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ABSTRACT

Residual carrier frequency offset (CFO) and sampling frequency offset (SFO) in orthogonal frequency-division multi-
plexing (OFDM) transmission result in loss of orthogonality between the subcarriers, which severely degrades system
performance. This makes effective CFO and SFO estimation methods essential for such systems. In this work, we address
the joint estimation of CFO and SFO, focusing on burst-mode OFDM communications scenarios.

We study communications under slowly varying channels, and consider three cases of knowledge of the channel impulse
response (CIR): full knowledge, no knowledge, and partial knowledge of the CIR. By partial knowledge, we refer to
knowing only either the CIR magnitudes or the CIR phases. It is known that obtaining the exact joint maximum-likelihood
estimate (MLE) of the CFO and the SFO requires a two-dimensional search. Here, we present a new estimation method
which uses the Taylor expansion of the MLE cost function, combined with the best linear unbiased estimator, to obtain a
method which does not require such a search. The computational complexity of the new method is evaluated. Numerical
simulations demonstrate that the new method approaches the corresponding Cramér-Rao bound for a wide range of signal-
to-noise ratios, and has superior performance compared to all other existing methods for approximating the solution for

the joint MLE, while maintaining a low computational complexity. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Orthogonal frequency-division multiplexing (OFDM) is
widely used in many wireless communication systems and
commercial standards, for example, digital video broad-
casting (DVB-T) [1], IEEE 802.16 wireless metropolitan
area network (WMAN) [2], and 3rd Generation Partner-
ship Project (3GPP) long term evolution (LTE) [3]. This
is due to the robustness and high spectral efficiency of
OFDM-modulated signals in frequency-selective channels.
However, a major drawback of OFDM is its sensitivity to
synchronization errors [4,5]. Therefore, accurate synchro-
nization is essential in order to benefit from the potential
advantages of OFDM. A common practice in burst-mode
OFDM systems is to first apply a coarse acquisition based
on a training sequence located at the beginning of the
OFDM frame, for example [6—10], and then apply fine
synchronization based on pilots symbols which are multi-
plexed with the data, for example [11]. In this work, we
study the joint fine estimation of carrier frequency offset
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(CFO) and sampling frequency offset (SFO) in burst-mode
OFDM systems.

CFO and SFO are induced by a mismatch between oscil-
lator frequencies at the transmitter and at the receiver. The
effect of CFO and SFO was analyzed in [12], in which it
was shown that they both destroy the orthogonality of the
subcarriers, thereby resulting in inter-carrier interference
(ICI). Furthermore, while CFO induces the same phase
drift at all subcarriers, SFO causes a phase drift that grows
linearly with the subcarrier index. We note that there is
a fundamental difference between CFO and SFO estima-
tion for scenarios in which the channel impulse response
(CIR) is rapidly varying, and CFO and SFO estimation
for constant or slowly varying CIR scenarios: In rapidly
varying environments, the phase variations induced by the
CFO and the SFO can be incorporated into the instanta-
neous CIR, but in slowly varying scenarios, the CIR has
to be separately treated from the phase variations induced
by the CFO and the SFO. In this work, we focus on
slowly varying channels, that is, the CIR remains constant
over several consecutive OFDM symbols. When the CIR
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changes slowly, the CFO and SFO are typically estimated
based on a set of dedicated pilots, see, e.g., [1-3]. The
estimation problem can be further expanded to include the
joint estimation of the CFO, the SFO and the CIR, see,
for example, the works [13,14] and [15], and references
therein.

The problem of estimating the CFO and SFO for known
CIR received a lot of attention in recent years. In [16],
Laourine ef al. applied harmonic retrieval method to the
estimation of the CFO and SFO. However, this approach
requires half of the subcarriers to be left unmodulated,
which substantially reduces the spectral efficiency of the
transmitted signal. The uplink of multiuser OFDM sys-
tems was studied in [17], which introduced a maximum-
likelihood (ML)-based method for jointly estimating the
CFOs and SFOs of all users. The work [17] approxi-
mated the received signal model using the first order Taylor
expansion and then obtained the joint ML estimator (MLE)
for the CFOs and SFOs based on this approximated model.
It should be noted that this approximation is accurate only
for small values of CFO and SFO. Another ML-oriented
method was presented by Oberli in [18] for the case of
multiple-input multiple-output (MIMO) OFDM systems.
Oberli suggested to estimate the CFO and SFO based on
the differences between the phases of the received samples
in the pilot subcarriers using the knowledge of the phases
of the pilot symbols and channel coefficients. Lastly, the
work [19] used the same approach as the one used in [18]
for obtaining an estimation method, which is specifically
tailored to the 3GPP LTE downlink standard.

Estimation of the CFO and SFO for unknown CIR was
first studied by Speth et al. in [20]. The work [20] estimated
the CFO and SFO via a normalized sum and difference of
the phase differences between the pilot subcarriers com-
puted over two consecutive OFDM symbols, which are
set to contain identical pilot patterns. Because the estima-
tors of [20] ignore other impairments, e.g., [/Q imbalance,
it can be applied without modification in the presence
of such impairments, see, e.g., [21] and [22]. However,
the resulting performance are substantially suboptimal.
Another estimation method for the case of unknown CIR
was proposed in [23]. The work [23] again used the phase
differences between two consecutive OFDM symbols that
contain identical pilots patterns. Unlike [20], the work [23]
used the least-squares (LS) approach for estimation. Sim-
ilarly to [20] and [23], the work [24] also estimated the
CFO and SFO using the phase differences between two
consecutive OFDM symbols containing identical pilot pat-
terns: first, a coarse estimation of the CFO was carried
out, then a compensation in the time-domain was applied
using the estimated CFO, and finally a fine joint estima-
tion of the CFO and SFO was implemented via averaging
the phase differences over the pilots subcarriers. Note that
estimation based on phase differences, as implemented in
[20,23] and [24], constitutes an ad hoc approach and does
not carry optimality. ML-oriented estimation of the CFO
and SFO without CIR knowledge was studied in [25].
The work [25] showed that the exact joint-ML estima-

Low complexity estimation of CFO and SFO in burst-mode OFDM systems

tion of the CFO and SFO, based on known pilots, requires
a two-dimensional search, which is computationally too
demanding to be implemented in practice. Therefore, [25]
presented a method to decouple these two estimation prob-
lems, such that only a single-dimension search is required.
Furthermore, unrelated to the ML-oriented scheme, [25]
also established a closed-form reduced-complexity estima-
tor for the CFO and SFO whose performance are close to
the MLE performance, only when the signal-to-noise ratio
(SNR) is medium-to-high. It thus follows that the estima-
tion methods presented in [25] either use an exhaustive
search or have a performance that is considerably worse
than the MLE performance in the low SNR regime.

Another approach for the estimation of CFO and SFO
for unknown CIR is to use an estimation scheme with a
specifically designed training sequence. Along this line, we
note the works [13,26] and [27], which considered joint
estimation of the CFO and the SFO based on two long
training symbols: The work [13] applied a recursive LS
approach to jointly estimate the CIR, CFO and SFO; the
work [26] proposed a joint CFO and SFO MLE in the
frequency domain which uses a two-dimensional search;
and, the work [27] followed the approach of [25], and pro-
posed to replace the two-dimensional search of [26] with
a decoupled estimator that consists of closed-form estima-
tion of the CFO, followed by an approximate MLE for
the SFO. This approximate MLE is obtained via a second
order Taylor expansion of the MLE cost function for the
SFO, computed from the initial joint MLE cost function by
plugging the ML estimate of the CFO. Note that in con-
trast to the work [25] and to the approach presented in this
manuscript, the estimators presented in the works [13,26]
and [27] are applicable only to the setting of two identi-
cal consecutive training symbols. As training reduces the
throughput, in the present work, we focus on estimation
without the help of training.

Main contributions

In this work, we consider joint estimation of the CFO and
the SFO for three CIR scenarios: full CIR knowledge, no
CIR knowledge, and partial CIR knowledge. We introduce
a new polynomial approximation for the ML cost function,
which transforms the search for maximizing the cost func-
tion into the problem of finding the roots of a polynomial,
for which there are efficient numerical solution methods.
The proposed polynomial approximation is next used in the
estimation of a linear combination of the CFO and SFO at
each pilot subcarrier of the received OFDM symbols, and
then the best linear unbiased estimator (BLUE) is applied
to obtain the estimates of the CFO and SFO from the esti-
mated linear combinations. Numerical simulations show
that the performance of this scheme closely approaches the
performance of the joint MLE of the CFO and SFO and are
superior to all other existing schemes which aim at obtain-
ing an approximate joint MLE solution. At the same time,
the computational complexity of the new scheme is 60% of
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the complexity associated with the schemes based on the
decoupled MLE.

