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Parameter Estimation of 2-D Random
Amplitude Polynomial-Phase Signals

Joseph M. Francos and Benjamin Friedlander,Fellow, IEEE

Abstract—Phase information has fundamental importance in
many two-dimensional (2-D) signal processing problems. In this
paper, we consider 2-D signals with random amplitude and a
continuous deterministic phase. The signal is represented by a
random amplitude polynomial-phase model. A computationally
efficient estimation algorithm for the signal parameters is pre-
sented. The algorithm is based on the properties of the mean
phase differencing operator, which is introduced and analyzed.
Assuming that the signal is observed in additive white Gaussian
noise and that the amplitude field is Gaussian as well, we derive
the Cramér-Rao lower bound (CRB) on the error variance in
jointly estimating the model parameters. The performance of the
algorithm in the presence of additive white Gaussian noise is
illustrated by numerical examples and compared with the CRB.

I. INTRODUCTION

PHASE information has fundamental importance in many
one- and two-dimensional (1-D and 2-D) signal process-

ing problems. When dealing with 2-D signals, estimates of
the phase are required in different applications such as 2-D
homomorphic signal processing, magnetic resonance imag-
ing (MRI), [1]–[3], optical imaging, [4], and interferometric
synthetic aperture radar (INSAR), [5], [6]. In processing
nonstationary 1-D signals, as well as in the case of nonhomo-
geneous multidimensional signals, the phase contains useful
information. In 1-D signals, the first derivative of the phase
is the instantaneous frequency of the signal, whereas for mul-
tidimensional data, the partial derivatives of the phase along
each of the spatial axes provide the local spatial frequency of
the analyzed field.

Recently, an algorithm for estimating the shape of a 3-D
object, based on a single image of its textured surface, has
been presented [13]. The algorithm employs a nonparametric
estimation method to compute the local phase function of the
object image. The local phase information is then employed
for calculating the normal to the object surface.

In SAR imaging, the amplitude of the received complex
valued 2-D image is proportional to the backscattering of
the illuminated points. In interferometric SAR, two images

and are obtained from two different anten-
nas illuminating the same target point. Taking the conjugated
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product of these two images, the interfero-
metric SAR (INSAR) signal is obtained. The phase of this 2-D
INSAR signal is proportional to the elevation of the scattering
point on the ground. Hence, ground elevations and terrain
maps can be produced from the INSAR data [5], [6]. A critical
consideration in producing the three-dimensional (3-D) terrain
maps is the need to perform 2-D phase unwrapping of the
observed signal phase to enable a meaningful interpretation of
the data. Ideally, in the absence of noise and phase aliasing, we
could unwrap the phase function by following an integration
path and adding multiples of to the phase whenever a
sudden drop from to occurs. To ensure that no phase-
aliasing occurs, the original scene must be properly sampled
so that phase differences between two adjacent samples are
smaller than rad. This requirement cannot be generally
satisfied, and hence, in the presence of noise and phase
aliasing, this simple phase unwrapping method is inadequate.

In this paper, we address the problem of estimating the
parameters of such 2-D signals. More specifically, we consider
here 2-D signals with random amplitude and a continuous
phase function. In these signals, the phase is the information
of interest, whereas the random amplitude is a multiplicative
noise that highly complicates the phase estimation. Since
continuous functions can be approximated by polynomials,
a natural choice for modeling the signal phase is by a 2-
D polynomial function of the coordinates. Having estimated
the phase of the signal, it is a straightforward task to obtain
estimates of its local spatial frequencies as well. In this paper,
we address separately the cases where the random amplitude
field is of a nonzero mean and the case where the amplitude
field is a zero mean field. A good example of a positive
amplitude field is that of the INSAR image. Assuming the
amplitude field of each of the SAR images and

has a Rayleigh probability density function, the
amplitude of has an exponential probability
density function.

We will derive a computationally efficient algorithm for
estimating the parameters of 2-D random-amplitude polyno-
mial phase signals. Such an algorithm can serve as a basic
building block in processing INSAR data. The proposed
algorithm is an extension of the 1-D parameter estimation
algorithms proposed in [7] and [10] and of the algorithm for
estimating the parameters of 2-D complex valued, constant
amplitude, polynomial phase signals [8]. The algorithm in
[7] uses the high-order ambiguity function [18] to estimate
the parameters of 1-D complex valued, constant amplitude,
polynomial-phase signals. This algorithm is adapted in [10] to
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estimate the parameters of 1-D random amplitude polynomial-
phase signals. The algorithm derived here is based on the
properties of a 2-D mean phase difference operator, which
is defined in the next section.

