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Deep Reinforcement Learning for Simultaneous
Sensing and Channel Access

in Cognitive Networks
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Abstract— We consider the problem of dynamic spectrum
access (DSA) in cognitive wireless networks, consisting of primary
users (PUs) and secondary users (SUs), where only partial
observations are available at the SUs due to narrowband sens-
ing and transmissions. The network operates in a time-slotted
regime, where the traffic patterns of the PUs are modeled as
finite-memory Markov chains, that are unknown to the SUs.
Since observations are partial, then both channel sensing and
access actions affect the throughput. Focusing on the case in
which there is a single SU, our objective is to maximize the
SU’s long-term throughput. To that aim, we develop a novel
algorithm that learns both access and sensing policies via deep
Q-learning, dubbed Double Deep Q-network for Sensing and
Access (DDQSA). To the best of our knowledge, this is the first
work that jointly optimizes both sensing and access policies for
DSA via deep Q-learning. Next, we consider wireless networks
with access policy which implements a fixed channel hopping
dynamics, for which we analytically determine the optimal SU
sensing and access policy and its associated throughput. Then,
we demonstrate that indeed, the proposed DDQSA algorithm can
achieve near-optimal performance for the considered network.
Our results show that the proposed DDQSA algorithm learns a
policy that implements both sensing and channel access, which
significantly outperforms existing approaches, and can achieve
the optimal performance in certain scenarios.

Index Terms— Cognitive radio networks, deep reinforcement
learning, dynamic spectrum access, wireless channels.

I. INTRODUCTION

THE increasing demand for wireless communications and
the limited availability of the electromagnetic spectrum

have triggered the development of efficient methods to increase
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the spectrum utilization. A main paradigm in this context is
dynamic spectrum access (DSA), in which users monitor the
spectrum to detect and opportunistically access free channels
for communications [1]. There are two main approaches
for implementing DSA in wireless networks: A centralized
approach and a distributed approach. In centralized access
management, there is a central network processor, which is
a single point of contact for information sharing, whereas
in the distributed management, every node makes access
decisions based only on its own observations without sharing
information with other nodes. Clearly, distributed access is
very attractive due to its low overhead which facilitates higher
throughputs.

This work considers DSA for cognitive communications
networks. In such networks, every user is designated as either
a primary user (PU) or a secondary user (SU). When a PU
requires a channel for transmission, then a channel is allo-
cated according to a predetermined resource allocation policy.
In contrast, the SUs access the channel opportunistically and
independently. To that aim, each SU independently monitors
the wireless spectrum to identify free channels which are not
being used by the PUs for communication. When properly
designed, the incorporation of opportunistic SUs can lead to
the desired overall increase in spectrum utilization [2]. DSA
has attracted much attention in past as well as in more recent
years, see e.g., [1] and [3]. Study and analysis of DSA based
on multi-armed bandit (MAB) formulations has been a very
active area of research, see e.g., [4], [5], [6], [7], [8], [9], [10],
[11], [12], and [13]. In the case of i.i.d channels, such that each
channel is modeled as a 2-state Markov chain, representing the
channel status as either “busy” or “free”, where in addition,
the state transition probabilities are known a-priori at the
SU, and under the assumption that when the channel is in
a “busy” state it has a larger probability to remain in the
“busy” state than to switch to the “free” state, the myopic
policy has been proven to be optimal [4]. In this strategy,
the SU accesses the channel that will maximize the expected
immediate reward without considering the effect of this action
on future rewards. While the myopic policy is easy to under-
stand and simple to implement, it generally does not achieve
optimal performance if one of the aforementioned assumptions
is violated [4]. Another algorithm that achieves the optimal
policy under the same optimality conditions as for the myopic
policy is the Whittle index policy [5]. This algorithm is
advantageous to the myopic policy in the sense that it can lead
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to the derivation of good access policies even if the channels
are not identically distributed. A major weakness of both the
myopic policy and the Whittle index policy is that they are not
applicable in scenarios in which the channels are correlated.
Another major disadvantage is that both the myopic policy and
the Whittle index policy require full knowledge of the state
transition probabilities, which is often unavailable in practical
scenarios. This requirement has motivated the introduction of
methods which can acquire a nearly optimal policy without
requiring such a-priori knowledge. A major technique which is
capable of achieving this goal is reinforcement learning (RL),
which is a class of machine learning algorithms that can learn
an optimal policy via interaction with the environment, without
knowledge of the system dynamics (such algorithms are also
known as model-free algorithms) [14, Ch. 1]. One of the most
popular RL techniques is Q-learning [15], which can learn the
optimal policy online by estimating the optimal action-value
function. Early works which applied Q-learning to DSA used
the classical tabular Q-learning method [16], [17]. However,
it becomes computationally difficult to apply this method when
the state space becomes large. This issue has motivated the
combination of deep learning with RL, giving rise to the
deep reinforcement learning (DRL) class of algorithms. These
algorithms have attracted much attention in recent years due to
their ability to approximate the action-value function for large
state and action spaces. Recently, the work [18] proposed a
DRL-based algorithm called deep Q-network (DQN), which
combines deep neural networks and Q-learning. Recent studies
which derived DRL-based algorithms for DSA problems can
be found in [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], and [29]: In [19] and [20], the authors applied DQN
to solve the DSA problem, where it was assumed that at
each time step, the SU can choose one channel to access
for which it receives an ACK/NACK signal as feedback,
based-on which a reward is computed. In [19] and [20],
the observations consist of the indices of the past accessed
channels and the corresponding rewards, which are used as
the inputs to the DQN algorithm. In [21], the authors assumed
multi-band spectrum sensing without power limitations, which
corresponds to a fully-observed scenario, and trained a DQN
to select which channel to access in the next time step based
on the current state of the entire spectrum. In [23] and [26],
the authors used a deep recurrent Q-Network (DRQN), which
is a combination of a DQN and a long short-term memory
(LSTM) network to derive the optimal access policy when
observations are obtained using an a-priori set sensing pat-
tern, in which at each time step the SU senses half of the
available channels, such that a different half is sensed at
each subsequent time step. The LSTM layer in the DRQN
algorithm uses past observations for the prediction of the
state, which, in turn, allows the agent to select a channel
for accessing at the next time step. In [22] and [25], the
authors used another DRL algorithm called deep actor-critic
algorithm, which is a policy-based RL algorithm in which the
policy is learned directly via a deep neural network (DNN).
They compared their results with that of the algorithm in [20]
and showed that their proposed algorithm achieves better
performance. The work in [30] used the same system model

as in [20] and applied an algorithm called hierarchical-DQN
(h-DQN) [31]. h-DQN facilitates exploration in complicated
environments by decomposing the original problem into a
hierarchy of sub-problems such that higher-level tasks invoke
lower levels as if they were primitive actions. In [32] the
authors extended the work of [20] to the case in which at
each time slot, the SU selects a block of channels to access
from a predefined set of channel blocks, and the sensing
decision is completely determined by the access decision. The
multi-user problem, where a multiple users access the channel
opportunistically, was considered in [24], [33], [34], and [35]
and formulated, with different variations among these works,
as a multi-agent RL problem [36].

In this work we consider the design of a DSA algorithm
for cognitive communications networks consisting of multiple
PUs and a single SU, which is a common benchmark for
the design of DSA algorithms, see, e.g., [19], [20], [21],
[22], [23], [25], [26], and [27]. In practical implementa-
tions, due to bandwidth limitations inherent to the sensing
operation, an SU can sense only a part of the available
spectrum (e.g., narrowband sensing), which implies that when
operating in a distributed manner, access decisions are based
on partial observations. Naturally, due to the operation of
physical components, sensing also exhibits errors and the
sensing result can be assigned a level of certainty, e.g.,
corresponding to the distance of the test value from the
decision threshold. For the purpose of this study, channel
access of the PUs and SU is implemented in a time-division
multiple access (TDMA) manner, with fixed-length time slots.
PUs’ transmissions take place in frames, which span a ran-
dom number of TDMA time slots, such that for each PU,
the frame length is modeled as a finite-memory Markov
chain, where different PUs may have different state transition
probabilities.

The SU is oblivious to the PUs’ statistics, hence, at each
time slot, based on its previous observations, the SU selects
which channels to sense, and whenever it needs to transmit,
it also selects a single channel for transmission at the next
time slot. Whenever the SU transmits on a channel that
is not occupied by a PU, it receives an acknowledgment
(ACK) signal indicating a successful transmission. Otherwise,
a negative acknowledgment (NACK) signal is received, denot-
ing an unsuccessful transmission. The objective of the DSA
algorithm in such a setup is to maximize the long-term rate of
successful transmissions. As an SU can sense only a subset of
the network’s bandwidth, this problem can be formulated as
a partially observable Markov decision process (POMDP) [20].
In a case where the transition probabilities of the PUs’ Markov
chains are known to the SU, an exact solution to this problem
is P-SPACE hard and has an exponential computational com-
plexity [37]. In real-world models, as considered in the current
work, the DSA problem is even harder to solve, since the SU
does not know the state probabilities of the PUs, nor does
it know which PU uses which channel. As a result, the SU
does not know the state transition probabilities of the wireless
network. As the designed agent operates independently, s.t.
it bases its model updates and decisions only on its own sens-
ing and access outcomes, the proposed approach is suitable
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for distributed implementation at multiple SUs. This point is
demonstrated and discussed in Sec. V-E.