Another important result we present in this work is the
fact that the optimal performance, that is, the Cramér-Rao
bound (CRB), for the case of known channel magnitudes
and unknown channel phases, is the same as for the case
of completely unknown CIR, while for the case of known
phases and unknown magnitudes, the CRB is the same as
for the case of completely known CIR. This result indicates
that in the context of estimating the CFO and SFO, knowl-
edge of the CIR phases is significantly more beneficial
compared with knowledge of the CIR gains, which agrees
well with the intuition regarding this estimation problem.

We note here that in contrast to the estimation methods
presented in [25], which either use an exhaustive search or
have performance which are considerably worse than the
MLE performance at the low SNR regime, the estimation
method presented here approaches the MLE performance
without using an exhaustive search, even in the low SNR
regime. We also note that in contrast to the work [17],
which used first order Taylor expansion to approximate the
received signal model, in this study, we approximate the
ML cost function, which results in an approximation that
holds for larger values of CFO and SFO and has superior
performance. This is clearly demonstrated in the simula-
tion results. Finally, we note that opposed to the work [27],
the estimation method developed in this work applies pilot-
assisted joint estimation, and is not restricted to a two
consecutive OFDM symbols. Moreover, while the work
[27] used a second order Taylor expansion to approximate
only the generalized ML cost function for the estimation
of the SFO after plugging the estimation of the CFO as a
function of the SFO (this can be done only since two con-
secutive symbols are considered), our approach is based
on the joint ML cost function for the CFO and SFO for
any number of OFDM symbols. Therefore, the estimation
method developed in this work has superior performance
compared with [27]. In fact, because [27] is restricted to
only two symbols, it is inherently suboptimal to [25]. Thus,
the comparison with [25] included in the simulation study
also indicates the comparison between the present work
and the approach of [27].

The rest of this paper is organized as follows: In
Section 2 we introduce the signal model and the problem
definition. Section 3 reviews some preliminary results. In
Section 4 we present the polynomial approximation tech-
nique and our new estimation method for all CIR scenarios.
We present simulation results in Section 5, and conclude
the paper in Section 6.

Notations: We denote vectors with boldface letters, e.g.,
X, matrices with doublestroke letters, e.g., A, and sets
with calligraphic letters, e.g., .A. We use E{-} to denote
expectation and Var{-} to denote variance. We use &, R and
91 to denote the sets of complex numbers, real numbers,
and positive integers, respectively. Complex conjugate,
transposition, and Hermitian transposition are denoted by
(-)*,[]7 and []¥, respectively, while 9{-} and 3{-} denote
the real and imaginary parts of a complex number.
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Computational complexity: We define computational
complexity of a method as the total number of floating
point operations (flops), real as well as complex, needed
to complete its required calculations, and denote it by
@method- The complexity analysis in this work is pre-
sented for the case of known CIR. Analysis for the case
of unknown CIR can be obtained by following similar
arguments.

2. SIGNAL MODEL AND PROBLEM
DEFINITION

We consider the same signal model as in [12,13,18,26] and
[25]: an OFDM signal is generated via a discrete Fourier
transform (DFT) whose size is N. Each OFDM symbol
modulates Np data symbols, where Np is an even number
[12,13,18,25,26]. The data symbols are denoted with Dy,
where [ is the index of the OFDM symbol and —Np/2 <
k < Np/2, is the index of the subcarrier frequency. The
symbols D, are independent and identically distributed
(i.i.d.). For the I’th OFDM symbol, the modulated discrete-
time sequence is obtained from {D;;} by applying an
inverse DFT (IDFT) of size N. Intersymbol interference
(IST) between subsequent OFDM symbols is avoided by
adding a guard interval, referred to as cyclic prefix (CP),
of length N, samples to the IDFT output sequence. The
resulting OFDM symbol, of length Ny = N + Ng, is input
to the channel at a rate of lT Let T, £ NT, T, 4 NT, and
Ty = Ty + Tg. The transmitted complex baseband signal is
given by [12, Equation (1)]:

| oo Np/2
Ly 3

[=—00 k=—Np/2,k50

s(t) =

D@, (1)

where the subcarriers pulses 1/ (7) are [12, Equation (2)]:

2wk (t — Ty — ITy)

Yix(t) = exp (J T ) pt—1ITs), (2)

and p(t) = 1 for 0 < ¢t < Ty and p(¢) = 0 otherwise. In
order to avoid difficulties due to DC offset, we set D; g = 0,
see [25] and [26] .

Burst mode OFDM transmission takes place in frames,
where each frame consists of L + 1 OFDM symbols
transmitted consecutively. We consider transmission over
slowly varying frequency-selective fading channels such
that the channel remains approximately constant over an
OFDM frame. We further assume correct OFDM symbol
time synchronization, which implies that there is no inter-
ference between adjacent OFDM symbols. Due to oscil-
lators instability, there are CFO and SFO at the receiver
(with respect to the transmitter). In this work, we focus on
estimating the residual CFO and SFO after coarse acqui-
sition has been applied at the beginning of the reception
of OFDM frame. Thus, relatively small SFO and CFO are
present in the signal.
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Let h(f) denote the CIR and let Af [Hz] denote the
carrier frequency offset between the transmitter’s carrier
frequency and the receiver’s local oscillator used for the
down conversion of the received RF signal to baseband. Let
* denote the convolution operator. The resulting received,
continuous-time baseband signal is given by [18, Equation
Q)] 1) = e . (s(r) * h(r)) + v(t), where v(f)
is a zero-mean white Gaussian noise process, such that
E{v(r))v(r)} = 012,8(11 — 1), and 05 is a finite variance.
The received signal is sampled at intervals 7" which results
in an SFO which equals to § = (T' — T)/T,§ € R,
where Py is the possible range of § considered by the
estimator. Let ¢ = Af - T denote the normalized CFO,
where PR¢ denotes its possible range considered by the
estimator, that is, € € R¢. The ranges PR¢ and PRg are
assumed to be symmetric around zero and are determined
by the estimation scheme and by the system requirements
regarding the initial error value and the allowed accuracy
in the system’s clocks and oscillators. After sampling and
CP removal, demodulation via an N-point DFT is applied.
Let Hy denote the DFT of the sampled CIR at subcar-
rier k, and let ICI;; denote the ICI at the k’th subcarrier
of the I’th OFDM symbol. Applying steps similar to the
steps leading to [18, Equations (10)-(13)], to the sampled
received baseband signal r(¢), and using the approximation
€ + 6e + 6k ~ € + 8k, which holds due to the values of €
and §, we obtain the approximated discrete-time received
signal model

; sin(m (e + k8
= efg’(”k&)i.( (yr(5+k5))) Dy xH+
Nsin (T) €)

ICL + Vig,

Zik

where § = n%*'m’,N/ = INy + Ng, and Vj; ~
CN (0,02) is an i.i.d, zero mean, complex Normal random
process with variance o2. Next, note that the attenuation of
the subcarriers magnitudes can be approximated by unity
when € + §k < 1, [12]. Furthermore, from [12, Equation
(42)] we have that E {ICIZZJ(} ~ €. Therefore, for
medium SNR conditions, e.g., SNR = 20dB, and for small
enough values of € and §, e.g., ¢ = 1072 and § = 1074
(these values are relevant to practical scenarios and were
also used in [25, Subsection VI.A], see a detailed scenario
parameters and their relationship with the values of € and
§ in Subsection 5.1), the ICI term is negligible compared
with the additive Gaussian noise. On the other hand, when
the SNR is high, the term ICI; 4 is non negligible and results
in a noise floor. This is verified in Subsection 5.2 ,where
the SNR is taken as high as 40 dB.

We study the estimation of the CFO and SFO based on
aset K = {ki,k2, ..., kg,} of pilot tones, which is avail-
able at each payload OFDM symbol. Let / = 0,1,...,L
be the index of the OFDM symbol in the frame. As the
channel remains approximately constant over a frame, the
CIR can be estimated using a preamble, transmitted at the
first OFDM symbol of the frame. The CFO and SFO are
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estimated at each frame, based on the pilot subcarriers in
OFDM symbols / = 1,2,..., L. Thus, we arrive at the fol-
lowing simplified received signal model, for the subcarriers
indexed in the set /C, [18,25]:

Zig, = D Dy Hy + Vg, ()

The symbols used for modulating the pilot subcarriers are
set to have a constant envelope |Dy, |? = 05 = 1. Thus,

v 2
|Hy, |
t—. As
0y

in [18, Section III], we consider the worst case situation
in which the CFO € and the SFO § are independent of
each other. Finally, since Hy, € €, we can write Hy, =
|Hkp|ej¢kp. Known CIR refers to knowing both |Hy, | and
¢x,, for all kp, € ICP,Jr while partial CIR refers to knowing
only |Hy,|’s or ¢,’s , as will be defined.

the SNR over the pilot subcarriers is given by

3. PRELIMINARIES

We begin with a short description of the BLUE. A detailed
description of the BLUE can be found in [28, Ch. 6].

