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Inherent Limitations in Data-Aided Time
Synchronization of Continuous Phase-Modulation
Signals Over Time-Selective Fading Channels

Ron Dabora, Jason Goldbeigenior Member, IEEEand Hagit MesseiFellow, IEEE

Abstract—Time synchronization of continuous phase modula-  In addition, while the general problem of time synchroniza-
tion (CPM) signals over time selective, Rayleigh fading channels tion over fast fading channels has been considered in the litera-
is considered. The Cramér—Rao lower bound (CRLB) for this e, e.g., [2], [6]-[8], some of this work either neglects the sta-
problem is studied for data-aided (DA) synchronization (i.e.. {igtical nature of the fading orimposes additional signal assump-
known symbol sequence transmission) over a -t'me'selecwetions For example, in [2], a high SNR approximation removes
Rayleigh fading (i.e., Gaussian multiplicative noise) channel. > ple, ~ g. - pp -
Exact expressions for the bound are derived as well as simplified, the influence of the fading statistics from the problem, and in
approximate forms that enable derivation of a number of prop- [6], the channel is simply treated as deterministic time varying,
erties that describe the bound’s dependence on key parameterswhereasin [8], alow SNR type “low energy coherence” assump-
such as signal-to-noise ratio (SNR), channel correlation, sampling tion is used. Time synchronization for linear modulation types
[ﬁéelwse‘flqlt’r?é‘v‘\’; Iselgg\/thfagir;n% S(ieg“eggﬁstcg‘not')cihg:n@f’%f&? ; "‘i’ghis considered in [9] and [10], where a cyclostationary approach
emphasize.d.. Further simplifipatior;s are obtain.ed. fgr the special I?_ZU Sgcl, ilnd t[;t:iL(]),ngrhlgh ursoeascﬁ i(iee:ayiﬁr:jdt-rrg)lililgglg rr?frfrorﬂzgj
case of minimum phase keying (MSK), wherein it is shown how [12]@cyclost: yapp ppliedto ynchro
the bound may be used as &gequence design todo optimize tion Of MSK S|gnals over time Select|Ve fad|ng Channels.

synchronization performance. A study of the inherent limitations in the estimation of fading

Index Terms—Continuous phase modulation, Cramér—Rao parameters (Doppler shift, Doppler rate, and LOS component

bound, fading channels, minimum shift keying, synchronization, Stréngth) was carried out in [13] and [14] under the assump-
timing. tion of perfect time synchronizatiorlowever, an analysis of the

inherent limitationsin time synchronization accuracy for fast
fading channels does not appear to have been treated in detail in
. INTRODUCTION the literature for any type of signal. Note that in [10], a CRLB

ONTINUOUS phase modulation (CPM) is an importanis derived for blind time-delay estimation ftinear modulation
C class of digital modulation that combines good spectrBY calculating the covariance of the transmitted signal (which is
efficiency with the desirable property of constant signal modestricted to be real) and then imposing Gaussianity on the re-
ulus. This latter characteristic enables use of highly efficierfieived signal. In addition, [10] does not contain an analysis of
nonlinear power amplification in transmission and provides ifhe bound and is focused mainly on estimation. Finally, a gen-
herent robustness to amplitude fading in reception, e.g., [1].&fal study of the CRLB for parameters describing the determin-
is well known that like all other digital modulation schemes, agstic phase component of a constant modulus signal subject to
plication of CPM requires synchronization of the time referendgal Gaussian multiplicative noise can be found in [15].
of the receiver to that of the received signal. Due to the popu-This paper seeks to characterize the inherent performance
larity of CPM, considerable effort has been directed toward tfignitations associated with CPM time synchronization over
problem of time synchronization for such signals, e.g., [2]-[4fading channels via a Cramér—Rao lower bound (CRLB) anal-
Nevertheless, most work on this subject has concentrated ¥sis. In particular, time-selective fading is assumed, wherein
the additive white Gaussian noise (AWGN) channel with reldbe channel manifests itself as zero mean complex Gaussian
tively little research directly addressing CPM time synchronizamultiplicative noise,” giving rise to well-known Rayleigh-type

tion overfast fading(i.e., ime-varying) channels (see [5] for ar@mplitude fading, e.g., [1]. In addition, attention is focused
exception). on data-aided (DA)synchronization, wherein the transmitted

symbol sequence is knovenpriori. Such a scenario may arise,
_ _ _ for example, in communications systems that use some sort
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The paper is structured as follows. Section Il reviews CPMhere)M is assumed even. The varialdl@nd the functiory(¢)
and MSK, compares two fast-fading channel correlaticsre referred to as the modulation index and the frequency pulse
models, and specifies the overall model for the received daghape, respectively.
The problem to be solved is formulated, and the well-known pMSK signaling is a special case of CPM formed by setting