The paper is organized as follows. In Section II, we define
the parametric model of the observed signal, define the 2-D
mean phase difference operator, and present some properties of
the operator. In Section III we present a parameter estimation
algorithm based on the 2-D mean phase difference operator
and its properties. In the first part of this section, we present
the algorithm for the case of a nonzero mean random amplitude
field, and in the second part, we present a modification for the
case of a zero mean amplitude field. These algorithms require
knowledge of the observed signal moments, which are not
available to us. Therefore, in Section IV, we describe a method
for applying the mean phase difference operator when we are
given a single observed realization of the field. In Section V,
we address the problem of estimating the parameters of the
random-amplitude polynomial phase signal in the presence of
observation noise. In Section VI we derive the exact Cramér-
Rao lower bound (CRB) on the accuracy of estimating the
model parameters for a polynomial phase signal with Gaussian
random amplitude. This derivation is then specialized for the
case where the observations are known to be at a high signal-
to-noise ratio (SNR). In Section VI we illustrate the operation
of the proposed algorithm in the presence of observation noise
using some numerical examples and Monte Carlo simulations.

II. PHASE DIFFERENCE OPERATOR

In this section, we define the phase difference operator and
present some of its basic properties. We start with a description
of the type of signal for which the operator was designed.

A. Signal Model

Let be a discrete 2-D random field consisting of
the sum of a random amplitude polynomial-phase signal and
additive white Gaussian noise. More specifically

(1)

where

(2)

(3)

and and . We call
a 2-D polynomial of total-degree [8].

Intuitively, we might think of the phase polynomial
as if it has “layers” since increasing by one adds a
layer of additional parameters to the phase model. To
further illustrate the definition, we depict, in Fig. 1, a triangular
support of total-degree 4.

The amplitude field is an ergodic, real-valued,
strict sense homogeneousrandom field. The observation noise

is assumed to be complex valued, zero mean, circular
white Gaussian noise. It is assumed to be independent of the

Fig. 1. Triangular support of total-degree 4. Diagonal lines indicate layers
1 through 4.

amplitude field . In this section, in order to simplify
the presentation, we discuss the case in which there is no
observation noise. Hence, .

B. Mean Phase Differencing Operators

Next, we define the two polynomial phase difference opera-
tors, which we denote by PDand PD . We start with a brief
heuristic explanation of the idea behind the operators.

Consider the signal given by (2) and (3), and assume
for the moment that and are continuous variables and
that , where is some positive deterministic
constant. Differentiating the phase of the observed signal
times along the axis and times along the axis (in any
order as long as the total number of differentiation operations
in both axes is ) results in a 2-D complex exponential signal.
It can be shown that the spatial frequency of this
complex exponential is a function of two of the coefficients
of the highest layer of the phase polynomial parameters
and other known quantities. By estimating the frequency of
the complex exponential (using standard frequency estimation
techniques), we obtain estimates of two of the coefficients of
the highest layer of the phase polynomial model. Repeating
this procedure for all , all the coefficients of the
highest layer of the phase model are estimated.

Having completed the estimation of the phase parameters in
the highest layer, their contribution to the signal phase can be
eliminated, thus resulting in a polynomial phase signal of total-
degree . By repeating this entire process for all the layers in
the phase model, all the phase parameters are estimated. The
details of how that works will be presented later.

Since, in our problem, the variablesand are discrete,
phase differentiating will be replaced by phase differencing.
We next define the basic phase differencing operators.

Definition 1 [8]: Let and be some strictly positive
integers. Define

PD

(4)

and in general

PD

PD PD (5)
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where the resulting 2-D signal PD exists for
. Similarly

PD

(6)

and

PD

PD PD

(7)

Definition 2: Let and be some positive integers. Define

PD PD (8)

PD PD (9)

We shall call these operators themean phase difference(MPD)
operators.

The operators are called “phase differencing operators”
since they perform an operation that is equivalent to phase
differentiation of a continuous parameter 2-D phase [8]. Later
in this section, we provide an alternative representation and
interpretation of the operatorsPD and PD . Note
that applying any of the operatorsPD or PD to
a 2-D random amplitude polynomial phase signal of total-
degree results in aconstant amplitude(in and )
2-D polynomial phase signal of total-degree.

Some of the properties of the MPD operator are more easily
proven using the properties of the and difference
operators, which were introduced in [9]. Next, we repeat the
definitions and briefly summarize the main properties of these
operators.

Definition 3: Let and be some strictly positive inte-
gers. The -difference operatorof a 2-D function
is a linear operator defined by

(10)

i.e., is a difference operator along the axis. Similarly,
the -difference operatoris defined by

.
It is straightforward to show, using the definitions and the

linearity of the operators, that the difference operations are
commutative, i.e., .
Hence, applying times the difference operator and
times the difference operator to yields a unique
result, irrespective of the order in which the operators were
applied to . In the following, we denote the resulting
signal by . Let be a 2-D
polynomial of total-degree . Then, it is shown in [9] that

(11)

where

(12)

(13)

and is neither a function of nor . It was also
shown that applying times, in arbitrary order, the operator

and times the operator to yields

(14)

C. Alternative Representation of thePD andPD Operators

Based on the properties of the and difference
operators and Definition 1, it can be easily verified that
applying times the phase difference operator PD and

times the phase difference operator PD to the signal
yields a unique result, irrespective of the order in

which the operators were applied to . In the following,
we denote the resulting signal by PD .

