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Abstract— Communications over power lines in the frequency
range above 2 MHz, commonly referred to as broadband (BB)
power line communications (PLC), has been the focus of increas-
ing research attention and standardization efforts in recent years.
BB-PLC channels are characterized by a dominant colored non-
Gaussian additive noise, as well as by periodic variations of
the channel impulse response and of the noise statistics. In this
paper, we study the fundamental rate limits for BB-PLC channels
by bounding their capacity while accounting for the unique
properties of these channels. We obtain explicit expressions
for the derived bounds for several BB-PLC noise models, and
illustrate the resulting fundamental limits in a numerical analysis.

Index Terms— Power line communications, MIMO systems,
channel capacity.

I. INTRODUCTION

POWER line communications (PLC) utilizes the exist-
ing power grid infrastructure for data transmission.

Communications over power lines in the frequency range
of 2-100 MHz and possibly beyond, commonly referred to as
broadband (BB) PLC [1], has received a significant research
attention which has supported the development of new stan-
dards aiming at facilitating communications at higher data
rates [2]. Since the indoor power line physical infrastructure
consists of three wires, it is possible to utilize multiple input
ports and/or multiple output ports at terminals by transmitting
and/or receiving over multiple differential wire pairs [3],
thereby realizing multiple input-multiple output (MIMO) com-
munications over BB-PLC channels. The increasing impor-
tance of BB-PLC as a high-speed communications medium
constitutes a strong motivation for characterizing the funda-
mental rate limits of these channels and the associated optimal
channel coding schemes.

A major challenge in characterizing the capacity of
BB-PLC channels, both for scalar and for MIMO scenarios,
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follows since the additive noise in BB-PLC systems is a
superposition of several noise sources, including stationary
noise, non-impulsive noise with periodic statistics, impul-
sive noise with periodic statistics, and impulsive noise with
non-periodic statistics [1, Ch. 2.6]. The resulting overall
BB-PLC noise is generally modeled as a non-Gaussian [4]–[9],
temporally correlated [8]–[12], non-stationary [9], [13]–[16]
process, and MIMO BB-PLC noise components at different
output ports are typically assumed to be correlated [2], [3],
[20]. The channel impulse response (CIR) in BB-PLC channels
is typically modeled as a multipath channel [9], [17] with
periodic variations [13], [18], [19], where the channel outputs
typically contain crosstalk from other wires [2], [3], [21]–[23].
Common models for the marginal probability density function
(PDF) of BB-PLC noise include the Nakagami-m distribu-
tion [4], the Middleton class A distribution [24], and the
Gaussian mixture (GM) distribution [8], [25]. All these models
characterize only the marginal PDF of the additive noise
process, while the complete statistics of the noise process
(i.e., the joint PDF of any finite set of sample times) has not
been characterized. The temporal correlation of the station-
ary noise component is typically characterized via its power
spectral density (PSD), for which various models have been
proposed [10]–[12]. The statistics of the periodic noise com-
ponent in BB-PLC is commonly modeled as a cyclostationary
process, see [13], [14]. Lastly, the non-periodic impulsive
noise component in BB-PLC was modeled in [15] and [16] as
a non-stationary process, where [15] modeled the arrival times
of the impulses using a partitioned Markov chain, while [16]
modeled these arrival times as a Poisson process.

To avoid the technical difficulties that arise when analyzing
the capacity of BB-PLC channels using the accurate statistics
of the noise, previous works which attempted to characterize
the fundamental rate limits for this channel, used very simpli-
fied models which do not capture many of the special char-
acteristics of the noise in BB-PLC channels: The work [10]
evaluated the capacity of BB-PLC channels modeled as linear
time-invariant (LTI) systems with additive colored stationary
Gaussian noise; the work [26] modeled BB-PLC channels
as linear periodically time-varying (LPTV) channels with
additive white Gaussian noise (AWGN), and evaluated the
achievable rate by using a transmission scheme which uti-
lizes orthogonal frequency division multiplexing (OFDM) sig-
nalling; the work [7] modeled the noise of BB-PLC channels
as a Middleton class A process and used the expression for
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the capacity of LTI channels with colored stationary Gaussian
noise (see, e.g., [27, eq. (9.97)]) to evaluate the capacity.
As this expression was derived for a stationary Gaussian noise,
then naturally it does not apply to Middleton class A noise.
We emphasize that all the works mentioned above, i.e., [7],
[10], and [26], derived expressions assuming Gaussian noise,
while major works have concluded that the noise is non-
Gaussian, see, [4], [8], [9]. We also note the work [28],
which derived an approximate expression for the achievable
rates when using Gaussian inputs and when using inputs with
discrete amplitudes, for memoryless channels with additive
GM noise, which were used for modeling communications in
the presence of co-channel interference. Finally, we note that
the capacity of PLC channels in the narrowband frequency
range (0-500 kHz), modeled as additive noise channels in
which the CIR is modeled as an LPTV filter and the noise
is a cyclostationary Gaussian process, was derived in [29].
To the best of our knowledge, the fundamental limits for
BB-PLC channels, accounting for their unique characteristics,
including the non-Gaussianity and the temporal correlation of
the noise, as well as the periodic variations of the CIR and of
the noise statistics, have not been characterized to date. In this
work we aim to address this gap.

Main Contributions: In this work we study the funda-
mental rate limits of discrete-time (DT) BB-PLC channels.
We consider a general channel model accounting for a wide
range of the characteristics of BB-PLC channels, in which the
CIR is modeled as an LPTV filter, and the additive noise
is modeled as a temporally correlated non-Gaussian cyclo-
stationary process.1 Accordingly, we characterize an upper
bound and two lower bounds on the capacity of these channels.
We note that when the noise is not a Gaussian process,
obtaining a closed-form expression for the capacity is gener-
ally a very difficult task, even for stationary and memoryless
channels, and the common approach is to characterize upper
and lower bounds on the capacity, see, e.g., [30, Ch. 7.4].
To facilitate the derivation, we first derive bounds on the
capacity of a general LTI MIMO channel with additive non-
Gaussian stationary noise. Then, we prove that the capacity
of BB-PLC channels can be obtained from the capacity of
non-Gaussian LTI MIMO channels by properly setting the
parameters of the model, and finally we apply the bounds
on the capacity of the latter model to obtain the bounds
on the capacity of BB-PLC channels. This approach yields
capacity bounds which depend on the PDF of the noise
process only through its entropy rate and autocorrelation
function. Consequently, our bounds can be obtained explicitly
whenever the entropy rate and the autocorrelation function
of the noise are known, or can be well-approximated. Next,
we derive explicit expressions for the entropy rates for
several noise models applicable to BB-PLC, and use them to
explicitly characterize the capacity bounds. We also identify
scenarios corresponding to known BB-PLC channel models,
e.g., [4]–[6], [8], in which the capacity bounds depend only

1Although the cyclostationary noise statistics does not fully capture the sta-
tistics of the non-stationary component of the BB-PLC noise, it is considered
an adequate representation of the overall temporal variations of the statistics
of the additive noise in BB-PLC, see, e.g., [14] and [2, Sec. III-F].

on the marginal PDF and the autocorrelation function of the
noise. In such scenarios the bounds can be explicitly obtained
even when the complete statistical characterization of the noise
process is unknown. The proposed capacity bounds hold for
any noise model and distribution. As an example of our results,
we numerically evaluate the capacity for several BB-PLC
noise models, including GM, Middleton class A, and the less
common Nakagami-m model. Our results demonstrate that,
in the high signal-to-noise ratio (SNR) regime, the achievable
rate of cyclostationary Gaussian signaling is within a small
gap of capacity. We also clearly show that assuming the noise
is Gaussian may result in significantly underestimating the
capacity, and eventually, lead to the design of schemes whose
achievable rates are considerably lower than the maximal bit
rate that can be supported by the channel.

The rest of this paper is organized as follows: Section II
details the problem formulation; Section III derives bounds
on the capacity of BB–PLC channels; Section IV presents an
application of the results to the characterization of the capac-
ity for several common BB-PLC models which previously
appeared in the literature; Section V presents numerical exam-
ples; Lastly, Section VI provides some concluding remarks.
Detailed proofs of the results are provided in the appendix.

II. PROBLEM DEFINITION

A. Notations

We use upper-case letters, e.g., X , to denote random
variables (RVs), lower-case letters, e.g., x, to denote deter-
ministic values, and calligraphic letters, e.g., X , to denote sets.
Column vectors are denoted with boldface letters, e.g., x for
a deterministic vector and X for a random vector; the i-th
element of x (i ≥ 0) is denoted with (x)i. We use Sans-Sarif
fonts to denote matrices, e.g., A, the element at the i-th row
and the j-th column of A is denoted with (A)i,j , the all-zero
k × l matrix is denoted with 0k×l, and the n × n identity
matrix is denoted with In. Complex conjugate, transpose,
Hermitian transpose, Euclidean norm, stochastic expectation,
covariance, differential entropy, and mutual information are
denoted by (·)∗, (·)T , (·)H , ‖·‖, E{·}, Cov(·), h(·), and
I(·; ·), respectively, and we use a+ to denote max {0, a}, and
|·| to denote the magnitude when applied to scalars, and the
determinant when applied to matrices. The sets of non-negative
integers, integers, and real numbers are denoted by N , Z ,
and R, respectively. All logarithms are taken to base-2. Lastly,
for any sequence, possibly multivariate, y[i], i ∈ Z , and
integers b1 < b2, yb2

b1
denotes the column vector obtained by

stacking
[
(y[b1])

T
, . . . , (y[b2])

T
]T

and yb2 ≡ yb2
0 .

B. Definitions

In the work we make use of the following definitions:
Definition 1 (A MIMO channel with finite-memory): A DT

nr×nt MIMO channel with finite memory consists of an input
sequence X[i] ∈ Rnt , i ∈ N , an output sequence Y[i] ∈ Rnr ,
i ∈ N , an initial state vector S0 ∈ S0 of finite dimensions,
and a sequence of PDFs

{
pYn|Xn,S0 (yn|xn, s0)

}∞
n=0

.
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Definition 2 (Code): An [R, l] code with rate R and
blocklength l ∈ N consists of: 1) A message set U �
{1, 2, . . . , 2lR}. 2) An encoder el which maps each mes-
sage u ∈ U into an nt × l codeword matrix Xl−1

(u) �[
x(u) [0] ,x(u) [1] , . . . ,x(u) [l − 1]

]
, where x(u) [i] denotes

the inputs at the nt channel input ports at time i.
3) A decoder dl which maps the channel output sequence[
y [0] ,y [1] , . . . ,y [l − 1]

] ∈ Rnr×l into a message û ∈ U .
The encoder and decoder operate independently of the initial
state, in the sense that S0 does not affect the encoding and
the decoding operations.