slow fading channel model is briefly reviewed. In Section Iy, — 1/2 andM = 2 while employing the “1REC” frequency
explicit, exact, and approximate expressions for the CRLB g5g|se shape

presented for both the slow fading and fast fading bounds for

general CPM as well as MSK. Section IV derives a variety of 0, t<0,t>Toym
properties that describe the bound’s dependence on a number g(t) = 1 0<t<T ®)
of key parameters such as SNR, channel correlation, and W sym’ -

sequence length. Section V presents numerical examples to

illustrate the results. Section VI introduces an application of tHg!S noted that MSK may be viewed as a form of binary con-
bound for synchronization sequence design. Last, Section #[juous-phase frequency shift keying (CPFSK), where one of

summarizes the work. two frequencied’y andFy [such thatty — Fr, = 1/(213)] is
transmitted everyl;, seconds. MSK can also be represented in
1. M ODELING AND PROBLEM FORMULATION terms of linear modulation, e.g., [17]
Begin by considering a general, discrete-time complex base- s(t) = Ey ma(t) cos LI imeo(t) sin 7t
band signal received over a time-selective fading channel and VT ! 2T, Jma 21,
sampled at sampling interval
mit)= > wp(t—2kT, +T)
ylk] = f[k]slk, 7] + nlk] 1) k=1,3,5,...
where f[k], s[k, 7] = s(kTs — 7), andn[k] are the baseband mg(t) = Z upp(t — 2kT3)
equivalent time-varying channel, transmitted signal, and addi- k=2,4,6, ...
tive noise components, respectively. The channel component
. o ; 1, telo,2h)
will be assumed to be a realization of a zero mean, stationary p(t) = 0, t¢]0,2T;) (6)
circular, complex Gaussian random procggg ~ CN (0, rf}%) ’ s
of correlation sequenci;[n] N E{f[Kf*[k — n]} with O_JQC _ whgre]}, and £, are t_he bit period and bit energy, respectively,
R/[0]. Gaussianity of the channel gives rise to the well-knowf{hich. for MSK, satistyTy, = T, and £, = F,. As can

Rayleigh distributed amplitude fading. The received signal corR€ Seenm(t) andmq(t) are generated from the original bit
tream by taking only the odd bits fat;(¢) and multiplying

ponents[k, 7] is simply the transmitted signal subjectto a delaa ) S
7. The additive noise is assumed to be a realization of a seque with arectangular pulse train with pulse lengt24if. The

of independent, identically distributed (11D) zero mean, circulaPaMe is done fomq(?) with the even bits; howeverg(7) is

complex Gaussian random variable&] ~ CA/(0, o2). also staggered (g}, vy|th respect ton I(t): Th.e relation between
Before formulating the exact problem to be solved, CPM € two representations in (3) and (6) is givervhy= w;u; ..

briefly reviewed, and distinct parametric forms of the channgl

) Fading Modeling and Fading Statistics
correlation sequence are presented.

The Rayleigh fading model is commonly employed in

A. Continuous Phase Modulation so-called nonline-of-sight (NLOS) propagation conditions,
The continuous time complex envelope of a CPM wavefori{iere multiple signal components arrive at the receime-
may be written as, e.g., [16] rectly via scattering, diffraction, and reflection effects, e.g.,
[1]. If the RMS variation in the arrival time of these channel
E . components is less than a symbol period, then the effect of the
s(t) = 4 | 7 eIt ] (2)  channel can be a i d reyltiplicati ivi
Toym . pproximated as puredyltiplicative giving
rise to the model in (1).
where Moation of the receiver, the transmitter, or objects present in
E, symbol energy; the propagation environment all contribute to the time-varying
Tyym  symbol duration; nature of the channel. Under the zero mean, stationary, circular
¢(t, n) information bearing phase; _ _ complex Gaussian model of (1), the time-varying nature of the
®o arbitrary phase shift (which can be incorporated intgh anne| is completely characterized by its correlation sequence

the fading process and is thus taken to be zero).