Define

PD PD

(15)

Lemma 1:

PD

(16)

where we define

even
odd.

(17)

Proof: The proof is an immediate extension of Lemma
2 in [9].

Theorem 1: Let PD be the 2-D sig-
nal obtained by successively applying, in some arbitrary
sequence, times the operator PD and times
the operator PD to the signal (2). Then, the signal
PD is a 2-D exponential given by

PD

PD

(18)
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where

(19)

(20)

while both PD and are nei-
ther functions of nor .

Proof: Consider the 2-D signal

PD

PD

PD

PD

PD (21)

where the first equality is due to (11), the second equality
is due to (14), and the last equality is due to Lemma 1.
Since is a strict sense homogeneous random field,
its statistics are invariant to a shift of the origin. Hence, its
moments of any order are independent ofand but, rather,
are functions of coordinate differences.

III. PARAMETER ESTIMATION ALGORITHM

A. Estimation Procedure for a Nonzero Mean Amplitude Field

Consider the signal given by (2) and (3), whereis a
non-negative integer, which is assumed initially to be known.

We now present an algorithm for sequentially estimating the
parameters of the
2-D random amplitude polynomial phase signal, where it isa
priori known that the amplitude field has a nonzero mean.

Theorem 1 implies that applying times the operator
PD and times the operator PD to ,
followed by taking the expectation of the resulting signal, we
obtain the 2-D exponential (18). We can thus reduce any 2-D
nonhomogeneous, random-amplitude polynomial-phase signal,
whose phase is of total-degree , to a 2-D sinusoidal signal
whose frequency is . Hence, estimating using
any standard frequency estimation technique results in an
estimate of and . In this paper,
we estimate the frequency of the exponential using a search
for the maximum of the absolute value of the 2-D discrete
Fourier transform (2-D DFT) of the signal.

Note from (19) and (20) that the phase coefficients can be
estimated unambiguously (i.e., with no aliasing) as long as

(22)

and similarly for . However, since a parametric
model is fitted to the observed signal, the phase function itself
can be sampledunder the Nyquist rate because the phase
estimation is not performed through a waveform-based proce-
dure. Therefore, phase differences between adjacent samples
may be greater than rad without affecting the ability of
the algorithm to estimate the phase parameters, as long as
the constraint (22) is satisfied. In other words, the proposed
phase-estimation algorithm can perform very well when phase
aliasing due to low sampling and noise are present. This point
is further illustrated in Section VII.

Thus, having estimated and in (19) and (20), we have

(23)

and

(24)

which constitutes an estimate of two of the parameters of the
highest order layer of the phase model parameters (i.e.,
those ’s for which ).

Recall, however, that the layer has parameters
that need to be estimated. This can be achieved by repeating
the procedure described above, assuming some arbitrary, for
all such that . Note that this procedure results
in repeated estimation of some of the phase parameters. Let

(25)

denote the estimatedth layer of the phase function.
Multiplying by results in

a new random amplitude polynomial phase signal whose
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total degree is . By applying to the resulting signal a
procedure similar to the one used to estimate the parameters
of the layer, we obtain an estimate of the
parameters in the layer. Multiplying the 2-D random-
amplitude polynomial phase signal of total degree, which
was obtained in the previous step, by ,
we obtain a new random-amplitude polynomial-phase signal
whose total degree is .

In general, let denote the 2-D signal where
denotes thecurrent total degree of its phase poly-

nomial. The phase parameters are sequentially estimated,
layer after layer, for all . For each layer, the
algorithm is a two-stage procedure. In the first stage, the
parameters of layer are estimated by finding, for all

, the maxima of the absolute value of the DFT of
PD . In the second stage, the already-
reduced order 2-D random-amplitude polynomial phase signal
is multiplied by .

Using this procedure, we obtain estimates for all the phase
parameters except . The signal resulting from this
processing is denoted by . If the amplitude field

is known to be positive for all (e.g., the
amplitude field is exponentially distributed) then, by taking the
average of the imaginary part of the logarithm of ,
we obtain an estimate for . In general, the amplitude
field can assume both negative and positive values. Hence,

can only be estimated up to a magnitudefactor.
More specifically, we assume that . Thus, let

Im Im
Im Im

(26)

Taking the average of , we obtain an estimate
for . We have thus completed the estimation of all
the coefficients of the 2-D phase polynomial of total degree

. It should be noted that if the amplitude is positive, the
estimation algorithm of the phase parameters isidentical to
the algorithm derived in [8] forconstantamplitude polynomial
phase signals, even though here we are dealing withrandom
amplitudes. The estimation problem when is a zero
mean random field is discussed in Section III-B.

Once the phase parameters were estimated, the random
amplitude of the polynomial phase signal is obtained by multi-
plying the observed signal by , where is the
estimated phase. Since is a homogeneous random
field, its parameters can be estimated using any standard
algorithm (see, e.g., [14] for the case where is
an autoregressive field and [16] for the case where
is a moving-average field).