3.1. A brief overview of the BLUE

Consider a vector of N measurements denoted by
X = Xp,X],...,XN—1, Whose probability density function
depends on an unknown parameter vector 6 of size p x 1.
A linear estimator of 6 based on the measurements vector
X has the general form 6 = Ax, where A is a p X N matrix.
The BLUE is defined to be the estimator that has the mini-
mum variance among all the unbiased linear estimators. If
the measurements x and the unknown parameter vector 6
follow a general linear relationship x = H6# + w, where
H is a known N x p matrix, and w is an N x 1 zero-mean
noise vector with covariance matrix @, then the BLUE of
0 is given by [28, Thm. 6.1]:

A -1
0= (]HTQ_llH) H'Q 'x,
and the covariance matrix of  is given by:
5. AT To—ly) | A
E{o.o }:(]H Q JH) 2 ;.

Let @ = [¢,8]7 € Me xR, denote the unknown desired
parameters vector. We next review the previously derived
MLEs and CRBs for estimating 6 based on the model (4).

"Note that in slowly varying channels, the channel can be constant over
several OFDM frames. In such a case, high accuracy CIR knowledge,
corresponding to known CIR, can be obtained via estimating the CIR
based on several boosted preamble OFDM symbols, see, for example,
[2] and [29].
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3.2. MLEs and CRB Expressions

As Vi are complex Normal ii.d random variables
(RVs), it follows that the log-likelihood function for 6 is
[18, Equation (20)], [25, Equation (8)]:

I'(0) = —LK,In (nag) -

1 : 2
§ : 2 : 7 k,8
0-2 ‘ l.kp - elél(€+ r ) : Dl,kakl’
V I=1kek,

&)

We begin with the known CIR case. Letting Y, =
Zz,kal*ka;(’;, the MLE for the case of known CIR, é&%, is
given by argmax {I"(6)}:

0 R XNRs

L

>3 wrg e RO 6
I=1 k€K,

é&? = argmax
O R XNRs

Observe that the exact MLE requires a two-dimensional
exhaustive search in € and §. Such a search entails a high
computational complexity, thereby rendering the exact
MLE impractical for most communication systems. This
motivates the study of simplified and efficient estimation
methods, which are the focus of this work.

As a baseline for the performance of the estimators
derived in this work, we use the CRB for estimating €
and § based on (4), calculated assuming that the CIR
is known. Define Q(q) 2 Zk,,elc,, K} ]|Hkp|2,q =
1,2,3, 0" ()) = groailiom/ = 1,3 and let Fy . =
Zf:l (N — 1+ 2N;)2. The CRBs for the estimates of €

and & are derived in Appendix A. The corresponding
expressions are:

N?020*(3)
ZJTZFN’L

N>o50*(1)

(9]
CRB;7 =
€ 2772FN,L

, CRBM = )

Note that as the model (4) neglects the ICI, the CRBs (7) do
not account for ICI. Therefore, these bounds are not tight
in the high SNR regime.

For the unknown CIR case, the MLE and the
CRBs were obtained in [25]. Here, we briefly review
these results. Let Xjx, = Zlvkalfk,, and Ry, =
Snmit1 Xi— g Xukys! = 1.2,....L — 1. The MLE for
is given by [25, Equation (14)]:

L—1

. 2INg
D 3 Ry e R )
I=1k,eK,

é&lﬁ) = argmax
0 R XNRs

®
Note that (8) and (6) have the same form with Y, in (6),
replaced by Ry, in (8). The MLE (6) uses its knowledge

of the CIR for coherently canceling the phase of the chan-
nel coefficients. The MLE of (8), on the other hand, has
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no CIR knowledge. Therefore, as the CIR is constant over
L consecutive OFDM symbols, the effect of the channel
phase is canceled by using the phase differences for the
same subcarrier index via Ry, .

2

Next, define Jy; = Fyp — L (zle(N 1+ 2N,))
The CRB for the estimation of 6 based on (4), assuming
the CIR is unknown, is given by [25, Equations (12)—(13)]:

N?0}0*(3)
ZJTZJN’L

N?620*(1)

(uk)
CRB =
€ 27T2JN,L

, CRBM™ = .9

Similarly to the known CIR case, the CRBs (9) are not tight
in the high SNR regime.

3.3. Decoupled MLEs

The MLE (8) can be simplified by decoupling the estima-
tions of the CFO and of the SFO, following the procedure
presented in [25, Subsection IV.A]. The main idea of the
decoupled ML (DML) estimator is to expand the CFO
parameter, €, into a vector of parameters &, whose esti-
mations can be decoupled from the estimation of the SFO
8. Define oy = 2INge and consider the vector &« =

o1, 02,...,a1]. The summands in (8) can be expressed
using « as:
L 2IN,
S Ry e DY
I=1 k€K,
10
L «, 2IN, ( )
. i _— 751{)5
Yol e
I=1 k€K,

Maximizing (10) with respect to o, while § is
fixed, § = 8y, results in the following closed
form expression, [25, Equation (17)] &;(8o) =

Narg {kae)c,, Rl,k,,e_jn%k”‘s“} Plugging &;(dp) back
into (10) and maximizing with respect to § leads to the
estimator [25, Equation (18)]:

L

~ . 2INg
5](;&{ = argmax Z Z Ry, e ™ FeEL
§€Rs | =1 |k ek,

Thus, finding S](DUI\IZ{ requires a search over § € fRg. The
work [25] proposed then to use the BLUE to estimate €
b QU A (o sk |1

ased on the expanded vector &py; = {a; (SDML)}I_].
Since the BLUE requires the covariance matrix of the esti-
mation errors corresponding to &gll\(,fL, [25] suggested to
use the efficiency property of the MLE, [28, Theorem 7.1],
and obtained this matrix by calculating the CRB for the
joint estimation of & and 6. We note here that as the esti-

mates @ (33}5&) are clearly suboptimal, it does not imply

that &gl;j[)L is an efficient estimation of «. Thus, using the
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respective CRB can only be viewed as an ad-hoc approxi-
mation of the required covariance matrix. Furthermore, in
[25], the CRB for joint estimation of & and § was cal-
culated based on the concentrated log-likelihood function
(LLF) [25, Equation (16)], instead of using the actual LLF
[25, Equation (8)], further reducing the accuracy of the
variance expression.

The definition of «; implies that in the absence of noise,
the effective range of this method is approximately |e| <
2LN In practice, this range can be larger since € can be
correctly estimated even if it causes an ambiguity in oy..

For the case of known CIR, the above decoupling proce-

dure can be repeated. The resulting estimator 8](31(1\)414 is given
21Nx

by (11) with Ry, replaced with Yz, replaced with
&1, and ) = 2IN;e replaced with o = (N 142N;)e. Once
the estimate 81()]<1\),[L is obtained, the BLUE is used for esti-
mating € based on &]()I\)/IL Again, we emphasize that &g?,[L,
is not necessarily efficient. The effective estimation range

oo . N
in this case is |¢] < N=IF2N;

4. APPROXIMATELY OPTIMAL PER
SUBCARRIER ESTIMATION

In this section, we first present a polynomial-based approx-
imate solution for a single dimension maximization prob-
lem corresponding to (6). Then, we present a new estima-
tion method that first uses the polynomial approximation to
estimate py, 2. + k6 for each k, € Ky, and then uses the
BLUE to estimate € and § from the per-subcarrier estimates
f)k,,- We refer to this method as approximately optimal per
subcarrier estimation (AOPSE).

4.1. Polynomial Approximation for the MLE
Cost Function

Foro; € R, 6, € €,1 = 1,2,...
imization problem argmax g {Z,L= L R fever ,31}}.
Define To(x) £ Yl 9% {e 78} = YL | (cos(aw)
N{Bi} + sin(ax)I{B;} ). The maximizing x must satisfy

% = 0, which can be explicitly written as:

, L, consider the max-

L

> (@cos(@)Iipr} — arsin@R{Br}) = 0. (12)

=1

For L > 1, (12) has no closed form solution. However,
an approximated solution can be obtained by applying the
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polynomial in the variable x:

=

’Mh

~ 2n+1
St

T=1

M
)
g(m
L

(=n" n+2 2n
> iy e

13)

Next, we use this approximation in the AOPSE method.