A. Context and Main Contributions

To facilitate model-free learning, we design a DRL-based
algorithm to achieve the optimal policy. A major novel and
unique aspect of our approach is that as successful access
decisions heavily rely on sensing, it is advantageous to let
the agent select both the channels to be sensed, as well as
the channel to be accessed in the next time step. This is in
contrast to previous works which designed DRL-based access
policies to maximize the throughput using predetermined sens-
ing policies. Thus, the performance of previous algorithms are
generally not optimal for all PU access policies. In this work,
we develop a novel algorithm which decouples the sensing
and the access operations by learning both access and sensing
policies via deep Q-learning. For efficient learning, we employ
a double deep Q-network (DDQN), which is a combination
of double Q-learning [38] and deep neural network, which
facilitates learning from experience in an unknown environ-
ment with a large state space via interactions with the envi-
ronment [39]. Accordingly, our proposed algorithm is dubbed
Double Deep Q-network for Sensing and Access (DDQSA).
Our numerical tests evaluated the throughput achieved by
DDQSA under several PU access strategies, and compared
the throughput obtained by DDQSA with those obtained by
a DRL which uses deterministic sensing (i.e., a DRL which
makes only access decisions with a predetermined sensing
policy), and by an algorithm that performs an access without
any sensing. We show that DDQSA facilitates using smaller
sensing bandwidths compared to previously proposed schemes
for achieving the same througputs, whereas for the same
sensing bandwidth DDQSA achieve superior performance.
To the best of our knowledge, this is the first paper that
solves both sensing and access policies for DSA via deep
Q-learning. Furthermore, our algorithm can handle situations
in which the SU does not have data to send, hence reward
is not available. Another important property of the proposed
algorithm is the combination of sensing optimization with soft
sensing, which indicates when sensing outcomes have a low
certainty. An interesting and practically important outcome of
this work is that learning both sensing and access facilitates
decreasing the sensing bandwidth with only a minor decrease
in the throughput, as the SU can focus sensing on the relevant
channels for making access decision for the next time step.
In contrast, sensing bandwidth decrease results in a significant
performance loss in the benchmark algorithms.

An additional major novelty of the current work is the theo-
retical derivation of the optimal joint sensing and access policy
for a generalized network implementing PU random access
based on randomly switching channels w.r.t a fixed chan-
nel hopping pattern, originally considered in [20]. We note
that frequency hopping is an important approach for achiev-
ing diversity, and DSA for frequency hopping networks is
an important scenario, which attracted considerable atten-
tion [26], [40]. The optimal policy is derived by exploiting the
structure of the users’ dynamics to derive the optimal sensing

policy, which transforms the optimal access policy problem
into a Markov decision problem (MDP), instead of a POMDP.
Then, we derive the corresponding optimal access policy
using the Bellman optimality equations [14, Ch. 3] explicitly.
It is numerically shown that DDQSA achieves near-optimal
performance for the fixed hopping pattern dynamics (FHPD)
network, again exceeding the performance of the benchmark
schemes.

B. Organization and Notations

The rest of this paper is organized as follows: Section II
details the network setup and assumptions; Section III,
motivates and discusses the rationale for the selected DRL
approach, and details the proposed DDQSA algorithm.
Section IV, presents the derivation of the optimal sensing
and access policies for a network with a FHPD. These opti-
mal policies serve as a benchmark for testing our DDQSA
algorithm. Section V reports simulation results, including a
comparison with approaches proposed in previous works and
with the optimal scheme (when possible). These results clearly
demonstrate the advantages of the proposed approach over
other approaches. Lastly, Section VI concludes this work.

We use N, R to denote set of natural numbers and of real
number, respectively. Bold letters, e.g., S, denote vectors, and
Si denotes the i’th element in the vector S, i ≥ 0. Calligraphic
letters denote sets, e.g., S, and the cardinality of a set is
denoted by | · |, e.g., |S| is the cardinality of the set S. Lastly,
E{·} denotes the stochastic expectation.

II. PROBLEM FORMULATION

We consider a wireless network with N ∈ N channels,
Kp ∈ N PUs, Kp ≤ N , and a single SU. We denote the
i’th PU by pui, for i ∈ {0, 1, . . . , Kp − 1}, and abbreviate
the n’th channel as chn, n ∈ {0, 1, . . . , N − 1}. For each PU,
the random length of the transmitted frame is modeled as a
finite-memory Markov chain, where different PUs may have
different state transition probabilities for their corresponding
chains. The SU does not have knowledge of the Markov
chains of the PUs. The PUs access the channel according
to a predetermined policy, which guarantees channel alloca-
tion to every PU when it needs to transmit. For pui, i ∈
{0, 1, . . . , Kp − 1}, we set the maximal frame length to Mi.
Let Li = {0, 1, . . . , Mi} denote the state space for pui, and
mi denote its current state. When pui is at the k’th time slot
of its frame we set its state to mi = k. When pui is not
transmitting, referred to as idle, we set its state to mi = 0.
Denote by Pi(k|j), j, k ∈ Li the probability that PU pui will
make a transition from state j to state k. Because the frame
length is bounded, Pi(0|Mi) = 1, ∀i ∈ {0, 1, . . . , Kp − 1}.
In addition, Pi(k|j) = 0 ∀j, k such that 0 ≤ j < Mi,
0 < k ≤ Mi and k �= j + 1. A diagram which illustrates the
state transition probabilities for pu0 with M0 = 3 is depicted
in Fig. 1.

At each time step, the SU selects a set of L ∈ N channels,
L ≤ N , for sensing. The sensing outcomes constitute the
observations, based on which the SU selects a channel for
transmission at the next time step, such that the long-term
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Fig. 1. An illustration of the state transition diagram for pu0 with M0 = 3.

throughput is maximized. Note that the approach of selecting
a channel to use in the next time slot is a common practice in
DSA literature, see, e.g., [20], [21], [22], and [26]. We note
that this setup is quite general, as for L = 1 sensing is
strictly narrowband (i.e., a single channel is sensed), while
for L > 1 sensing is considered wideband (i.e., multiple
channels are sensed simultaneously). It is also noted that
wideband sensing is very common in the DSA literature,
see, e.g., [21] and [26]. For simplicity of the presentation
we further assume that L is a divisor of N . The sensing
action outcome can be either “free”, when the channel is not
being accessed by any PU, “busy” when the channel is being
accessed by a PU, or “undetermined”, when the test metric of
the sensing algorithm is too close to the decision threshold,
as determined by the system designer. Based on its past and
current observations, the SU selects a channel for transmission
in the next time step. If the SU has data for transmission,
it transmits at the next time-step using the selected channel,
and receives feedback: If the selected channel was free, the SU
transmission was successful and it receives an ACK feedback
from its destination. Otherwise, the SU receives a NACK
feedback which indicates that transmission has failed, and
implies that the channel was busy. Note that in practice, NACK
can be determined by a timer and is not necessarily a response
received from the SU’s destination. It is emphasized that an
underlying assumption of the DSA system is that PUs which
affect the SU’s communications link are received at the SU,
and for PUs which are not received at the SU, it holds that
their communications performance are not affected by SU’s
transmissions. This assumption is not specific to the use of
ACK/NACK feedback, and is relevant to any other scheme
in which SU’s decisions are based only on its independently
obtained inputs. It is clarified that there is a fundamental
difference between the sensing action outcome, which can be
either “free”, “busy”, or “undetermined”, and the access action
outcome which is the ACK/NACK feedback: The sensing
action outcome is obtained after the sensing action is applied
to the channel subset selected at the previous time-slot. As the
sensing action may span the entire time-slot duration, its
outcome is typically reliable. The sensing action outcome
provides the algorithm with partial state information for
making the next access decision. The access action outcome
has a different role in the algorithm, as it indicates if the
algorithm correctly selected a free channel to access, namely,
it determines the reward for the algorithm’s decision, which
is critical for updating the Q-values in order to improve the

future access decisions of the algorithm (i.e., its processing
of the future partial state information and history). It is noted
that, similarly to previous works, [20], [25], [30], we do not
make any assumption on PU reception when a collision occurs
between the SU’s and a PU’s transmissions, as the outcome
of PU’s reception at the PU’s destination is not available
at the SU, and hence does not impact the algorithm. It is
intuitively understandable that maximizing SU’s throughput
is correlated with minimizing SU-PUs collisions, which will
minimize the impact of the SU on the PU network. It is also
noted that as the ACK/NACK mechanism constitutes a feed-
back indicating whether the access decision was successful
or not, it can be replaced by any other feedback mechanism
which can achieve this objective. One alternative is to let
the SU apply carrier sensing (CS) to the channel selected
for access and determine if it is “busy” or “free”, without
actually transmitting over it, see, e.g., [41]. With CS, if the
SU concludes that the channel is busy, it will typically not
have time for applying CS to another channel at the same
time slot, therefore it will not transmit at all during this slot to
avoid collision. It follows that, as the SU selects a channel for
access at the next time slot based on its current and previous
observations and feedback, then the role of the CS outcome
in a DSA algorithm is identical to that of the ACK/NACK
feedback.