. ) . r, equivalently, its Doppler spectrum. A commonly used model
The information-bearing phase component can be expresse$ a Y PP P y

ot Tand-mobile communications scenarios with isotropic scat-

t °° ) tering and horizontal propagation is the “U-shaped” Jakes
e(t,m) = 27fh/ > mg(C —iTuym)dS; Yt () Doppler spectrum [18]

T=—00
1 1
wheren = [..., 72, 7—1, 10, M1, - - -]* is an infinitely long 0% o2 =, |wl <wm
sequence al/-ary data symbols, each taking one of the values S (w) = " I (7)

mi==+1, £2, ..., (M -1); i=0,%1,£2, ... (4) 0, otherwise
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wherew,, is the maximum Doppler shift in radians per second, ‘ azod
which, for the above model, also corresponds to the Doppler 164 ety
[X:] 4 d

bandwidthBy,. The associated correlation sequence is st

06

R;(m) = acho(wmmTS) (8)

04f

where Jy(-) is the zero-order Bessel function of the first kind.
Though common, this representation of the fading process cor-£ ,,|
relation was not found to enable derivation of CRLB expres-
sions that give analytical insight into the CPM time synchro- ofF-=%
nization problent. Thus, for the sake of analytical tractability,
the channel will be modeled as an autoregressive process (e.g -ozf
[14]) of order one (ARD)

Dee(t}

STH = aflk = 1]+ V1 — a2wlk], w[k] ~CN(0, 52) (9) ® o w e w ®

wherew!k] is 1ID. Fig. 1. Temporal correlation of phe fading processfﬁ,rT;, = 0.1 for the
[ ] éakes model and for the AR1 fading correlation model.

Although the results obtained with this simplified model ar
not numerically identical to the results obtained with the Jakes
model, theanalyticalinsight obtained under the AR1 model als&C. Statistics of the Received Signal

model, the channel correlation function may be written as {y[i]} X, which, from (1), may be written in matrix form as

R [m] = 037 Im = oFalm (10) y=Sf+n
_ T
where 3 is the correlation parameter of the continuous time y =[Ol -, N — 1] T
fading process, and = % can be viewed as an “effective f=1[f[0], ..., fIN—1]]]
correlation parameter” induced by the channel as well as the S =diags|,
sampling rate. Thus, far = 0, we model the channel as an s=[s[0, 7], s[1, 7], ..., s[N — 1, 7]|" (13)

uncorrelated fading process, and with= 1, we model the
channel as a realization of a single random variable. The c@jith []7 denoting the transpose operation, and Hjade-

responding Doppler spectrum is given by noting a diagonal matrix of specified diagonal elements.
9lu 3 Note that the diagonal elements & are the sampled
SH(W) = o2 _—2mf (11) modulated sequence, which depends on Hetransmitted
f f 2 1 2 3 .
w? +1n" £ symbolsn = [no, 71, ..., n—1]* and on the modulation
scheme. For MSK, it is convenient to definebdét vector

where, for this spectrum, the Doppler bandwidti? will be

. . S = Jut, ..., ux—1]T. We now calculate the statistics of
defined as the 3-dB bandwidth of the spectrum, which is eashl;(e rgzgivléld sign;jB |
shown to be '

Since the transmitted signaiis known,y of (13) is a sum of
two zero-mean complex Gaussian random vectors, and hence,
In(a) [Hz]. (12) v is also a zero-mean complex Gaussian random vector with
correlation matrix given by
Note that for both the Jakes and AR1 correlation models, the
amplitude of the fading process is Rayleigh distributed, and the E{yy"} = R, = SR¢S” + 021, Ry = E{ff"} (14)
phase is uniformly distributed ové+x, «). To aid in visual-
izing the differences between the two models, Fig. 1 presemtbere
their respective temporal correlation functions. The graphs werg-]”  conjugate transposition;
drawn for normalized time-Doppler productBfB,; = 0.1 and I N x N identity matrix,
oj% = 1. The value ofw that corresponds to this time-doppler Ry fading channel correlation matrix.
product, wheril, = T3, isa = ¢~?"% 8B« = 0.53. As can be  The specific fading channel correlation matrix depends on
seen from the figure, the correlation produced by the AR1 modbk fading statistics. For the AR1 model, use of (10) yields the
lacks the oscillations present in the Jakes model; therefore, thigléowing correlation matrix:
is no strong peak at,,,, and the spectrum decays more slowly

1 1
AR _ — _
By = 27 nf 2nT,

5

. 2 . N-1
with frequency. 1 & & N
o 1 o ot T
Iwhile relatively simple, low-order Taylor series approximations of (8) were Rf = 72 a2 a 1 R (15)
found to be of poor accuracy. f

2Note that at least for frequency estimation, both [14] and [19] claim that the . . .
actual shape of the Doppler spectrum has no noticeable effect on performance. a¥ "l N2 N3 L 1



DABORA et al: INHERENT LIMITATIONS IN DATA-AIDED TIME SYNCHRONIZATION 1473

whose inverse will be important in the sequel, e.g., [14] where t{-} denotes the trace of a matrix. The remainder of this
section uses (20) and approximations thereof to obtain expres-