4.2. AOPSE for Known CIR

Let the range of pi, be denoted by R (k). Writing the cost
function in the curly brackets in the RHS of (6) in terms

of py, gives Zlel kae K, N {Yl’kpe*fflﬂkh}. For a specific
ky € ICp, the MLE of py, is given by:

p,ﬁ )ML = argmax Z R {Y;k e JSZ”‘P} . (14
" P, €Rp (ky)

Applying the approximate solution presented in Subsec-

tion 4.1, we obtain that [),Ek)ML is approximately given by
s

one of the roots of the polynomial (in the variable py,):

N 2l o _
Z (2n)! Z“ {Ylk,, §

n=0 (15)

} %.2n+2 2n+ 1 ,

where M € 91 is a design parameter which controls the
tightness of the approximation. Let ﬁlg,(,)poly denote the
selected root. Before describing how to solve (15), we con-
sider the possible range of the pg,’s: Equation (14) implies
that in absence of noise, an estimation of the effective range
of this method is |e + kpd| < #—l—zm As stated in
Subsection 3.3, in practice, this range can be larger.

The degree of the polynomial in (15) is 2M + 1, thus
it has 2M + 1 roots. Some of these roots might be com-
plex, out of which the estimate of pg, has to be selected.
We propose to use the Newton-Raphson (NR) method [30],
with NnRr iterations, for finding ﬁ,g?poly explicitly. While
the NR method has a low complexity, it might converge to
a root different than the root we seek. In order to overcome
this drawback, as 9, (kp) is set to be symmetric around
zero, we apply the iterative method with Ny different ini-
tial conditions in the set 8. For Ng = 1 we set 8 = {0}.
Otherwise we set:

Taylor expansions (around x = 0) of sin(cx) and cos(o;x): No

note that if |x| is small, then the Taylor series is well { {S)f{p (kp)}} even Ny
approximated using a finite number of elements, M € 1. B = gL,

Plugglng these approx1mat1(.)ns into (12), we obtain t.hat { + NO,; _ max {fﬁp (kp)}} U {0} oddNo,
solving (12) amounts to finding the roots of the following 5 i=1
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and then select the root that maximizes (14) as ﬁ,&k)poly.
-
Let the vector of all K, estimates be denoted with

ﬁl(ngy S [ ]Ell‘)poly, plElz()poly . /6,5]1? poly] . Define A to be a
K} x 2 matrix whose elements are [A], | = 1,[A],2 = kp,
for p € {1,2,...,Kp,}, and let v be a vector containing
the errors in estimating pg,. The relationship between the

estimates p( ) and 0 can thus be written as:
~(k
Pl = A8 +v. (16)

The CRB for the estimation of p = Pk, §p= n based on

the model (4), is a diagonal matrix, G, whose diagonal
elements are:

252
N<oy

Glpp = =5
[ ][7’[’ 27T2|Hkp |2FN,L

. pefl2. K} (7

It can be easily verified that for the estimation problem (14)
the regularity conditions for efficiency of the MLE, speci-
fied in [28, Appendix 7B], hold. Therefore, the MLE (14)
is efficient for each k,. Thus, when the ICI is negligible,
v can modeled as a zero-mean vector, and its covariance
matrix, denoted by @,, is equal to G. Now, the BLUE for
0 can be computed following [28, Chapter 6]:

G

-1
iy = (ATQ1A) A% as)

Ppoly:

It thus follows that for negligible ICI, 0; )y is unbiased and
its covariance matrix is given by (Appendix B):

272 * *
W _ 0N [Q 3 0 (2>]. (19

Qeoy = 5295, | 0*@) 0*(1)

4.3. AOPSE for Unknown CIR

Following similar steps to those applied in Subsection 4.2,
the AOPSE method can be applied to the case of unknown
CIR. For a specific kp € Kp, the MLE of py, is given by:

L—1

.__ 2INg

,3,&:};\)% = argmax { R {R,,kpef”NNPkp}}. (20)
P, €Rp (k) (1=1

Letn =n ZINA‘. Applying the approximation method pre-

sented in Subsection 4.1, we obtain that p,E[ 1\)/[L is approxi-

mately given by one of the roots of the polynomial (in the
variable pg,):

N
2 Gy IZ Ry " ol -

n=0
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A~ (uk)
poly*

via the BLUE. As in Subsection 4.2 ,we

Denote the vector of estimated roots by p 0 is esti-

mated from ﬁ(uk)

have that p(Uk) A6 + v, where A is defined in Subsec-
tion 4.2. Here, the CRB for the estimation of p is a diagonal
matrix, I, whose diagonal entries are:

N%o2
Flp=—5—2—, e{l,2,...,Kp}. 22
(Elpp 2772|Hkp|2JN,L JZA ) (22)
Similarly to Subsection 4.2, it can be verified that the reg-
ularity conditions for the estimation problem (20) hold,
hence, from the efficiency property of the MLE, when the
ICI is negligible, v can be modeled as a zero-mean vec-
tor, and its covariance matrix, denoted by Q,, is equal to

IF. Next, we compute the BLUE for @ and obtain 0(uk)

poly
(AFQ;'A)” AHQV ﬁ(Uk) As in Subsection 4.2, it fol-
FIG

poly”
lows that oly is unbiased and its covariance matrix is

given by:

2 A72 * *
wy _ opN” [0*(3) 0% (2)
Qeoly = 225, [Q*(z) Q*(l)]' @)

Following the same analysis of the estimation range
applied in Subsection 4.2, it follows that the effective range
of this method is |e + k6| < 22\5\/

We further note that in order to evaluate 0(01) , the

unknown CIR must be estimated. Here, we propose to esti-
mate the CIR based on p(il}), For unknown CIR, we write
T'(#) in (5) in terms of p and as a function of the unknown

T
CIRH = [Hkl,HkZ,...,HkKJ :

I'(p,H) = —LK,In (rmvz) -

Next, let Xy, = Zl,ka;kk and fix p = pggf) Then,
K

AN . s k
Hy, (P;lél;) is obtained by maximizing I' (pl(;él;, H):

i, (A) =

(uk)
kp,poly

- —EiB
Z Xip e 1Pkp.poly (24)
1= 1

where p is estimated via (21). Finally, we note that

Ppoly
mated CRB for the estimation of p.

using Hkp ( (Uk)) in IF, see (22), results in an approxi-

4.4. Estimation using partial knowledge of
the CIR

2D . . . . .
(—1)" In this subsection, we discuss two special cases of partial
Z Z R {Rig, } "ot CIR. First ider th f known CIR gains, |Hy, |
(2n n 1)' ko5 1 . First, we consider the case of known gains, |Hy, |,
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and unknown CIR phases ¢y, and derive the MLE for
this scenario. Then, we show that the optimal estimation
performance for the case of unknown CIR phases is iden-
tical to the optimal estimation performance for the case of
unknown CIR. For the case of known CIR phases ¢, and
unknown CIR gains |Hy, |, we show that the optimal esti-
mation performance is identical to the optimal estimation
performance for the case of complete CIR knowledge. This
implies that the estimation performance is largely deter-
mined by the knowledge of CIR phases, which agrees well
with the intuition. Therefore, in order to obtain a good
CFO and SFO estimations, the receiver should focus on
obtaining accurate estimates of the CIR phases, while the
estimates of the CIR gains can be less accurate. We fur-
ther show that the AOPSE adopts to partial CIR, in contrast
to the DML, and in fact it requires only the phases of the
CIR coefficients to obtain approximately optimal perfor-
mance. Lastly, we note that when CIR estimates are only
moderately known, then the partial CIR scheme, based
on knowledge of only the phases, maybe better than the
scheme based on known CIR.