Note that as with CS collision is avoided, then the chances
of successful PU transmission may improve. Yet, at the same
time, CS has several major drawbacks, including less accurate
sensing performance due to the short sensing interval, which
results in increased chances of feedback error (inducing errors
in the reward) and a decrease in throughput due to the
allocation of slot time for CS instead of for data transmission.
Hence, in the subsequent description, similarly to [20], [21],
[25], and [26], we will use the ACK/NACK feedback as an
indication of the success/failure of SU’s access decisions.

As the agent has two actions – sensing and channel access,
we begin by formulating the problem as a POMDP with two
policies: One policy for sensing and one for channel access.
This formulation is quite intuitive and simplifies the explana-
tions in the following sections. In Prop. 1 in Section III-C,
we will show that this problem can be formulated as a single
policy problem, and thus can be solved with a single agent. Let
S = {−1, 1}N be the channel state space, where ‘1’ denotes
that the channel is currently being used for transmissions
and ‘−1’ denotes that the channel is free. Let s(i) ∈ S
be the length-N polar form representation of the integer

i ∈ {0, 1, . . . , 2N − 1}, where the j’th element in s(i), s(i)
j ,

represents the state of the j’th channel (‘1’ denotes that the
channel is busy, and ‘−1’ denotes that the channel is free),
and let s(t) ∈ S denote the state at time step t ∈ N.
We define two action sets: As � {0, 1, . . . , N

L − 1} is the
action set for sensing, and Aac � {0, 1, . . . , N − 1} is the
action set for access. Accordingly, the set of N channels is
partitioned into sensing subsets, each sensing subset consists
of L channels, and the action as(t) = i ∈ As denotes that
the SU decides to sense the channels {chm}(i+1)·L−1

m=i·L at time
step t + 1. The action aac(t) = j ∈ Aac denotes that the
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SU decides to access chj for transmission at time step t + 1.
As the SU senses only a subset of L channels of the network,
the observations space, denoted by X , X = {−1, 0, 1}L,
is the set of all possible observation outcomes in the set of
the currently observed L channels, where ‘−1’ denotes that
a sensed channel was determined free, ‘1’ denotes that it
was determined busy, and ‘0’ denotes the sensing outcome
is undetermined. The observation outcome at time t ∈ N is
denoted by x(t) �

[
l,

(
x0(t), x1(t), . . . , xL−1(t)

)]
, where the

first element x0(t) = l ∈ {0, 1, . . . , N
L − 1} indicates that at

time t, the l’th subset of channels was sensed, i.e., as(t−1) =
l, and

(
x0(t), x1(t), . . . , xL−1(t)

) ∈ X , denotes the sensing
outcome at time step t ∈ N, where the sensing outcome
xi(t) ∈ {−1, 0, 1} denotes the sensing outcome at time step t
for the i’th channel of the l’th sensing subset. We next define
two policies: The sensing policy, denoted by πs, and the access
policy, denoted by πac. Let R(t) denote the reward at time step
t. When a transmission is successful, i.e., when at time step t
the algorithm correctly selects a free channel for transmission
at time t + 1 (i.e., the SU receives an ACK signal at time
t + 1), we set the reward to R(t + 1) = 1, to encourage the
agent to access free channels. When the selected channel at
time t is busy at time t + 1 (i.e, SU receives a NACK signal),
then R(t + 1) = −1, to discourage the agent from selecting
a busy channel for transmission. When no transmission takes
place, e.g., the SU does not have data to transmit, then no
reward is obtained. It is obvious that the sensing policy and the
access policy are related, which poses the interesting question
of which channels should be sensed and what is the matching
access policy, in order to maximize the throughput. In this
work we try to answer this question via learning.

Let oH(t) denote the state of the network at time
t ∈ N, to be defined explicitly in Section III-C. Our objective
is to derive an RL-based algorithm to identify the pair of
policies π∗

s , and π∗
ac that maximize the expected accumulated

discounted reward over an infinite time horizon, i.e.

(π∗
s , π∗

ac) = argmax
πs,πac

{
Eπs,πac

{ ∞∑
t=1

γt−1R(t + 1)
∣∣∣oH(1)

}}
,

(1)

for a discount factor γ ∈ [0, 1).

III. THE PROPOSED DRL-BASED ALGORITHM FOR

CHANNEL SENSING AND ACCESS

In this section, we describe the proposed DDQSA algorithm.
Prior to detailing the algorithm, we briefly review Q-learning
and DQN, to motivate our selection of this algorithmic
approach.

A. Q-Learning

Q-learning is an RL algorithm, which, under certain
assumptions, obtains the optimal policy for an MDP, in the
sense of maximizing the expected accumulated discounted
reward for any given initial state [14, Ch. 6]. The Q-learning
algorithm is a value-based RL algorithm, which means that it
computes the optimal action-value function in order to identify

the optimal policy. Let A denote the set of actions, S denote
the set of states, and let qπ(s, a), s ∈ S, a ∈ A, denote the
action-value function, which is the expected accumulated
discounted reward starting from state s, picking action a,
and following policy π afterwards. Letting γ ∈ [0, 1), denote
the discount factor, and considering the infinite time-horizon
problem, qπ(s, a) can be expressed as [14, Ch. 3]

qπ(s, a) � Eπ

{ ∞∑
k=1

γk−1R(t + k)
∣∣∣∣s(t) = s, a(t) = a

}
.

The optimal policy π∗ is a policy that satisfies qπ∗(s, a) ≥
qπ(s, a) for any policy π and for every possible state-action
pair, (s, a) ∈ S×A. The optimal policy can be obtained easily
from the optimal action-value function, qπ∗(s, a), as π∗(s) =
argmax

a∈A
{qπ∗(s, a)}.

The Q-learning algorithm iteratively estimates the optimal
action-value function for each valid state-action pair in an
online manner as follow: At each time step t ∈ N, the
agent observes a state s ∈ S, selects an action a ∈ A,
receives a reward r for executing the selected action a ∈ A,
and observes the next state s′ ∈ S. Then, the estimation of
the corresponding qπ∗(s, a), referred to as the Q-value and
denoted as Q(s, a), is updated according to the update rule:

Q(s, a)← Q(s, a)+α ·
(
r + γ ·max

a′∈A
{
Q(s′, a′)

}−Q(s, a)
)
,

(2)

for some α ∈ (0, 1) referred as the learning rate. To explore
various state-action pairs, the action a is selected according
to an ε-greedy policy, meaning that (1 − ε) of the time the
selected action maximizes the estimated optimal action-value
function, whereas in ε part of the time, the action is selected
randomly from the set of all valid actions. Mathematically, the
agent at state s ∈ S, selects an action a = argmax

a′∈A
{Q(s, a′)}

with probability 1 − ε, and a uniformly random action over
all possible actions in state s, with probability ε. According
to [14, Ch. 6], this algorithm is proven to converge to qπ∗(s, a)
with probability 1 if all of the state-action pairs are visited
infinitely often, as long as a variant of the usual stochastic
approximation conditions is satisfied. In a general DSA setting,
as considered here, the transition probabilities are unknown
and only partial observations are available, consequently,
convergence is not guaranteed by the theory.

B. Deep Q-Network

While Q-learning performs well when the state and action
spaces are small and provably converges for MDP formulation,
it becomes impractical for large state and action spaces,
due to two main reasons: The first reason is that in the
Q-learning algorithm, the agent has to visit multiple states
and select different actions at each state to learn the optimal
Q-value, which requires an extensive exploration, resulting
in a long learning time. The second reason is that in the
Q-learning algorithm, the agent has to store the Q-value
for every state-action pair, which leads to a large storage
requirement for large action and state spaces. Recently, a class
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of DRL algorithms that combines Q-learning and DNNs,
referred to as DQN, has been proposed. The role of the DNN
in the DQN is to map observations and actions into their
Q-values, which eliminates the need to store the Q-values in
a table, thereby significantly reducing the storage requirement
for large action and state spaces. Furthermore, the DNN is
able to extract features from previous observations in order
to infer the Q-value for situations which have not yet been
observed [42]. This capability does not exist when using
tabular methods, as when using tables, each state and action
pair has to be visited to estimate the corresponding Q-value.
To improve stability of convergence, DQN is implemented
using a pair of DNNs: One DNN maps the action-state pairs
into Q-values in the calculation of the target value, defined
as r + γ ·maxa′∈A

{
Q(s′, a′)

}
, and a second DNN, with an

identical structure, maps the action-state pairs into Q-values
in the calculation of the difference between the target value
and the Q-value, used in the network parameters update step,
see, e.g., [39].