1 — 0 e 0 ) : o .
o 1 +C;2 o - 0 sions for the CRLB for the time synchronization parameter in
_1 1 2 slow and fast fading channels.
RI1=— - |0 —a l+a” -~ 0] (16)
t 0%(1 —a?) . . o

A. Slow Fading
Recall that parameter vector for the slow fading case of (18)
It should be noted that such a model was used for the spatightains three element&! = [, gj%, a2]%. Itis not difficult to

correlation in [20] for the case of angle estimation with an arrayhow that the constant modulus property of CPM signal yields
of sensors where the data is corruptedspgtial multiplicative  a FIM of the form [23}

0 0 0 -1

noise?
The probability density function (PDF) for the received signal Jst 0 0
can now be written as N VT S 91
1 —yHAR: 1y 2 2 T N 77 717 (1)
f(y; 0) = —~m ¢ Y 6 =I[r, Trr Ons o] 17) 0o JL o, Js
s Ry| o2a 202
where] - | denotes the determinant of a matrix. which means that the error in the estimation-dg asymptoti-

Before formally stating the problem to be solved, it shouldyiy yncorrelatedwith the errors of the estimation of the nui-
be noted that since it is impossible to distinguish between thgce parameters and that the bound-anay be written as
fading ch?nnel power? and the signal poweE, /Tsym, We  cRLB (1) = 1/J2L. Straightforward calculations indicate that
will use o3 to represent their product (i.e., the signal power igsf may pe written in a form analogous to that for bearing es-

normalized to one) such that SNR is definecpas o7 /07 . timation, e.g., [23]
D. Estimation Problem 2
2N 1
- ot = 2P gmplg pl_o1_ —sf (22)
The estimation problem can now be formulated as follows: T 14Np TS s N

Given areceived signglwith PDF (17), which is parameterized

by an unknown parameter vectyestimate the time delay. whereP is the projection matrix onto the subspace orthogonal

In this problem,r is the parameter of interest, and the thret the signal subspace (spannedpynds. = ds/dr. Thisim-

remaining parameters anelisanceparameters. plies that the bound is determined by the norm of the projection
In the sequel, the results for the fast fading channel will b#f s on the signal subspace’s orthogonal complement and that

compared with those of theow fadingcase described by, e.g.,for minimum error, the derivative of the signal vecsgrshould

[21] be orthogonal to the signal vector itself. Note that for asymptot-
o ) ically high SNR, the bound tends to zero.
y*¥ =fs+mn, f~CN(0, o0y (18) The bound can also be written in terms of the phase as
with unknown parameter vectéi' = [r, o, 02]* and corre- , N1 )
lation matrixRs! = o2ssf + 021 gt _ 2P N 9 T —
y ! TT_1+Np Z 87'80(1, L] 7',"7)

=0
I1l. BOUND EXPRESSIONS )
Consider a data vectgrand its likelihood functiory (y; ), _ Ai:l K Ty — 7, ) 23)
which is dependent on a parameter veétddnder a set of reg- gr P\ i
ularity conditions, the CRLB for the mean square error of any
unbiased estimat@ (y ) of theith paramete#; is given by, €.9., \uhich. for MSK yields, via (6)

=0

[22]
2 2
N 2 st __ P 7I'_
E { (91(3’) - 9i> } > [3I740)], 19) =7 + Np 217
where the matrid (@) is known as the Fisher information matrix , (= ‘ ’
(FIM), which, for the current statistical model, is given by [22] x| N - Z my (il — T)mQ(ily —7) - (24)
=0
L ORy(8) ., ORy(8)
- 1 y 1 y
(O] =t {Ry 6) 06, R, (6) a0, (20) 4Note that calculation of the bound on(for either slow or fast fading) re-

quires the elements of the (respective) data covariance to be differentiable with

3In addition to differences in the parameterizationSgfnote that since, in respect tar. More specifically, the samples of the CPM signal should not occur
[20], there is no temporal channel correlation, the Fisher information increasggimes where the complex envelope has no derivative. For MSK, for example,
proportionally with time. However, for the temporal problem, this is not thg6), this occurs every,. Therefore, in general, this analysis is valid for MSK, as
case; the samples are statistically dependent. Thus, the covariance matrix dit@rg as the (unsynchronized) receiver does not sample exactly at the transition
sion increases with the sample size, and the increase in the Fisher informaiimtances (which happens with probability zero). Moreover, many CPM for-
now depends on “how fast” the channel correlation decreases, which motivatests have continuous derivatives with respect to the time [e.g., Gaussian MSK
a specific analysis of the bound for the temporal case. (GMSK)]; therefore, this question does not even arise.
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B. Fast Fading
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The second element in the trace in (29) yields

Bound expressions for the fast fading case are now presented.

