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of Discrete Homogeneous Random
Fields with Mixed Spectral Distributions
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Abstract—This paper presents a maximum-likelihood solution
to the general problem of fitting a parametric model to observa-
tions from a single realization of a real valued, 2-D, homogeneous
random field with mixed spectral distribution. On the basis of a
2-D Wold-like decomposition, the field is represented as a sum
of mutually orthogonal components of three types: purely inde-
terministic, harmonic, and evanescent. The proposed algorithm
provides a complete solution to the joint estimation problem
of the random field components. By introducing appropriate
parameter transformations, the highly nonlinear least-squares
problem that results from the maximization of the likelihood
function is transformed into a separable least-squares problem. In
this new problem, the solution for the unknown spectral supports
of the harmonic and evanescent components reduces the problem
of solving for the transformed parameters of the field to linear
least squares. Solution of the transformation equations provides
a complete solution of the field model parameter estimation
problem.

I. INTRODUCTION

In this paper, we consider the problem of fitting a parametric
model to observations from a single realization of a two-
dimensional (2-D) real valued discrete and homogeneous
random field with mixed spectral distribution. This fundamen-
tal problem is of great theoretical and practical importance.
It arises quite naturally in terms of the texture estimation of
images [10], [11], as well as in several areas of radar, sonar,
and seismic signal processing.

The general problem of random fields’ parameter estimation
has received considerable attention. Most approaches reported
to date fall into one of two categories. They either try
to fit noise-driven linear models (2-D autoregressive (AR),
moving average (MA), or autoregressive moving average
(ARMA)) to the observed field, or they treat the special case
of estimation of the parameters of sinusoidal signals in white
noise. Noise-driven linear models have absolutely continuous
spectral distribution functions and, hence, are inappropriate
for the general problem considered here. Parameter estimation
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techniques of sinusoidal signals in additive white noise include
the periodogram-based approximation (applicable for widely
spaced sinusoids) to the maximum likelihood (ML) solution
[7], extensions to the Pisarenko harmonic decomposition [4],
or the singular value decomposition (SVD) [5]. These methods
rely heavily on the white noise assumption and are therefore
not applicable here since in our more general setting, the noise
is colored and a priori unknown.

An early discussion on the problem of analyzing 2-D homo-
geneous random fields with discontinuous spectral distribution
functions can be found in [8]. There, harmonic analysis is
employed to analyze the long-lag sample covariances since
for such lags, the contribution of the purely indeterministic
component is assumed to be insignificant. In this framework,
the detection problem for a special class of evanescent fields is
also discussed. The idea in [8] is to first test for the existence
of the deterministic components. If such components are
detected, their parameters are estimated, and their contribution
to the sample covariances is removed. Next, the spectral
density function of the purely indeterministic component can
be estimated from the “corrected” sample covariances. In [10],
a similar periodogram-based approach was used. Note that
covariance-based estimation procedures must assume knowl-
edge of the true covariances. If these are unknown, substituting
them with the sample covariances is incorrect since it is
well known [13] that even under the Gaussian assumption,
the sample covariances are not consistent estimates of the
covariance function if the spectral distribution function has
discontinuities.

The 2-D Wold-like decomposition [1] implies that any 2-
D regular and homogeneous discrete random field can be
represented as a sum of two mutually orthogonal components:
a purely indeterministic field and a deterministic one. The
deterministic component is further orthogonally decomposed
into a harmonic field and a countable number of mutually
orthogonal evanescent fields. This decomposition results in a
corresponding decomposition of the spectral measure of the
regular random field into a countable sum of mutually singular
spectral measures. The spectral distribution function of the
purely indeterministic component is absolutely continuous,
whereas the spectral measure of the deterministic component is
singular with respect to the Lebesgue measure, and therefore,
it is concentrated on a set of Lebesgue measure zero in the fre-
quency plane. For practical applications, the “spectral density
function” of the regular field’s deterministic component can be
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assumed to have the form of a countable sum of 1-D and 2-D
delta functions. The 1-D delta functions are singular functions
that are supported on curves in the 2-D spectral domain. The
2-D delta functions are singular functions that are supported
on discrete points in the spectral domain.

In this paper, we consider the problem of estimating the
parameters of the different components of the decomposition
from a single realization of the field. In general, an unbiased
estimator of the field parameters will require joint estimation
of the parameters of the harmonic, evanescent, and purely
indeterministic components. We present a conditional ML
solution to this simultaneous parameter estimation problem
for the case in which the purely indeterministic component
is a real-valued Gaussian random field. The algorithm is a
two-stage procedure. In the first stage, we obtain suboptimal
initial estimates for the parameters of the spectral support of
the evanescent and harmonic components. The initial estimates
are obtained by solving the set of 2-D overdetermined normal
equations for the parameters of a high-order linear predictor
of the observed data. In the second stage, we refine these
initial estimates by iterative maximization of the conditional
likelihood of the observed data. This maximization requires
the solution of a highly nonlinear least-squares problem. By
introducing appropriate parameter transformations, the non-
linear least-squares problem is transformed into a separable
least-squares problem [15], {16]. In this new problem, the
solution for the unknown spectral supports of the harmonic
and evanescent components reduces the problem of solving
for the transformed parameters of the field to linear least
squares. Hence, the solution of the original least squares
problem becomes much simpler. Solution of the transformation
equations provides a complete solution of the field model
parameter estimation problem. The proposed method is useful
even when the separation between the spectral supports of
any two deterministic components is less than 1/N in each
dimension (for an N x N observed field).

The paper is organized as follows. In Section II, we briefly
summarize the results of the 2-D Wold-like decomposition,
which establishes the theoretical basis for the suggested solu-
tion. In Section III, we derive the solution for the conditional
ML estimation problem. We first present the solution assuming
the presence of only a single evanescent component with
partially known spectral support parameters. This solution is
then generalized to include all possible evanescent fields. In
Section IV, an algorithm for estimating the unknown spectral
support parameters of the evanescent and harmonic fields is
presented. Section V describes a solution to the problem of
estimating the parameters of the evanescent random fields. In
Section VI, we present some numerical examples to illustrate
the performance of the suggested algorithm.

1I. THE HOMOGENEOUS RANDOM FIELD MODEL

The presented random field model is derived based on the
results of the Wold-type decomposition of 2-D regular and
homogeneous random fields, [1]. In this section, we briefly
summarize the results of {1]. Let {y(n,m),(n,m) € 22},
be a real valued, regular, and homogeneous random field.
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Fig. 1.