It should be noted that DQN-based learning does not have
a guaranteed convergence to the optimal solution, even for
problems which can be formulated as an MDP. In practice,
however, it achieves very good performance even in various
POMDP models with infinitely large state space. For example,
the work of [18] developed a DQN algorithm for teaching an
agent how to play Atari games directly from screen images,
and achieved very good performance in various Atari games.
It was observed in [38] that the standard DQN implementation,
which uses a single DNN in the calculation of the target value
(in which both the action that maximizes the estimated Q-value
is obtained, and subsequently the Q-value with the selected
action is evaluated), usually results in an overestimation of the
Q-values, and consequently causes performance degradation.
In [39], it was proposed to implement the target computation
using two DNNs: One for selecting the maximizing action
and the other for estimating the Q-value associated with the
selected action. This scheme, called DDQN, was shown to
achieve better performance.

While DQN achieves good performance in MDP problems,
in the POMDP framework corresponding to the DSA problem,
it suffers from performance degradation due to partial obser-
vations as they do not provide sufficient information, namely
do not provide the state of all the channels in the network. Our
proposed approach handles this issue by letting the algorithm
select the current observation (from a predefined set), and
combine it with a collection of a sufficient number of past
observations. This improves the algorithm’s inference about
the actual system state, and, in some situations, facilitates
finding a (near-)optimal access policy which maximizes the
throughput. This is the first time a joint learning of sens-
ing and access policies is implemented via online learning
by using DDQN; Another novel aspect in our approach is
accommodating the practical scenario in which an SU does not
always have data for transmission, hence reward is not received
at every time instance. We also accommodate the inherent
uncertainty in sensing decisions by supporting soft sensing,
which is implemented by setting a range of sensing metric
values for which the detector output is set to “undetermined”.

Such a mechanism may improve performance by decreasing
the probability of erroneous sensing decisions.

C. The Proposed DDQSA Algorithm

We start by showing that the DSA problem defined in
Section II can be formulated as a single agent problem with
a single policy for both sensing and access. This formulation
implies better convergence properties for the DRL algorithm,
as compared to using two agents – one for optimizing the
access policy and one for optimizing the sensing policy. This
single agent formulation is next stated in Proposition 1:

Proposition 1: For the network setup in Section II, the
optimal (in the sense of maximal throughput) sensing and
access policies can be achieved by a single agent.

Proof: Due to the partial observations and the memory
of the PUs’ traffic, we maintain a history vector consist-
ing of H ∈ N most recent past observations to facilitate
extracting all available relevant information about the state
of the channel. We define the history-observations space as
OH = {−1, 0, 1}N ·H, where oH(t) = [o(t−H+1),o(t−H+
2), . . . ,o(t)] ∈ OH . o(t) is a length N vector that represents
the observation outcomes at time step t ∈ N, where oi(t) = 1
denotes that chi was sensed at time step t and was found to be
busy, oi(t) = −1 denotes that chi was sensed at time step t
and was found to be free, and oi(t) = 0 denotes that chi was
not sensed at time step t, or, alternatively, it was sensed, and
the sensing outcome is “undetermined”. The extended action
space which facilitates selection of both sensing and access
actions is denoted by Aex =

{
0, 1, . . . , N2

L −1
}

. At each time
step, the agent picks an action a(t) ∈ Aex, where a(t) = i,
means that at time step t, the agent chooses to sense channels

{chm}(�
i
N �+1)·L−1

m=� i
N �·L and to transmit on channel ch(i (mod N)) at

the next time step. It thus follows that with the extended action
space, using a single index we can enumerate all possible pairs
of access and sensing actions, hence there is an invertible one-
to-one mapping between every element of the extended space
Aex and a pair of actions in the space As × Aac. Indeed,
as there are N

L sensing actions and N access actions, the
number of pairs is |As ×Aac| = N2

L = |Aex|.
Note that although the immediate reward R(t + 1) is the

same for every action a(t) with the same value of a(t)
(mod N), the subsequent observation actions are different

when
⌊

a(t)
N

⌋
are different, thus the target, R(t + 1) + γ ·

max
a′∈Aex

{
Q

(
oH(t + 1), a′)} will be different and this would

result in the agent learning a better joint sensing and access
policy over time, where the learned access policy is coordi-
nated with the learned sensing policy. Following this formula-
tion, the optimization in (1) can be equivalently expressed as
finding the optimal policy π∗ such that

π∗ = argmax
π

{
Eπ

{ t=∞∑
t=1

γt−1R(t + 1)
∣∣∣oH(1)

}}
.

From this unified policy we can obtain both the sensing
policy and the access policy by setting π∗

s (oH) =
⌊π∗(oH)

N

⌋ ∈
As, and π∗

ac(o
H) = π∗(oH) (mod N) ∈ Aac for any history

observation outcome oH ∈ OH .
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The DDQSA algorithm utilizes the DDQN architecture
originally proposed in [39], which combines double Q-learning
and deep neural networks. In DDQSA, we use the observations
history oH(t) as the state of the wireless network, which is
used directly as an input to the DDQN. The output layer of
the network consists of |Aex| neurons, where the i’th neuron
at the output layer, i ∈ Aex, represents an estimation of
qπ∗(oH(t), i). To balance between exploration and exploita-
tion, we used the ε-greedy policy: At each time step t ∈ N, the
agent selects an action a(t) = argmax

a′∈Aex

{
Q(oH(t), a′)

}
with

probability 1 − ε(t), and selects a random action uniformly
among all actions with probability ε(t), where ε(t) decays
to zero as time increases. This decay follows as the agent
improves its policy over time, hence it should rely more on
the learned policy and less on the random exploration.

From the above description it is straightforward to conclude
that the size of the state space is 2N ·H , the size of the input
space is |X̃ |L·H · (N

L )H , where X̃ is set of possible sensing
outputs at each sensed channel, and the size of action space
Aex is given as N2

L . Even for modest values of L, N , and H ,
as used in the simulations in Sec. V we obtain a very large
state-action space which further motivates the use of a DQN.
For example, in the experiments reported in Sec. V-B, with
N = 10, L = 5, H = 6, and |X̃ | = 2, the size of the state
space is 260, the size of the input space is 236 and the size of
the action space is 20.

D. Handling SU’s Random Transmission Requests

In practical scenarios a node may also have idle times.
In those idle times there is no ACK/NACK signal received.
In order to facilitate handling SU’s idle times, we update the
value of ε(t) only at time steps in which the SU transmits,
i.e., letting t̃ ∈ N denote the counter of SU’s transmissions,
then we set ε(t̃) be a decaying function of t̃. Then, the agent
executes both actions as(t) and aac(t) only when the SU
needs to transmit at time step t + 1, whereas when the SU
has nothing to transmit at time step t + 1 the agent executes
only action as(t). Accordingly, when the SU has nothing to
transmit at time step t + 1, then, as no reward is received, the
replay buffer, which stores tuples of observations, actions and
rewards, which are used for carrying out DNN training [18],
is not updated. It is noted that training continues irrespective
of whether the SU transmits or not, as training is based on
mini-batches selected from the replay buffer.

E. Pseudocode of DDQSA

Let D denotes the replay buffer, and θθθ, θθθ− denote the policy
network weights, and the target network weights, respectively.
The steps of the proposed DDQSA algorithm are summarized
in Algorithm 1.

IV. ANALYTICAL DERIVATION OF THE OPTIMAL SENSING

AND ACCESS POLICIES FOR A NETWORK WITH A FIXED

CHANNEL HOPPING DYNAMICS

In this section, we analytically derive the optimal sensing
and access policy for a network in which PUs’ access is
based on randomly selecting a single shift or a double shift

Algorithm 1 The DDQSA Algorithm for Jointly Optimizing
Spectrum Sensing and Access
1: Set replay buffer size to C, update rate to J , minibatch

size to MB , exploration decay rate to ξ, time counter to
t = 0 and SU transmission counter to t̃ = 0.

2: Initialize replay buffer D with capacity C, and a mini-batch
array MB with size MB .

3: Initialize the policy network weights θθθ randomly.
4: Initialize the target network weights θ−θ−θ− ← θθθ.
5: Set as(1) randomly from As and observe oH(1).
6: for time step t = 1, 2, . . . do
7: Set ε(t̃) = 1

1+ξ·t̃ .

8: ε(t̃)-greedy:

a(t)=

⎧⎨
⎩

argmax
a′∈Aex

{
Q

(
oH(t), a′)} w.p. 1− ε(t̃),

uniformly random action, a ∈ Aex w.p. ε(t̃).
9:

10: if SU has data to send then
11: Execute actions: as(t) =

⌊a(t)
N

⌋
;

aac(t) = a(t) (mod N).
12: t̃← t̃ + 1.
13: Obtain the reward R(t + 1), and observe the next

state oH(t + 1).
14: Store the tuple

(
oH(t), a(t), R(t + 1), oH(t + 1)

)
in D.