The set
{
Xl−1

(u)

}2lR

u=1
is referred to as the codebook of the

[R, l] code. Assuming the message U is uniformly selected
from U , the average probability of error, when the initial state
is s0, is:

P l
e (s0)=

1
2lR

2lR∑
u=1

Pr
(

dl

(
Yl−1

) �= u
∣∣U =u,S0 =s0

)
.

Definition 3 (Achievable rate): A rate Rc is called achiev-
able if, for every �1, �2 > 0, there exists a positive integer
l0 > 0 such that for all integer l > l0, there exists an [R, l]
code which satisfies sup

s0∈S0

P l
e (s0) < �1, and R ≥ Rc − �2.

Definition 4 (Capacity): Capacity is defined as the supre-
mum of all achievable rates.

C. Model and Problem Formulation

We consider a DT ñr× ñt MIMO BB-PLC channel with ñr

receive ports and ñt transmit ports, modeled as a multivari-
ate LPTV system with additive non-Gaussian cyclostationary
noise.2 Let m̃ be a non-negative integer which represents the
length of the memory of the channel, p̃G be a positive integer
which represents the period of the CIR, and p̃W be a positive
integer which represents the period of the noise statistics. Let
W̃[i] ∈ Rñr be a real-valued ñr-dimensional zero-mean strict-
sense cyclostationary non-Gaussian additive noise,3 i.e., for
any set of k integer indexes {il}k

l=1, k ∈ N , the joint PDF
of W̃[i1],W̃[i2], . . . ,W̃[ik] is equal to the joint PDF of
W̃[i1+ p̃W],W̃[i2+ p̃W], . . . ,W̃[ik+ p̃W]. Since the channel
memory is m̃, then noise vectors more than m̃ instances apart
are mutually independent, i.e., ∀i1, i2, l1, l2 ∈ N such that
i2 > i1 + l1 + m̃, the random vectors W̃i1+l1

i1
and W̃i2+l2

i2
are mutually independent. We further assume that there is no
deterministic dependence between instances of W̃[i], i.e., �i0
for which W̃[i0] can be expressed as a linear combination
of

{
W̃[i]

}
i�=i0

. Let
{
G̃[i, τ ]

}m̃

τ=0
denote the LPTV CIR. The

periodicity of the CIR implies that G̃[i, τ ] = G̃[i + p̃G, τ ],
∀i ∈ Z, τ ∈ {0, 1, . . . , m̃}.

2In the following, we use the tilde notation for quantities associated with
the MIMO BB-PLC channel, highlighting the fact that this is a periodic
channel model. The same notations without a tilde represent the corresponding
quantities associated with the linear non-Gaussian MIMO channel defined in
Subsection III-A, which is a non-periodic channel model.

3 Previous works which studied the cyclostationarity of BB-PLC noise, [13],
[14], did not explicitly conclude whether the noise process is cyclostationary
in the strict-sense or in the wide-sense. We note that in [14, Sec. III-F] it is
observed that the marginal PDF of the noise is periodic, which is an indication
that the noise process can be modeled as a strict-sense cyclostationary process.

With the above definitions, the input-output relationship for
the MIMO BB-PLC channel with input codeword length l̃ is
given by

Ỹ[i]=
m̃∑

τ=0

G̃[i, τ ]X̃[i−τ ]+W̃[i], i ∈ {0, 1, . . . , l̃−1}, (1)

where the initial state of the channel (i.e., prior to the begin-

ning of reception) is given by S̃0 =
[(

X̃−1
−m̃

)T
,
(
W̃−1

−m̃

)T
]T

.
The channel input is subject to a time-averaged power
constraint P̃ , as in [29, eq. (7)] and [31, eq. (7)]:

1
l̃

l̃−1∑
i=0

E

{∥∥∥X̃ [i]
∥∥∥

2
}

≤ P̃ . (2)

Set p̃ to be the least common multiple4 of p̃G and p̃W

which satisfies p̃ > m̃. As the CIR and the statistics of
the noise of the BB-PLC channel (1) are both periodic with
period p̃, we refer to p̃ as the period of the channel.
While the above model was stated for real signals, complex
(baseband) BB-PLC channels can be accommodated by this
model by representing all complex vectors and matrices using
real vectors and matrices having twice - for vectors, and four
times - for matrices, the number of elements, correspond-
ing to the real and to the imaginary parts of the complex
components, see, e.g., [32, Sec. I]. Accordingly, a complex
MIMO BB-PLC channel with an ñC

t ×1 complex input X̃C[i],
an ñC

r ×1 complex output ỸC[i], an ñC
r ×1 complex additive

noise W̃C[i], and an ñC
r × ñC

t CIR
{
G̃C[i, τ ]

}m̃

τ=0
, can be

equivalently represented as a real MIMO BB-PLC channel
corresponding to (1), via the statement in (3), as shown at the
top of the next page.

In the following section we study the capacity of the MIMO
BB-PLC channel defined above subject to a time-averaged
power constraint P̃ . The capacity of this channel is denoted
as CPLC.

III. THE CAPACITY OF MIMO BB-PLC CHANNELS

Our main result is the characterization of upper and
lower bounds on the capacity of MIMO BB-PLC channels,
defined in (1). This result is obtained via the following three
steps:

• First, in Subsection III-A, we define a general LTI
nr × nt MIMO channel with stationary non-Gaussian
noise, to which we refer as the linear non-Gaussian
MIMO channel (LNGMC). We express the capacity of
the LNGMC as a limit of the maximum mutual informa-
tion between its input and its output as the blocklength
increases to infinity.

4 The common practice in BB-PLC systems, namely, sampling at a rate
which is an integer multiple of twice the AC frequency, typically results
in p̃G = p̃W or p̃G = 2p̃W [13]. In this work we allow a general
relationship between the periods of the CIR and of the noise statistics, but
still assume synchronized sampling, i.e., we assume that the sampling period
is a rational multiple of the period of the continuous-time CIR as well as of
the period of the statistics of the continuous-time noise signal. Allowing a
general relationship facilitates accommodating additional BB-PLC scenarios,
e.g., interference-limited BB-PLC, by our framework.
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⎡
⎣Re

{
ỸC[i]

}

Im
{
ỸC[i]

}
⎤
⎦ =

m̃∑
τ=0

⎡
⎣Re

{
G̃C[i, τ ]

}
−Im

{
G̃C[i, τ ]

}

Im
{

G̃C[i, τ ]
}

Re
{
G̃C[i, τ ]

}
⎤
⎦
⎡
⎣Re

{
X̃C[i − τ ]

}

Im
{
X̃C[i − τ ]

}
⎤
⎦ +

⎡
⎣Re

{
W̃C[i]

}

Im
{
W̃C[i]

}
⎤
⎦ (3)

• Next, we derive computable upper and lower bounds on
the capacity of the LNGMC, which are stated in terms
of the CIR, and of the entropy rate and autocorrelation
of the noise.

• Lastly, in Subsection III-B, we prove that the capacity of
the BB-PLC channel can be obtained as the capacity of an
equivalent p̃× p̃ LNGMC, and use the bounds obtained to
state the corresponding capacity bounds for the BB-PLC
channel.

A. Analysis of the Capacity of the LNGMC

We begin with the definition of the LNGMC: Let m be
a non-negative integer which represents the length of the
memory of the channel, and let {G[τ ]}m

τ=0 denote a set of
m + 1 real-valued nr × nt LTI channel transfer matrices. Let
W[i] ∈ Rnr be a multivariate, real-valued, strict-sense sta-
tionary non-Gaussian additive noise process, whose mean is
zero and whose temporal dependence spans a finite interval
of length m, i.e., ∀i1, i2, l1, l2 ∈ N such that i2 > i1 +
l1 +m, the random vectors Wi1+l1

i1
and Wi2+l2

i2
are mutually

independent. For the transmission of a block of l symbols,
the input-output relationship for the channel is given by

Y[i] =
m∑

τ=0

G[τ ]X[i − τ ] + W[i], i ∈ {0, 1, . . . , l − 1}, (4)

where the initial state of the channel is given by S0 =[(
X−1

−m

)T
,
(
W−1

−m

)T
]T

. The channel input is subject to a

time-averaged power constraint P , i.e.,

1
l

l−1∑
i=0

E
{
‖X [i]‖2

}
≤ P. (5)

While the definition of the LNGMC in (4)–(5) can be obtained
as a special case of the definition of the MIMO BB-PLC
channel in (1)–(2) by setting the period to unity, we use
Eqs. (4)–(5) to highlight the fact that the LNGMC is non-
periodic and to introduce the different quantities associated
with the model separately from the periodic MIMO BB-PLC
channel model.

Let Xn
P be the set of PDFs, p

(
Xn−1

)
, satisfying

1
n

n−1∑
i=0

E
{
‖X [i]‖2

}
≤ P . The capacity of the LNGMC

defined above is stated in the following proposition:
Proposition 1: The capacity of the LNGMC defined in (4)

subject to (5) is given by

CL = lim
n→∞

1
n

sup
p(Xn−1)∈Xn

P

I
(
Xn−1;Yn−1|X−1

−m =0nt·m
)
. (6)

Proof: Note that (6) corresponds to the capacity of
an information stable channel [33]. Information stable chan-
nels can be roughly described as having the property that

the input which maximizes the mutual information and its
corresponding output behave ergodically, thus information
stability depends on the conditional PDF of the channel
output given the channel input. Since stationary channels
with finite memory are known to be information stable,5 see,
e.g., [33, Sec. 1.5], the proposition follows. �

Comment 1: Previous works on the capacity of finite-
memory channels with Gaussian noise, e.g., [31] and [36],
obtained a capacity result in the frequency domain, by trans-
forming the channel into a set of parallel independent chan-
nels, which allows expressing capacity as an explicit integral.
When the noise is non-Gaussian, switching to the frequency
domain still results in the noise components at different
frequency bins having statistical dependence (even if the noise
samples are independent in the time domain), and conse-
quently switching to the frequency-domain in such cases will
typically not yield a set of parallel independent channels. For
this reason, our analysis is carried out in the time domain,
and the capacity has to be stated in terms of an asymptotic
limit. Nonetheless, the bounds on the capacity of LNGMCs,
derived in Props. 2 and 3, are stated explicitly (not as limit
expressions) in the frequency domain.

