly
m=0
9*A 1 dR,,
R OF f— XR* 2vvT
. {8a(k)802} 4 { v ga(k) o2 }
where the third equality is due to the diagonality®{™T}* 1 IR, -
and since all the elements of the main diagonal R, 1 {XRZ dalk) X }
are equal tor,(0,0). Here, r,(0,0) denotes the variance 1 R,
of the amplitude field. Let SNR= %&(0’0) denote the { “ 3m (k) }
signal-to-noise ratio. Using (97), we conclude that for high
SNR scenarios, the CRB on the error variance in estimating - 1 { } (102)
the phase parameters is inversely proportional to the SNR.
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Phase of the observed field

100

100 0

Fig. 2. True phase function of the observed signal.

Note that ass? tends to zero, the FIM block (97), which Since the amplitude field is positive, we employ the estima-
corresponds to the phase parameters, becomes singular, tamdalgorithm derived in Section IlI-A. Next, we illustrate the
hence, the phase of the signal can be perfectly estimatstbps of the estimation algorithm. Since the polynomial phase
regardless of the structure of amplitude covariance matrix. Thigal-degree is 2, we start by estimating the parameters of layer
result is due to the fact that in the absence of observation noigeln the first step of the algorithm, we have= 1 and P = 0.
the phase of the measured sigpéh,m) can be obtained by Hence, applying the operator PB ., to the observed
dividing the imaginary part of the measured signal by its regignal, we obtain the signal denoted byn,m), which is
part. (approximately, due to the noise) a 2-D random-amplitude

polynomial phase signal of total-degree 1, i.e., a 2-D random-
VII. NUMERICAL EXAMPLES amplitude exponential. The absolute value of this signal (which

To illustrate the operation of the proposed algorithm, a8 the amplitude field, except for the contributions of the
well as to gain more insight into its performance relative t@Pservation noise) is shown in the left image of Fig. 3. The
the CRB, we present numerical evaluation for some specifigsolute value of the signal DFT is shown in the right-hand
examples. side of the same figure. Note that although the observed field

Example 1: Consider a random amplitude polynomiais undersampled and the noise level is high, applying the
phase signal of total-degree 2. The amplitude is exponentiaf§oposed operator to the observed signal results in a prominent
distributed with parameteh = 1 [i.e., the amplitude field Spectral peak. Estimating the spatial frequency of the spectral
samples are i.i.d. random variables with probability densifjeak results in the estimates @ft, 1) and ¢(0, 2).
function given byp(w(n,m)) = 3 exp{—w(n,m)/A}]. The Repeating the same procedure for= 1 and P = 1,
observations are subject to an additive complex valudet., applying the operator PR, ..« to the observed signal,
white Gaussian noise, such that the SNR -3 dB. Wwe obtain another 2-D random amplitude exponential signal.
In this case, the SNR is defined as SNR 10log 2_2 Estimating the spatial frequency of the spectral peak results
where o2 is the variance of the additive noise. In thign the estimates of(2,0) and ¢(1,1). We have therefore

example, the observed field dimensions a¥e = 100 obtained estimates for all three parameters of layer 2. Mul-
and M = 100. The phase coefficients are given byiplying y(n,m) by exp{—ji2(n,m)}, we obtain a new, ap-
c = [-1.5;0.311,0.211; —0.1555, —0.01, —0.22]T". proximately polynomial-phase signal with random amplitude

The true phase function is shown in Fig. 2. Note the verf*)(n,m), whose total degree is 1. Since in this iteratios
low sampling rate of this phase function (the phase-axis ofand P = 0, the parameters(1,0) and¢(0, 1) of layer 1 are
this figure is measured in radians, and the dimensions of tb&timated by finding the spatial frequency of the peak of the 2-
sampling grid arel00 x 100). Many of the existing phase D signal DFT. Multiplyingy*)(n, m) by exp{—ji1(n,m)},
estimation and restoration algorithms are adversely affectedvsg obtain the signay®) (n,m), whose total degree is 0. The
insufficient spatial sampling (with respect to the instantaneocsefficient ¢(0,0) can now be computed as the arithmetic
frequency) and noise; see, e.g., [12]. average of the imaginary part of the logarithmsé%) (n,m).



1808 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 7, JULY 1999

|DFT(x(n,m))|
10 -0.4} 1
20 -0.3+ 1
30 -0.2 1
40 -0.1
£ 50 2 0O it
60 0.1F 1
70 0.2+ b
80 0.3r b
90 0.4
100 20 40 60 80 100 05 _—OZ4 —012 0 0.|2 0:4
n omega

Fig. 3. Two-dimensional random amplitudepolynomial phase signal after applying the operatary PPy to the observed signal of total-degree 2.