15: else as(t) =
⌊a(t)

N

⌋
.

16: end if
17: Sample a mini-batch MB � {(oi, ai, ri,o′

i)}|1 ≤ i ≤
|MB|} randomly uniformly from D.

18: Set target
yi = ri + γ ·Q(o′

i, argmax
a′∈Aex

{
Q(o′

i, a
′;θθθ)

}
;θ−θ−θ−)

19: Perform batch training with inputs oi, and outputs yi,
using all (oi, ai, ri,o′

i) ∈MB .
20: Every J iterations set θθθ− ← θθθ.
21: end for

over a fixed channel hopping pattern. Frequency hopping is
a very important diversity mechanism and thus constitutes an
important benchmark scenario, see [20] and [26]. In this work
we consider a hopping pattern whose structure facilitates intu-
itive understanding of the operations of the different channel
access schemes. While the general DSA problem is P-SPACE
hard [37], for a network with a fixed hopping pattern we
were able to analytically derive the optimal sensing and access
policies.

A. Network Setup

Consider a network consisting of N ≥ 2 channels, where
N is assumed to be an even integer, let the size of the sensing
subset be L = 2, and let the number of PUs be Kp = N − 1.
Denote the set of possible indexes of the free channel with
U = {0, 1, . . . , N − 1}, and define U(t) ∈ U , such that
U(t) = i denotes that the free channel at time step t ∈ N

is the i’th channel, chi. We also define the channel hopping
pattern vector as B � [B0,B1, . . . ,BN−1] = [2b0, 2b0 +
1, 2b1, 2b1 + 1, . . . , 2bN/2−1, 2bN/2−1 + 1], where {bi}N/2−1

i=0
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is a random permutation of the numbers 0, 1, . . . , N
2 − 1. The

PUs access the channel at every time step (i.e., PUs always
transmit) according to the following policy: At each time step,
the PUs either transmit at the same channel as in the previous
time step with probability Pstay , or jointly switch to the next
channel in the hopping pattern vector in a cyclic manner
(namely, the node using the last channel in the hopping pattern
vector switches to the channel indexed by the first element in
the vector), with probability Pswitch, or jointly switch two
channels to the right in the hopping pattern vector, in a cyclic
manner, with probability PDswitch = 1 − Pstay − Pswitch.
It follows that the state space of this network consists of
N states, each corresponding to one possible location of
the single free channel that can switch its position with
probabilities Pstay , Pswitch, and PDswitch according to the
PU access policy. With these definitions, for any Bs,Bs′ ∈ U ,
the state transition probability is given by:

Pr(Bs′ |Bs) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pstay if s′ = s,

Pswitch if s′ = s + 1 (mod N),
PDswitch if s′ = s + 2 (mod N),
0 otherwise.

(3)

B. Derivation of the Optimal Sensing and Access Policy for
an FHPD Network

Letting Pmax � max{Pstay , Pswitch, PDswitch}, the sens-
ing and access policy which maximizes the throughput is
stated in the following theorem:

Theorem 1: For the FHPD policy detailed in Section IV-A,
assuming ideal sensing (i.e., sensing outcome is either 1 or −1
and there are no sensing errors), the following three assertions
hold:

1) For any finite history length H ≥ 2, there exists a finite
t0 ∈ N such that, there exists a sensing policy which
results in the state being fully observable for all t > t0.

2) Given that the sensing policy in item 1 is followed, the
optimal access policy for Bs ∈ U is:

π∗
ac(Bs) =

⎧⎪⎨
⎪⎩

Bs if Pstay = Pmax

Bs+1 (mod N) if Pswitch = Pmax

Bs+2 (mod N) if PDswitch = Pmax

.

3) The maximal throughput is Pmax.
Proof: We first note that for a fixed channel hopping

patterns and with L = 2, as the channels are permuted in
adjacent pairs of channels, w.l.o.g, we can re-enumerate the
channels to obtain a cyclic ordering. We will therefore focus
in the proof on such an enumeration only for simplifying the
notations. We shall refer to the re-enumerated network as a
cyclic PU network. In this case, Bs = s, ∀s = 0, 1, . . . , N−1.

We will show the theorem for H = 2. clearly the results
hold for all H > 2 as well. Setting the history length to H = 2,
we first analyze the possible observation outcomes x(t),
x(t−1) and show that the optimal sensing policy π∗

s results in
a one-to-one mapping between the observations in the last two
time indexes and the current channel state U(t), thus, when
H = 2 the state space is fully observable:

• When x(t) = [l, (−1, 1)] or x(t) = [l, (1,−1)] then,
since there is only one free channel, it follows that the
current state is U(t) = l · L, and U(t) = l · L + 1,
respectively, irrespective of x(t− 1).

• Consider x(t) = [l, (1,−1)]: We conclude that U(t) =
l ·L + 1, thus, U(t + 1) can be either l ·L + 1, l ·L + 2
(mod N), or l ·L+3 (mod N). Hence, in the next time
step, t+1, the agent should sense the pair of channels in
subset l+1 (mod N

L ), as(t) = l+1 (mod N
L ). Consider

the three possible sensing outcomes:
– If x(t+1) = [l+1 (mod N

L ), (1, 1)] then, U(t+1) =
l · L + 1.

– If x(t + 1) = [l + 1 (mod N
L ), (−1, 1)], then U(t +

1) = l · L + 2 (mod N).
– If x(t + 1) = [l + 1 (mod N

L ), (1,−1)], then U(t +
1) = l · L + 3 (mod N).

• Consider x(t) = [l, (−1, 1)]: It immediately follows that
U(t) = l ·L, hence, U(t+1) can be either l ·L, l ·L+1,
or l · L + 2 (mod N). Consequently, at in the next time
step, the agent should sense the same pair of channels in
subset as(t) = l:

– If x(t + 1) = [l, (−1, 1)] then, U(t + 1) = l · L,
– If x(t + 1) = [l, (1,−1)], then U(t + 1) = l ·L + 1,
– If x(t + 1) = [l, (1, 1)], then U(t + 1) = l · L + 2

(mod N).
• Consider x(t) = [l, (1, 1)] and assume that x(t − 1) =

[l, (−1, 1)]. Then, it is guaranteed that the free channel
at time t is U(t) = l · L + 2 (mod N). This state
is equivalent to the partial observation x(t) = [l + 1
(mod N

L ), (−1, 1)]. Therefore, similar to the previous
analysis, we obtain that the optimal sensing policy in this
case is as(t) = l + 1 (mod N

L ).
• Consider x(t) = [l, (1, 1)] and assume that x(t − 1) =

[l − 1 (mod N
L ), (1,−1)]. Then, U(t) = (l − 1) · L + 1

(mod N). This state is equivalent to the partial obser-
vation x(t) = [l − 1 (mod N

L ), (1,−1)]. Therefore,
similarly to the analysis above we obtain that the optimal
sensing policy in this case is as(t) = l.

Let Xinit �
{
[l, (x0, x1)]

∣∣x0 = −1 or x1 = −1 and l ∈
{0, 1, . . . , N

L −1}} denote the initial set. Under the assumption
of x(t0) ∈ Xinit, for some t0 ∈ N, then for all t > t0,
any consecutive pair of observations,

(
x(t − 1),x(t)

)
, con-

tains sufficient information to fully determine the network
state U(t). Table I summarizes all of the possible observations
for N = 4 channels, their corresponding full network state,
and the sensing policy, where πs

(
x(t− 1),x(t)

)
= 0 denotes

that for the given pair of observations at time steps t − 1
and t, then at time step t + 1 the SU will sense subset 0 of
the network channels, consisting of ch0, and ch1, whereas
πs

(
x(t − 1),x(t)

)
= 1 denotes that it will sense subset 1 of

the network channels consisting of ch2 and ch3.
Following this sensing policy, it holds that when

x(t0) ∈ Xinit, the network state is fully observable at
each subsequent time step, and hence this sensing policy is
necessarily the optimal sensing policy.

If x(1) ∈ Xinit, then t0 = 1 and the proof of
first assertion is complete. If x(1) /∈ Xinit, then we
choose sensing and access actions randomly and uniformly.

Authorized licensed use limited to: Princeton University. Downloaded on July 12,2023 at 21:05:25 UTC from IEEE Xplore.  Restrictions apply. 



4938 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 7, JULY 2023

TABLE I

OPTIMAL SENSING POLICY FOR N = 4

The probability that x(t) /∈ Xinit for exactly n consecutive
time steps (starting from t = 1) is given by Pr

(
x(n +

1) ∈ Xinit

) · ∏n
t=2 Pr

(
x(t) /∈ Xinit

)
, as the events are

statistically independent because the observations
{
x(t)

}n

t=2
are observed via randomly and uniformly sensing actions. Note
that Pr

(
x(t) /∈ Xinit

)
= N/2−1

N/2 < 1, ∀1 < t ≤ n, thus,
Pr

(
x(t) /∈ Xinit, ∀t ∈ N

)
= lim

n→∞Pr
(
x(n + 1) ∈ Xinit

) ·(
N/2−1

N/2

)n−1

= 0. It thus follows that the probability that

there exists t0 such that x(t0) ∈ Xinit for some t0 > 0 is 1.
Once x(t0) ∈ Xinit for some t0 > 0, the optimal sensing
policy can be applied ∀t > t0, which establishes the first
assertion.