Prop. 1 implies that the capacity of the LNGMC can be
computed by setting X−1

−m = 0nt·m. We note that setting the
signal component in the initial state to zero was used as a
model assumption in [36] and [37], which studied the capacity
of point-to-point channels with memory and Gaussian noise.
Note that by defining the l · nr × l · nt matrix G̃l such that

G̃l �

⎡
⎢⎢⎢⎢⎢⎢⎣

G[0] · · · 0 · · · 0
...

. . .
. . .

...
G[m] · · · G[0] · · · 0

...
. . .

. . .
...

0 · · · G[m] · · · G[0]

⎤
⎥⎥⎥⎥⎥⎥⎦
, (7)

and setting X−1
−m = 0nt·m, the received signal samples can be

expressed as

Yl−1 = G̃lXl−1 + Wl−1. (8)

Next, based on the capacity expression in Prop. 1, we derive
upper and lower bounds on CL, which depend on the dis-
tribution of the non-Gaussian noise W[i] only through its

autocorrelation function, CW[τ ] � E
{
W[i + τ ]

(
W[i]

)T
}

,

and its entropy rate, H̄W � lim
l→∞

1
l h

(
Wl−1

)
. Note that

the strict-sense stationarity and finite temporal dependence of
W[i] imply that the entropy rate limit exists and that it equals
H̄W = h

(
W[m]

∣∣Wm−1
)

[27, Ch. 12.5].

5The information stability of stationary channels with finite memory,
in which the input and the output are taken from discrete and finite alphabets,
was shown in [34], see also [33, Sec. 1.5]. This results also holds for arbitrary
alphabets, see [35, Thm. 6].



SHLEZINGER et al.: ON THE CAPACITY OF MIMO BROADBAND POWER LINE COMMUNICATIONS CHANNELS 4799

In the statement of the bounds we make use of the following
additional definitions: For any ω ∈ [−π, π), we define the

nr×nt matrix G′(ω)�
m∑

τ=0
G[τ ]e−jωτ , and the nr×nr matrix

C′
W(ω) �

m∑
τ=−m

CW[τ ]e−jωτ , and we let {α′
k(ω)}nr−1

k=0 and

{λ′
k(ω)}nr−1

k=0 denote the eigenvalues of G′(ω)
(
G′(ω)

)H
and of(

G′(ω)
)H(

C′
W(ω)

)−1
G′(ω), respectively. Next, let H̄G,W be

the entropy rate of a zero-mean nr × 1 multivariate Gaussian
process with autocorrelation function CW[τ ], and let CG be
the capacity of the channel defined in (4) subject to the
constraint (5) and to the setting X−1

−m = 0nt·m, when the
noise W[i] is Gaussian. From [38, Sec. III] the entropy rate
H̄G,W can be expressed as

H̄G,W =
1
4π

π∫

ω=−π

log |2πeC′
W(ω)| dω. (9a)

In [37, eq. (9)] the capacity of MIMO channels with an LTI
CIR and additive stationary Gaussian noise was characterized,6

assuming the signal component in the initial state is zero
(i.e., X−1

−m = 0nt·m). Using [37, eq. (9)] we can write the
capacity of the channel (4) when W[i] is replaced by a zero-
mean stationary Gaussian process with the same autocorrela-
tion, as

CG =
1
4π

nr−1∑
k=0

π∫

ω=−π

(
log

(
Δ′ · λ′

k(ω)
))+

dω, (9b)

where Δ′ is selected to satisfy 1
2π

nr−1∑
k=0

π∫
ω=−π

(
Δ′ −

(λ′
k(ω))−1

)+

dω = P .

Note that H̄G,W and CG, defined in (9), correspond to the
entropy rate of a Gaussian noise process, and to the capacity
of a channel with additive Gaussian noise, respectively. These
quantities are used for facilitating the characterization of the
bounds on the capacity of the LNGMC in which the noise is
a non-Gaussian process.

We next state an upper bound and two lower bounds on the
capacity of the LNGMC using H̄W, H̄G,W, and CG. First,
the upper bound is stated in the following proposition:

Proposition 2: The capacity of the LNGMC defined in (4),
subject to the constraint (5), satisfies

CL ≤ CG + H̄G,W − H̄W. (10)

[A proof is given in Appendix A]
Next, two lower bounds on the capacity of the LNGMC are

stated in the following Prop. 3:
Proposition 3: The capacity of the LNGMC defined in (4)

subject to the constraint (5) satisfies

CL ≥ CG. (11a)

6We note that [37, Thm. 1] is stated for a per-codeword power constraint.
However, it follows from [37, Sec. 3.1] and from [30, Ch. 7.3, pp. 323–324]
that the proof of [37, Thm. 1] also holds subject to the time-averaged power
constraint (5).

Moreover, if nr = nt and G[0] is invertible, then CL also
satisfies

CL ≥ nr

2
log

(
2πeP

nt
· 2

1
2π·nt

nr−1�

k=0

π�

ω=−π

log(α′
k(ω))dω

+ 2
2

nr
H̄W

)
− H̄W. (11b)

[A proof is given in Appendix B]

B. Capacity Analysis for MIMO BB-PLC Channels

In order to obtain bounds on the capacity of MIMO
BB-PLC channels, we first prove that any ñr × ñt MIMO
BB-PLC channel, in which the CIR and the noise statistics are
periodic with a period of p̃, can be equivalently represented
(in terms of the achievable rates) as an p̃ · ñr× p̃ · ñt LNGMC,
in which the CIR is time-invariant and the noise is stationary.
Then, we apply the capacity bounds derived for the LNGMC
to bound the capacity of the original MIMO BB-PLC channel
by considering its equivalent LNGMC with the appropriate
dimensions. To that aim, using the decimated components
decomposition (DCD) [42], we define two p̃·ñr×p̃·ñt matrices,
GDCD[0] and GDCD[1], as follows:

GDCD[0] �

⎡
⎢⎢⎢⎢⎢⎢⎣

G̃[0, 0] · · · 0 · · · 0
...

. . .
. . .

...
G̃[m̃, m̃] · · · G̃[m̃, 0] · · · 0

...
. . .

. . .
...

0 · · · G̃[p̃−1, m̃] · · · G̃[p̃−1, 0]

⎤
⎥⎥⎥⎥⎥⎥⎦
,

GDCD[1] �

⎡
⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 G̃[0, m̃] · · · G̃[0, 1]
...

...
. . .

...
0 · · · 0 0 G̃[m̃−1, m̃]
...

...
...

...
0 · · · 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

and also define the p̃ · ñr × 1 random vector WDCD

[
ĩ
]

�
W̃(̃i+1)·p̃−1

ĩ·p̃ . As WDCD

[
ĩ
]

is given by the DCD of W̃[i], the

strict-sense cyclostationarity of W̃[i] induces a strict-sense sta-
tionarity of WDCD

[
ĩ
]
. Using these definitions, we construct

an LNGMC with a p̃ · ñt × 1 input XDCD

[
ĩ
]

and a p̃ · ñr × 1
output YDCD

[
ĩ
]

which satisfies the following input-output
relationship for a sequence of l channel inputs:

YDCD

[
ĩ
]
=

1∑
τ̃=0

GDCD [τ̃ ]XDCD

[̃
i−τ̃

]
+WDCD

[
ĩ
]
, (12)

ĩ ∈ {0, 1, . . . , l − 1},, where the channel input to the
LNGMC (12) has to satisfy an average power constraint

1
l

l−1∑

ĩ=0

E
{∥∥XDCD

[
ĩ
]∥∥2

}
≤ PDCD = p̃ · P̃ . (13)

Since p̃ > m̃, the initial state of the LNGMC is S0,DCD =[
XT

DCD[−1],WT
DCD[−1]

]T
. Let CDCD be the capacity of the

LNGMC defined in (12)–(13). The relationship between the
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capacity of the BB-PLC channel in (1)–(2) and the LNGMC
in (12)–(13) is stated in the following theorem:

Theorem 1: The capacity of the BB-PLC channel, defined
in (1), subject to (2) satisfies

CPLC =
1
p̃
CDCD. (14)

[A proof is given in Appendix C]
Based on Thm. 1 and Props. 2 and 3, we obtain lower

and upper bounds on the capacity of the BB-PLC channel.
To that aim, define the p̃ · ñr × p̃ · ñr autocorrelation
function CWDCD [τ̃ ] � E

{
WDCD

[̃
i + τ̃

]
WT

DCD

[
ĩ
]}

,

the entropy rate H̄WDCD � lim
n→∞

1
nh

(
Wn−1

DCD

)
, the

p̃ · ñr × p̃ · ñt matrix G′
DCD(ω)�

1∑
τ̃=0

GDCD[τ̃ ]e−jωτ̃ , and the

p̃ · ñr × p̃ · ñr matrix C′
WDCD

(ω) �
1∑

τ̃=−1

CWDCD [τ̃ ]e−jωτ̃ .