RNSHP support.

Then, y(n,m) can be uniquely represented by the orthogonal
decomposition

y(n,m) = w(n,m) + v(n,m). (1)

The field {w(n, m)} is purely indeterministic and has a unique
white innovations driven moving average representation. The
field {v(n,m)} is a deterministic random field.

We call a 2-D deterministic random field {e,(n,m)}
evanescent w.r.t. the NSHP total-order o if it spans a Hilbert
space identical to the one spanned by its column-to-column
innovations at each coordinate (n,m) (w.r.t. the total-order
0). The deterministic field column-to-column innovation at
each coordinate (n,m) € Z2% is defined as the difference
between the actual value of the field and its projection on the
Hilbert space spanned by the deterministic field samples in
all previous columns.

It can be shown that it is possible to define a family of NSHP
total-order definitions such that the boundary line of the NSHP
has rational slope. Let «, 3 be two coprime integers such that
a # 0. The angle § of the slope is given by tan § = 3/«
(see, for example, Fig. 1). Each of these supports is called a
rational nonsymmetrical half-plane (RNSHP). We denote by
O the set of all possible RNSHP definitions on the 2-D lattice
(i.e., the set of all NSHP definitions in which the boundary
line of the NSHP has rational slope). The introduction of
the family of RNSHP total-ordering definitions results in the
following countably infinite orthogonal decomposition of the
deterministic component of the random field:

U(Tl,m) = p(n,m) + Z 6(a,ﬂ)(nvm)' 3
(a,8)€O

The random field {p(n,m)} is half-plane deterministic, i.e., it
has no column-to-column innovations w.r.t. any RNSHP total-
ordering definition. The field {e(,,g)(n,m)} is the evanescent
component that generates the column-to-column innovations
of the deterministic field w.r.t. the RNSHP total-ordering
definition («, ) € O.

Hence, if {y(n,m)} is a 2-D regular and homogeneous
random field, then y(n,m) can be uniquely represented by
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the orthogonal decomposition

y(n,m) = win,m) +p(n,m)+ Y e@p(nm). 3)
(a,8)€0

In this paper, all spectral measures are defined on the square
region K = [-1/2,1/2] x [-1/2,1/2]. It is shown in [1]
that the spectral measures of the decomposition components in
(3) are mutually singular. The spectral distribution function of
the purely indeterministic component is absolutely continuous,
whereas the spectral measures of the half-plane deterministic
component and all the evanescent components are concen-
trated on a set L of Lebesgue measure zero in K. Since,
for practical applications, we can exclude singular-continuous
spectral distribution functions from the framework of our
treatment, a model for the evanescent field that corresponds
to the RNSHP defined by («,3) € O is given by

€(a,3) (M, M)
7(eB) y(a 8)
_ Z s (na — mp) cos| 21 o 1 72 (nf + ma)
=1
s

+ £ (o — mp) sm(?w (nf+ ma)) e

+ 32
where the 1-D purely indeterministic processes {s( 2 )(na -
mB)}, {57 (na = mB)}, {t7 (ne = mP)}, {57 (na -
mf)} are mutually orthogonal for all i,7,k,£,i # 4,k #
¢, and for all i, the processes {s\“”(na — mB)} and
{tz(-o"ﬁ )(na — m/3)} have an identical autocorrelation function.
Hence, the “spectral density function” of each evanescent field
has the form of a countable sum of 1-D delta functions that
are supported on lines of rational slope in the 2-D spectral
domain.

Let n{®f = no — mpB. In the following, we assume
that the modulating 1-D processes {s\*?(n(®#)} and
{tgo‘ﬁ )(n("’ﬁ))} of each evanescent field can be modeled
by a finite order AR model, i.e.

y(@.B)

‘Z a{P (7)) () _ 1)

T=1

+ 657 (n(), ®)

5P (@) = —

and
(a B)

Z a(a,ﬂ
<§°‘ > (nl?) ©

where §§a’ﬁ)(n(“’ﬂ>), Ci(a’ﬂ)(n(aﬂ)) are independent 1-D
white innovation processes of identical variance.

One of the half-plane deterministic field components, which
is often found in physical problems, is the harmonic random
field

t(a \B) n(a,ﬂ) t(a \B) (n(a,ﬁ) )

P
= Z(Cp cos 2 (nw, + muy,)
p=1
+ Dy sin 27 (nwp, + muy,)) (7

h(n,m)
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where the C,’s and D,’s are mutually orthogonal random
variables, E[Cp)” = E[D,]* = 02, and (wy, 1) are the spatial
frequencies of the pth harmonic. In general, P is infinite. This
component generates the 2-D delta functions of the “spectral
density.” The parametric modeling of deterministic random
fields whose spectral measures are concentrated on curves,
other than lines of rational slope or discrete points in the
frequency plane, is still an open question to the best of our
knowledge.

As stated earlier, the most general model for the purely in-
deterministic component w(n,m) is the MA model. However,
if its spectral density function is strictly positive on the unit
bicircle and analytic in some neighborhood of it, a 2-D AR
representation for the purely indeterministic field exists as well
{11]. In the following, we assume that the above requirements
are satisfied. Hence, the purely indeterministic component AR
model is given by

w(n,m) = —

>

(0,0)<(k,¢)

b(k, Hwin —k,m — £) + u(n, m)

®)

where {u(n,m)} is the 2-D white innovations field, whose
variance is o2

III. THE CONDITIONAL ML ESTIMATOR

A. Problem Definition and Assumptions

The orthogonal decompositions of the previous section
imply that if we exclude from the framework of our model
those 2-D random fields whose spectral measures are concen-
trated on curves other than lines of rational slope, y(n,m)
is uniquely represented by y(n,m) = w(n,m) + h(n,m) +
> (.8)€0 E(enp)(n,m). Hence, in this paper, we concentrate
on a joint solution to the problem of estimating the parameters
of the harmonic and evanescent components of the field in
the presence of an unknown colored noise generated by the
purely indeterministic component and estimating the purely
indeterministic component parameters.