As the state is fully observable, finding the best access
policy can be formulated as an MDP problem. According
to the Bellman optimally equations [14, Ch. 3], the optimal
policy π∗

ac must satisfy π∗
ac(s) = argmax

a∈Aac

{qπ∗
ac

(s, a)}, where

qπ∗
ac

(s, a) is the action-value function for the optimal policy
(i.e., the policy which maximizes the Q-function) at (s, a) ∈
U×Aac. Next, we characterize the optimal access policy: Let-
ting s′ ∈ U denote the next state and vπ∗(s) denote the optimal
access value function for state s, vπ∗(s) � max

a∈Aac

{
qπ∗(s, a)

}
,

then qπ∗
ac

(s, a) can be computed as:

qπ∗
ac

(s, a) =
∑
s′∈U

∑
r∈{−1,1}

Pr(r, s′|s, a) · (r + γ · vπ∗
ac

(s′)
)

=
∑
s′∈U

Pr(s′|s, a)
( ∑

r∈{−1,1}
Pr(r|s′, s, a)

·(r + γ · vπ∗
ac

(s′)
))

(a)
= γ ·

∑
s′∈U

Pr(s′|s) · vπ∗
ac

(s′)

+
∑
s′∈U

Pr(s′|s) ·
( ∑

r∈{−1,1}
r · Pr(r|s′, a)

)
,

(4)

where in step (a), we used the fact that given the next state
and the current action, the reward is fully determined, i.e.,
Pr(r|s′, s, a) = Pr(r|s′, a), and that in the fully-observed
case, the action does not affect the probability of the next state
given the previous state, i.e., Pr(s′|s, a) = Pr(s′|s). Note that
in the considered setup, Pr(r|s′, a) is deterministic, i.e.,

Pr(r = 1|s′, a) = 1(s′ = a), Pr(r = −1|s′, a) = 1(s′ �= a),
(5)

where 1(A) stands for the indicator function of the event A.
From (5),∑

s′∈U
Pr(s′|s)

∑
r∈{−1,1}

r · Pr(r|s′, a)

= Pr(s′ = a|s)−
∑
s′ 	=a

Pr(s′|s)

= Pr(s′ = a|s)− (1 − Pr(s′ = a|s))
= 2 · Pr(s′ = a|s)− 1. (6)

Plugging (6) into (4) we obtain the optimal access policy,
π∗

ac(s) = argmax
a∈Aac

{
qπ∗

ac
(s, a)

}
, as:

π∗
ac(s) = argmax

a∈Aac

{
γ ·

∑
s′∈U

Pr(s′|s) · vπ∗
ac

(s′)

+
∑
s′∈U

Pr(s′|s) ·
( ∑

r∈{−1,1}
r · Pr(r|s′, a)

)}

(a)
= argmax

a∈Aac

{
2 · Pr(s′ = a|s)− 1

}
= argmax

a∈Aac

{
Pr(s′ = a|s)}

(b)
=

⎧⎪⎨
⎪⎩

s if Pstay = Pmax

s + 1 (mod N) if Pswitch = Pmax

s + 2 (mod N) if PDswitch = Pmax

, (7)

where (a) follows as the first summand is independent of
a ∈ Aac, and (b) follows from (3). This proves the second
assertion.

Let suci denote the event of a successful transmission at
time step i ∈ N and define the throughput for this scenario
as T � limt→∞

�t
i=1 1(suci)

t . Following the optimal sensing
policy implies that the events {1(suci)}∞i=t0+1 are i.i.d random
variables, as the states are fully-observable. Then, according
to the weak law of large numbers [43] we have:

T = lim
t→∞

∑t
i=1 1(suci)

t

= lim
t→∞

∑t0
i=1 1(suci)

t
+ lim

t→∞

∑t
i=t0+1 1(suci)

t

(a)
= lim

t→∞
t− t0

t

∑t−t0
j=1 1(sucj+t0)

t− t0
(b)
= E

{
1(suci)

}
= Pr(suci) = Pmax. (8)

where (a) follows as 0 ≤ ∑t0
i=1 1(suci) ≤ t0, hence,

lim
t→∞

�t0
i=1 1(suci)

t = 0; and (b) follows from the weak law
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of large numbers [43] and since lim
t→∞

t−t0
t = 1. Hence,

T = limt→∞
�t

i=1 1(suci)

t = Pmax, for any x(1) =[
l,

(
x0(1), x1(1)

)]
, l ∈ {0, 1, . . . , N

L−1}, (x0(1), x1(1)
) ∈ X .

C. Discussion and Insights

The analysis in the proof of Thm. 1 implies two important
insights: First, from the derivation of (7) we conclude that
if the observations can be selected such that the agent can
infer the full network state (as in the case analyzed in this
section), the discount factor γ ∈ [0, 1) can be set arbitrarily.
Practically, the best option will be to set γ = 0, since,
for example, in the Q-learning algorithm the update rule (2)
simplifies to Q(s, a)← (1− α) ·Q(s, a) + α · r. As a result,
the algorithm converges faster due to the elimination of the
unnecessary term γ ·maxa′∈A{Q(s′, a′)} from the update rule.
This follows as the term γ ·maxa′∈A{Q(s′, a′)} includes an
estimate of the function qπ∗(s′, .) which may be very different
from its true value at the beginning of the learning process,
and consequently, using γ > 0 adds unnecessary noise to the
update rule. The second insight we obtain from our analysis
is that for the partially-observed state space corresponding to
the general problem setup in Sec. II, the proposed algorithm
requires γ > 0 to converge to the maximal throughput, which
makes the suggested problem formulation a non-degenerated
RL problem in the sense that actions are selected such that
the accumulated future reward is maximized and not only
the immediate reward. The reason is that in general, the full
network state cannot be determined from a finite number of
past observations. Furthermore, even if the full network state
can be determined from a finite number of past observations,
then at the beginning of the learning process, the sensing
policy is arbitrary. Then, the agent cannot infer about the
channel state at the beginning. This implies that the agent
must consider the effect of selecting which channels to sense
on future rewards thereby improving its sensing policy.

V. EXPERIMENTS

In this section, we report the outcomes of the experi-
ments carried out to test and evaluate the performance of
the proposed DDQSA algorithm. DDQSA was implemented
as described in Algorithm 1 in Section IV, with two hidden
layers of fully connected DNNs, where each layer consists of
128 neurons with the rectified linear unit (ReLU) activation
function, ReLU(x) = max{0, x}. The activation function for
each neuron in the output layer is the linear activation function
f(x) = x. The ε-greedy policy has been applied such that
ε(t̃) = 1

1+ξ·t̃ , i.e., ε(t̃) decays as the number of time slots in
which the SU has data to send, increases. The rate in which
ε(t̃) decreases as function of t̃ is determined by the exploration
decay rate ξ. At each time step, a mini-batch of 64 samples,
|MB| = 64, from the replay buffer is uniformly sampled and
used for training. The Adam algorithm [44] is used as the
optimizer with the smooth L1 loss function [45]. We set the
discount factor to γ = 0.8, the learning rate is α = 10−4,
the replay buffer capacity is C = 30000, and the update rate

is J = 20. We define the relative throughput ρ(τ) � η(τ)
ηbound(τ) ,

τ ∈ N, where η(τ) is the number of successful transmissions
in the range of time steps beginning from (τ−1)·100+1 up to
time step τ ·100 divided by 100, and ηbound(τ) is defined as the
number of time steps in which at least one channel was free,
in the range of time steps beginning from (τ−1)·100+1 up to
τ ·100, divided by 100. Thus, ηbound(τ) is an upper bound on
the throughput of any DSA algorithm for the setup defined in
Section II. In the following, ρ(τ) is used as the figure-of-merit
for evaluating the performance of the algorithms.

In the experiments, we compare the performance of DDQSA
with that of three other algorithms with fixed sensing or access
policies:

1) Random Access: In this policy, the SU does not employ
sensing, and at each time step selects randomly and
uniformly a channel for accessing.

2) Random Sensing: In this policy, the SU randomly selects
a subset of channels to sense, and uses these observa-
tions to learn an access policy by employing a DDQN.

3) Alternating Sensing: In this policy, the SU senses each
of the subsets of channels alternately, as in [26], and uses
these observations to learn an access policy by applying
a DDQN.

The performance of the different algorithms was obtained by
averaging the outcomes of 30 independent experiments for
each algorithm at each scenario.