Finally, we note that for a 2-D random amplitude
polynomial phase signal of total degree
PD is neither a function of nor . As
we show in Section VI, the CRB on the phase parameters
is independent of their values. These two properties allow
for relatively simple order estimation in cases where the
polynomial total degree is unknown, but the amplitude field
is a priori known to be Gaussian. Assume an arbitrary upper

bound on the total degree. In the presence of observation
noise, we decide that whenever is not
considerably higher thanCRB .

B. Estimating the Parameters of Signals
with a Zero Mean Amplitude

Adopting the approach described above for the case of
signals with zero mean amplitude yields estimates of all the
phase parameters except and the first layer parameters

and . To see this, consider a zero-mean random
amplitude polynomial phase signal whose total degree is 1, i.e.,

(27)
Since is a zero mean random field, applying to
this random-amplitude exponential signal the MPD operator
PD results in a zero signal for all and . Hence,
the algorithm proposed for estimating the parameters of higher
layers is useless in the case where . We must
therefore resort to an alternative algorithm for estimating these
parameters. Next, we redefine the operatorPD to avoid
this problem.

Definition 4: Let and be some strictly positive inte-
gers. Define

PD (28)

For the case in which is a random-amplitude
polynomial phase signal of total degree 1, we have that

PD

(29)

Since is strict sense homogeneous,
is neither a function of nor .

Hence,PD is a constant amplitude exponen-
tial whose frequency is . The exponential
frequency can be estimated using any standard frequency
estimation technique. Finally, is estimated using the
procedure that was described in Section III-A for a random
amplitude field that is not necessarily positive. The algorithm
for the case of a zero-mean amplitude is summarized in
Table I.

IV. ESTIMATION OF THE OBSERVED SIGNAL MOMENTS

The algorithms presented in Section III are formulated in
terms of high-order moments of . In this section,
we address the problem of estimating the moments of this
nonhomogeneous field when only a finite single observed
realization of the field is available. Clearly, since the field is
nonhomogeneous, it is also nonergodic. Hence, a straightfor-
ward replacement of ensemble averages by spatial averages is
impossible.

More specifically, we are interested in estimating
PD
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TABLE I
ESTIMATION ALGORITHM FOR A ZERO-MEAN AMPLITUDE FIELD

. From Theorem 1, we have that

PD PD

(30)

The term PD of (30) is a high-
order moment of a strict sense homogeneous and ergodic
random field. Therefore, it can be consistently estimated by
replacing the ensemble average with sample average. Hence

PD

PD

PD

(31)

where the last equality can be verified by following the steps
of the proof of Theorem 1 with thePD operator replaced by
the PD operator. Thus, an estimate ofPD

is given by

PD

PD

PD

(32)

Note that (32) is the 2-D Fourier series expansion of

PD . The series has a single term. The co-
efficient of this term is the 2-D Fourier transform applied to the
signal PD , evaluated at some frequency

, and scaled by a constant. Since and are
unknown, this expression has to be evaluated for all .

Thus, in the estimation algorithm, we replace the MPD

operatorPD, which is using ensemble moments, with thePD
operator, which is using sample moments. More specifically,
the step in which we evaluate is now replaced by

DFT PD

(33)

Using the definition of the DFT, it can be verified that
the maximization in (33) is achieved when the abso-
lute value of the single coefficient in the Fourier se-

ries expansion of PD is maxi-
mized. In other words, evaluating the Fourier transform of
PD for all and setting

DFT PD

(34)

is equivalent to estimating using (33). In conclusion,
when only a single realization of the field is observed,
and are estimated by finding the maxima of the DFT
of PD . Substitution of the estimates
into (23) and (24) provides the desired estimates of the
polynomial phase parameters.

Using the derivation of thePD estimator in (31) and (32),
it is clear that since is a strict-sense homogeneous
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and ergodic random field

PD

PD (35)

which is (see Theorem 1) aconstantamplitude exponential
with the correct frequency . In other words, the ergod-
icity of guarantees that as and

. Note, however, that when the dimensions
of the observed field are finite, in order for to be
correctly estimated, the Fourier series coefficient in (32) has
to be nonzero and slowly varying relative to . Clearly,
these requirements are satisfied when the mean component
of the amplitude signal is larger than its standard deviation.
Furthermore, the foregoing discussion implies that even in
cases where the amplitude field is nonergodic, but the
coefficient in (32) is nonzero and slowly varying as a function
of frequency, the phase parameters are correctly estimated,
despite the violation of the ergodicity assumption.

An alternative view point of the motivation in adopting the
statistic PD in (34) is the following:
From the derivation of the estimator and the proof of Theorem
1, it is clear that the weighting term

in (31) and (32) suppresses the oscillatory behavior
of the sample moment. Since in our application we are
interested in detecting the frequency of this oscillation and
not in estimating the moments themselves, we shall use the
statistic PD , which is expected to
demonstrate an oscillatory behavior.

Since the principle of operation of the MPD operator
PD and that ofPD are identical (except that
the first employs conjugated products, whereas the later uses
unconjugated products for fields with a zero mean amplitude),
the foregoing conclusions hold also for the problem of esti-
matingPD from a single observed realization
of a 2-D signal of total-degree one. Hence, when the
algorithm summarized in Table I is applied in practice, thePD
operators should be replaced by PD operators as concluded
from (34).