Next, let
{
α′

DCD,k(ω)
}p̃·ñr−1

k=0
and

{
λ′

DCD,k(ω)
}p̃·ñr−1

k=0

be the eigenvalues of G′
DCD(ω) (G′

DCD(ω))H and of(
G′

DCD(ω)
)H

(
C′

WDCD
(ω)

)−1

G′
DCD(ω), respectively, and,

in addition, let H̄G,WDCD denote the entropy rate of a
zero mean p̃ · ñr × 1 Gaussian process with autocorrelation
function CWDCD [τ̃ ]. H̄G,WDCD can be computed via (9a)
with C′

WDCD
(ω) instead of C′

W(ω). Finally, let CDCD,G be
the capacity of the LNGMC (12) when the noise WDCD

[
ĩ
]

is Gaussian with autocorrelation function CWDCD [τ̃ ]. Thus,
CDCD,G is obtained using (9b) with λ′

DCD,k(ω) and PDCD

replacing λ′
k(ω) and P , respectively. Noting that GDCD[0]

has a full rank if and only if G̃
[
ĩ, 0

]
has a full rank for

every ĩ ∈ {0, 1, . . . , p̃ − 1} � P̃ [51, Example 3.7.4], then,
by combining Thm. 1 with Prop. 2, the following upper
bound on CPLC is obtained:

Corollary 1: The capacity of the BB-PLC channel defined
in (1), subject to (2), satisfies

CPLC ≤ 1
p̃

(
CDCD,G + H̄G,WDCD − H̄WDCD

)
. (15)

Lastly, combining Thm. 1 with Prop. 3, the following lower
bounds on CPLC are obtained:

Corollary 2: The capacity of the BB-PLC channel defined
in (1), subject to (2), satisfies

CPLC ≥ 1
p̃
CDCD,G. (16a)

Moreover, if ñr = ñt and G̃
[
ĩ, 0

]
is non-singular for every

ĩ ∈ P̃ , then CPLC also satisfies

CPLC ≥ ñt

2
log

(
2πeP̃

ñt
· 2

1
2π·p̃·ñt

p̃·ñr−1�

k=0

π�

ω=−π

log(α′
DCD,k(ω))dω

+ 2
2

p̃·ñr
H̄WDCD

)
− 1

p̃
H̄WDCD . (16b)

Comment 2: From the proof of Prop. 3 in Appendix B we
note that the lower bounds (11b) in Prop. 3 also lower bound
the achievable rate of the LNGMC with stationary multivariate
Gaussian input. This implies that (16b) constitutes a lower

bound on the achievable rate of BB-PLC channels with cyclo-
stationary Gaussian input. Consequently, when (16b) coincides
with the upper bound in (15), then cyclostationary Gaussian
inputs are optimal.

IV. APPLICATION: CAPACITY BOUNDS FOR

SEVERAL BB-PLC CHANNEL MODELS

The capacity bounds derived in Section III depend on the
marginal distribution of the noise in the BB-PLC channel,
W̃[i], only through its entropy rate. In this section we derive
explicit expressions for the entropy rates of two common non-
Gaussian BB-PLC noise models: The Nakagami-m model [4],
and the GM7 model [8]. We first consider the case in which
the noise is an i.i.d. process, and thus its entropy rate is equal
to the differential entropy of a single sample [27, Ch. 4.2].
In such cases, the entropy rate of the noise process can be
computed using only the marginal distribution of the noise.
When the noise is correlated, then the derivation of the entropy
rate requires the characterization of the complete statistics of
the noise process, which is typically unavailable for the current
BB-PLC channel models. Thus, in this work we incorporate
periodically time varying noise autocorrelation functions by
applying LPTV filtering to an i.i.d. noise process, and using the
entropy rate of the resulting output process in our expressions.
In order to apply this approach, we first derive a relationship
between the entropy rates at the input and at the output of
LPTV filters, when the input is an i.i.d. process. We note, how-
ever, that for non-Gaussian processes, LPTV filtering typically
does not preserve the marginal distribution of the input process
at the output, hence the resulting output process will typically
have a mismatched marginal distribution w.r.t. that of the input
process. Accordingly, the bounds obtained using the proposed
approach should be considered as an indication of the bounds
on the capacity of BB-PLC channels with correlated noise. In
the following we propose exact expressions and bounds on the
entropy rate H̄WDCD . These expressions and bounds can be
used in Corollaries 1 and 2 to obtain bounds on the capacity
of several BB-PLC models.

A. i.i.d. Complex Nakagami-m Noise

The complex Nakagami-m noise model is a model for
the additive noise in baseband BB-PLC channels [4], accom-
modated by our real multivariate model (1) by representing
complex signals using real multivariate signals. To facilitate
the introduction of this noise model, we recall the definition
of the real-valued Nakagami-m distribution:

Definition 5 (Real-valued Nakagami-m distribution): A
real-valued scalar RV is said to follow a Nakagami-m
distribution with shape parameter m ≥ 1

2 and second-order
moment Ω > 0 if its PDF is given by [53, Ch. 4.18]

fX (x)=
2

Γ (m)

(m

Ω

)m

x2m−1e−
mx2
Ω , x ≥ 0, (17)

7The Middleton class A distribution, which is another important BB-PLC
noise model, can be approximated using a GM distribution [8], thus the
entropy rate of a Middleton class A noise can be approximated using the
entropy rate of a GM process.
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where Γ(·) denotes the Gamma function. We denote this
distribution with X ∼ KG (m, Ω).

The real-valued Nakagami-m distribution is commonly used
to model the distribution of the amplitude of the noise in
baseband BB-PLC channels [4]–[6], for which the marginal
distribution of the baseband noise can be modeled as a
complex-valued Nakagami-m PDF [4], defined as follows:

Definition 6 (Complex-valuedNakagami-mdistribution[4]):
Let X ∼ KG (m, Ω), and let Θ be an RV uniformly distributed
over [0, 2π], mutually independent of X . Then, W = XejΘ is
a complex Nakagami-m RV with zero mean and variance Ω,
and is denoted by W ∼ CKG (m, Ω).

Letting Ψ(·) denote the Digamma function [53, Table 0.1],
the differential entropy of a complex Nakagami-m RV is stated
in the following proposition:

Proposition 4: The differential entropy of W ∼
CKG (m, Ω) is given by:

h (W ) =
Ψ (m)
2 ln(2)

+ log
(

πΩ
m

Γ (m) e
2m−(2m−1)Ψ(m)

2

)
. (18)

[A proof is given in Appendix D]
Now, for scalar BB-PLC channels in which the noise is
modeled as an i.i.d. complex Nakagami-m process, the entropy
rate H̄WDCD is given by (18), which can be used in (15)-(16)
to obtain upper and lower bounds on the capacity.

B. i.i.d. Gaussian Mixture Noise

Next, we consider an additive multivariate real-valued GM
noise, which is another common model for BB-PLC noise,
see, e.g., [8]. This model is again obtained by representing the
complex-valued baseband channel as a real-valued channel of
extended dimensions.

Let fGñr

(
u;m, C

)
denote the PDF of an ñr × 1 real

Gaussian random vector with mean vector m ∈ Rñr and
covariance matrix C ∈ Rñr×ñr , where u denotes the
realization of the random vector, i.e., fGñr

(
u;m, C

)
=

|2πC|−1/2e−(u−m)T C−1(u−m). The distribution of a GM ran-
dom vector W ∈ Rñr is determined by the number of
Gaussians nG, nG ≥ 1, the set of positive mixing parameters

{γn}nG
n=1 satisfying

nG∑
n=1

γn = 1, the set of mean vectors

{mn}nG
n=1, and the set of covariances matrices {Cn}nG

n=1.
Using these parameters, the PDF of W is given by:

fW (w) =
nG∑
n=1

γn · fGñr

(
w;mn, Cn

)
. (19)

While there is no closed-form analytic expression for the
differential entropy of GM random vectors [50], upper and
lower bounds on the differential entropy of GM random
vectors can be obtained as stated in [50, Thms. 2 and 3],
repeated here for convenience:

Theorem [50, Thms. 2 and 3]: The differential entropy of a
random vector with PDF (19) satisfies

−
nG∑
n=1

γn · log

(
nG∑

m=1

γm · fGñr

(
mn;mm, Cm+Cn

))

≤ h(W) ≤
nG∑
n=1

γn ·
(1

2
log |2πeCn| − log (γn)

)
.

The bounds in [50, Thms. 2 and 3] are tight when the num-
ber of Gaussian components is small8 and the Gaussians are
well separated from each other [50], which applies to the GM
BB-PLC noise model in [8]. As for i.i.d. noise H̄WDCD =
h (W), [50, Thms. 2 and 3] provide tight bounds on the
entropy rate of i.i.d. GM noise for small nG and sufficiently
separated Gaussians.

C. Correlated Non-Gaussian Cyclostationary Noise

In the previous subsections we studied the differential
entropy of two i.i.d. BB-PLC noise models. As in many
BB-PLC systems the noise process is modeled as a temporally
correlated [8]–[12] cyclostationary process [9], [13], [14],
we propose an approach for extending the derivation of
the differential entropy for i.i.d. noise models studied in
Subsections IV-A–IV-B to correlated non-Gaussian cyclosta-
tionary noise models.

In order to compute the capacity bounds in (15)-(16),
it is required to compute 1

p̃H̄WDCD , which is the entropy
rate of the multivariate noise process WDCD

[
ĩ
]
. As the

noise W̃[i] is a temporally and spatially correlated non-
Gaussian cyclostationary process, then computing the entropy
rate of WDCD

[
ĩ
]

requires the complete statistics of the noise
process. We note, however, that complete statistical models
for the noise in BB-PLC channels are currently not available
for most typical BB-PLC scenarios [8]. In the following we
apply the widely acceptable practice of generating a corre-
lated noise process via filtering an appropriate i.i.d. process.
Accordingly, we propose to obtain an explicit expression
for the entropy rate by modeling the noise process as the
output of an LPTV filter with an i.i.d. non-Gaussian input.
This model accounts for the non-Gaussianity of the noise,
as well as for its cyclostationarity, temporal correlation, and
spatial correlation. We note that the approach has been applied
previously in the context of noise generation for narrowband
PLC systems in [46] and [47]. The noise signal is generated
as described below: First, we let Ũ[i] ∈ Rñr be an i.i.d.
random process, and let

{
F̃[i, τ ]

}m̃

τ=0
be the CIR of an ñr× ñr

LPTV filter with period p̃ and memory m̃, where F̃[i, 0] is
non-singular ∀i ∈ P̃ . The noise process is then generated
via

W̃ [i] =
m̃∑

τ=0

F̃[i, τ ]Ũ [i − τ ]. (20)

Note that the resulting noise process W̃ [i] is a strict-
sense cyclostationary process with a period of p̃ samples
and a temporal correlation which spans an interval of
m̃ samples, hence it satisfies the model assumptions
in Subsection II-C.