A. Comparing DDQSA With the Optimal Policy for an
FHPD Network

In this section we consider a FHPD network defined in
Section IV with N = 10 channels and an observation subset
size of L = 2 channels, and ideal sensing (no sensing
errors). In this network there is always a single free channel
at each time step, hence, ηbound(τ) = 1, ∀τ ∈ N, and
ρ(τ) = η(τ). As obtained in Thm. 1, the throughput of the
optimal access and sensing policies for this network is Pmax.
In this experiment we set Pstay = 0.1, Pswitch = 0.1, and
PDswitch = 0.8, which implies that for τ � 1, ρ(τ) = η(τ) ≈
Pmax = PDswitch = 0.8. The throughput of the random
access algorithm can be analytically obtained as ρRA(τ) =
0.1 (independent of the probabilities Pstay , Pswitch, and
PDswitch), which follows by noting that there are 10 channels,
where at each time-step there is a single free channel. Fig. 2
depicts the simulation results for this scenario. We observe
that the DDQSA algorithm performs well and asymptotically
attains near-optimal performance (the throughput is numeri-
cally evaluated at approximately 0.75), whereas under alter-
nating sensing policy, the throughput is about 0.28 and under
the random sensing policy it is about 0.36, both are highly
sub-optimal. We conclude that DDQSA is indeed capable
of learning a near-optimal joint sensing and access policy,
where optimality requires a non-trivial combination of sensing
and access, thereby justifying the rationale of our proposed
approach. It is emphasized that with the common sensing
approach of [26], the DDQN algorithms achieve half the
throughput of DDQSA, again indicating to the effectiveness
of the proposed approach.
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TABLE II

STOCHASTIC PUS STATE TRANSITION PROBABILITIES

Fig. 2. Relative throughputs for the FHPD network defined in Section IV,
for Pstay = 0.1, Pswitch = 0.1, and PDswitch = 0.8.

B. Experiment Results for General Scenarios

We consider now a network consisting of N = 10 channels,
with 10 PUs, Kp = 10, observations subsets of size L ∈
{2, 5}, a history length of H = 6, and ideal sensing (no
sensing errors). Sensing with L = 5 is referred to as wideband
sensing, as half the channels in the network are sensed at each
time step, and sensing with L = 2 is referred to as narrowband
sensing. It is assumed that {pui}3i=0 are legacy PUs, i.e.,
each PU occupies one fixed channel at each time step, see
e.g., [26]. Specifically, pui occupies chi for i = 0, . . . , 3. The
other 6 PUs, denoted {pui}9i=4, referred to as stochastic PUs,
transmit in frames which may span more than one time step
according to the Markov model described in Section II. As
{chi}3i=0 are occupied by legacy PUs, the stochastic PUs can
transmit over channels {chi}9i=4, which is a situation which
clearly impacts the access policy. The stochastic PUs’ frame
lengths are modelled as finite-memory Markov chains with
respective maximal lengths of M4 = 3, M5 = 5, M6 = 4,
M7 = 6, M8 = 7, and M9 = 5. The transition probabilities of
the Markov chains for all the stochastic PUs are summarized
in Table II.

In the following simulations, we consider three PU
access policies:

• In PU policy 1, each stochastic PU can access a single,
fixed, pre-determined channel at any time step, i.e., pui

can access only chi, whenever it needs to transmit.
• In PU policy 2, we set the stochastic PUs access policy

as follows:

– Once a stochastic PU begins transmitting at a given
channel, it will transmit its entire frame over that
channel, e.g., if channel chj was allocated to pui

when mi = 1, then channel chj will be allocated
to pui until mi = 0, at which time this channel
allocation is terminated and the channel becomes
free.

– When a new stochastic PU, e.g., pui begins to
transmit at a given time step (mi = 1), it will
use channel chk for transmission, where chk is the
free channel with the minimal index k. This can
be justified by an ordering of channels according
to some measure of quality, e.g., signal-to-noise
ratio (SNR), where a channel with a larger SNR is
assigned a smaller index.

– If several stochastic PUs begin to transmit at the
same time step, the PU with the smaller index will
use the free channel with the smaller index for trans-
mission. For example, if at some time step, both pui,
and puj , i < j, begin to transmit, and chk, chl, k < l,
are free, then pui will transmit on chk, and puj will
transmit on chl. This represents a priority assignment
where the user with the higher priority has a smaller
index, resulting in allocation of better channels.

• In PU policy 3, the PUs follow the same policy as
described for PU policy 2, but at every even time step,
all the 10 channels are flipped, i.e., every 2 time steps,
chi will switch with ch9−i for i = 0, 1, . . . , 4, which
corresponds to a frequency hopping network.

First, we note that the throughput of the random access
algorithm can be evaluated numerically irrespective of the PU
access policy. This follows as the random access algorithm
does not apply learning. Then, we let the PUs transmit
according to the statistical Markov chain models detailed in
Table II for sufficiently long time and randomly select channel
for SU access at each time step. Applying this computation
for 1.5 ·106 time steps and averaging the resulting throughput
we numerically obtain the throughput of the random access
algorithm as ρRA(τ) ≈ 0.189, ∀τ ∈ N, irrespective of the PU
access policy.

Fig. 3 depicts the relative throughputs of the different
algorithms for PU policy 1, for L = 5, and L = 2,
in Figs 3a and 3b, respectively. It can be observed from
the figure that for both narrowband and wideband sensing,
the DDQSA outperforms the other sensing and access poli-
cies. In particular, DDQSA outperforms the commonly used
alternating sensing, even in PU policies with simple PU
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Fig. 3. Relative throughputs of the different algorithms for PU policy 1 (a) with L = 5, and (b) with L = 2.

Fig. 4. Relative throughputs of the different algorithms for PU policy 2 (a) with L = 5 and (b) with L = 2.

access policy, namely, each PU accesses a fixed, predetermined
channel. Another conclusion from the simulations is that when
the PUs use a simple access policy, and the SU applies
wideband sensing, then alternating sensing has nearly the same
performance as DDQSA. We also observe that indeed wide-
band sensing facilitates better performance than narrowband
sensing, yet it is important to note that that the performance
loss when the SU uses the more practical narrowband sensing,
compared to wideband sensing, is much smaller for DDQSA
(approximately 11%) than the performance loss with alternat-
ing sensing (approximately 21%) and the performance loss
due for random sensing (approximately 25%). This clearly
indicates the substantial benefit of sensing optimization in
DSA, as this allows the SU to focus its limited sensing on
the channels which contain the most relevant information for
access decisions. Fig. 4 depicts the relative throughputs of the
different algorithms for PU policy 2, where the throughput
with L = 5 is depicted in Fig. 4a, and the throughput
with L = 2 is depicted in Fig. 4b. Observe that for PU
policy 2, the throughput achieved by the DDQSA algorithm
with both L = 5 and L = 2 is clearly superior to that
achieved by the other three algorithms and is about 0.88 and
0.86, respectively. Comparing the throughput for wideband and

narrowband sensing we observe that, the DDQSA algorithm
has a negligible performance degradation for narrowband
sensing, yet the performance gap between the DDQSA and the
reference algorithms is larger for narrowband sensing than for
wideband sensing, approximately 14% and 8%, respectively.
This experiment provides further demonstration of the sub-
stantial benefits carried by our newly proposed approach: Due
to cleverly selecting channels for sensing, the DDQSA is able
to maintain nearly the same throughput with a smaller sensing
bandwidth. As the reference algorithm do not optimize their
sensing policy, then decreasing the sensing bandwidth causes
a significant performance loss due to insufficient information
for making channel access decisions.

Lastly, Fig. 5 depicts the relative throughputs for PU pol-
icy 3, with L = 5 depicted in Fig. 5a and L = 2 depicted in
Fig. 5b. Comparing wideband and narrowband sensing for PU
policy 3 we observe that the performance of DDQSA remain
the same and the relative throughput is approximately 0.85.
Additionally, for both sensing bandwidths DDQSA is superior
to the alternating sensing and the random sensing algorithms.
yet, it is clearly evident from the figures that the gap between
the DDQSA and the reference algorithms is much larger for
narrowband sensing than for wideband, which provides an
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Fig. 5. Relative throughputs of the different algorithms for PU policy 3 (a) with L = 5 and (b) with L = 2.

additional evidence to the strength of this algorithm in the
challenging environment of hopping channels. In particular,
letting the agent learn the optimal sensing strategy allows
achieving the same throughput with a smaller sensing band-
width, which is a very important advantage, moreover so as
with the commonly used alternating sensing, a large bandwidth
is required for the higher throughput.

In summary, the results clearly demonstrate that the DDQSA
is able to learn a sensing policy and correspondence access
policy which improve the throughput compared to previously
proposed approaches. An interesting phenomenon that we
discovered is that optimizing both sensing and access leads
to a sensing policy which is able to obtain the necessary
information for maximizing the throughput with a narrower
sensing bandwidth than needed for the same performance with
deterministic sensing patterns.