V. ESTIMATION IN THE PRESENCE OFOBSERVATION NOISE

In Theorem 1, it is proved that in the absence of observation
noise, the signalPD is a 2-D exponential
given by (18)–(20). Next, we show that a similar result holds
for the more general case in which the observed signal consists
of the sum of a random amplitude polynomial phase signal and
additive white Gaussian noise (1)–(3).

Theorem 2: Let PD be the 2-D sig-
nal obtained by successively applying, in some arbitrary
sequence, times the operator PD and times
the operator PD to the signal (1). Then, the signal
PD is the same 2-D exponential given by
(18), i.e.,

PD

PD

(36)

where and are given by (19) and (20), respectively. Both
PD and are neither functions
of nor .

Proof: Consider the 2-D signal PD .
From the recursive definition of the PD operator in Definition
1, as well as from (16), we note that for any complex valued
field

PD

(37)

Therefore, each shifted version of the
observed signal that appears in the product forms generated
by applying the operator PD to , is either
conjugated or unconjugated butneverappears in both forms
for any or . Because is a circular Gaussian
white noise field, for any positive , and

, unless ,
and . Moreover, since is circular Gaussian and
zero mean, all of its high-order moments can be expressed as
functions of its second-order moments. Recall that

. Because and are
independent, and the second-order moments of shifted versions
of never involve both conjugated and unconjugated
versions of the same sample, we conclude that all terms that
involve high-order moments of vanish. Hence

PD PD

(38)

We therefore conclude that the estimation algorithm derived
in Section III can be appliedmutatis mutandisto the estimation
problem in the case of noisy observations. Moreover, follow-
ing the arguments of Section IV, we conclude that by replacing
ensemble averages with sample averages (i.e., replacing the
PD operators by PD operators), the same algorithm can be
applied when only a single noisy realization of the observed
field is available.

VI. CRB OF A 2-D RANDOM AMPLITUDE

POLYNOMIAL PHASE SIGNAL IN NOISE

In this section, we derive the CRB on the variance of the
error in estimating the amplitude and phase parameters when
the signal is observed in white additive Gaussian noise, i.e., the
observed field is given by (1)–(3). The amplitude

is assumed to be a real-valued, Gaussian field.

A. Problem Formulation

Define

(39)
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The vector is similarly defined. Let all the phase parameters
of be assembled, layer by layer, into a vector

(40)

where we use “;” to distinguish layer from layer. Hence,is
an dimensional vector.

In addition, let be an matrix such that each row
of contains a pair of indices , where

, and the rows are lexicographically ordered,
i.e.,

(41)

We will use the following shorthand vector notation for
functions of space: Given a scalar function , we
denote the column vector consisting of the values of

by . Using
this notation, we denote the vector of phase values of the
signal by . Hence, we can define diag

diag , where and are -
dimensional column vectors.

Let Re Im . In a
similar way, we define the noise vector. In this derivation,
it is assumed that the amplitude field has a constant mean
denoted by . The covariance matrix of the vector
is denoted by and is assumed to have some known
parametric form, where is the parameter vector. At the
moment, we will not specify the functional dependence of

on , but rather leave it implicit. As an example, we may
assume that it is the covariance matrix of a finite-dimensional
moving-average (MA) field parameterized by the MA model
coefficients.

The observation noise is an additive complex
valued, zero mean, circular white Gaussian noise of unknown
variance . Hence, the noise field can be written as

, with , and being
independent, identically distributed, real-valued white Gauss-
ian noise fields, with variance each. Both and

are assumed to be independent of the amplitude
function .

Finally, we collect all of the unknown parameters into a
single vector , such that

(42)

The problem considered in this section can now be stated as
follows. Given the measurements , how accurately
can the parameter vector be estimated?

B. Derivation of the CRB

Rewriting the measurements equation (1) in a vector form
using real quantities only, we have

(43)

Since , , and are Gaussian and independent,is
Gaussian as well. Let denote the mean vector of, let

denote its covariance matrix, and let

(44)

Thus

(45)

and

(46)

where is an -dimensional column vector of ones,
and is a identity matrix.

Let

(47)

(48)

where and are -dimensional and -dimensional
column vectors of ones, respectively, andis the Kronecker
product. In other words, is the first column of , and is
its second column. Define

diag (49)

and similarly

diag (50)

Let denote the log-likelihood function of the observation
vector . The general expression for the Fisher information
matrix (FIM) of a real valued Gaussian process is given by
(e.g., [15])

tr (51)

To evaluate (51), we need to compute the derivatives of
and with respect to the various parameters of interest:

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)
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We thus immediately conclude that

(60)

and

(61)

Taking the partial derivatives with respect to the phase param-
eters yields

(62)

where we define

(63)

(64)

Substituting (62) into (53) and (57), we have

(65)

(66)

Next, we will use the following identities:

(67)

(68)