4.4.1. Known gains and unknown phases.
The model (4), stating the channel gains |Hy,| and
phases ¢y, explicitly, is given by:

Zl,k,, — e.751(6+kp5) ‘Dl,k,, |Hkp|ej¢kp + Vl,k,,- (25)

In Appendix C.1, we show that the CRB for estimating
0 based on (25), assuming the CIR phases are unknown
while the CIR gains are known, is identical to the CRB for
the case of no CIR knowledge at all, stated in (9). There-
fore, the case of completely unknown CIR and the case
of unknown CIR phases are equivalent in terms of opti-
mal estimation performance. Next, consider the MLE for

T
0 : We treat the vector of phases ¢ = [¢k1 s Prys - 7¢k:<p:|

as a deterministic unknown nuisance parameters vector.
The MLE of ¢ is found by maximizing the joint LLF of
the extended unknown parameter vector [#7,¢7]7. In this
case, from the invariance property of the MLE [28, Thm.
7.2], the MLE of ¢, for a fixed @, is found to be:

B () = arg

L
ZXz,k,,e‘f‘f'“*kP‘”} )
=1

Plugging (26) into the LLF (5), we obtain the MLE for 6 (
Appendix C.2):

5 (phase)
Oy~ = argmax

0 R XNRs

> H |x

k€K, 27)

L
Z Xk o IEI(e+ky8)
Ky
I=1

In contrast to the MLE for unknown CIR, here the decou-
pling procedure of Subsection 3.3 cannot be applied

Low complexity estimation of CFO and SFO in burst-mode OFDM systems

because the MLE in (27) is stated in terms of the Li-
norm. Therefore, the MLE for the case of unknown phase
cannot be simplified using the same approach taken for
unknown CIR. However, the AOPSE approach presented in
Subsection 4.1 can be adapted to the case of unknown CIR
phases. Hence, for a specific subcarrier k;, € K, we have

L
A(phase) _ —JENpy
koML = > Xige ’

=1

argmax
Py (S (kp)

%|Hkp|
(28)

L—1

ip 2Ns

= argmax % N {R]’kpe_]” N pAn}
pkpemp(kp) =1

where |Hy, | is omitted because it is constant for a fixed k.
Note that (28) and (20) are identical, therefore 6 can be
estimated via the AOPSE derived in Subsection 4.3.

4.4.2. Unknown gains and known phases.
Following steps similar to those detailed in
Appendix C.1, it can be shown that the CRB for esti-
mating 6 based on (25), assuming the CIR gains are
unknown while the CIR phases are known, is identical
to the CRB for the case of completely known CIR, see
(7). Therefore, the case of completely known CIR and
the case of unknown CIR gains are equivalent in terms of
optimal estimation performance. Next, consider the MLE
for 6, and let Ay, = |Hy,|. We treat the vector of gains

T
A= [Akl,kkz,.. .,Aka]
nuisance parameters vector. The MLE of A is the vector
A that maximizes the joint LLF of the extended unknown
parameter vector [#7, 717 (Appendix C.3):

as a deterministic unknown

L

2 (partial 1 . VR

Agﬁf)(") =7 L {Xl,kpe 94 ¢ /51(”"”3)}. (29)
=1

Plugging (29) into the LLF (5), we obtain:

é&f‘n) = argmax
O R XNRs

L A
Z (Z N {Xl’kpe_j‘pkp e_jfl(€+k,,8) }) )

kek, \I=1

Similarly to Subsection 4.4.1, the decoupling procedure
cannot be applied, but the AOPSE approach presented in
Subsection 4.1 can be adapted to the case of unknown CIR
gains.

This indicates another advantage of the AOPSE: it
applies to the case of partial CIR, this is in contrast to the
DML presented in Subsection 3.3.

Wirel. Commun. Mob. Comput. 2016; 16:1018-1034 © 2015 John Wiley & Sons, Ltd. 1025

DOI: 10.1002/wem



Low complexity estimation of CFO and SFO in burst-mode OFDM systems

5. SIMULATIONS AND NUMERICAL
PERFORMANCE EVALUATIONS

5.1. Simulation parameters and review of
previous studies

The performance of the estimation schemes presented in
this work is evaluated for a system with parameters com-
patible with the IEEE 802.16 standard for fixed OFDM-
based wireless metro access network (MAN), operating
at the 5 GHz band [2, Ch. 8.3] (due to the similarity
in configuration, the simulation scenario is also relevant
to LTE [3]), see also [25]: we assume DFT of length
N = 256 and CP of length N, = 16. The sampling
period is T = 87.5ns, and the subcarrier spacing is
44.6 KHz. Furthermore, Np = 200 modulated sym-
bols (information and pilots) are used per OFDM symbol;
these symbols are located at the subcarriers with fre-
quency indices {100, £99,...,+1}, where eight pilots
are located at the subcarriers whose frequency indices are
{+88, +63,+38, £13} e KCp, while the remaining sub-
carriers are dedicated for data. We consider a frequency
selective slow Rayleigh fading channel with an impulse
response of length Lo, = 12, where each channel tap is
modeled as a zero-mean statistically independent complex
Normal RV, with an exponential power delay profile given

by E{|?} = ¢ Tn [Eiye T, i=0.1,....La—l.
As stated in Section 2, the channel remains constant over
an OFDM frame. In the simulations, a different channel
realization is generated for each OFDM frame, except for
simulations that include a comparison with the CRB, where
the same channel realization* is used for all OFDM frames.
Note that the CRBs given in (7) and (9) hold for a given
CIR. When the CIR is a random vector, a hybrid CRB [31]
should be used, however, this is out of the scope of this
work.

The CFO is taken as 45.7 ppm, which for the above
parameters corresponds to € = 0.02 and the SFO is taken
as 100 ppm, which corresponds to § = 10™*. CFO and
SFO estimation is done using a frame consisting of L = 8
OFDM symbols. For the DML the coarse search is exe-
cuted over Ngch = 16 equidistant values of § in the range
6] < 5- 10~*. Furthermore, we set Nexpan = 20 to be
the interpolation expansion factor. The residual CFO ¢ is
in the range |e| < 0.05. For the AOPSE of Section 4 we
use Taylor series of order M = 3. The maximal num-
ber of iterations for the NR method is set to NN\g = 5,
and the number of initial conditions for the NR method is
set to N9 = 2. The symbols at the pilot subcarriers are
uniformly selected from a BPSK constellation, while the
data subcarriers are modulated with equiprobable QPSK

#The channel taps are given by H = [—0.4833 + 0.0683;, —0.2686 +
0.43977,0.1396 — 0.3578j,—0.1589 — 0.1945j,—0.0659 —
0.05907,—0.2321 + 0.0699/,0.0698 — 0.0741j,—0.1506 —
0.18157,—0.2894 — 0.07195,—0.2140 4+ 0.2358/,0.0434 —

0.0203j, —0.0280 — 0.0261;]”. Note that [H|?> = 0.99994.

Y. Murin and R. Dabora

symbols.

Throughout this section, we compare our results to the
estimation methods presented in [20,23,25] and [17]. The
methods of [20] and [23] do not rely on known pilots
or CIR. Instead, it is assumed that the same pilots are
transmitted in two consecutive OFDM symbols. Then, the
phase differences are calculated via Zk = Zit1k, Z*

The work [20] estimates € and § via Zk ex, Zlk ; thls
method is denoted by SFFM (Speth- _Fechtel- Fock Meyr)
The work [23] uses the LS estimator [28, Chapter 8] to esti-

mate € and § out of {Zl’k”}k o this method is denoted
ex,

by LC (Liu-Chong). Note thgt th’ese methods use only two
consecutive OFDM symbols. For fairness of comparison,
we extend the schemes of [20] and [23] to L > 2 OFDM
symbols via averaging the different estimations. The work
in [17] assumes that the CIR is known and approximates
the term e/51(€+58) in (4) by 1 +j&;(e +kp6), thus, the LLF
in (5) becomes linearly dependent on € and §. Then, by set-
ting the derivative of this linear model to zero, [17] obtains
a closed form approximate MLEs for € and §. We denote
this method by HBC (Héring-Bieder-Czylwik). Finally, the
reduced complexity estimator (RCE), presented in [25], is
a two-stage linear method in which the receiver first esti-

mates the quantities {Pk,,} ek using the linear estimation
A

method established in [32]. Then, based on {p, } i e the
pEXp

BLUE is used for estimating € and §.

5.2. Simulation results

First, we present the mean-squared-error (MSE) of the dif-
ferent methods. The MSE is defined as MSE(5) 2 E{
(8 — 8)2} and MSE(¢) £ E{(e — ¢)%}. Figure 1 depicts
MSE(§) and MSE(e) versus SNR for the case of known
CIR. In this case, the relevant methods are the DML,
AOPSE, and HBC. The CRB for this scenario is depicted
as areference. It can be observed that for the case of known
CIR, as expected, both the DML and AOPSE approach
the CRB for low and medium SNR conditions. We also
observe that this does not hold at high SNR because the
ICI is no longer negligible. Lastly, we note that the HBC
performs very poorly. This follows from the fact that for
L = 8, the approximation elbilethd) ~ + j€i(e + kpd),
applied in [17], does not hold.