We next consider blocks of p̃ · ñr samples of W̃ [i], and
restate the LPTV filtering of (20) as a multivariate LTI filtering
of extended dimensions. To that aim, define the p̃ · ñr × p̃ · ñr

8In the case of nG = 1, i.e., a multivariate Gaussian distribution, the upper
bound is the differential entropy.
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matrices F[0] and F[1]:

F[0] �

⎡
⎢⎢⎢⎢⎢⎢⎣

F̃[0, 0] · · · 0 · · · 0
...

. . .
. . .

...
F̃[m̃, m̃] · · · F̃[m̃, 0] · · · 0

...
. . .

. . .
...

0 · · · F̃[p̃−1, m̃] · · · F̃[p̃−1, 0]

⎤
⎥⎥⎥⎥⎥⎥⎦

,

F[1] �

⎡
⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 F̃[0, m̃] · · · F̃[0, 1]
...

...
. . .

...
0 · · · 0 0 F̃[m̃−1, m̃]
...

...
...

...
0 · · · 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

and let F′(ω)�
1∑

τ=0
F[τ ]e−jωτ . Also, recall that WDCD

[
ĩ
]

�

W̃(ĩ+1)·p̃−1

ĩ·p̃ and let U
[
ĩ
]

� Ũ(ĩ+1)·p̃−1

ĩ·p̃ . From (20) we obtain

the following relationship between WDCD

[
ĩ
]

and U
[
ĩ
]
:

WDCD

[
ĩ
]

=
1∑

τ̃=0

F[τ̃ ]U
[
ĩ − τ̃

]
. (21)

Since Ũ[i] is an i.i.d. process, it follows that the entropy rate
of U

[
ĩ
]

is given by p̃ · h(Ũ)
. We can now obtain the time-

averaged entropy rate of WDCD

[
ĩ
]

as stated in the following
lemma:

Lemma 1: The time-average of the entropy rate of
WDCD

[
ĩ
]

is given by

1
p̃
H̄WDCD =

1
2π · p̃

2π∫

ω=0

log |F′ (ω)| dω + h
(
Ũ
)
. (22)

[A proof is given in Appendix E]
We note that modeling the noise via (20) allows us to eval-

uate the entropy rate for non-Gaussian, temporally correlated,
and cyclostationary BB-PLC noise models. It should be noted
that, in general, the marginal distribution of W̃[i] may be
different than the marginal distribution of the i.i.d. signal Ũ[i],
e.g., when Ũ[i] follows a complex Nakagami-m distribution,
yet, when Ũ[i] is a GM process, then the filtered process
in (20) is also a GM process, but the number of Gaussians
and their parameters may change [43].

V. NUMERICAL EXAMPLES AND DISCUSSION

In this section we numerically evaluate the capacity bounds
derived in Section III for various BB-PLC channels. The
simulation study consists of two parts: First, in Subsection V-A
we illustrate the effect of the non-Gaussianity of the noise
on the capacity of the channel. Then, in Subsection V-B
we evaluate the capacity bounds for some BB-PLC channel
models, considering both scalar as well as MIMO models,
and discuss the tightness of these bounds.

To compute the capacity bounds for the GM noise,
we first compute upper and lower bounds on the differential
entropy H̄WDCD , denoted H̄

(up.)
WDCD

and H̄
(low.)
WDCD

, respectively,
as detailed in Subsection IV-B. Then, we compute the upper

bound in (15) by replacing 1
p̃ H̄WDCD with 1

p̃H̄
(low)
WDCD

, and the
lower bound in (16b) (denoted Lower bound 2) is computed
with 1

p̃H̄WDCD replaced with9 1
p̃H̄

(up.)
WDCD

. Lastly, we note that
the lower bound in (16a) (denoted Lower bound 1) does not
depend on the entropy rate. As BB-PLC channels exhibit a
broad range of signal attenuation and noise power values,
depending on the topology of the power line network and on
the appliances connected to the network [4], [9], [10], [13],
we consider a wide range of SNR values.

A. Evaluating the Effect of the non-Gaussianity of the Noise

As noted in Section I, previous works on the fundamental
rate limits of BB-PLC channels, e.g., [7], [10], and [26],
assumed that the additive noise is Gaussian, which facilitated
obtaining an explicit expression for the capacity. Nonethe-
less, BB-PLC noise is typically modeled as a non-Gaussian
process, and two common models for its marginal PDF are
the Nakagami-m distribution [4] and the GM distribution [8].
In the following we illustrate the effect of the non-Gaussianity
of the additive BB-PLC noise on the capacity of the channel,
and numerically evaluate the mismatch induced by assuming
that the noise is Gaussian (e.g., as done in some previous
works, including [10], [26]) compared to the actual capacity.
To that aim, we consider a memoryless (m̃ = 1), time-
invariant (p̃ = 1), scalar baseband channel, in which the
additive noise W̃ [i] is an i.i.d. process. We consider two
marginal distributions of the noise: The first noise process
follows a complex GM distribution. In this case, in order to
generate W̃ [i], we let Z̃[i] be an i.i.d. complex process such

that
[
Re

{
Z̃[i]

}
, Im

{
Z̃[i]

}]T

is a 2×1 GM random vector with

parameters nG = 3,
{
γn

}3

n=1
=
{
0.7, 0.2, 0.1

}
, {mn}3

n=1 ={
[5, 4]T , [−8,−16]T , [−19, 4]T

}
, and

{
Cn

}3

n=1
=
{
5, 2, 1

}·I2,
following [8, Fig. 3a]. Then, we set α = E{|Z̃[i]|2}−1/2, and
obtain the noise as W̃ [i] = α·Z̃[i]; We also consider noise with
a complex Nakagami-m distribution with parameters m = 0.8
and Ω = 1, as in [4]. Note that both noise models have a
zero mean and a unit variance. This scenario accounts only
for the non-Gaussianity of the noise in the channel model,
and neglects the effects of the channel memory and of the
non-stationarity of the noise.

Fig. 1 depicts the capacity bounds for this scenario vs. SNR,

defined here as SNR = P̃
E{|W̃ [i]|2} . Note that the lower bound

in (16a) (Lower bound 1 in Fig. 1), which represents the capac-
ity of the channel assuming that the noise is Gaussian, does not
depend on the actual distribution of the noise, and is therefore
the same for both simulated noise distributions. Observing
Fig. 1, we note that for GM noise, there is a substantial gap
between the actual capacity of the channel and the capacity
computed assuming that the noise is Gaussian, especially in
high SNR. For example, at SNR of 12 dB, capacity is not
less than 7 bps/Hz, while assuming Gaussian noise, the SNR

9Since for a, b > 0, the function f(x) = a · log
�
b + 2x/a

� − x is

monotonically non-decreasing w.r.t. x, then, computing (16b) with 1
p̃
H̄

(low.)
WDCD

instead of 1
p̃
H̄WDCD results in a lower bound on the capacity.
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Fig. 1. Capacity bounds, i.i.d. noise channel, complex Nakagami-m (CKG)
and GM noise models.

has to be increased by at least 9 dB in order to obtain the
same capacity of 7 bps/Hz. A less notable gap is observed
for Nakagami-m noise, where an SNR gap of 0.7 dB is
observed for capacity of 7 bps/Hz. Moreover, we note that for
the Nakagami-m noise, the lower bound in (16b) numerically
coincides with the upper bound for SNRs greater than 10 dB.
As discussed in Comment 2, this implies that Gaussian inputs
are optimal at high SNR for the Nakagami-m noise channel.
For the GM noise model, we observe a gap of 0.5 bps/Hz
between the lower bound (16b) and the upper bound (15), for
SNRs above 10 dB. Consequently, as (16b) lower bounds the
achievable rate with Gaussian inputs, we conclude that for the
GM noise model, the achievable rate of Gaussian inputs is at
most 0.5 bps/Hz less than capacity at high SNR.

B. Capacity of BB-PLC Channels with Correlated
Non-Gaussian Noise

We now use the results in Corollaries 1 and 2 to characterize
bounds on the capacity of practical BB-PLC channel models.
The channel models considered here are taken from the recent
literature on BB-PLC channel modeling, and are selected to
represent actual BB-PLC channels. We first study the capacity
of the scalar passband BB-PLC scenario: The LPTV CIR
is generated with period a p̃G = 240 and memory length10

m̃ = 4 using the channel generator proposed in [19], where
the parameters used by the channel generator were set to
the default values. The additive noise is a non-Gaussian
temporally correlated cyclostationary process, generated using
the approach described in Subsection IV-C: First, an i.i.d.
scalar process Ũ [i] is generated, where we consider three PDFs
for Ũ [i]:

• GM1 - a GM PDF based on [8, Fig. 3a] with parameters
nG = 3, {γn}3

n=1 = {0.7, 0.2, 0.1}, {mn}3
n=1 =

{5,−8,−19}, and {cn}3
n=1 = {5, 2, 1};

• GM2 - a GM PDF based on [40, Fig. 2] with parameters
nG = 3, {γn}3

n=1 = {0.9, 0.07, 0.03}, {mn}3
n=1 =

{0, 0, 0}, and {cn}3
n=1 = {1, 100, 1000};

10Note that the root mean-square (RMS) delay spread in BB-PLC channels
is typically on the order of several microseconds, i.e., around 0.1 % of the
channel period [3, Table 1]. Thus, following the typical relationship between
RMS delay spread and memory length, see, e.g., [39, Ch. 3.3.1], the memory
length is on the order of 1 % of the channel period.

Fig. 2. Capacity bounds, scalar BB-PLC channel, GM1 noise model.

Fig. 3. Capacity bounds, scalar BB-PLC channel, GM2 noise model.

• MCA - a GM PDF approximating a Middleton class A
PDF as in [41, Ch. 2.7.2] with parameters based
on [40, Fig. 3], i.e., letting A = 0.1 and Ω = 0.01,
and setting nG = 10, γn = e−A An

n! , mn = 0, and
cn = n/A+Ω

1+Ω , n ∈ {0, 1, . . . , nG − 1}.

The process Ũ [i] is normalized to have a unit variance, and
is then filtered via a spectral shaping LPTV filter to obtain
the scalar BB-PLC noise W̃ [i]. Two spectral shaping LPTV
filters with period p̃W = 120 and memory length m̃ = 4 are
used: The first is a filter designed to generate the periodically
time-varying BB-PLC ‘medium disturbed’ correlation profile.
This filter is applied to the GM1 and GM2 noise signals.
The second spectral shaping filter is designed to generate the
periodically time-varying BB-PLC ‘heavily disturbed’ corre-
lation profile, and is applied to the MCA noise model. Both
correlation profiles were obtained from actual BB-PLC noise
measurements via the procedure detailed in [14].11 Note that
for the values selected for p̃G and p̃W, then p̃, which is the
least common multiple of p̃G and p̃W not smaller than m̃,
equals p̃ = 240.