When expressed in the general form (7), the coefficients
{Cy, Dy} of the harmonic component are real-valued, mutu-
ally orthogonal random variables. However, since, in general,
only a single realization of the random field is observed, we
cannot infer anything about the variation of these coefficients
over different realizations. The best we can do is to estimate
the particular values that the C),’s and D,,’s take for the given
realization; in other words, we might as well treat the Cy’s
and D,’s as unknown constants.

‘We next state our assumptions and introduce some necessary
notations. Let {y(n,m)}, (n,m) € D where D = {(4,7) | 0 <
1< 8—-1,0 <j <T-—1} be the observed random field. Note,
however, that the observed field just as well could have any
arbitrary shape.

Assumption 1: The purely indeterministic component is a
real-valued Gaussian AR field whose model is given by (8)
with (k,7) € SN7M\{(O,O)}, where Sy = {(G,7) | ¢ =
0,0<7<Mpu{(ij)|1<i<N,-M<j< M} and
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N, M are a priori known. The driving noise of the AR model
is a white Gaussian field with zero mean and variance o>

Assumption 2: The number P of harmonic components in
(7) is a priori known. For all (o, ), the number I(®#) of
evanescent components in (4), is a priori known.

In the proposed algorithm, we take the approach of first
estimating a nonparametric representation of the 1-D purely
indeterministic processes {sga’ﬁ 3, {tle? )}, and only in a
second stage, the AR models of these processes are estimated.
Hence, in the first stage, we estimate the particular values that
the processes take for the given realization, i.e., we treat these
as unknown constants.

Let us define the following matrix notations:

wZ [W(N,M),...,u(N,T —1- M),
wN+1,M),...,u(N+1,T-1-M),...,
w(S-1,T—1-M)". 9)

The vector y is similarly defined. (See (10) at the bottom of
the page.) In addition, we set (11) at the bottom of the page,
and Ef = Re{E;},El = Im{E;}.
b= w[b(071),....,b(O,M),b(LfM),...,b(l,M),...,
b(Na_M)v'-'vb(NvM)}T' (12)

In order to simplify the presentation and keep the nota-
tions as simple as possible, we first restrict our attention
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to the case in which it is a priori known that (a,8) =
(1,0). The more general problem of estimating the field
parameters in the presence of evanescent fields that are char-
acterized by unknown («, ) parameters is discussed subse-
quently.

B. The Conditional MLE in the Presence of
a Single Evanescent Component with Known
Spectral Support Orientation Parameters

The problem faced in this section is the parameter estimation
of the harmonic and evanescent components (those of (c, 3) =
(1,0)) of the field in the presence of an unknown colored noise
generated by the purely indeterministic component, jointly
with the estimation of the purely indeterministic component

parameters.
To further simplify the presentation of this section, we shall
describe the solution for /(19 = 1, ie, in 4), i = 1.

Hence, in the following, we omit all the subindices 7. Thus,
the parameters to be estimated are {Cp,wp, 1} 1,
S— 5—
V(l’o)v {3(1’0)(n)}n:é7 {t(l’o) (n) n:(1)9 {b(kv z)}(k,ﬂ)ESN,M ) 02'
We denote this vector of unknown parameters by 0.
Since u(n,m) is assumed to be Gaussian

p(Y;0, D\Dy) = p(U)

[ :I/(NvM_l) U(N,O) U(N_LQM) y(N—l,O)
y(N, M) y(N, 1) y(N —1,2M +1)
Y2 | yNT-M-2) y(N,T—1-2M) y(N—1,T—1) y(N = 1,7 —1—2M)
y(N+1L,M-1) y(N +1,0) y(N,2M) y(N,0)
ly(S —1,T - M —2) y(S—1,T—-1—-2M)
y(0,2M) (0,0) 1
y(0,1)
y(0,7 - 1) y(0,T — 1 —2M) (10)
y(1,2M) y(1,0)
y(S—-1-N,T-1) y(S—l—N,T—l—?M)_
r 6j27r[Nm1+Mul] ej27r[Nu;2+Mug] €j27T[NWP+Ml/P] -‘
ej27r[Nw1+(ATflfM)V1] eer[Nwz-f—(T—l—M)ug]
Es é 6j27r[(]v+1)w1+2t1v1] ej27r[(N+l)w2+MI/2} (11)

_ej27r[(5—1)wllr(T—1—M)u1]

ei2m((S=1)wp+(T~1=M)wr] |
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1
= (V2r0)D1]

S—1T—-1-M
S

n=N m=M
(13)
The conditional MLE of 8 is found by maximizing (13) or,
equivalently, by minimizing J(6) = > (, . ep, u?(n,m),
where Dy = {(i,j) IN<i<S—-1,M<j<T-1-M},
and D\ D; is the set of required initial conditions. Thus, only
actually occurring values of the observed field are used in
the estimation procedure. Using this method, we sum the
squares of only |D;| values of u(n,m), but this slight loss
of information will be unimportant if the size of the observed
field |Dj is large enough.
Let S'n o = Swn,m\{(0,0)}. Using the derivation pre-
sented in Appendix A, u(n,m) is given by

>

(k,0)ES N, M

u(n,m) = y(n,m) + b(k,O)y(n — k,m —£)

P
- Z iy €08 27 (nwy, + muy)
p=1
P
- Z u; sin 2m(nw, + muyp)
p=1
— 0t (n) cos 2 10m,

—n?(n) sin 2000 0m (n,m)e Dy (14)

where we define the following systems of transformations:
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We next show that transformations (15) and (16) are one to
one. Let B(e*™,e7™) = 30 ycqy ,, bk, £)e™ 72k VD),
The assumptions made in the previous section as to the
properties of the spectral density function of the purely in-
deterministic field imply that the field AR model is such
that B(zy, #z2) is minimum phase. (We assume that the finite
support B(z1,27) defined here retains this property of the
infinite support filter.) Thus, B(e’?™,¢/2™) is nonzero on
the unit bicircle and, in particular, at the frequencies of the
harmonic components. Since the AR model coefficients are
real, we conclude that 37 s, b(k,{)cos2m(kw + {v)
and 3 pesy ,, (K, ) sin 2m(kw + £v), which are the real
and imaginary parts of B(e?2™ ¢I27) are both nonzero at
the frequencies of the harmonic components. Rewriting the
system (15) in a matrix form for each p, we get (17), which
appears at the bottom of the page. It is easily verified that
the determinant of the transformation matrix in (17) is strictly
positive. Hence, the transformation (15) is one-to-one.