2
Begin by noting that application of the matrix inversion lemma [2A2%); = —2[S,SH] =2 <£ o(iT, — 7 77)) (32)
to the data covariancR,, together with the constant modulus " T du or TV

property of CPM (implyingS#’S = T) yields

1
—1 o
Ry' =~
n n n

1 L1 Nty
I- 5 S(Ry'+51I) s, (29

Use of (25) in (20) followed by simple manipulations leads
to the fact that, as in the slow fading case, the asymptotic errgitish! —
in the delay parameter is decoupled from those of the nuisance

parameters (see Appendix B)

.. 0 0 0
0 Joioi Jaio% Jcrioz

I=|, Jirw: droy o (26)
0 JGUZ[ Jao’% J(y(y

and using tf XY} = tr{YX}, we can write the first element of
(29) as t{SR;'S7S, RS} = tr{AR;'AR¢}. Tedious
but straightforward calculations yield a final expression of the
form (see Appendix C)

202 [RZ2
* * *
1_—a2 Z a;(2a; — ai_y — ai},)
=1

* * * *
— apa; —an_1ay_o + aoay +an—_1an_1| (33)

which can be seen to depend only on the transmitted sequence
and the channel correlation parameter. Most importantly, in
contrast to the slow fading case, it is evident from (33) that
the bound onr does notgo to zero for asymptotically high

yielding CRLB(7) = J-*. It is emphasized that this result isSNR; there is an inherent asymptotic error generated due to the
valid for any type of fading correlation (e.g., Jakes, AR) whef@ndom fading channel process. It also appears that the bound

the fading process is complex normal and of zero mean. In d48-not valid whena =

1 sinceRy is a rank one matrix and

dition, note that this asymptotic decoupling both in the slow ari, therefore, noninvertible. If it is knowa priori thata = 1
fast fading scenarios implies that there is no inherent accurdégrresponding tslow fading, then the CRLB analysis is to
penalty due to the absenceapriori knowledge of the signal be formulated accordingly as in Section Il A.

and noise power (as well as the channel correlation parametelFor MSK, observe that

for the fast fading case). To proceed, a variety of approximations

are now considered.

1) Zero-Order High SNR ApproximatiorBegin by consid-

[S7S).. £ a; = —j o my(iT, — TYmQ(T, — 7).

oT, (34)

ering the “zero-order” high SNR approximation to the datacqslu ing (34) into (29) vields
variance, which is similar to [20] and [24], by simply neglecting gging (34) (29)y

the noise term such that

R;' ~SR;'S", p> 1. (27)

Plugging (27) into (20) and using the fact that

ORy(6) B i
or o7

(SReS +02I) = S, ReS” +SReSY (28)

yields the following expression for the FIM element for, at
asymptotically high SNR:
JHEh — 2. {SR;'S7S, RS — 8,87} (29)

whereS, = (9/97) S. Remembering tha;; = ¢/*0Ts—7m)
the following diagonal matrix will be defined:

/ .9
[Alii = a; = [sSI]. = —j o o(tTs — 7, m) (30)

such that

o 2
STS‘II'{ = _A27 [AQ]” = - <E <P(ZTS -7, "7)) . (31)

2 N-=2
igh « -
J‘rHTgll']jl?:’]rQl_aQ [N_]-_’Y]v Y= § M[[’]
=0

Mi] =mi (T, — 7ymr (i + )T, — 7)

x mo(T; —7)mg (Gt + 1T, —7) (35)
where the placement of tHg’ factor on the right-hand side of
(35) yields a bit period normalized version of the bound. It can
be seen thdtV — 1 — ~] counts changes in the transmitted | and
Q signal components. When there is a change in the bit values
between consecutive samples in either the | or Q components,
the associated/[:] equals—1; otherwise M[¢] equals 1 . De-
pending on the transmitted bit sequence, the valuecah range
betweenN — 1 for the worst-case sequence an@V — 1) for
the best-case sequence (see Section VI).

2) First-Order High SNR ApproximationA “first-order”
high SNR approximation to the inverse of the data covariance
can be obtained by writing the first-order Taylor expansion for
I+ o2R;H)~t aroundp = 1/p = 0 (similarly to [15] and
[20])>

SActually, o2 Ry = (1/p(1 — a®) Ry ', Ry ' = 02(1 — a®)R; " [see
(16)], and therefore, the first-order high SNR approximation requirepthat

a?) — oco.
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I+ 2R P ~I- 2Ry (36) B. Fast Fading

Property 1: In contrast to the slow fading case, for low SNR,
the fast fading bound is proportional {d/p*) (decreasing
rapidly with SNR), whereas for high SNR, the fast fading bound