The capacity bounds for the scalar BB-PLC channel vs.
SNR, defined here as SNR = P̃

1
p̃

p̃�

i=1
E{|W̃ [i]|2}

, are depicted

in Figs. 2-4, for the GM1 noise, GM2 noise, and MCA

11The ‘medium disturbed’ and ‘heavily disturbed’ correlation profiles
obtained following [14] are available on http://www.plc.uma.es/channels.htm.
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Fig. 4. Capacity bounds, scalar BB-PLC channel, MCA noise model.

noise, respectively. Observing Figs. 2-4, we note that the lower
bound in (16b) (Lower bound 2 in Figs. 2-4) is much tighter
than the lower bound in (16a) (Lower bound 1 in Figs. 2-4)
for all the noise models considered. Consequently, assuming
that the noise is Gaussian results in a capacity expression
which is strictly smaller than the actual capacity, and for
most SNR values, this expression is considerably less than
the actual capacity. It thus follows that using the Gaussian
noise assumption leads to schemes whose achievable rates are
far from achieving the maximal bit rate that can be supported
by the BB-PLC channel. Additionally, we note that for SNRs
higher than 10 dB, the lower bound (16b) is lower than
the upper bound (15) by only 0.25 bps/Hz, 0.8 bps/Hz, and
0.6 bps/Hz, for the the GM1 noise, the GM2 noise, and the
MCA noise, respectively. We conclude that, for the tested
scenarios at high SNRs, the bounds in (16b) and (15) are
relatively tight, hence Corollaries 1 and 2 provide a reliable
characterization of the capacity. We also conclude that at
high SNRs the achievable rate obtained with cyclostationary
Gaussian inputs is within a small gap from capacity.

Next, we consider a passband 2 × 2 MIMO BB-PLC
scenario. The multivariate LPTV CIR G̃[i, τ ] was generated
using the method proposed in [22] for generating MIMO
BB-PLC channels based on the characteristics of the scalar
channel. Specifically, we first generate four real LPTV CIRs
with period p̃G = 240 and memory length m̃ = 4 using
the channel generator proposed in [19]. We denote the gen-
erated channels as {g̃k[i, τ ]}4

k=1. Then, setting ρ = 0.9
[22, Sec. V-B], the multivariate LPTV CIR is obtained via

G̃[i, τ ] =
[

1 ρ
ρ 1

]1/2 [
g̃1 [i, τ ] g̃2 [i, τ ]
g̃3 [i, τ ] g̃4 [i, τ ]

] [
1 ρ
ρ 1

]1/2

.

The additive multivariate noise W̃[i] is generated using the
model detailed in Subsection IV-C: First, a real i.i.d. 2 × 1
process Ũ[i] is generated, normalized to having a unit vari-
ance. We used two different PDFs for Ũ[i]:

• MIMO GM - a GM PDF based on [8, Fig. 3a]
with parameters nG = 3, {γn}3

n=1 = {0.7, 0.2, 0.1},
{mn}3

n=1 = {[5, 4]T , [−8,−16]T , [−19, 4]T}, and
{Cn}3

n=1 = {5, 2, 1} · I2.
• MIMO MCA - a GM PDF approximating a Middleton

class A PDF as in [41, Ch. 2.7.2] with parameters based

Fig. 5. Capacity bounds, MIMO BB-PLC channel, MIMO GM noise.

on [40, Fig. 3], i.e., letting A = 0.1 and Ω = 0.01,
such that nG = 10, γn = e−A An

n! , mn = [0, 0]T , and
Cn = n/A+Ω

1+Ω · I2, n ∈ {0, 1, . . . , nG − 1}.

Next, we generate a spectral shaping multivariate LPTV filter,
F̃[i, τ ], with period p̃W = 120 (i.e., p̃ = 240) and memory
length m̃ = 4, based on the construction of a spectral cor-
relation profile for MIMO BB-PLC channels detailed in [20]:
Let ρW(ω) be a 2π-periodic function representing the spectral
variations in the spatial correlation. Following [20, Fig. 5],
we set ρW(ω) = 0.7 − |ω|

2π for |ω| < π. Let s[i, ω] be the
instantaneous PSDs, corresponding to the ‘heavily disturbed’
profile.12 Lastly, set

F̃′[i, ω] =
[

1 ρw (ω)
ρw (ω) 1

]1/2 [
s [i, ω] 0

0 s [i, ω]

]1/2

.

The CIR of the multivariate filter F̃[i, τ ] is obtained via the

inverse Fourier transform F̃[i, τ ] = 1
2π

π∫
ω=−π

F̃′[i, ω]ejωτdω.

Finally, the additive noise signal W̃[i] ∈ R2 is obtained as
the output of F̃[i, τ ] as in (20).

The capacity bounds for the MIMO BB-PLC channel vs.
SNR, defined here as SNR = P̃

1
p̃

p̃�

i=1
E{‖W̃[i]‖2}

, are depicted

in Figs. 5-6 for the MIMO GM and for the MIMO MCA
noise models, respectively. Similarly to the capacity of the
scalar BB-PLC channel, the lower bound in (16b) is tighter
than the lower bound in (16a) for almost the entire SNR range.
We also note that the gap between the tighter lower bound and
the upper bound in Figs. 5-6 is larger than in the scalar case
in Figs. 2-4, varying from 3.05 bps/Hz at SNR of 0 dB to
0.45 bps/Hz at high SNRs for the MIMO GM noise model,
while for the MIMO MCA noise model the corresponding
gap varies from 4.5 bps/Hz at SNR of 0 dB to 1.1 bps/Hz
at high SNRs. Comparing the capacity of MIMO BB-PLC
channels in Figs. 5-6 with their scalar counterparts in Figs. 2-4,
respectively, indicates that the potential rate gains of using
MIMO techniques for BB-PLC can range between 40%-90%.
Recall that the optimal rate gain of a 2 × 2 configura-
tion over the scalar channel for spatially independent noise

12The instantaneous PSDs are taken from http://www.plc.uma.es/channels.
htm, which is based on [14].
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Fig. 6. Capacity bounds, MIMO BB-PLC channel, MIMO MCA noise.

is 100% [44, Ch 9]. Hence, by using two transmit ports and
two receive ports, one can achieve gains which are close
to the maximal gain. For example, at an SNR of 20 dB,
we observe in Fig. 5 that the capacity of the MIMO GM noise
channel is between 6.2-6.9 bps/Hz, while for the scalar case,
we observe in Fig. 2 that the capacity is between 3.8-4 bps/Hz.
Thus, the MIMO configuration can achieve a rate gain
of 55%-81% over the scalar channel. For the MIMO MCA
noise the corresponding rate gain is 38%-88%. This indicates
that MIMO BB-PLC configurations can achieve significant
rate gains over scalar BB-PLC channel at manageable com-
putational complexity [44, Ch. 7], [39, Ch. 10]. Finally,
we note that for the considered channel models, it follows
from our capacity analysis that a BB-PLC system with a
configuration similar to the ITU-T G.9963 standard [45],
namely, a system which utilizes two transmit ports and two
receive ports, over a frequency band of 100 MHz, can achieve
data rates approaching and even surpassing one Gbps at
high SNRs.

Our results lead to several insights on practical channel
coding for BB-PLC channels: First, observe that at high SNRs
for both scalar and MIMO BB-PLC channels, there is a
rather small gap between the achievable rate of cyclostationary
Gaussian inputs and capacity. This indicates that at high SNR,
cyclostationary Gaussian codes can closely approach the opti-
mal performance. For lower SNR values, guidelines to a
possible code construction can be obtained from the equiva-
lence between BB-PLC channels and LNGMCs, which belong
to the class of time-invariant MIMO channels, as noted
in Subsection III-B. Consequently, any code for time-invariant
MIMO channels, can be used in BB-PLC channels, by apply-
ing the inverse DCD to the transmitted codeword and the DCD
to the channel output, achieving the same average probability
of error of the code.

VI. CONCLUSIONS

In this paper we characterized upper and lower bounds
on the capacity of MIMO BB-PLC channels, accounting
for the unique characteristics of these channels and the
non-Gaussianity of the additive noise. We derived capac-
ity bounds which depend on the noise distribution only
through its entropy rate and autocorrelation function, and

obtained explicit expressions for the entropy rates of several
BB-PLC noise models. Our numerical evaluations demon-
strate the tightness of the proposed bounds, and illus-
trate the significant loss resulting from assuming that the
noise is Gaussian in the computation of the capacity,
which may lead to the design of inherently suboptimal
schemes.