Define

GUO (k) & {Ze "o b(0,£) cos 2mly(1L0) k=0
S bk ) cos2rtrO 1<k < N’
(18a)
HEO (k) 2 {Zz o b(0,£) sin 2rfp(H0) k=0
1 _ar b(k,£)sin 210 1 <k < N.
(18b)

Let us rewrite (16a) as

M

7 Z b(0, £)sH9 (n) cos 2m 0
mEC, ST bk, ) cos2m(kw, + ) -
(R OESN, M + Z Z bk, £)s0 (n )cosZm@u(l’o)}
- D, > bk, 0)sin2m(kw, + L) (15a) k leé—f
(k,)ESN,
A o - Z b(0, £)tH (n) sin 2rfp (L0
uf, =G, Z b(k,£) sin 27 (kwy, + fvp) =0
(k,0)€SNn 1 N M
1,0 : 1,0
+D, S bk, 0)cos2m(hw, + €v,) (15b) > > bk, Ot (n — k) sin 2t >}
v k=1t=—M N
= [sEOn)GH90) + Y O (k)50 (n — k)
n'(n) = Z bk, £)sH0 (n — k) cos 2wt/ 0 { kz::]_
k)ES, N
B — | OO0 (0) + 3 HOO 1) ~ k)
- Z bk, £)t50 (n — k) sin 27010 n
(kae)ESN,M N k=1
n?(n) 2 Z bk, £)sHY (n — k) sin 270010 k=0
(k’l)ESN,M N
- HEO W0k
+ > bk, OtV (n—k)cos2etr 0. (16b) kz=o (R)E-2n =),
(kSN M n=~N,...,5-1. (19)
(p%) _ (E(k,z)esw,m b(k, ) cgsZw(ka T ) =Yk yesyy 00k, £) sin2m(kwy, + Eup)> (Cp> an
ty Z(k,é}eSN,M b(k, £) sin 27 (kw, + Lvp) Z(M)GSN,M b(k, £) cos 2m (kw, + Lvyp) D,
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In a similar way, we obtain
N

() = Y HOO(E)s ) (n — k)
k=0

N
+ ZG(I’O)(k)t(l’O)(n -k), n=N,...,S—1.
k=0

(20

Using (19) and (20), it is clear that the transformation system
(16) is one-to-one, given N initial values of the processes
{519 (n)} and {10 (n)}, since each newly introduced pair
s0(n), 100 (n), n = N,..., 8 — 1 results in a unique
pair n'(n),n?(n). Conversely, given these initial values, the
solution for the values of s (n), t1:D(n) n=N,..., S~
1, using the transformed values 7' (n),n?(n), is reduced to a
recursive solution (in n) of systems of two equations with two
unknowns.

Let
r ejQWMV(l'D)
ej27r(M+1)1/(l’O)
W= : 21
ej27r(T—1.~M)1/<1‘0)
'W
w 0
Ec, = W _ (22)
0 .
L w
and Ef}(l,o) = Re{Ee(m)},Eém) = Im{E.,, , }-
i i i1T .
I :[/1’17/127"'3/1;)} 7/:1-,2 (23)
Moy =W (N (N+1),... /(S =D]" j=12
(24)

Since J(#) = uTu, we obtain, by writing (14) for all
(n,m) € Dy, the following matrix representation for J(8):

J(0) = ||y - Yb —Eflu' — Efp?

R 1 I 2 2
- Ef’r(l,o)n(LO) - Ee(l,mn(l,o)H : (25)
Thus, the transformations (15) and (16) allow us to
minimize the objective function .J(@) with respect to
b, !, 1‘2177%1,0)7"7?1,0) and the deterministic component
spectral support parameters {wp, 1 }o_ ), instead
of minimizing it w.rt. the original problem parameters.
The propertiecs of the above transformations guarantee
that both minimizatiAons will result in the same minimAa
2 R R I )
for J. Define D = [YEhE,IlEe(LwEe(LD)] and 07 =
[bT(ul)T(uZ)T(n%lm)T(n%l!o))T]T. Then, we can rewrite
(25) as
J(6) = |ly — Do, ||*. (26)

Because the objective function is a quadratic function of 84,
the minimization over #, can be carried out analytically for
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any given value of D. Using the well-known solution to the
least-squares problem, we have that

6, = (D"D)"'D7y b2)
will minimize .J(8) over #,. By inserting (27) into (26), we
find that the minimum value of J(@) is given by

Jmin({wpal/p}f;):lv”(l’o)) = IVT(I—D(DTD)_IDT)Y‘ (28)

Here, D is assumed to be full rank so that (DTD)~! exists.

Thus, maximization of the likelihood function is
achieved by minimizing the new objective function
Jin({wp, vp 30y, v(®)), which is a function only of
the deterministic component spectral support parameters.
We have thus shown that the minimization problem (25),
which is obtained after taking the transformations (15)
and (16), is separable since its solution can be reduced
to a minimization problem in the nonlinear deterministic
component’s spectral support parameters {wp,up}le,y(l*o)
only, whereas b, u!, uz,‘r)%l 0)71’%170) can then be determined
by solving a linear lezfst—squares problem.” This new
minimization problem is of a considerably lower complexity.
A broad discussion on the subject of separable, nonlinear,
least-squares minimization problems can be found in [15] and
[16]. Since Jmin({wp,z/p}f;l,y(l’o)) is a nonlinear function
of {wy, v}y, (10, this optimization problem cannot be
solved analytically, and we must resort to numerical methods.
In order to avoid the enormous computational burden of an
exhaustive search, we use the two-step procedure described
in Section IV.

In the discussion above, we assumed that the AR model
driving noise variance o2 is known. If it is not known, it can
be estimated. The ML estimate of o2 is derived by maximizing
(13) with respect to o2. Using the estimated frequencies and
(28), we have that

~9 Jmin

(5= N)(T—2M)’ @9

Thus, (27) and (29) establish the estimate for the AR model
of the purely indeterministic component of the field. Using
the estimated frequencies of the harmonic component and the
transformation (15), a complete estimate for the parameters
of the harmonic component is obtained. The solution for the
parameters of the evanescent field is more involved, and it is
given in Section V.