(69)

(70)

(71)

(72)

Using (46) and the matrix inversion lemma (e.g., [8]), we
find that

(73)

where the second equality results from (67), and we define

(74)

Using (73) and (66), we have that

(75)

where the third equality results from (67) and (70). Similarly,
using (73) and (58), we have that

(76)

Using (51) and (54), we have

tr

tr

tr

tr

tr

tr

(77)

where we have used (70) and the commutative property of the
trace operator. Using similar arguments, we also have

tr

tr

tr

tr

tr

tr

tr

tr

tr
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tr

tr

tr

tr

tr

tr

tr

tr (78)

where we have used (67) and (70); the commutative property
of the trace operator; the symmetric property of ,
and ; and the diagonality of and . The last
equality is due to (72).

Using (52), (56), (65), and (70), we have

(79)

Additionally, using (52), (56), and (67), we find that

(80)

Using (54), (67), the trace operator commutative property,
the invariance of the trace operator to transposition, and the

symmetric property of and , we obtain

tr

tr

tr

tr

tr

tr

tr (81)

Finally, substituting (55), (59) and (75) into (51) while using
(70), and the commutativity of the trace operator, gives

tr

tr

tr

tr

tr

tr

(82)

In addition

tr

tr

tr

tr

tr tr

tr (83)
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The FIM entry that corresponds to the noise parameter is given
by

tr tr

tr

tr tr (84)

We can now summarize our observations regarding the CRB
for a 2-D random amplitude polynomial phase signal. The
bounds on the parameter estimates of the phase, the amplitude
mean, and the parameter vectorof the amplitude covariance
function are mutually decoupled. Moreover, the elements of
the FIM are independent of the specific model of the amplitude
field since those of them which depend on the amplitude are
functions of its mean and covariance matrix only. Thus,
closed-form formulas for the CRB are obtained by substituting
into the expression for the amplitude field covariance
matrix, which is expressed in terms of the amplitude field
parameters. As an example, the expression for the covariance
matrix of a nonsymmetric half-plane 2-D moving average field
is derived in [16].

Because the CRB for the phase is decoupled from the bound
on the amplitude and noise parameters, it can be obtained
by inverting (78). The CRB for the phase parameters is
independent of the specific parametric model used for the
covariance of the amplitude field, as well as of the specific
values of the phase parameters. Thus, all signals whose phase
is of some total degree , and whose amplitude have the
same mean and covariance functions, will have identical
values for the CRB on the phase parameters. The bounds
on the amplitude parameters and the noise variance are both
independent and decoupled from the phase.

The bound on the mean of the amplitude field is decoupled
from the bounds on the other parameters. It is a function only
of the amplitude covariance and the observation noise vari-
ance. The CRB on the parameters of the amplitude covariance
is independent of the phase function and of the amplitude mean
but is a function of the observation noise variance and the
amplitude covariance. Note that the FIM block corresponding
to the parameters of the amplitude covariance and the obser-
vation noise isidentical to the block we would have obtained
if the amplitude field was not modulated by . Hence,
the CRB for these amplitude parameters is the same as if the
modulation by was not present. Similarly, the bound
on the noise variance is also decoupled from the bounds on the
phase and mean and is identical to the bound obtained when
the modulation by is not present.

Finally, we note that in many cases, we are interested
not in the phase or amplitude parameters themselves but in
estimating some function of these parameters. For example,
having estimated the model parameters, the amplitude field
spectral density and the local phase and frequency functions

can be computed using their known functional dependence on
the (estimated) parameters. Next, we derive the CRB on the
local phase and frequency functions.

Since the local phase defined in (3) is a differentiable func-
tion of the phase parameter vector, the CRB on is
related to the CRB of by (e.g., [17])

CRB CRB (85)

where

(86)

In the case of continuous index fields, the local spatial
frequencies are the partial derivatives of the local phase
function. Thus, assuming for a moment and to be
continuous variables, we have

(87)

and

(88)

Hence

CRB CRB (89)

where

(90)

and

(91)

Similarly

CRB CRB (92)

where

(93)
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and

(94)

C. CRB for High SNR

In this section, we specialize the general results derived
in the previous section for the case where the measurements
of the signal are known have high SNR. In other words, we
assume here that . Hence, a first-order approximation
of yields

(95)

Thus, (74) can be approximated by

(96)

Substituting (95) and (96) into the equations of the nonzero
elements of the FIM yields the FIM for the high SNR case. In
particular, substituting (95) into (78), we have

tr

tr

tr

(97)

where the third equality is due to the diagonality of
and since all the elements of the main diagonal of
are equal to . Here, denotes the variance

of the amplitude field. Let SNR denote the
signal-to-noise ratio. Using (97), we conclude that for high
SNR scenarios, the CRB on the error variance in estimating
the phase parameters is inversely proportional to the SNR.