(In this iteration,s = 1, p = 0, and the signal is the observed sig@élz)(n.m)). Left: Absolute value of the resulting 2-D signal. Right: Absolute
value of the resulting 2-D signal DFT.

Thus, we have completed the estimation of all the phaskoser, = 7,, = 1. The Monte Carlo simulations indicate
parameters of the observed 2-D nonhomogeneous signal. that the estimator proposed in Section IlI-A yields unbiased
Example 2: In this example, we illustrate the performancestimates of the phase parameters, as the experimental bias is
of the algorithm by Monte Carlo simulations. We analyzeonsiderably smaller than the experimental standard deviation
the bias and the variance of the estimates obtained by fe&cept for the estimates @f0, 0), which are slightly biased].
algorithm and compare them with the CRB, which was deriveéthe estimation error variance can therefore be compared with
in Section VI-C, under the high SNR assumption. the CRB derived in Section VI. (The CRB provides the lower
In these examples, the observation noise is a compleaund on the error variance for any unbiased estimator of the
valued, zero mean, white Gaussian noise, and we investigpteblem parameters). A comparison of the Monte Carlo results
the performance of the algorithm as a function of the SNRiith the CRB, which is computed assuming a high SNR, is
The random amplitude of the polynomial phase signal is a 2d&picted in Fig. 5. The experimental results for the selection
Gaussian, NSHP moving average field, with mean equal to .7, = ¥ andr,, = & (dashed-dotted line), indicate that the
The NSHP moving average model has.#jy support. phase estimates are 7-10 dB above the high SNR CRB. Note
The Fourier transform of the covariance function of thehat this result holds for low SNR values as well, although
MA field is depicted in Fig. 4. For this field, the ratiothe high SNR assumption used to compute the bound is not
rw(1,0)/7,(0,0) = 0.4469. The phase function of the 2-valid anymore, and the bound should be considered to be an
D signal is of total-degree 2. The phase parameter vectoroistimistic one. However, for the selectionof = 7,,, = 1, the
given by ¢ = [2;0.045,0.082; —0.0015,0.0016, —0.0022]*.  phase estimates are nearly 30 dB above the high SNR CRB
The observed field dimensions d@)x 100. The experimental (dashed lines).
results are based on 300 independent realizations of thelo further investigate the problem of choosing the algorithm
observed signal for each SNR value. Note that here, the SNRrameters,, andr,,, and the dependence of the selection rule
is defined as SNR= 10log w wherer,,(0,0) is the on the dimensions of the observed field, we have repeated
MA field variance, andr? is the variance of the additive noisethe foregoing Monte Carlo experiments for a much smaller
In this example, the SNR varies by changing the observatiobhserved field. In this set of experiments, only3@ x 30
noise variance from experiment to experiment, whermeas segment of the the field is observed. The Monte Carlo simula-
and r,,(0,0) are held fixed. tions were carried out for two different sets of and 7,,.
In order to demonstrate the crucial importance of the choite the first case, we chose, = 7,, = 1 as in the first
of the algorithm parameters, and 7,,,, we have repeated part of this example. In the second experiment, we chose
the Monte Carlo experiments for two different sets of thesg = ,,, = 4. Note that high values of,, andr,,, cannot be
parameters. In the first case, and 7,,, were chosen to used due to the small dimensions of the observed field. In these
be relatively large(r,, = %,Tm = %). These parametersexperiments, as well, the Monte Carlo simulations indicate
were set to small values in the second experiment, where that the estimator proposed in Section IlI-A yields unbiased
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Fig. 5. Performance of the random amplitudepolynomial phase signal é3g. 6. Performance of the random amplitude polynomial phase signal
timation algorithm for al00 x 100 observed field. Solid lines denote theestimation algorithm for &0 x 30 observed field. Solid lines denote the
CRB assuming the SNR is high, dashed-dotted lines denote the experime®faB, assuming the SNR is high, dashed-dotted lines denote the experimental
variance of the estimates for, = % and 7, = % while dashed lines variance of the estimates fot, = 7,,, = 4, while dashed lines denote the
denote the experimental variance of the estimates-for= 7, = 1. experimental variance of the estimates far= 7,, = 1.