C. The Conditional MLE in the Presence of
Multiple Evanescent Components

In this section, we consider the general problem of simul-
taneously estimating the parameters of the harmonic, purely
indeterministic, and evanescent components of a regular and
homogeneous random field using a finite sample from a
single observed realization of the field. In the following, we
make no assumptions with respect to the parameters of the
spectral supports of the evanescent components. The complete
solution for the estimation problem is derived using the method
developed for the special case of («, ) = (1,0) presented in
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Section III-B. The detailed derivation is presented in Appendix
B.

Using the notation n(®P) = na — mf3, we can generalize
the transformation introduced in (16)

a, JAN @,
(@) 2 ST bk, 055 [(n - ko — (m — )]
(k£)E€SN, M
y(a,m
X COS 27r TP (kB + La)
= 3 b, L (= B)a = (m — 0)]
(k,E)ESN,M
V(a 5)
X sin 27r : (kB + Lar) (30a)
e JAN ay
(M) bk s (0~ K)o~ (m — 0)8]
(k,£)ESN, M
l,(a 5)
X sin 277 TP (kB + L)
+ Z bk, O [(n — ko — (m — 0]
(k,0)ESN M
(aﬂ)
X COS 27r P (kB + La). (30b)
We can thus generalize (14)
u(n,m)
=ylnm)+ Y bk, Oy(n—km =)
(kL)ES N, M
P P
- Z u}g cos 27 (nw, + muy) —Z iz sin 27 (nwp + mivp)
p=1 p=1
J(e:8) y(a’ﬂ)
(a,ﬁ i
z Z{ ) ) cos QW_aZ TF (nf + ma)
(oz.ﬂ) €O
I/(a \8)
+ 17 (n(a,ﬁ)) sin 27r e (nf +ma) p,
(n,m) € Di. (31)
The matrix representation of .J is given by
J= y—-Yb—Efp.1 —Elp?
I(fx.ﬁ) 2
R 1 I 2
= D AR M), Bl M), )
(a,B)EO 1=1
(32)

In the present case, foreachi =1,..., I and j = 1,2,
the 7! (n(*#)’s corresponding to all na — mf3 such that
(n, m) € D are assembled into the vector r]( ). . Hence, the

structure of the matrices Eg 2 and Eé( o,

by the structure of the vector 'r](a ), In general, EF

is determined
(a0 and

E! (o5, ATC sparse, but they do not posses the block diagonal

structure obtained for (. 3) = (1,0).
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Following Section III-B, we conclude that in the general
case, Jni, i1s a function of the parameters of the spectral
support of the field deterministic component: {wp, v }1_;, the

(@,0) € O, and the {v*" " for each (a, ). Hence,
Jmin has to be minimized w.r.t. the unknown real frequen-
cies and the unknown coprime integer pairs (¢, (). This
optimization problem is generally difficult since it requires
mixed programming solutions. However, this difficulty can be
eliminated by defining the following parameter transformation:

2 (33)
§é % ﬁ 7 (33b)

The transformed parameters -, § are rational numbers. Hence,
we can jointly optimize the objective function Jmm with re-
spect to the unknown frequencies {wy, v, }] 1, {¥; (e ﬂ)}l(& )
and with respect to y,8 using some standard programming
method. This procedure is described in Section IV. Using (33),
we can rewrite (31) in the following form:

u(n,m)
= y(n,m)
+ Y bk Dyl —k,m = 0)
(k0)€S' N, M
P
- Z 1y, €08 27 (nwp, + M)
p=1
P
- Z 112 sin 27 (nwy, + muy)
p=1
(B
- Z Z {ni( (‘" E) c0527r1/ ’m(né—i—m”y)
(a,8)€0 i=1

+ 72 (n{*P) sin 27w(a”3)(n5 +my)},
(n,m) € D;. (34)

The matrix representation of J remains as in (32), except that
the matrices B ), and E{ . ,,, are now expressed in terms
of v and § instead of o and ﬁ (wh1ch is clearly the same).
In Section IV, we describe the algorithm for evaluating & ﬂ
from the estimated values of +, é for which the minimum of
the cost function is achieved.

IV. THE SOLUTION FOR THE SPECTRAL SUPPORT
PARAMETERS OF THE DETERMINISTIC COMPONENT

In Section III, we concluded that the problem of maximizing
(13) is made separable by taking the transformations (15)
and (30) since its solution is reduced to a minimization
problem in the nonlinear deterministic component’s spec-
tral support parameters ({wy,,»p}i_;, the (o, 8) € O,
and the {1V for each (a,B)) only, whereas
b, u', 12, {n(aﬁ HE o2 Ma,p), H? can then be deter-
mined by solving a linear least squares problem. Hence, the
first step in solving the presented estimation problem is the
minimization of Jy;, w.r.t. the unknown spectral support
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parameters of the deterministic component. Since Jyi, is a
nonlinear function of the deterministic component’s spectral
support parameters, this optimization problem cannot be
solved analytically, and we must resort to numerical methods.

In general, Jy,;, has a complicated multimodal shape. In
order to avoid the enormous computational burden of an
exhaustive search, we used the following two-step procedure.
In the first stage, we obtain a suboptimal initial estimate for
the parameters of the spectral support of the deterministic
component. This stage is implemented by solving the system
of overdetermined 2-D normal equations for the parameters
of a high-order linear predictor of the observed data. This is
followed by a search for the peaks of the magnitude of the
predictor transfer function inverse. The harmonic components
result in isolated peaks, whereas the evanescent components
result in peaks that form continuous lines. In the second stage,
we refine these initial estimates by an iterative numerical
minimization of the objective function Jpin. In our exper-
iments, we used the conjugate gradient method of Fletcher
and Reeves [18] (p. 253). Note that only for the case of a
quadratic objective function, the conjugate gradient procedure
is guaranteed to converge in at most N steps. For our problem,
we simply restart the algorithm using new gradients until
the objective function becomes appreciably small. As is well
known, this type of iterative optimization procedure converges
to a local minimum and does not guarantee global optimality
unless the initial estimate is sufficiently close to the global
optimum.

The overdetermined Yule—-Walker method is a modification
of the basic Yule-Walker method, which was reported in [9]
to lead to a considerable increase in the estimation accuracy
of the frequencies of harmonic signals in white noise for 1-
D signals. It is further concluded in [9] that the asymptotic
accuracy of the estimates will increase with the number of
Yule-Walker equations used and with the model support.
Intuitively, it can be expected that increasing the predictor
support will improve the accuracy of the estimates of the
deterministic components’ spectral support since the covari-
ances for large lags contain “useful information” about the
deterministic components. Based on the conclusions in the 1-
D case, it is clear, however, that the initial estimates provided
by the solution of the overdetermined high-order normal
equations system provide a good initial starting point (i.e.,
one that leads to convergence to the global minimum) only
as long as the local signal to noise ratio is sufficiently high,
and the frequencies of the different deterministic components
are not too close.