C. Impact of SU’s Random Transmission Requests

In the above simulations it was assumed that the SU
accesses the channel at each time step, and thus receives an
ACK/NACK signal at every time step. To accommodate the
practical situation in which the SU may have idle times, we let
the SU accesses the channel with probability Pac < 1, and
remain idle with probability Pnac = 1 − Pac > 0. Fig. 6
compares the relative throughput of the DDQSA algorithm
for the FHPD when the SU transmits with three different
probabilities: Pac = 1, Pac = 0.7 and Pac = 0.2.

From Fig. 6 it is observed that when convergence is
achieved, the relative throughput when Pac = 0.7 and Pac =
0.2 are very close to the relative throughput when the SU
transmits at every time step. When the SU transmits with a
small probability, e.g., Pac = 0.2, ρ(τ) is noisier because
ρ(τ) involves an averaging operation over 100 time-steps, and
consequently, with smaller transmission probability there are
fewer transmissions in that interval. In addition, it is observed
that as Pac decreases, the convergence rate becomes slower
due to the fact that the replay buffer is updated less frequently
when the SU transmits infrequently. However, this degradation
in convergence rate is graceful w.r.t the transmission prob-
ability. For example, with Pac = 0.7, the convergence rate

Fig. 6. Relative throughputs for the FHPD network for three different access
probabilities: Pac = 1, Pac = 0.7, and Pac = 0.2.

is almost the same as with Pac = 1. We conclude that the
DDQSA algorithm’s steady-state performance is not affected
by the SU transmission probability and the convergence dura-
tion is slightly increased when as SU transmissions become
infrequent.

D. Dealing With Sensing Errors

Next, we examine the impact of sensing errors on the
performance of our novel DDQSA algorithm. To that aim,
we consider two situations with imperfect sensing:

• Sensing errors: At any time step, each channel can have
a sensing error with probability 0.1.

• Undetermined sensing: At any time step, the sensing
outcome of each channel can be undetermined with
probability 0.1, or correct with probability 0.9.

Fig. 7 compares the performance of the DDQSA algorithm
with perfect sensing, undetermined sensing, and sensing errors,
for PU policy 2 with L = 2, corresponding to narrowband
sensing. It is observed that when 10% of the sensing results
are in error, the throughput decreases by 13%. However,
when the sensor does not declare a sensing outcome when
the probability of sensing errors is high, and instead marks
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TABLE III

STOCHASTIC PUS WITH INDEXES 10, 11, 16, 17, 18, 19 STATE TRANSITION PROBABILITIES

Fig. 7. Relative throughputs of the DDQSA with perfect sensing, with
undetermined sensing with probability 0.1, and with error probability of 0.1 for
PU policy 2, with L = 2.

these readings as undetermined, the throughput is only slightly
reduced compared with the case of perfect sensing (only a 2%
decrease). We conclude that the DDQSA is quite robust to
sensing errors, exhibiting a gradual performance degradation,
and in particular, if soft sensing is used to decrease the
probability of sensing errors, DDQSA performance almost do
not degrade.

E. Distributed Channel Access via the DDQSA Algorithm in
a Practical Deployment

In this section we test the performance of the proposed
DDQSA algorithm in an extended network scenario whose
parameters are largely based on the 8802.11-2018 stan-
dard [46], which is the evolution of the 801.11ah standard [47],
commonly accepted a baseline for implementing cognitive
radio networks, see, e.g., [48] and [49]. The extended network
scenario consists of Kp = 20 PUs and 2 SUs, sharing a total
of N = 20 channels, each has a bandwidth of 1 [MHz].
PUs and SUs were randomly placed in a 2.5 [Km] ×
2.5 [Km] square area, according to a uniform distribution,
and the 2-ray propagation model was applied to evaluate the
power of the signals received at the SUs. It is assumed that
every node has an isotropic antenna (i.e., an antenna gain of 1)
whose height is 1.5 [m]. In the tested network scenario, the
PUs may access the entire set of N channels according to their
predetermined channel access policy. SU1 was assigned the
channels with indexes in the set N1 � {0, 1, 2, . . . , N/2− 1},
and SU2 was assigned the channels with indexes in the set

N2 � {N/2, N/2 + 1, . . . , N − 1}. Each SU may access
only its assigned channel set for sensing and access: Each SU
applies sensing to its assigned channels and, when it needs
to transmit, it selects one channel from its set of assigned
channels for access. The sensing action at each SU uses an
observation subset size of L = 2 channels, i.e., narrow-
band sensing. We set the time-slot duration to 1.1 [msec],
[47, Pg. 157], and assuming a sampling rate of 1 mega
samples per second per sensed channel, then, at each time-
slot an SU accumulates Nsamp = 1100 samples per sensed
channel. The transmit power of each node is 20 [dBm], and
receiver sensitivity is σ2

u = −95 [dBm], see [50]. For the
sensing action, the SU implements an energy detector (ED)
with threshold at ξ = −90 [dBm]. The ED processes the
Nsamp samples collected from each sensed channel for making
a busy/free decision for that channel, see, e.g., [51] and [52].
It is also assumed that ACK/NACK feedback messages may
be erroneous with a probability of 5%, see, e.g., [53] and [54].
We note that ACK/NACK errors were not considered in
simulations in previous works, e.g., [21], [25], and [26].
In [20], there is a brief discussion on the impact of
such errors without a simulation test. We set PUs with
indexes 0, 1, 2, 3, 12, 13, 14, 15 to be legacy PUs, and the
remaining PUs to be stochastic PUs. The transition probabili-
ties of the Markov chains for the stochastic PUs with indexes
4−9 are summarized in Table II, in section V-B. The transition
probabilities of the Markov chains for the stochastic PUs with
indexes 10, 11, 16− 19 are summarized in Table III.

The performance were evaluated with two PU policies: PU
policy 1 and PU policy 3, via the relative throughputs of
SU1 and SU2. The relative throughput results for SU1 and
SU2 for PU policy 1 and PU policy 3 are depicted in Figs.
8 and 9, respectively. It is observed that the performance of
the different algorithms, including DDQSA, are not affected
by a 5% ACK/NACK error rate, cf. Figs. 3b and 8a. It is also
observed that the throughputs achieved with the distributed
application of the DDQSA algorithm are considerably higher
than the throughputs obtained by the reference schemes: For
PU policy 1, the throughput of SU1 is 30% higher than the
throughput obtained with random sensing while for SU2 it is
and 43% higher, whereas for alternating sensing SU1 achieves
a 15% increase in throughput and SU2 achieves a 30% increase
in the throughput. For PU policy 3 both SU1 and SU2 achieve a
throughput increase of 11% over random sensing and 6% over
alternating sensing. This follows as PU hopping results in
each SU observing the same PU statistics over its assigned
channels. The results clearly demonstrate the applicability of
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Fig. 8. Relative throughputs of the different algorithms for PU policy 1 with L = 2 for (a) SU1 and (b) SU2.

Fig. 9. Relative throughputs of the different algorithms for PU policy 3 with L = 2 for (a) SU1 and (b) SU2.

the proposed scheme to practical scenarios and the fact that it
is readily extendable to distributed implementation at multiple
SUs, as well as its robustness to ACK/NACK errors. Thus,
the extended simulation provides a strong evidence to the
effectiveness and robustness of the proposed DDQSA algo-
rithm, and demonstrates that the novel elements introduced
in this work have a significant impact on the performance of
DSA algorithms.

VI. CONCLUSION

We considered the DSA problem, where multiple PUs
access a network according to a predetermined policy and a
cognitive SU, which has no prior knowledge about the PUs
dynamics and the access policy they use, attempts to access
the channel. In order to successfully transmit, the SU has
to determine which channels will be free at the next time
step. To that aim, the SU is capable of sensing a subset
of the network’s channels at each time step, thus it does
not know the current state of the entire network. This raises
the important and unanswered question of which channels
should be sensed at each time step such that the network
throughput achieved by a matching access policy is maximal.
To identify the SU policy which maximizes its throughput, we

developed a novel DDQSA algorithm, which aims to deter-
mine the best sensing strategy and the corresponding best
access strategy, based on past observations collected by the SU
via online learning. We compared the throughput of the pro-
posed DDQSA algorithm with that of three other algorithms
which use pre-determined sensing and access policies for four
different PU policies. The results showed that DDQSA outper-
forms the baseline algorithms in all cases. Furthermore, our
results show that the proposed approach facilitates decreasing
the sensing bandwidth without decreasing the throughput as
the SU can focus its sensing on the relevant channels for mak-
ing access decision for the next time step. Moreover, for the
FHPD network, we analytically derived the optimal sensing
and access policies and the corresponding maximal through-
put. We also demonstrated that the DDQSA algorithm can be
applied to more practical scenarios in which the SU does not
transmit at every time step. These results clearly demonstrate
the ability of DDQSA to learn near-optimal policies and the
overall superiority of the proposed approach over existing
methods. Finally, the robustness of DDQSA to ACK/NACK
error was demonstrated as well as its applicability to dis-
tributed implementation when operating in a large network
scenario.
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