estimates of the phase parameters, as the experimental biaisanswer to the question of how to choose the algorithm
considerably smaller than the experimental standard deviatjperameters,, andr,,, as a function of the statistical properties
[except for the estimates @{0, 0), which are slightly biased]. of the amplitude field, the phase function, and the dimensions
A comparison of the Monte Carlo results with the CRB thaif the observed field. (Refer to [11] and [18] for detailed
is computed assuming a high SNR is depicted in Fig. 6. Tlamalyzes of this problem in the cases of 2-D and &eldstant
experimental results indicate that for a small observed fieldmplitude polynomial phase signals, respectively). Based on
better estimation results are obtained by choosing low valuEseorem 1, and the derivation of the CRB, it is clear however,
for 7, andr,,, contrary to the situation when the dimensionthat while the high SNR CRB for the phase parameters is
of the observed field are large. a function of SNR only, the performance of the proposed
Analysis of the performance of the proposed algorithm &gorithm is a function of the power of the high-order moments
beyond the scope of this paper. Such an analysis would proviafethe field. Hence, given two amplitude fields of identical



1810

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 7, JULY 1999

power, (and, hence, identical high SNR CRB in the Gaussi@] S. Shamsundar, G. B. Giannakis, and B. Friedlander, “Estimating ran-
case), the performance of the algorithm when the amplitude ijs dom amplitude polynomial phase signals: A cyclostationary approach,”

IEEE Trans. Signal Processingol. 43, pp. 492-505, 1995.

azero mean ﬁe_ld WOL_”_d be inferior to its performa_nce Whe_n thel] 3 M. Francos and B. Friedlander, “Optimal parameter selection in the
amplitude field is positive. In the case of a Gaussian amplitude, phase differencing algorithm for 2-D phase estimation and unwrapping,”
the performance of the algorithm is strongly related to the raif2 IEEE Trans. Signal Processingccepted for publication.

y

of decay of the field autocorrelation function since fast dec

U. Spagnolini, “2-D phase unwrapping and instantaneous frequency
estimation,”|EEE Trans. Geosci. Remote Sensingl. 33, pp. 579-589,

of this function will enforce the choice of low values fay, 1995,

and 7,,,. Our experimental results indicate that such a choid’!

B. J. Super and A. C. Bovik, “Shape from texture using local spectral
moments,” IEEE Trans. Pattern Anal. Machine Intellvol. 17, pp.

will lead to less accurate estimates of the phase parameters. 333343, 1995.

[14] T. L. Marzetta, “Two-dimensional linear prediction: Autocorrelation
arrays, minimum-phase prediction error filters and reflection coefficient
VIIl. CONCLUSION arrays,”|[EEE Trans. Acoust., Speech, Signal Processind) ASSP-28,
pp. 725-733, 1980.

In t.hIS paper,. We presc_enteq a S|mplg—to-|mplement and CO'[@S] B. Porat and B. Friedlander, “Computation of the exact information
putationally efficient estimation algorithm for the parameters matrix of Gaussian time series with stationary random components,”

of 2-D signals with random amplitude and polynomial phase. 'EEE Trans. Acoust., Speech, Signal Processiug. 34, pp. 118-130,

Jan. 1986.

T_he algorithm is base(_j on t_he properties of the mean ph3s§ 3. m. Francos and B. Friedlander, “Parameter estimation of two-
difference operator, which is introduced and analyzed. Assum- dimensional moving average random field{?EE Trans. Signal Pro-

ing that the signal is observed in additive white Gaussian noige, cessing vol. 46, pp. 21572165, Aug. 1998.

C. R. Raolinear Statistical Inference and lts ApplicationsNew York:

and that the amplitude field is Gaussian as well, we derived” ey, 1965.
the Crangr—Rao lower bound on the error variance in jointly18] B. Porat, Digital Processing of Random SignalsEnglewood Cliffs,

estimating the model parameters.

NJ: Prentice-Hall, 1994.

The performance of the algorithm in the presence of additive
white Gaussian noise is illustrated by numerical examples and
compared with the Craér—Rao bound. In cases where the
high-order moments of the amplitude field are not decayir~ Joseph M. Francoswas born on November 6, 1959

too rapidly, the parameter estimates are shown to be unbias
and the estimation error variance is shown to be close to 1
Cranér—Rao bound. From the examples shown, we conclu
that the proposed phase estimation algorithm is quite robust
the presence of phase aliasing due to both low sampling ra
and noise, as long as the true phase function is a continu
function of the coordinates. Since the phase model is inherer
smooth, the proposed algorithm is not affected by the
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