R, ~ SRy 8" — o7 SRy s, (37) is proportional top/(p — =) for some constant (decreasing
much more slowly with SNR).
Inserting (37) and (28) in (20) and using the fact that Proof: The low and high SNR parts of the property follow

—1 .
Now, R can be approximated as

SSHSSH — —SHS_ yields, after simple manipulations immediately from (40) and (38), respectively.
Property 2: At high SNR, the bound on delay estimation
JHigh2 _ jHight for fast fading is monotonically nonincreasing function of the
2 sample sizeV.
207 —2qH H Hp—1 - o, -
—Ttr{SRf SYS, ReST -SSRy}, (38) Proof: Examining (33), it is seen tha¥ appears only in

the signal-dependent factor. Define

The first-order high SNR expression is seen to be the zero-order

N—2
i i i A * * *

high SNR expression minus an SNR dependent term. Zi 2 Z a;(2a} — al_y — alyy)
3) Low SNR ApproximationFirst, note that the constant =

modulus property enables expression of the inverse of the data —apat — ay_1ak_o + agal + an_1ak_,. (42)

covariance as

. . 1 To show thatz}y, — Zj,_; = 0, write
_ —1

R = [S(Re +0.D)S"| T~ = pels <I+ —QRf> st

! ! * £
n ZN — ZN71 =aN—_20N_o9 —AN_—2AN_1

A low SNR approximation can be obtained by performing a TAN-10§_1 ~ ON-10N_2

first-order Taylor series expansion@+ (1/02) Rg)~* about =(an—2 —an—1){ay_o — ay_1)
p = 0, yielding =lan—2 —an—1[* >0

- 1 1 hich completes the proof.
R,'~ = |I— = SR,SY 1. @y W P b
Y o2 [ 2 O } p< (39) Property 3: For sufficiently low and sufficiently high SNR,

the bound on delay estimation is a monotonically decreasing
Plugging (39) and (28) into (20) yields the following low SNRfunction of the channel correlation paramete) which varies
approximation for the Fisher information: from infinity (at « = 0) to the slow fading bound (at = 1).

Proof: Monotonicity can be proven directly from (33),
which (at least for high SNR) indicates that the bound’s depen-
dence on the channel correlation parameter is contained in the
(40) term2a?/(1 — «?), which, fora € [0, 1), is a monotonically

n

2

n

2
Jhew =2 <i) tr {R¢ (ReSZS, — S¥S RSHS)}.
g

Using (30) and (31) gives increasing function ofv.
The fact that the bound tends to infinityat= 0 is also seen
N-1 N—1 from the above channel-dependent term or, more generally, by
JE =20 |3 8" (a5 — a?)o® Il . (41) the fact that ase — 0, Ry can be approximated & ~ 071
i=0 ;=0 such that
IRy (0)

Unlike the zero-order high SNR casg,°" depends on SNR = 9 (SR¢SH + 021)
and the transmitted sequence. or ar " .
~ReSY + SRfST

=S
IV. BOUND PROPERTIES ~o; (S-S +88F) =0 (43)

This section uses the results of the previous section to obtai\pvﬁ\ere the last equality follows from the constant modulus prop-
series of bound properties for the slow and fast fading channeéﬁy of CPM. This means that as — 0, J,. — 0 or, equiva-

) lently, that the bound is infinite. This property is very intuitive
A. Slow Fading since, asv goes to zero, the channel becomes increasingly more
Property 1: For sufficiently high SNR, the bound on delaywhite—decorrelating the signal samples to the point where there
estimation for slow fading is approximately inversely propolis no structure on which an estimator can synchronize.
tional to SNR. In the case of asymptotically high SNR, convergence of the
Proof: Follows from direct inspection of (22). fast fading bound to the slow fading bound @gends to one
Property 2: The bound on delay estimation for slow fadingagain follows from the bound tergw? /(1 — «2) of (33), which
is monotonically nonincreasing function of the sample gize approaches infinity. This implies that the CRLB tends to zero, as
Proof. See Appendix D. does the slow fading bound for asymptotically increasing SNR.
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For low SNR, monotonicity can be proven directly from the % \, j ' T Exact GALB, A1) conelation mode, B_7, 0.1 (4=0.73)
fast-fading FIM element for, JL°% (), which is given by (41). oal, i —— Bxact CRLB,: Jakes comolation mode, BT, =0-
Next, to prove convergence to the slow fading bound, examine v : : . _
again (41). Wheny approaches 1, (41) becomes b I A S :
'
N—-1 N-1 zm— G 1
lim JE =2p7 | D0 D (aiaj —af)| . (44) Lo
i=0 j=0 g
5 0.2 -
Insertinga; as defined in (30), we can write 015k
N-1 9 2 0.1 4
. Low __ 2 _ e _
tim 5 =2 N 3 (o) _.
1=
N—1 P 2 S0 -é s ; 1&51 5 20 25 30
- <Z 5, Pl =, n)) - (45)
i=0 Fig. 2. Exact bounds on delay estimation for DA time synchronization with a
fast fading channel versus SNR size for the Jakes and AR1 correlation model
Examining.J5L expressed in terms of the phase (23) R, =100 KBPS, SNR= 15 dB, T. = (1}/2), BaT, = 0.1.
9 2 N-1 9 2 i .
lim Jst = _=° N Z <_ (T, — 7 77)) fast-fading bound decreases more rapidly for low SNR than the
) . . .
am1 7T 14 Np — \or slow-fading bound. At higher SNR, however, the fast-fading