Since the spectral support parameters of each evanescent
field are defined by the ratio of the two coprime integers
o and /3, we need to estimate these parameters using the
estimated 4 and §, which have been obtained from the above
numerical minimization procedure. Let us first describe the
algorithm for the case in which only a single evanescent
component exists in the observed field. It is clear from the
definition of the transformation (33) that §/y = (/c. We thus
search for all coprime integer pairs (k,£) such that |k|,|{| <
min(S, T)/C for which (8/4) — ¢ < £/k < (§/4) +¢.C is
some predetermined constant that guarantees that we consider
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TABLE 1
ESTIMATION ALGORITHM

0. Let @ be the total number of evanescent components in the field.

Let x = {{(WP!VP)];I;D {7117641’1’(1}?:1}*
1. Find the minimum of J,.;, with respect to x.

2. If for some evanescent component(s) gq << ¢ then for these compo-
nent(s) B, =0,é,=1.

3. If for some evanescent component(s) 4, << ¢ then for these compo-
nent(s) 3, = 1,8, =0.

4. For each one of the remaining evanescent components, find all coprime
integer pairs (kg,4,) such that 0 < |k,|, €, < min(8,T)/C for which
(8a/Aq) —€ < bof kg < (84/4,) + €. For all ¢’s for which only a single pair
results, set (dq,ﬂq) = (ky,4;) .

If for one (or more) ¢’s, more than one pair (kg, £,) results from step 4,

then .

a) For each resolved evanescent component, set v, = b, = 2&?
aZ+63 &G+8;

b) For each possible combination of (k,,£,)’s, where each (kq, £,) is asso-

ciated with a different unresolved evanescent component: Set for each

unresolved evanescent component (7yg,8,) = (;3%_‘7?, ,—cz%pq) Minimize

3y

Jmin W.r.t. the remaining unknown parameters.

6. For each unresolved ¢ from step 5, set (&,, Bq) = (kq,£,) where (kg,£,)
is the pair for which the minimal value of Jn:n Was achieved.

7. Set the {(p, 7)}, and {ﬁq}qq=1, to their values obtained by the min-

imization procedure for which the minimal value of Jn,;, was achieved.

only order definitions for which there is a “sufficiently” large
number of samples per column (row), and € is a small
predetermined constant. If more than one pair (k,£) results
from the above procedure, we minimize the objective function
Jmin for each pair using the numerical procedure described
above, while assuming that («, 3) is known to be equal (k, £).
We then set (&,3) = (k,£) for the (k) pair that achieved
the minimal value of the cost function among all the possible
candidates. In addition, {(&,,2)}]-; and the (ol
are given by their values, which correspond to the minimal
value of the cost function. The detailed algorithm for the case
in which more than one evanescent component exists in the
field is given in Table I.

Using the estimated parameters, we can now return to the
parameter transformation (15) to obtain estimates for the am-
plitude parameters C,,, D,, of each harmonic component. The
estimates are obtained by solving the simultaneous equation
(15) for each p. The solution for the parameters of the 1-D
modulating purely indeterministic processes associated with
each evanescent field is given next.

V. THE PARAMETER ESTIMATION OF THE
MODULATING 1-D PURELY INDETERMINISTIC
PROCESSES OF THE EVANESCENT FIELDS

Substituting the AR models of {s(1:9(n)} and {+19)(n)}
(see (5) and (6), respectively) into (19), we obtain

n'(n)

N
— Z G(l’o)(k;)
k=0
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(1,0
% |:— Z a0 () — k — 1) 4 1O (p, — k)jl

T=1
N
- z H®O (k)
k=0
y(1.0)
X { = a0 n — k= 7) + (O (n - k)}
T=1
(1,0}
= - Z alb0( Z GO (k) s (n — | — 1)
k=0
4 Z G(l 0) 5(1 0) ( If)
V(l 0)
+ z a0 (r ZH(I’O)(k)t(I’O)(n —k—7)
k=0
N
= > HOO k)OO n — k)
k=0
y(1,0)

_ Z ab 0)(7

N
+ Z GO (YD (n — kY — HEO ()¢ ( — k)]
k=0

(n—1)

n=N,...S—1. (5)
In a similar way, by substituting the AR models of {5(1%)(n)}

and {19 (n)} into (20), we obtain

(1,0}

P(n) ==Y a"(r)P(n )

=1

N
+ Z g 0) g(l 0)( — k)
k=0
+ GO (k)4 — k)

n=N,...,5—-1. (36)
Hence, (35) and (36) imply that solving the problem of
estimating the unknown parameters of the 1-D purely indeter-
ministic processes associated with the evanescent component
is equivalent to solving the above 1-D two-channel ARMA
problem, where the {G*9) (k)}Y_ and {H 19 (k)}_, have
previously been estimated. The “observations” are the {n'(n)}
and {n?’(n)} forn = N,..., S — L.

This two-channel ARMA problem can be solved using any
standard estimation procedure for vector ARMA processes like
the modified Yule-Walker method of [20]. Note, however, that
since the AR parameters are identical in both channels, this es-
timation procedure can be significantly simplified. If we further
assume that {£(19)(n)} and {¢("9)(n)} are independent, zero
mean, white Gaussian processes with variance (o(1'%))? each
and that V(1.0 js known, it becomes possible to obtain ML
estimates of the unknown parameters by maximizing the log
likelihood function of the “observations” {n*(n)} and {n?(n)}
w.r.t. the unknown parameters {a(:9)(7)}V.” and (o(1:0)2,
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In [19, pp. 205-208], it is shown how the exact likelihood
function of an ARMA process can be computed from the
ARMA model parameters by using the Kalman filter.