Next, Figure 2 depicts MSE(8) and MSE(¢) vs. SNR for
the case of unknown CIR. In this case, the relevant meth-
ods are LC, RCE, SFFM, DML and AOPSE. It can be
observed that for medium and high SNR conditions, RCE,
AOPSE and DML achieve approximately the same per-
formance. Similarly to the case of known CIR, when the
SNR is high, the CRB is not attainable by these schemes.
However, when the SNR is low, the RCE suffers from
severe degradation in the estimation accuracy. AOPSE and
DML, on the other hand, approach the CRB for both
low as well as for medium SNR conditions, at the cost
of higher computational complexity. Figure 2 also shows
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Figure 1. MSE(§) and MSE(¢) versus SNR for known CIR with
€=0.02,§ =104, and L = 8.
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Figure 2. MSE(8) and MSE(e) versus SNR for unknown CIR
with € = 0.02,8 = 1074, and L = 8.

that the performance of LC and SFFM are worse than the
performance of the other methods.

Next, we examine the effect of knowledge of the CIR on
the estimation performance by comparing the estimation
accuracy and range in known CIR with unknown CIR. This
is illustrated in Figures 3 and 4. Figure 3 depicts the aver-
age estimated € versus the true value of €, for known CIR
with § = 107* and SNR = 15dB. The Unbiased line
is presented as a reference. Figure 3 agrees with our anal-
ysis that shows that the DML, for the case of known CIR,
is unbiased for |e| < 0.055, while for the case of unknown
CIR, the DML is unbiased for |¢| < 0.058. Furthermore, it
can be observed that the practical estimation range of the
AOPSE is larger than the one for the DML, as indicated in
Section 4. Additionally, note that in Figure 3 , the estima-
tion range in the case of unknown CIR is larger than in the
case of known CIR. This holds in particular for AOPSE.
The MSE comparison for known versus unknown CIR is
depicted in Figure 4. Observe that the gain in MSE due to
knowledge of the CIR can be about 7 dB. This indicates a
tradeoff for the methods derived here: while CIR knowl-

Low complexity estimation of CFO and SFO in burst-mode OFDM systems

edge significantly improves the estimation accuracy over
unknown CIR, it limits the estimation range.

Finally, the effect of the frame length L on the esti-
mation performance is demonstrated in Figure 5, which
depicts MSE(e) as a function of L for unknown CIR at
SNR = 7dB, € = 0.02, and § = 10™*. From Figure 5,
it can be observed that for unknown CIR at SNR = 7dB,
DML and AOPSE significantly outperform RCE, SFFM
and LC, for the entire range of L tested.

5.3. Additional important system aspects

5.3.1. Continuous wave interference.

We note that as in this work we considered estimation
schemes based on pilot tones, then the proposed algo-
rithms as well as all previously proposed schemes are not
affected by continuous wave interference (CWI), which
is not present in the pilot tones. Yet, these schemes are
susceptible to CWI that affects one or more pilot subcar-
riers. Such CWI may significantly degrade performance of
all pilot-based schemes due to inducing a large bias and

0.1 T T T T T T T T T
Unbiased
0.08 —=—DML(K) 4

—o— AOPSE(K)
- EJ- DML(uk) \
-(5)- AOPSE(uk) y
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0.04 | ]
0.02 1

of |
~0.02 | D
~0.04 | 3

u:]
—0.06 ]

Average CFO estimate

~0.08 | i i i i 1

0.1 . : : ; ;
-0.1 -0.08 -0.06 -0.04 -0.02 0

€

0.02 0.04 0.06 0.08 0.1

Figure 3. E{é} versus € for § = 1074, L = 8, and SNR = 15dB.
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Figure 4. MSE(¢) versus SNR for ¢ = 0.02,8 = 107%, and
L=8.
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MSE(e)

Figure 5. MSE(¢) versus L for unknown CIR with € = 0.02,§ =
10~%, and SNR = 7dB.

increasing the variance of the estimators. We note however,
that the impact of a CWI located in one of the pilot sub-
carriers can be partially mitigated by a simple modification
to the estimation scheme, for example, by applying energy
detector to the pilot tones and excluding from the estima-
tor all pilot tones suspected of suffering from CWI. Then,
the AOPSE is applied using only the pilots subcarriers in
which no CWI was detected.

5.3.2. Bit error rate.

For the simulated system, CFO and SFO of ¢ = 0.02
and § = 107, respectively, correspond to clock offsets
of about 50 ppm for CFO and about 100 ppm for the SFO.
These values are reasonable for the outcome of the initial
coarse synchronization [25]. Yet, from additional simula-
tions we carried out, we conclude that these values do not
allow functional system operation, as if left uncorrected
the resulting uncoded bit error rate (BER) is very high, for
example, for the case of known CIR, an uncoded BER of
0.5 is measured at all SNR values in the range of 0dB to
40dB. When applying CFO and SFO estimation and cor-
rection with the DML or with the AOPSE schemes, then
the uncoded BER approaches the case of no CFO and SFO
at all, and decreases linearly (on the log-log scale) with
the SNR. We conclude that good SFO and CFO estimation
schemes are essential for proper operation of the system.

5.3.3. Different cyclic prefix lengths.

From (4), it follows that the length of the CP affects the
received signal via & which, for given € and &, determines
the phase drift in each of the pilot subcarriers. Typical
lengths of CP, e.g., in IEEE 802.16, are % (used in the
present simulations), % and %. After repeating our simu-
lations for N, = % = 32 and for N, = % = 64, we
conclude that the AOPSE scheme approaches the CRB in
low-to-medium SNRs, also when Ny = 32 and Ny = 64.

1028
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5.4. Computational complexity

5.4.1. Computational complexity of the DML.

A detailed computational complexity analysis for the
DML is provided in Appendix D.1. Here, we provide only
an outline of this analysis for the case of known CIR. The
DML in Subsection 3.3 consists of two stages: evaluating
(11) (for the case of known CIR) via a search and esti-
mating € from the vector e via the BLUE. The search
is executed in two steps: a coarse exhaustive search over
Ngreh equidistant values of § in the range § € g is
followed by a cubic spline interpolation with expansion
factor Nexpan. The computational complexity of the coarse
exhaustive search is Ngen(3LK, + L — 1) while the com-
putational complexity of the cubic spline interpolation is
TNstchNexpan + 2Ngreh + 114, see [33]. Next, estimating €
from the vector & via the BLUE has a computational com-
plexity equal to 8L + 3LK), + 6L+ 5K, — 3. Therefore, the
computational complexity of the DML in Subsection 3.3 is
equal to: pmL = 3szrchLKp + 7NsrchNexpan + NgrehL +
3L% + 3LK), + Nenh + 7L + 5K, + 115.

5.4.2. Computational complexity of the AOPSE
in subsection 4.2.

A detailed computational complexity analysis for the
AOPSE is provided in Appendix D.2. Here, we provide
only an outline of this analysis. The AOPSE method first
applies the polynomial approximation for each subcarrier,
and then uses the BLUE via (18). The computational com-
plexity of evaluating the coefficients of the polynomial (15)
is 4LK,(M + 1) — K}, while the complexity of finding the
desired root via the NR method (for Ny initial conditions)
is K,,(ZM + No(10NNRM —3NNR —2M + 3L+ 3)). Finally,
estimating @ via the BLUE (18) has a computational
complexity of 16K),+2. Therefore, the computational com-
plexity of the AOPSE is equal to: Gaopsg = Kp(4L(M+1)
+2M + 15 + No(10NNRM — 3NNR — 2M + 3L + 3)) + 2.

5.4.3. Comparison of computational complexity.

As the DML and the AOPSE have approximately the
same performance, to give a complete comparison we eval-
uated the computational complexity of both methods, for
the case of known CIR and for the simulation parameters
detailed in Subsection 5.1. We obtained that the computa-
tional complexity of the DML, presented in Subsection 3.3,
is oML = 6051 while the computational complexity of
the AOPSE, presented in Subsection 4.2, is GAopsE =
3690. It can be observed that while the AOPSE achieves
the same estimation accuracy as the DML, it requires only
about 60% of the computational complexity. We further
note that the AOPSE maintains a tradeoff between Ny and
Nnr. For example, increasing No from 2 to 3 and decreas-
ing NNr from 5 to 4, the performance become negligibly
worst, while complexity increases to 4290 flops.
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6. CONCLUSIONS

In this work, we studied the problem of estimating the
residual CFO and SFO based on known pilots, in an
OFDM-based system for which the CIR is approximately
constant over an OFDM frame. Three cases of CIR knowl-
edge at the receiver were considered: full knowledge,
no-knowledge, and partial knowledge. We first proposed
an approximate MLE through the Taylor expansion. This
replaces the MLE search with the problem of finding
the roots of a polynomial, which can be solved effec-
tively using numerical methods. This method was used to
obtain a polynomial in terms of a linear combination of
the CFO and SFO, which was then combined with the
BLUE to form an estimate, referred to as AOPSE, which
does not require an exhaustive search. The AOPSE was
shown to achieve similar performance as the DML but at a
significantly lower computational complexity.