APPENDIX

A. Proof of Proposition 2

In order to prove (10), let WG[i] be a zero-mean Gaussian
process with an autocorrelation function CW[τ ], defined
after (8), s.t. WG[i] is mutually independent of the channel
input. Note that the mutual information in (6) can be written
as

1
n

I
(
Xn−1;Yn−1|X−1

−m = 0nt·m
)

=
1
n

h
(
Yn−1|X−1

−m = 0nt·m
)− 1

n
h
(
Wn−1

)

=
1
n

(
h
(
Yn−1|X−1

−m = 0nt·m
)− h

(
Wn−1

G

) )

+
1
n

h
(
Wn−1

G

)− 1
n

h
(
Wn−1

)
. (A.1)

Since, for a given correlation function, Gaussian distribution
maximizes the differential entropy [27, Thm. 8.6.5], h

(
Yn−1

)
is maximized for a Gaussian distribution of Yn−1 with the
same first and second-order moments as the original vector
Yn−1. By letting

{
YG[i]

}n−1

i=0
be a Gaussian process with the

same first and second-order statistical moments as
{
Y[i]

}n−1

i=0
,

and letting Mn·P be the set of nt × nt positive semi-definite
real symmetric matrices CX such that Tr (CX) ≤ n · P ,
we have that

lim
n→∞

1
n

sup
p(Xn−1)∈Xn

P

h
(
Yn−1|X−1

−m = 0nt·m
)− h

(
Wn−1

G

)

(a)

≤ lim
n→∞

1
n

sup
Cov(Xn−1)∈Mn·P

h
(
Yn−1

G |X−1
−m = 0nt·m

)

− h
(
Wn−1

G

) (b)
= CG, (A.2)

where Tr(·) denotes the trace of a matrix, (a) follows from
[27, Thm. 8.6.5], and since the differential entropy of a
Gaussian random vector depends only on its covariance matrix
[27, Thm. 8.4.1], hence the supremum is carried out over the
covariance of the input; and (b) follows from [37, Lemma 3],
noting that h

(
Yn−1

G |X−1
−m = 0nt·m

)−h
(
Wn−1

G

)
denotes the

mutual information between the input and the output of an
LTI MIMO channel with additive Gaussian noise Wn−1

G and
Gaussian output Yn−1

G = G̃nXn−1+Wn−1, as in (8). Plugging
(A.1)–(A.2) into (6) yields

CL < CG + lim
n→∞

(
1
n

h
(
Wn−1

G

)− 1
n

h
(
Wn−1

))

= CG + H̄G,W − H̄W, (A.3)

which proves the upper bound in (10). �
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B. Proof of Proposition 3

The bound in (11a) follows since it can be concluded from
[55] and [30, Thm. 7.4.3],13 that for a given noise covariance
matrix, then Gaussian noise is the worst-case noise distribution
in terms of capacity, i.e., it results in the smallest capac-
ity. Specifically, the supremum of I

(
Xn−1;Yn−1|X−1

−m =
0nt·m

)
= I

(
Xn−1; G̃nXn−1+Wn−1

)
over all input distribu-

tions is lower bounded by the mutual information between the
channel inputs and the channel outputs in which the additive
non-Gaussian noise is replaced with an additive Gaussian
noise with the same second-order moments as that of the
non-Gaussian noise. Consequently, in the limit of n → ∞,
Eq. (11a) directly follows from (6).

Next, from (8) we note that since both Xn−1 and Wn−1

are independent of X−1
−m, then

h
(
Yn−1|X−1

−m = 0nt·m
)

= h
(
G̃nXn−1 + Wn−1

)

(a)

≥ n · nr

2
log

(
2

2h(G̃nXn−1)
n·nr + 2

2h(Wn−1)
n·nr

)
, (B.1)

where (a) follows from the entropy power inequality
[27, Thm. 17.7.3]. Thus, we have that

sup
p(Xn−1)∈Xn

P

1
n

I
(
Xn−1;Yn−1|X−1

−m = 0nt·m
)

= sup
p(Xn−1)∈Xn

P

1
n

h
(
Yn−1|X−1

−m = 0nt·m
)− 1

n
h
(
Wn−1

)

(a)

≥ sup
p(Xn−1)∈Xn

P

nr

2
log

(
2

2h(G̃nXn−1)
n·nr + 2

2h(Wn−1)
n·nr

)

− 1
n

h
(
Wn−1

)
, (B.2)

where (a) follows from (B.1). Note that for any posi-
tive constants a1, a2, a3 and a real constant t, the function
log (a12a2 t + a3) is monotonically increasing w.r.t. t, thus

sup
p(Xn−1)∈Xn

P

nr

2
log

(
2

2
n·nr

h(G̃nXn−1) + 2
2

n·nr
h(Wn−1)

)

=
nr

2
log

(
2

sup
p(Xn−1)∈Xn

P

2
n·nr

h(G̃nXn−1)
+2

2
n·nr

h(Wn−1)
)

. (B.3)

Next, consider Eq. (B.3): Note that when nt = nr and G[0]
is invertible, it follows from (7) that G̃n is also invertible,
hence,

sup
p(Xn−1)∈Xn

P

h
(
G̃nXn−1

)

(a)
= log |G̃n| + sup

p(Xn−1)∈Xn
P

h
(
Xn−1

)

(b)
= 2 log |G̃n|2 + 2 sup

Cov(Xn−1)∈Mn·P
log (2πe)n·nr

∣∣Cov
(
Xn−1

)∣∣

= 2 log |G̃nG̃T
n | + log (2πe)

+ 2 sup
Cov(Xn−1)∈Mn·P

log
∣∣Cov

(
Xn−1

)∣∣ , (B.4)

13While [30, Thm. 7.4.3] is stated for scalar channels, the same proof also
applies to MIMO channels.

where (a) follows from [27, eq. (8.71)], and (b) follows from
[27, Thm. 8.6.5]. Since Cov

(
Xn−1

)
is positive semi-definite,

it follows from the inequality of the arithmetic and geometric
means [48, p. 326] that

∣∣Cov
(
Xn−1

)∣∣ ≤
(

1
n·nt

·
Tr
(
Cov

(
Xn−1

) ))n·nt

, and thus 1
n·nt

log
∣∣Cov

(
Xn−1

)∣∣ ≤
log

(
1

n·nt
Tr
(
Cov

(
Xn−1

) ))
. Consequently,

1
n · nt

sup
Cov(Xn−1) ∈Mn·P

log
∣∣Cov

(
Xn−1

)∣∣

≤ sup
Cov(Xn−1)∈Mn·P

log
(

1
n · nt

Tr
(
Cov

(
Xn−1

) ))

(a)

≤ log
(

P

nt

)
, (B.5)

where (a) follows since log(·) is monotonically increasing
over R+. Note that for Cov

(
Xn−1

)
= P

nt
· In·nt the right

hand side of (B.5) is obtained with equality. Plugging this
assignment into (B.4), and recalling that nt =nr, yields

sup
p(Xn−1)∈Xn

P

2
n · nr

h
(
G̃nXn−1

)

=
1

n · nr
log |G̃nG̃T

n | + log (2πe) + log
(

P

nt

)

= log
(

2πe
P

nt

)
+

1
n · nr

log |G̃nG̃T
n |. (B.6)

Combining (B.6), (B.3), and (B.2) results in
1
nI

(
Xn−1;Yn−1|X−1

−m =0nt·m
) ≥ nr

2 log
(

2πeP
nt

·

2
1

n·nr
log |G̃nG̃T

n | + 2
2

n·nr
h(Wn−1)

)
− 1

nh
(
Wn−1

)
, for any

input distribution satisfying 1
nE

{
‖X [i]‖2

}
≤ P and

for any n. Lastly, we note that in the limit as n → ∞,
it follows from the extension of Szego’s theorem to block-
Toeplitz matrices [37, Appendix A.2], [49, Thm. 5] that

lim
n→∞

1
n log

∣∣∣G̃nG̃T
n

∣∣∣ = 1
2π

nt−1∑
k=0

π∫
ω=−π

log
(
α′

k(ω)
)
dω, therefore,

since 2t is continuous w.r.t. t ∈ R, letting n tend to infinity
in (B.2), it follows from (6) and [48, p. 224] that
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log
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· 2 1
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log |G̃nG̃T

n |+2
2

n·nr
h(Wn−1)
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− 1
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log
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log(α′
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+ 2
2

nr
H̄W

⎞
⎠

−H̄W, (B.7)

which completes the proof of (11). �

C. Proof of Theorem 1

The outline of the proof is as follows: First, in Lemma C.1
we show that the capacity of the MIMO BB-PLC channel (1),
can be characterized by considering only codes whose block-
length is an integer multiple of p̃. Then, we show that the
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capacity of MIMO BB-PLC channels constrained to using
only codes whose blocklength is an integer multiple of p̃
satisfies (14).

Lemma C.1: The capacity of the MIMO BB-PLC channel is
identical to the maximum achievable rate obtained by con-
sidering only codes whose blocklength is an integer multiple
of p̃.

Proof: The proof follows by first showing that any rate
achievable for the MIMO BB-PLC channel can be achieved
by considering only codes whose blocklength is an integer
multiple of p̃, and then showing any rate achievable for the
MIMO BB-PLC channel when considering such codes, is an
achievable rate for the MIMO BB-PLC channel. As these steps
are essentially the same as in the proof of [56, Lemma 1], they
are not repeated here. �

Next, we note that the MIMO BB-PLC channel (1) subject
to the constraint that only codes whose blocklength is an
integer multiple of p̃ are used, i.e., l̃ = l · p̃ where l ∈ N ,
can be represented as an equivalent p̃× p̃ LNGMC with code
blocklength l via the following assignments: Let the p̃ · ñt × 1
vector XDCD [i] � X̃(i+1)·p̃−1

i·p̃ be the input to the transformed

channel and the p̃ · ñt × 1 vector YDCD [i]�Ỹ(i+1)·p̃−1
i·p̃ be the

output of the channel. The transformation is clearly bijective
as for the BB-PLC channel we consider only codes whose
blocklength is an integer multiple of p̃. For each blocklength l,
the input to the equivalent LNGMC satisfies

1
l

l−1∑
i=0

E
{
‖XDCD [i]‖2

}
=

1
l

l−1∑
i=0

p̃−1∑
k=0

E

{∥∥∥X̃ [i · p̃ + k]
∥∥∥

2
}

=
p̃

l̃

l̃−1∑

ĩ=0

E

{∥∥∥X̃ [
ĩ
]∥∥∥

2
}

(a)

≤ p̃ · P̃ ,

where (a) follows from (2). Consequently, the equivalent
LNGMC input is subject to a maximal power constraint
PDCD = p̃ · P̃ . Next, we note that the input-output relationship
of the BB-PLC channel (1) implies that the input-output
relationship of the transformed channel is given by (12), and
that the equivalent LNGMC noise WDCD [i] appearing in (12),
is a zero-mean strict-sense stationary process. Moreover, as
p̃ > m̃, it follows that the temporal dependence of WDCD [i]
spans an interval of length m=1. Recall that CDCD denotes
the capacity of the channel (12)–(13).