The above solution can be extended to any («, ). Define
the transformations k{*%) = ko — 48, ¢(0f) = %% Let
us also denote by b(@#) (k(x8) ¢(*0)) the coefficient b(k,£)
for (k,€) € Sy ar under the total-order definition (o, 3) € O.
Following the definitions of G)(k) and H™(k), we now
define

Gga’ﬂ) (/g(fw@))
Z ple)
e o)

E pleB) (k(a,ﬂ)’g(a,ﬁ)) sin wai(o‘:ﬁ)g(a,ﬁ) (37b)
o

1>

(kLB gl cos 2P (eB) (37a)

e

where the summation w.rt. £(%#) is taken over all pairs
(kP ¢(>:#)) that result from the mapping of (k,£) € S, ur
by the above transformation while holding k(*®) fixed. Par-
allel to (19) and (20), we get, by substituting these definitions

into (30)
Z G ?) (jleoh)) ) (nw,ﬁ) — k()
E(on3)
_ Z HZ a,B) (k(&,,@))tfa’ﬁ) (n(avﬁ) — k(o‘vﬂ))
E(a.8)
(38a)
772'2 (n(a,ﬂ)) - Z Hi(""ﬁ) (k(a ﬁ)) a, ﬁ)( (a,8) _ k(a,ﬂ))
k(a.d)
+ Z Gz(a,ﬂ) (k(""ﬂ))tga’ﬂ) (n(a,ﬂ) - k(aﬁ))
k(.8
(38b)

where the summations are taken over all &£(®#) such
that (k,f) € Sy Substituting the AR models of
(L@} and {£ (n(@B)} (see (5) and (6),
respectively) into (38) and applying steps similar to those
in (35) and (36), we obtain

n (n®2)

V(a 3)

_ Z (@) (.

+ Z Ggaﬁ)( (,8) )€§a’ﬁ) (n(@h) — g(e))

nloh) _ )

L(e,8)
B Hi(a,,[i)(k(a,ﬁ))gi(aﬁ) (n(f) — p@P)] | (39)
and
7 (n*?)
V(O‘ B

- Z ol (7

+ Z Hi(a ,8) (k(a,ﬂ))ci(aﬁ) (n(a:ﬁ) _ k(‘ln@))
k(e,8)

+ GO () £ () _ k@], 40)

2(n@® _ 1)
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TABLE II
PARAMETERS AND ESTIMATION RESULTS FOR EXAMPLES 1 AND 2
Parameters Ezample 1 Erample 2
Orig. Bias Var Orig. Bias Var
First wy 0.15 | 2.0018e-05 | 4.7602¢-06 || 0.15 | 3.5025e-05 | 5.3371e-07
harmonic 121 -0.25 | 2.3221e-05 | 5.0118¢-06 || 0.25 | 3.2844e-05 | 5.9912e-07
component Cy 0.05 | 5.1213e-03 | 2.7661e-03 || 0.05 | 2.3178e-03 | 3.9001e-03
Dy 0.05 | 7.2030e-03 | 3.0199¢-03 || 0.05 | 3.7821e-03 | 4.0300e-03
Second wa 0.16 | 2.7221e-05 | 5.1228e-06 - -
harmonic vy -0.26 | 2.8780e-05 | 5.3129e-06
component | Cy 0.09 | 6.2000e-03 | 3.1069e-03
D, 0.09 | 7.3221e-03 | 3.2145e-03
First a 1 - - 0
Evanescent | pi 0 - - 1 - -
component | /18] | 0.3 | 5.8781e-05 | 2.7177e-06 | 0.2 | 3.8000e-06 | 5.0101e-07
Second az 1 - - 2 -
Evanescent B2 2 - - 5 - -
component | 02 0 | 3.0101e-05 | 5.2771e-07 [ 0.3 | 6.0001e-06 | 5.2320e-08
Third a3 - - - 2 - -
Evanescent | B3 - - - 5 - -
component posibs) - - - 0.29 | 6.7800e-06 | 7.0199¢-07
Purely 5(0,1) 0.1 |2.2290e-03 | 7.8900e-04 | 0.2 [ 1.0005¢-04 | 4.9010e-04
Indeterministic | b(1,—1) 0.2 |5.0178e-03 | 9.1222¢-04 | 0.105 | 1.8933e-03 | 2.0105¢-04
component b(1,0) 0.03 | 3.1000e-03 | 1.0091e-03 || 0.046 | 3.4445¢-03 | 9.0202¢-04
b(1,1) 0.018 | 5.2099¢-03 | 3.9996e-03 jf 0.021 | 5.9809e-03 | 3.3460e-03
o? 1 4.0104¢-04 | 6.8819e-04 1 3.6777e-04 | 5.0007e-04
TABLE HI
ESTIMATION RESULTS OF THE SPECTRAL
SLOPE PARAMETERS FOR EXAMPLES 1 AND 2
Ezample 1 Ezample 2
Orig. Bias Var (a,5) Orig. Bias Var C
error rate error rate
" 1 7.9899¢-05 | 5.8788e-04 0 0 5.0001e-06 | 1.2003e-04 0
[ 0 8.0102¢-05 | 6.2900e-04 1 5.9945e-06 | 2.2297e-04
Ya % 2.6551e-05 | 3.0909e-04 0 75 1.0047e-05 | 9.8777e-04 0.02
b H 3.3000e-05 | 4.9011e-04 = | 1.5573e-05 | 1.0232e-03
Y3 - - - 3 2 | 2.3109-05 | 1.0004e-03 0.01
8 - = [3.0017e-05 | 1.0193e-03

Note that the resulting ARMA model has, in general, a
noncausal MA part. Nevertheless, since fi(a’ﬂ ) and Ci(a’ﬁ ) are
stationary white noise processes, the noncausal MA part can
be replaced by its shifted, and hence causal, version (i.e., the
white input sequence is replaced with its shifted version, which

_ . - y e
has the same statistics). Estimates for {aﬁ“ﬂ "(r)}vi,  and
(6!)2 for i = 1--- I can now be obtained using the
procedures described earlier in this section.

VI. NUMERICAL EXAMPLES

In this section, we investigate the performance of the
suggested ML algorithm using some specific examples. The
algorithm performance is illustrated by estimating the bias
and the variance of the estimation errors through Monte
Carlo simulations. The experimental results are based on
100 independent realizations of the purely indeterministic
component and of the modulating 1-D purely indeterministic
processes of each evanescent field. We consider two sets of
test data that are represented as 64 x 64 realizations of the
fields. The parameters of these examples and the experimental
results are listed in Tables II and IIL

In Table III, we present the estimation results of the evanes-
cent components’ spectral support parameters. It is clear
that an incorrect estimate of an («,3) pair would result in
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Fig. 2. Periodogram of a 64 X 64 realization of the field considered in
Example 1.

incorrect estimates of the other parameters of that evanescent
component. Since the probability of such an event is very
small, as indicated by the results in Table III, we consider
such events to be outliers. Hence, we ignore the results of
these experiments in the computation of the bias and variance
of the parameter estimates that are tabulated in Table II.