For the case of partial CIR knowledge, we showed that
the case of known CIR gains and unknown CIR phases
is equivalent, in terms of the optimal performance (i.e.,
the CRB) to completely unknown CIR, while the case of
known phases and unknown gains is equivalent to com-
pletely known CIR. This implies that in order to obtain
good estimations of the CFO and SFO, one should focus
on estimating the CIR phases, while the impact of the CIR
gains on the estimation is significantly lower. Furthermore,
we explained why the AOPSE is robust to the knowledge
of the channel gains while the DML is not.

APPENDIX A: DERIVATION OF THE
CRB FOR KNOWN CIR

The received signal (4) can be written in a matrix
form: Z= B(e,§)DH + V, where Z 2 [zl,k,,zl,kz,

T
-,Zl,k,(py qukl,...,ZL,ka ] is an LK, x 1 vec-

tor and V 1is defined in the same manner using
{Vl,kp}lL;Kle=l; B(e, 6) is an LK, x LK, diagonal matrix
with the entries {ejg’(e"'k“s),eﬁ’(e""kl‘s), ... ,eis‘(e"'k’(ﬂs)};

D is an LK, x LK, diagonal matrix with the entries

{Dl,kal,kz,~~-,Dl,ka,DZ,kp-~~,DL,kKP} ;and H =
... HTH = [Hkl,sz,...,HkK ] is an LK, x 1
e — P

Ltimes

vector. Treating B(e,d),H and D as fixed unknowns, Z
is the realization of a circularly symmetric complex Nor-
mal vector with unknown mean u = B(e,6)DH and
known covariance matrix 012} Ik, . Since the matrix B(e, §)
is differentiable in € and &, the Fisher information matrix
(FIM), associated with the unknown vector 6 is given by
[28, Chapter 3]:

o op ab
’= {ao ao} [b]
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where, a, b and c are given by:

ig{ a”“H.al _ZEFNL Z| 2,
T2 de e o2IN2 &
v v k,€IC,
2 a[l,H 6;1,} 27[ FNL 2
b=—N = = kp|Hy =,
o2 { de 98 oIN? k;Cp 7l |
2 ot op 21%Fy 2 2
=—MN— == —= ko|Hy |-
c 012) { 98 a8 } UgNZ k;C [7| kp|
P P

Recalling that Q(g) = kaer kg_l|Hkp|2,q = 1,2,3,

and that Q* (j) = we arrive at:

()
0(He(3)—-2*(2)°

22 * *
7= 2 2n %y [Q ) 2 (2)]. (A1)

0*(2 o*(1)

The CRBs for the estimation of € and § are the diagonal
elements of J™1, stated in (7).

APPENDIX B: MEAN AND

COVARIANCE MATRIX OF 4 . IN
SUBSECTION 4.2
Plugging (16) into (18) we have:
00, = (arayia)” afey 4,
-0+ (AHleA)_ ARQ Y (B.1)

Taking the expectation, and using E{v} = 0, we have

B {é(k) } = 0, and therefore é;ﬁ?y

poly is unbiased. Next,

Q(k) , the covariance matrix of éégy, can be obtained as:

poly
o, —E|(08,-0) (4%, -0)"}
= (AHQJIA)_I APQE {wvf) x
()" a ((wer'a) )’
1

- (AH Q;lA)_ (B.2)

Now, plugging A, defined in Section 4, Q, whose ele-
ments are given in (17), and explicitly calculating the
elements of A#QH A, we obtain that (A7 Q;! A)_l =

J-! given in (A.1).
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APPENDIX C: DETAILED
DERIVATIONS FOR PARTIAL CIR IN
SUBSECTION 4.4

C.1. CRB for Known Gains and Unknown
Phases

The model for the received signal (25) can be written in a

matrix form: Z = B(e,§)DH¢ + V, where Z, V, B(e, §)

and D are defined as in Appendix A, H is an LK, x

LK), diagonal matrix with the entries [HH,...,H,H =
N ———

Ltimes
NHig I} and ¢ = (6.9, ].¢

Ltlmes

[|Hk1 [, |Hk2|9 cee

[ej% ,ej¢k2, . ,ej¢kkﬂ:| is an LK, x 1 vector represent-
ing the unknown phases. Treating B(e,8),H and D as
fixed unknowns, Z is the realization of a circularly sym-
metric complex Normal vector with unknown mean p =
B(e, §)IDH¢ and known covariance matrix 012) Ik, Since
the matrix B(¢, §) is differentiable in € and &, the FIM asso-
ciated with the unknown parameters vector § = [¢7, ¢, 8]7

is given by:
aut 9
o) =L

J(phase)
30 06 MT P

where A is a K, X K}, diagonal matrix with the entries:

Ay = Zop {20 0w | 2L
nr Obr, Odx, o2

M is a K}, x 2 matrix, where the entries of its first column
are given by:

Y. Murin and R. Dabora

and the entries of its second column are given by:

EmH au
M],, = =
M2 =5 g, 95
27 |Hy, |2y &
= ——2 L3 (N—1+2N).
i L 12N

=1

P is equal to the matrix J given in (A.1). The Schur com-
plement (see [34, Appendix C.4]) of P with respect to
J®hase) j5 given by $ = (P — MTA~'IM)~!. The CRBs
for the estimation of € and § are obtained as the diagonal
entries of 5. From the explicit expressions for A and M,
we obtain that M7 A~'IM is equal to:

2
272 (L (V= 142M) " F oy 00
oILN? [Q(2) Q(S)]’

and we conclude that the diagonal entries of $ are stated
in (9).

C.2. Derivation of (27)

Plugging (26) into (6), and defining X;x, = Zj, le , we

0 (phdse)

have in (C.1), at the bottom of the page.

C.3. Derivation of (29)

Using Hk,, = /\kpej‘ml’ in the LLF (5), we arrive at the

MLE for A given 6 = oo,il(gimal)(ﬁo), given in (C.2)
at the bottom of the page. By differentiating the expres-
sion in the curly brackets in (C.2), with respect to )Lk we

obtain Z, 1 {ZM — 20 {Z;k D* e Iy o€ty 50)}}

8;LH eI
[M]p, = ‘H { 3% e As the second derivative is posmve, the MLE for A, can
kp be written as:
_ 2m|Hy |7 > &
= N—1+2N, L A
N Z( l) )L]((Pf’;\r/}‘il) (0) — l Z R {Xlk e_]¢k,, e*j51(€0+kp50)} .
L P
=1
A (phase) - § ¢ {parta (9)
O, = argmax Z N %Z”( e EIEthy )D |H CRACE }
OERXNRs | =1 ek,
L . ) jarg{z Xk e—fsm(e+kpa>}
= argmax { > Y 0 IXyy |Hy e EERD) m=1 Sk } (C.1)
OERXNRs | =1 ek,
L
= argmax |Hy | Z Xi, o—/E1(e+k,8)
OERNs | ek, I=1
, L 2
lﬁfllal) (8) = argmin {5 Y ‘Zl,k,, — Bt pyy Ay et (C2)
AR | =1 k€K,
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APPENDIX D: DETAILED
COMPLEXITY ANALYSIS

The computational complexity is defined as the number
of flops needed to complete each calculation. Here, we
assume that the CIR is known. Similar results can be
obtained for the case of unknown CIR. We also assume that
the sequence {Zl,kp }f‘fl”pzl ,is available at the receiver, and
that the symbols at thé pilots subcarriers, that is, k,, are
selected from a BPSK constellation [2].