As each channel use in the equivalent LNGMC (12)–(13)
corresponds to p̃ channel uses in the BB-PLC channel (1)–(2),
it follows that the maximal achievable rate of the BB-PLC
channel, measured in bits per channel use, subject to the
restriction that only codes whose blocklength is an integer
multiple of p̃ are allowed, can be obtained from the maximal
achievable rate of the equivalent LNGMC as CPLC = 1

p̃CDCD.
Finally, from Lemma C.1, we conclude that CPLC is the max-
imum achievable rate for the BB-PLC channel, thus proving
the theorem. �

D. Proof of Proposition 4

In order to derive the differential entropy of complex
Nakagami-m RVs, we use the following lemma, which states
the PDF of a family of complex RVs:

Lemma D.1: Let W be a complex RV given by W =XejΘ,
where X is a non-negative real RV, and Θ is an RV uniformly
distributed over [0, 2π], mutually independent of X , then,
the PDF of W is given by fW (w) = fX (|w|)

2π|w| , and its
differential entropy is given by

h(W ) = log(2π) + E
{

log(X)
}

+ h(X). (D.1)

Proof: Let WR, WI be the real and imaginary parts of W ,
respectively, and recall that the PDF of a complex RV W =
WR+jWI is given by fW (w=wR + jwI)=fWR,WI (wR, wI)
[52, p. 188]. Consequently, letting arg(z) denote the phase of
a complex number z, the PDF fWR,WI (wR, wI) is obtained
using the transformation of RVs theorem as in [52, Pg. 146]:

fWR,WI (wR, wI) =
fX,Θ

(√
w2

R + w2
I , arg

(
wI
wR

))
√

w2
R + w2

I

(a)
=

fX

(√
w2

R + w2
I

)

2π
√

w2
R + w2

I

=
fX (|w|)
2π |w| , (D.2)

where (a) follows since X and Θ are mutually independent,
thus fX,Θ (x, θ)=fX (x) fΘ (θ), and from the uniform distri-
bution of Θ. It thus follows that fW (w)= fX (|w|)

2π|w| .
Using (D.2), we next derive the differential entropy of W

as:

h(W )
(a)
= −

2π∫

θ=0

∞∫

x=0

x
fX (x)
2πx

log
(

fX (x)
2πx

)
dxdθ

= −
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x=0

fX (x) log
(

fX (x)
2πx

)
dx, (D.3)

where (a) is obtained by switching the integration variables
from (wR, wI) to (x, θ), given by x =

√
w2

R + w2
I and θ =

tan−1
(

wI
wR

)
. Note that (D.3) can be written as

−
∞∫

x=0

fX (x) log
(

fX (x)
2πx

)
dx

=

∞∫

x=0

fX (x) log(2π)dx

+

∞∫

x=0

fX (x) log(x)dx −
∞∫

x=0

fX (x) log
(
fX (x)

)
dx

= log(2π) + E {log(X)} + h(X). (D.4)

Plugging (D.4) into (D.3) we obtain (D.1). �
For a complex Nakagami-m RV W , we have that the PDF of

X is given by (17). Plugging the PDF (17) into (D.2) we obtain

the PDF of W as: fW (w)= 2
2π·Γ(m)

(
m
Ω

)m |w|2m−2
e−

m|w|2
Ω .

To obtain the differential entropy of the complex Nakagami-
m RV W = XejΘ, we note that for X ∼ KG (m, Ω),

E {log(X)}=
∞∫

x=0

2
Γ(m)

(
m
Ω

)m
x2m−1e−

mx2
Ω log(x)dx. Setting

t � mx2

Ω as the integration variable, we have dt = 2mx
Ω dx,
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log(t)= log
(

m
Ω

)
+ 2 log(x), and x2 = Ω

m t, resulting in:

E {log(X)} =

∞∫

t=0

1
2Γ(m)

tm−1e−t

(
log(t) − log

(m

Ω

))
dt

=
1

2 ln(2)

∞∫

t=0

1
Γ(m)

tm−1e−t ln(t)dt

− 1
2Γ(m)

log
(m

Ω

) ∞∫

t=0

tm−1e−tdt

(a)
=

1
2 ln(2)

Ψ(m) − 1
2

log
(m

Ω

)
, (D.5)

where (a) follows since Ψ(x) = d
dx

(
ln
(
Γ(x)

))
=

1
Γ(x)

∞∫
t=0

tx−1e−t ln(t)dt [53, Table 0.1]. Next, recall that the

differential entropy of a real-valued Nakagami-m RV is given

by [53, Ch. 4.18]: h(X) = log
(

Γ(m)
2

√
Ω
me

2m−(2m−1)Ψ(m)
2

)
.

Plugging this and (D.5) into (D.1), we have that

h (W ) = h(WR, WI)

= log(2π) +
1

2 ln(2)
Ψ(m) − 1

2
log

(m

Ω

)

+ log

(
Γ(m)

2

√
Ω
m

e
2m−(2m−1)Ψ(m)

2

)

=
1

2 ln(2)
Ψ(m) + log

(
πΩ
m

Γ(m)e
2m−(2m−1)Ψ(m)

2

)
,

(D.6)

proving the proposition. �

E. Proof of Lemma 1

To prove Lemma 1, we first state Lemma E.1, which
characterizes a relationship between the entropy rate of an
i.i.d. process U[i], H̄U =h

(
U
)
, and the entropy rate of W [i],

H̄W, obtained by LTI filtering of U[i]:
Lemma E.1: Let U[i] ∈ Rnr be an i.i.d. multivariate

process, {F[τ ]}m
τ=0 be a set of nr × nr matrices s.t. F[0] is

non-singular. Define W[i] =
m∑

τ=0
F[τ ]U[i − τ ], and F′(ω) �

m∑
τ=0

F[τ ]e−jωτ , and let H̄W and H̄U denote the entropy rates

of W[i] and U[i], respectively. Then, we have

H̄W =
1
2π

2π∫

ω=0

log |F′ (ω)| dω + H̄U. (E.1)

Comment E.1: For nr =1, (E.1) specializes the entropy gain
of scalar filters in [54, Thm. 14].

Proof: Since we are interested in the entropy rate we may
assume that the blocklengths are sufficiently large and consider
n > 2m. Define the n·nr×n·nr matrix F̃a

n, the m·nr×m·nr

matrix F̃b
m, and the n · nr × m · nr matrix F̃c

n, via

F̃a
n �

⎡
⎢⎢⎢⎢⎢⎢⎣

F[0] · · · 0 · · · 0
...

. . .
. . .

...
F[m] · · · F[0] · · · 0

...
. . .

. . .
...

0 · · · F[m] · · · F[0]

⎤
⎥⎥⎥⎥⎥⎥⎦
,

F̃b
m �

⎡
⎢⎣

F[m] · · · F[1]
...

. . .
...

0 · · · F[m]

⎤
⎥⎦, F̃c

n �
[

F̃b
m

0(n−m)·nr×m·nr

]
.

Note that F̃a
n is block-Toeplitz and non-singular (hence, invert-

ible), as F[0] is non-singular. We can now write Wn−1 =
F̃a

nUn−1 + F̃c
nU−1

−m = F̃e
nUn−1

−m . As U[i] is i.i.d., then
F̃a

nUn−1 and F̃c
nU−1

−m are mutually independent. Hence,

h
(
Wn−1

∣∣F̃c
nU−1

−m

)
=h

(
F̃a

nUn−1
)

, and we can write

h
(
Wn−1

)−h
(
F̃a

nUn−1
)

= I
(
F̃c

nU−1
−m;Wn−1

)

(a)
= I

(
F̃b

mU−1
−m;Wn−1

)
(E.2)

= I
(
F̃b

mU−1
−m; F̃a

nUn−1+F̃c
nU−1

−m

)

= h
(
F̃b

mU−1
−m

)
−h

(
F̃b

mU−1
−m|F̃a

nUn−1+F̃c
nU−1

−m

)

(b)

≤ h
(
F̃b

mU−1
−m

)
−h

(
F̃b

mU−1
−m|F̃a

nUn−1+F̃c
nU−1

−m,Un−1
m

)

(c)
= h

(
F̃b

mU−1
−m

)
−h

(
F̃b

mU−1
−m|F̃a

2mU2m−1+F̃c
2mU−1

−m,Un−1
m

)

(d)
= h

(
F̃b

mU−1
−m

)
−h

(
F̃b

mU−1
−m|F̃a

2mU2m−1+F̃c
2mU−1

−m,U2m−1
m

)

= I
(
F̃b

mU−1
−m; F̃a

2mU2m−1+F̃c
2mU−1

−m,U2m−1
m

)

= I
(
F̃b

mU−1
−m;W2m−1,U2m−1

m

)
, (E.3)

where (a) follows from the definition of F̃c
n; and (b) follows

as conditioning decreases the entropy; in (c) the matrix F̃a
2m

is an 2m · nr × 2m · nr matrix in which each row consists
of the first 2m elements of the corresponding row of F̃a

n, and
F̃c

2m is a matrix which consists of the first 2m rows of F̃c
n.

Lastly, (d) follows as U
[
ĩ
]

is an i.i.d. sequence. Noting that

Eq. (E.2) implies that h
(
Wn−1

) ≥ h
(
F̃a

nUn−1
)

, we have
that

0 ≤ h
(
Wn−1

)− h
(
F̃a

nUn−1
)

(a)

≤ I
(
F̃b

mU−1
−m;W2m−1,U2m−1

m

)
, (E.4)

where (a) follows from (E.3). Observing that the right hand
side of (E.4) is a finite value which does not depend on n,
then, dividing both sides of (E.2) by n and letting n tend to
infinity yields lim

n→∞
1
nh

(
Wn−1

) − lim
n→∞

1
nh

(
F̃a

nUn−1
)

= 0.
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Therefore,

H̄W = lim
n→∞

1
n

h
(
F̃a

nUn−1
)

(a)
= lim

n→∞

(
1
n

log
∣∣∣F̃a

n

∣∣∣ +
1
n

h
(
Un−1

))

(b)
=

1
2π

2π∫

θ=0

log |F′ (θ)| dθ + H̄U,

where (a) follows from [27, eq. (8.71)] as F̃a
n is invertible, and

(b) follows from the extension of Szego’s theorem to block-
Toeplitz matrices [49, Thm. 5]. �
Since by (21), WDCD

[
ĩ
]

is the output of an LTI filter with
i.i.d. input U

[
ĩ
]
, and as that the entropy rate of U

[̃
i
]

is
given by p̃ ·h(Ũ)

, it follows from Lemma E.1 that H̄WDCD =
1
2π

2π∫
ω=0

log |F′ (ω)| dω + p̃ · h
(
Ũ
)

, proving the lemma. �
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