Example 1: Consider a field that consists of the sum of
a purely indeterministic component modeled by a 2-D AR
model with support S; ; whose parameters are listed in Table
II, two sinusoids of different amplitudes, and two evanescent
components. The periodogram of one realization of this field
is shown in Fig. 2. To improve the clarity of the presenta-
tion, the spectral supports of the harmonic and the evanes-
cent components are shown in Fig. 3. The frequencies of
the two harmonic components are (wi,v1) = (0.15,-0.25)
and (w2,v2) = (0.16,—0.26). The frequencies of the two
evanescent components are »(1® = 0.3 and v(H? = 0.
The modulating 1-D purely indeterministic processes 510
and t(1) are independent second-order AR processes, each
with parameters a; = 0.3, as = 0.4 and a unit vari-
ance Gaussian white noise input process. The modulating
1-D purely indeterministic processes 512 and t1?) are
also independent second-order AR processes with the same
parameters as s(1:9 and ¢(9). Note from Table III that
the slope parameters of the evanescent components spectral
supports were accurately estimated in all of the 100 experi-
ments.

Example 2: In this example, we consider a field that is
the sum of a purely indeterministic component with AR
model support S; 1, a single harmonic component with fre-
quency (0.15, 0.25), and three evanescent components. The
first evanescent component has a frequency parameter of
0.2, and the slope of its spectral support is specified by
o1 = 0,8, = 1. The modulating 1-D purely indeterministic
processes s(O1) and (1) of this component are indepen-
dent second-order AR processes, each with parameters a; =
0.3, as = 0.4 and a unit variance Gaussian white noise
input process. The second and third evanescent components
have spectral supports of identical slopes: oy = a3z = 2
and 32 = (33 = 5. Their frequency parameters are 0.30 and
0.29, respectively. The modulating 1-D purely indeterministic
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Fig. 3. Locations of harmonic and evanescent components in the spectral
domain for Example 1. The two harmonic components are represented by
circles and the two evanescent components by lines. Observe that the second
evanescent component support wraps around the boundary of the spectral
domain.

Fig. 4. Periodogram of a 64 x 64 realization of the field considered in
Example 2.

processes 5% and (2% of the second component are in-
dependent second-order AR processes, each with parameters
a1 = 0.3, a2 = 0.4 and a unit variance Gaussian white noise
input process, whereas the modulating 1-D purely indetermin-
istic processes s(>® and ¢(>% of the third component are
independent second-order AR processes, each with parameters
a1 = 0.2, as = 0.4 and a unit variance Gaussian white noise
input process. The periodogram of a single realization of the
field considered in this example, and a plot of the spectral
supports of the deterministic components, are shown in Figs. 4
and 5, respectively. The results are summarized in Tables II
and III

The experimental results show that the estimates obtained
by the proposed conditional ML algorithm are essentially
unbiased because the experimental bias is much smaller than
the standard deviation of the experimental results. Moreover,
the proposed estimation algorithm of the («, 3) pairs of the
different evanescent components seems to be quite effective.
Note that the errors in estimating (as,32) and (s, f3) of
Example 2 occurred for the case in which the two components
have parallel and closely spaced spectral supports. In all other
cases, no errors occurred in the estimation procedure of the
different (o, 3) pairs.
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Fig. 5. Locations of harmonic and evanescent components in the spectral
domain for Example 2. The two evanescent components with oy = ag = 2
and J» = 33 = 5 and frequencies of 0.30 and 0.29 are too close to be visually
distinct. For the second and third evanescent components, the wrapping around
the boundary of the spectral domain is also shown.

Computationally, the iterative search is the most expensive
part of the proposed algorithm. However, if the local ratio
of the power of each deterministic component to the power
of the purely indeterministic component in the neighborhood
of the deterministic component spectral support is not too
low, our experiments indicate that the initial guesses are quite
accurate, and hence, the minimization of the objective function
is achieved quite rapidly.

VII. CONCLUSION

Homogeneous random fields are characterized, in general,
by mixed spectral distributions. In this paper, we have pre-
sented a conditional maximum-likelihood solution to the gen-
eral problem of fitting a parametric model to observations from
a single realization of a real-valued homogeneous random
field. The proposed algorithm provides a complete solution
to the joint parameter estimation problem of the harmonic,
purely indeterministic, and evanescent components of the
field.

The solution to this general problem has many applications
in the areas of processing and estimation of 2-D signals.
In [11], we describe one such application for the parameter
estimation and synthesis of natural textures. The synthesis
procedure is based only on the estimated parameters. This
application results in a complete and more accurate parameter
estimation (and, hence, in improved synthesis results) than a
previous approach presented in [10], although both rely on the
same theoretical basis.

APPENDIX A

Using (8), wu(n,m) is given by wu(n,m) =
2ok pyesy OB Dwln — kym — £) with 5(0,0) = 1.
Since w = y — h —e1 9, we have

u(n, m)

= 2

(k,0)€SN, M

bk, O){y(n —k,m —£€) — h(n —k,m —¥£)

—ero(n —k,m—0)}
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= > bk

(k,0)€SN, M

X {y(n —k,m—1{)

Z (Cp cos 2r[(n — k)wp + (m — £)vp]
p=1
+ Dpsin2x{(n — k)wp, + (m — L))
— 50O (n — k) cos 2701 (m — ¢)

— t00 (n — k) sin 2000 (m — e)}

= Z b(k,O)y(n —k,m —£) |

(k. 0)eSNn,m

- XP:CP > b(k,0)

p=1 (kO)ESN, M
x cos 27 [(nwy + muy) — (kwp + Luyp)]

P .
-N"D, > k0

p=1  (k£)ESN,u

x sin 27 [(nwy, + mup) — (kwp + {vyp)]

- S bk, 0)sO O (n— k)
(k£)E€SN u

x cos 2rv M0 (m — £)

= > bkt (n—k)
(k&) €SN, a1
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APPENDIX B v
Following the derivation in Section III-B and Appendix A
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