Substituting (95) into (80), we get

(98)

Using (58) and (96), we have

(99)

where the last equality follows from (67) and (68). Hence

tr

tr (100)

Note that (100) isidentical to the expression we would
have obtained if the amplitude field was zero-mean and was
measured directly (i.e., if the modulation by did
not take place and the observations were noise free). Thus,
we can use here any available expression for the FIM of a
real valued, zero mean, homogeneous Gaussian random field.
For example, if the amplitude was a nonsymmetric half-plane
(NSHP) moving average field, we could use the expressions
derived in [16].

The FIM entry that corresponds to the noise parameter is
given by

tr

tr

tr

tr

tr tr

tr (101)

Similarly

tr

tr

tr

tr (102)
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Fig. 2. True phase function of the observed signal.

Note that as tends to zero, the FIM block (97), which
corresponds to the phase parameters, becomes singular, and
hence, the phase of the signal can be perfectly estimated,
regardless of the structure of amplitude covariance matrix. This
result is due to the fact that in the absence of observation noise,
the phase of the measured signal can be obtained by
dividing the imaginary part of the measured signal by its real
part.

VII. N UMERICAL EXAMPLES

To illustrate the operation of the proposed algorithm, as
well as to gain more insight into its performance relative to
the CRB, we present numerical evaluation for some specific
examples.

Example 1: Consider a random amplitude polynomial
phase signal of total-degree 2. The amplitude is exponentially
distributed with parameter [i.e., the amplitude field
samples are i.i.d. random variables with probability density
function given by ]. The
observations are subject to an additive complex valued,
white Gaussian noise, such that the SNR dB.
In this case, the SNR is defined as SNR ,
where is the variance of the additive noise. In this
example, the observed field dimensions are
and . The phase coefficients are given by

.
The true phase function is shown in Fig. 2. Note the very

low sampling rate of this phase function (the phase-axis of
this figure is measured in radians, and the dimensions of the
sampling grid are ). Many of the existing phase
estimation and restoration algorithms are adversely affected by
insufficient spatial sampling (with respect to the instantaneous
frequency) and noise; see, e.g., [12].

Since the amplitude field is positive, we employ the estima-
tion algorithm derived in Section III-A. Next, we illustrate the
steps of the estimation algorithm. Since the polynomial phase
total-degree is 2, we start by estimating the parameters of layer
2. In the first step of the algorithm, we have and .
Hence, applying the operator PD to the observed
signal, we obtain the signal denoted by , which is
(approximately, due to the noise) a 2-D random-amplitude
polynomial phase signal of total-degree 1, i.e., a 2-D random-
amplitude exponential. The absolute value of this signal (which
is the amplitude field, except for the contributions of the
observation noise) is shown in the left image of Fig. 3. The
absolute value of the signal DFT is shown in the right-hand
side of the same figure. Note that although the observed field
is undersampled and the noise level is high, applying the
proposed operator to the observed signal results in a prominent
spectral peak. Estimating the spatial frequency of the spectral
peak results in the estimates of and .

Repeating the same procedure for and ,
i.e., applying the operator PD to the observed signal,
we obtain another 2-D random amplitude exponential signal.
Estimating the spatial frequency of the spectral peak results
in the estimates of and . We have therefore
obtained estimates for all three parameters of layer 2. Mul-
tiplying by , we obtain a new, ap-
proximately polynomial-phase signal with random amplitude

, whose total degree is 1. Since in this iteration
and , the parameters and of layer 1 are

estimated by finding the spatial frequency of the peak of the 2-
D signal DFT. Multiplying by ,
we obtain the signal , whose total degree is 0. The
coefficient can now be computed as the arithmetic
average of the imaginary part of the logarithm of .
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Fig. 3. Two-dimensional random amplitudepolynomial phase signal after applying the operator PD
n ;m

to the observed signal of total-degree 2.

(In this iteration,s = 1, p = 0, and the signal is the observed signaly
(2)(n;m)). Left: Absolute value of the resulting 2-D signal. Right: Absolute

value of the resulting 2-D signal DFT.

Thus, we have completed the estimation of all the phase
parameters of the observed 2-D nonhomogeneous signal.

Example 2: In this example, we illustrate the performance
of the algorithm by Monte Carlo simulations. We analyze
the bias and the variance of the estimates obtained by the
algorithm and compare them with the CRB, which was derived
in Section VI-C, under the high SNR assumption.

In these examples, the observation noise is a complex
valued, zero mean, white Gaussian noise, and we investigate
the performance of the algorithm as a function of the SNR.
The random amplitude of the polynomial phase signal is a 2-D
Gaussian, NSHP moving average field, with mean equal to 10.
The NSHP moving average model has an support.

The Fourier transform of the covariance function of the
MA field is depicted in Fig. 4. For this field, the ratio

. The phase function of the 2-
D signal is of total-degree 2. The phase parameter vector is
given by
The observed field dimensions are . The experimental
results are based on 300 independent realizations of the
observed signal for each SNR value. Note that here, the SNR
is defined as SNR , where is the
MA field variance, and is the variance of the additive noise.
In this example, the SNR varies by changing the observation
noise variance from experiment to experiment, whereas
and are held fixed.