D.1. Computational complexity analysis for
the DML of Subsection 3.3

Recall that the DML for the case of known CIR con-
sists of two steps: (1) estimating SDML via a search which
is executed in two steps: coarse exhaustive search fol-
lowed by a fine search via a cubic spline interpolation and

(2) estimating € A](DI\),[L via the BLUE based on the vector

()
DML
Coarse exhaustive search: This search tests Ngch

points in the domain of the parameter §. Recalling (11) (for
known CIR Ry, k, is replaced by Y}, k,)s it follows that evalu-

LK,
D}y HE |
" f =1 p=1

LK, complex multiplications.$ Note that the terms eI
can be evaluated in advance for the search points in 4.
Thus, calculating the absolute value in (11), for a fixed /,
requires K;, complex multiplications, K, — 1 complex addi-
tions, and one absolute value operation. This is done for
each/ = 1,2,...,L, and the summation over [/ requires
L—1 real additions. Thus, the curly brackets in (11) require
LK, complex multiplications, L(Kp—1) complex additions,
L absolute value operations, and L — 1 real additions. We
evaluate Ngch values of §. Thus, the course search requires
Ngreh (LK), + L — 1) flops.

Cubic spline interpolation: Let Nexpan be the interpo-
lation expansion factor. From [33, Table 2, for Ay and m =
3] it follows that computing the interpolating polynomials
requires 60 + 3Ng,cp real additions, 36 + 3Ny real multi-
plications, and 18 4 2N, real divisions. These polynomi-
als of degree 3 are evaluated at Ngrch (Nexpan — 1) values of
8. The evaluation of a polynomial of degree 3 requires three
real multiplications and three real additions. The maxi-
mization requires NgrchNexpan real comparisons. Thus, the
spline interpolation requires 7NsrchNexpan + 2Nsreh + 114
flops.

Best linear unbiased estimator based on the vector
a: Recall & Sl(jkl\),[L in Subsection 3.3. Evaluating the

S N A(S . .
maximization argument in & (51()1\)/[L) requires carrying

ating the sequence {Yl k = Zik, requires

k8

out K, complex exponents, K, complex multiplications,

$As the symbols at the pilots subcarriers are selected from a BPSK
constellation, calculating Dz‘ka,:; does not require a multiplication

operation.

Low complexity estimation of CFO and SFO in burst-mode OFDM systems

and K, — 1 complex additions. Furthermore, for each
Ll = 1,2,...,L, an argument operation and a single
real multiplication are required. Since the vector & con-
sists of L elements, it follows that evaluating & requires
LK, complex multiplications, LK, complex exponents,
L(K, — 1) complex additions, L argument operations,
and L real multiplications. Next, let b = [N — 1 +
2Ni;,N — 1 + 2N,,...,N — 1 + 2Ng], and let v be a

vector representing the errors in estimating Ol[( ]gl\),[L)
We can represent the relationship between the estimates

& (3800) = [ar (3%00.) 0 () e (3800) ]

be + v. Define y

and € via &(SI(DML) =

1>

NFNL Zk K, k |H, |2 and define the vector u

N k,|H,
w [N—1+2N;,N—1+42N,...,N —

1 4+ 2Np)]T. Let the matrix D be an L x L diagonal
matrix with the elements [D];; = Zk ek, | Hy %1 =
1,2,...,L. By following steps 31m11ar to those detailed
in Appendix A, we have that the CRB for the estima-

-1
tion of & is given by C = (]D— % . Next, the

BLUE for € can be computed following [28, Chapter 6]:
€l()kl\),lL = (bTCb) e (gl()kl\)/u,)- It can be observed that
C consists of: 1) Constants which can be calculated in
advance. 2) The quantities ‘Hkp 2 .» = 1,2,...,K,, the
terms O(g),g = 1,2,3, and the term Q%(2). These quan-
tities can be evaluated using K, complex multiplications,
2K, + 1 real multiplications, and 3K, — 3 real additions.

Given that Q(q),q = 1,2,3 were evaluated, we have
that evaluating the diagonal elements of ID require a sin-
gle real multiplication, evaluating % require a single real
multiplication and a single real division, and evaluating u
requires L 4 1 real multiplications. Each diagonal element
of C is evaluated using a real addition and a real multi-
plication, while the off-diagonal elements require a single
multiplication. Thus, evaluating C requires L2 + L + 3 real
multiplications, L real additions, and a single real division.
Next, evaluating b’ C requires L? real multiplications and
L(L — 1) real additions. Then, evaluating b” Cb requires L
real multiplications and L — 1 real additions. The explicit
evaluation of é]()I\)/[L requires L real multiplications and L—1
real additions. Finally, a single real division operation is
required. Thus, the BLUE requires 3L + 3LK, + 7L +
5K, + 1 flops.

We conclude that the DML requires the following num-
ber of operations (complex and real):

%DML = 3lvsrchLKp + 7NsrchNexpan ~+ NsrehL
+3L% + 3LK), + Nyeen + 7L + 5K, + 115.

D.2. Computational complexity analysis for
the AOPSE of Subsection 4.2

Recall that the AOPSE method consists of two steps: 1)

/31E,],(,)poly is estimated via the polynomial approximation for
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~(k)

each subcarrier, k;, (15). 2) é;gy is estimated out of Ppoly

via the BLUE (18).

Evaluating the coefficients of the approximating
polynomials of degree M: The terms &, = 1,2,...,L
can be calculated in advance. Evaluating the coefficients
requires 2(M + 1)L real multiplications and 2(M + 1)L — 1
real additions.

Finding the desired root via Newton-Raphson per
subcarrier: The NR method, see [30], successively finds
better approximations to the roots of a real-valued function.
Let f(x),x € %R, be a real-valued function, and let f’(x)
denote its first derivative. Let xg be an initial guess for the
root of f(x). Then, an approximation of the a root of f(x)

can be successively obtained via x, = x,—1 — ;,%:“l)) N =
'
1,2,...,NNR, Where NNR is the number of successive iter-

ations. In our work, the function f(x) is a polynomial of
degree 2M + 1 with real coefficients, and therefore f/(x) is
a polynomial of degree 2M with real coefficients.

We begin with evaluating the coefficients of f/(x). This
requires 2M real multiplications. At the first iteration,

that is, n = 1, as xp is known, the powers x6”,m =
2,3,...,2M + 1 are known as well. Therefore, evaluating
jf,(();‘:))) requires 4M — 1 real multiplications, 4M real addi-
tions, and a single real division. For n = 2,3,..., NNR,
evaluating f(x,—1) requires 4M — 1 real multiplications
(2M — 1 for evaluating the powers {xnm_l}iﬂi—'l—l, and 2M

for the multiplication of the polynomial coefficients and
the evaluated powers), and 2M real additions. Evaluating
f’ (xp—1) requires 2M — 2 real multiplications, 2M — 1 real
additions, and evaluating % requires a single real divi-
sion. Recall that the NR method is applied in our algorithm
for Ny different initial conditions. Finally, the desired root
is selected by evaluating (14), which requires NoL complex
exponents, NoL complex multiplications, No(L — 1) real
additions, and Ny real comparisons.

Thus, finding the desired root via NR, for K}, subcarriers,
requires K, (2M + No(10NNRM — 3NNR — 2M + 3L + 3))
flops.

Estimation of @ via the best linear unbiased estima-
tor: Recall the definition of A: A is a K}, x 2 matrix whose
elements are [A],; = 1,[A],» = ky,p € {1,2,...,K,}.

Let v be a vector representing the errors in estimating ﬁggy.

We can represent the relationship between the estimates
ﬁl()lgy and @ via ﬁgg = A@# + v, where the covariance

matrix of v, @, is a diagonal matrix with diagonal entries

242 ~
which are given by [Qu]p, = ; 2|1;; U"ZF . Now, ﬂélgy is
7T\ gy | Ea
. Ak | —1 Ak .
given by 01501)}, = (AHQ;'A) AfQ; 1pl(m)ly. Plugging

A and @, we have éégy in (D.1) at the bottom of the page.
Now, the p’th column of the matrix D, in (D.1), is given by:

Y. Murin and R. Dabora

[ []D]l,,,] _ oo H, -0 @k |
(DL, 0* (1) |Hy, [ kp — 0* () |Hy |

Evaluating |Hkpf2 .,p = 1,2,...,K,, requires K, complex
multiplications. Evaluating 0*(¢),q = 1,2,3, requires
2K, + 5 real multiplications, 3K, — 2 real additions, and a
single real division. The matrix ID is evaluated using 4K},
real multiplications and 2K, real additions. Finally, evalu-

ating é;]g])y requires 2K, real multiplications and 2K, — 2
real additions. Thus, estimation of # via the BLUE requires
16K, + 2 flops.

We conclude that the AOPSE requires the following
number of operations (complex and real):

EaopsE = Kp(4L(M + 1) +2M + 15
+ No(10NNRM — 3NNR — 2M + 3L + 3)) + 2.
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