) bound decreases more slowly than the slow-fading bound. We

= can also see [Fig. 3(b)] that the fast-fading bound arrives at

- Z 97 p(Ls — 7, m) (46)  some nonzero asymptotic value (see Property 1, Section IV-B)
=0 for asymptotically increasing SNR, whereas the slow-fading

Low— 1 ol g . bound drops to zero as SNR increases. Additionally, we

we see that ap — 0, /2% — J2o o (sincelim, .ol +  hqerve that the first-order high SNR approximation is better

Np = 1), and the resulting expression is identical to (45), thyfip, the zero-order high SNR approximation for SNRs that are
completing proof of the property. i , higher than~14 dB. However, for lower SNRs, the first-order
Property 4 (for MSK O.nIy):.For asymptotically high SNR,’ approximation yields performance that is far inferior to that
the bound on delay estimation for MSK over a fast-fadings yhe zero-order approximation. To understand why, recall

channel decreases as the sampling rate increases. that the zero-order high SNR approximation for the inverse of
Proof. See Appendix A the correlation matrix iR;* ~ SR, *S". This formula is
meaningful at all SNRs, which implies that the approximate
V. NUMERICAL EXAMPLE bound will deteriorate gradually as the SNR decreases. The

This section presents numerical examples that illustrate tiigt-order high SNR approximation for the inverse of the
behavior of the CRLB on as a function of SNR, time-dopplercorrelation matrix isR;! ~ SRg'S"” — 02SR;2S". This
product, sampling rate, and sample size. A nominal MSK modapproximation is better than the zero-order approximation
lation scenario is considered with a bit ratefaf = 1/7;, = 100 at moderate to high SNR; however, at some point when the
KBPS, a sampling rate &f, = 7;/2, an AR1 fading channel SNR decreases, the second term becomes dominant, making
model wither = 0.73 (corresponding td3,7; = 0.1), an SNR Ry* negative definite, which means that the approximation
of p = 15 dB, and an alternating bit sequence of lenfith= 31  collapses. The SNR at which the approximation collapses is
bits. Graphs of the exact and approximate forms of the squalgo determined by the correlation parametefwe require
root of the CRLB are plotted as one of the above listed parathat p(1 — «*) will be large enough]. At SNRs near the col-
eters is varied from its nominal value. lapse of the approximation, the first-order approximation will

Begin with Fig. 2, which presents a comparison of the bourtgteriorate faster than the zero-order high SNR approximation.
on delay estimation calculated with the Jakes and the AR1 cinally, we note that for sufficiently high SNR, the SNR does
relation model. Examining the figure, it can be seen that whift have a significant effect on the fast-fading bound on delay
the Jakes bound is lower than the AR1 bound, both exhibit tR&timation, and the zero-order high SNR approximation gives
sametype of behavior versus SNR. This was also found to bguite good results, even for SNRs as low as 10 dB.
the case for a wide variety of scenarios (not shown). Fig. 4 presents the behavior of the CRLB versus the sample

Next, Fig. 3 presents the bound on delay estimation verssige N. It is seen that asV increases, the bound decreases
SNR. Fig. 3(a) plots the bound for SNRs ranging frert5 for both slow-fading and fast-fading channels, as predicted by
to 30 dB, whereas Fig. 3(b) zooms in on the high SNRPBroperty 2 in Sections IV-A and B for slow fading and fast
Examining the figure, we observe a slow and fast fadinf@ding, respectively. Note that the bound is not necessarily a
CRLB dependence on SNR as predicted by Property 1 rimonotonically decreasing function as in Fig. 4 and that there
Sections IV-A and B, respectively. In particular, note how thare sequences for which the inclusion of additional symbols
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T T T
-8~ Exact CALB - fast fading AR1 channel model
~5- Approximated CRLB - fast fading AR1 channel model - zero order high SNR approx |
..] 7= Approximated CRLB - fast fading AR1 channel model - first order high SNR approx.
=0 Slow fading channel i
- roximated CRLB - fast fading AR1 channel model - fow SNR approx.