In order to demonstrate the crucial importance of the choice
of the algorithm parameters and , we have repeated
the Monte Carlo experiments for two different sets of these
parameters. In the first case, and were chosen to
be relatively large . These parameters
were set to small values in the second experiment, where we

chose . The Monte Carlo simulations indicate
that the estimator proposed in Section III-A yields unbiased
estimates of the phase parameters, as the experimental bias is
considerably smaller than the experimental standard deviation
[except for the estimates of , which are slightly biased].
The estimation error variance can therefore be compared with
the CRB derived in Section VI. (The CRB provides the lower
bound on the error variance for any unbiased estimator of the
problem parameters). A comparison of the Monte Carlo results
with the CRB, which is computed assuming a high SNR, is
depicted in Fig. 5. The experimental results for the selection
of and (dashed-dotted line), indicate that the
phase estimates are 7–10 dB above the high SNR CRB. Note
that this result holds for low SNR values as well, although
the high SNR assumption used to compute the bound is not
valid anymore, and the bound should be considered to be an
optimistic one. However, for the selection of , the
phase estimates are nearly 30 dB above the high SNR CRB
(dashed lines).

To further investigate the problem of choosing the algorithm
parameters and and the dependence of the selection rule
on the dimensions of the observed field, we have repeated
the foregoing Monte Carlo experiments for a much smaller
observed field. In this set of experiments, only a
segment of the the field is observed. The Monte Carlo simula-
tions were carried out for two different sets of and .
In the first case, we chose as in the first
part of this example. In the second experiment, we chose

. Note that high values of and cannot be
used due to the small dimensions of the observed field. In these
experiments, as well, the Monte Carlo simulations indicate
that the estimator proposed in Section III-A yields unbiased
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Fig. 4. Fourier transform of the MA field covariance function.

Fig. 5. Performance of the random amplitudepolynomial phase signal es-
timation algorithm for a100 � 100 observed field. Solid lines denote the
CRB assuming the SNR is high, dashed-dotted lines denote the experimental
variance of the estimates for�n =

N

2
and �m =

M

2
, while dashed lines

denote the experimental variance of the estimates for�n = �m = 1.

estimates of the phase parameters, as the experimental bias is
considerably smaller than the experimental standard deviation
[except for the estimates of , which are slightly biased].
A comparison of the Monte Carlo results with the CRB that
is computed assuming a high SNR is depicted in Fig. 6. The
experimental results indicate that for a small observed field,
better estimation results are obtained by choosing low values
for and , contrary to the situation when the dimensions
of the observed field are large.

Analysis of the performance of the proposed algorithm is
beyond the scope of this paper. Such an analysis would provide

Fig. 6. Performance of the random amplitude polynomial phase signal
estimation algorithm for a30 � 30 observed field. Solid lines denote the
CRB, assuming the SNR is high, dashed-dotted lines denote the experimental
variance of the estimates for�n = �m = 4, while dashed lines denote the
experimental variance of the estimates for�n = �m = 1.

an answer to the question of how to choose the algorithm
parameters and as a function of the statistical properties
of the amplitude field, the phase function, and the dimensions
of the observed field. (Refer to [11] and [18] for detailed
analyzes of this problem in the cases of 2-D and 1-Dconstant
amplitude polynomial phase signals, respectively). Based on
Theorem 1, and the derivation of the CRB, it is clear however,
that while the high SNR CRB for the phase parameters is
a function of SNR only, the performance of the proposed
algorithm is a function of the power of the high-order moments
of the field. Hence, given two amplitude fields of identical
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power, (and, hence, identical high SNR CRB in the Gaussian
case), the performance of the algorithm when the amplitude is
a zero mean field would be inferior to its performance when the
amplitude field is positive. In the case of a Gaussian amplitude,
the performance of the algorithm is strongly related to the rate
of decay of the field autocorrelation function since fast decay
of this function will enforce the choice of low values for
and . Our experimental results indicate that such a choice
will lead to less accurate estimates of the phase parameters.

VIII. C ONCLUSION

In this paper, we presented a simple-to-implement and com-
putationally efficient estimation algorithm for the parameters
of 2-D signals with random amplitude and polynomial phase.
The algorithm is based on the properties of the mean phase
difference operator, which is introduced and analyzed. Assum-
ing that the signal is observed in additive white Gaussian noise
and that the amplitude field is Gaussian as well, we derived
the Craḿer–Rao lower bound on the error variance in jointly
estimating the model parameters.

The performance of the algorithm in the presence of additive
white Gaussian noise is illustrated by numerical examples and
compared with the Craḿer–Rao bound. In cases where the
high-order moments of the amplitude field are not decaying
too rapidly, the parameter estimates are shown to be unbiased,
and the estimation error variance is shown to be close to the
Craḿer–Rao bound. From the examples shown, we conclude
that the proposed phase estimation algorithm is quite robust in
the presence of phase aliasing due to both low sampling rates
and noise, as long as the true phase function is a continuous
function of the coordinates. Since the phase model is inherently
smooth, the proposed algorithm is not affected by the
ambiguities of the phase function.
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