— T
-8~ Exact CRLB - fast fading AR1 channel model
~&- Approximated CRLB - fast fading AR1 channel model - zero order high SNR approx |
—+ Approximated CRLB - fast fading AR1 channel mode - first order high SNR approx.
—o~ Slow fading channet oo7r-
—

roximated CALB - fast fading AR1 channel mode - low SNR approx.
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Fig. 3. Bounds on delay estimation for DA time synchronization with a fast-fading channel versusfSNR, 100 KBPS, K = 31 bits, T, = (T%/2),
BdT;, = 01
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- EuctCRLB-lnNadingARl channel model . . -8~ Exact CRLB - fast fading AR1 channel model
—#— Approx. CRLB - fast fading AR1 channel model - zero order high SNR —%= Approx. CRLB - fast fading AR1 channel model - zero order high SNR approximation
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Fig. 4. Bounds on delay estimation for DA time synchronization with &ig. 5. Bounds on delay estimation for DA time synchronization with a
fast-fading channel versus sample sizg, = 100 KBPS, SNR= 15 dB, fast-fading channel versus time-Doppler produtf, = 100 KBPS, K = 31
T, = (1/2), BJT, = 0.1. bits, T, = (T/2), SNR= 15 dB.

htrbe approximation to be valid. AB,T;, decreasesy increases
. : toward unity, and the first-order high SNR assumption is vio-
“bad” sequence in Section VI. ’

Next, Fig. 5 presents the dependence of the bound on Lﬁged. Finally, consider the bound on delay estimation as a func-
time-Doppler product. The figure indicates that the bound ijlon of the sampling rate. Fig. 6 shows that as the sampling rate

creases as the time-Doppler product increases. This is consisgé%reases’ the bound on delay estimation decreases, as indicated

with Property 3 of Section IV-B, which predicts that asn- y Igroperty 4 of Seciion IV-B.
creases toward unity (i.e., the time-Doppler product approaches
zero for fixed bit rate), the bound decreases, whereas des-
creases toward zero (i.e., the time-Doppler product increase# is clear from the preceding sections that the bounds on the
to infinity), the bound increases to infinity. The time-Doppletime delay parameter depend, in general, on the transmitted bit
product has a significant effect on the bound. This is becauseguence. An interesting question that arises is how the choice
the fading becomes more uncorrelated4q;, increases, such of transmitted bit sequence can help improve synchronization
that the received signal phase becomes increasingly more whiterformance. Begin by reconsidering the asymptotic high SNR
making it difficult to extract timing information. We also seebound expression (35) whé = 7; (implying N = K — 1).

from Fig. 5 that the first-order high SNR approximation breakBo minimize the boundy is to be as negative as possible. For
down, even though only is varied, whereas the SNR remaing; = 7, M|[¢] consists of two samples of the same bit that
constant. The reason is that the first-order high SNR approxiultiply to one and two samples from two consecutive bits (see
mation actually requires thaf1 — o?) will be large enough for Fig. 7). If v is to be as negative as possible, the elements from

will not decrease the bound. We give an example of suc

VI. SYNCHRONIZATION SEQUENCEDESIGN
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T T T T T T Start Transmission End Transmission
-6~ Exact CRLB - fast fading AR1 channel model

—»~ Approximated CRLB - fast fading AR1 channel model - zero order high SNR approx |

-8~ Slow fading channel

0.06 To 2Te 2T 2T To

- -

I Channel I fie I o bit3 J b | L bit9

0.051
Q Channel Lk o bie2 bita Lt bis l bits I
2
£oor < \/
s Single Quadrature
I Sample
g Samples spaced To apart: Samples spaced 2To
7] [PTSPRPIPSROS RS e U OO SO OO ST apart

Tt is seen that two consecutive samples.
‘comain two sampies that come from the
same bit (bit 2 in this case) so they = ——
muliply 10 one, and wo samples that K =9 ransmiued bits
come from two differcnt bits (bits | & 3 N =8 samples (= K-1)
in this case). To minimize the bound, we Sample Rate: Ts=Te
want these bits to multiply to -1.

MSK Transmission Parameters:

Fig. 7. 1and Q channel for best MSK sequence sampléd at T,. K = 9,
N = 8.

MSK Transmission Parameters:

. N . N . K = 12 transmitted bits
Fig. 6. Bounds on delay estimation for DA time synchronization with a Start Transmission N = 6 samples (= K-1)

fast-fading channel versus sampling rafy, = 100 KBPS, K = 31 bits, Sample Rate: Ts = 2T» Fnd Transmission
T, = (T»/2), SNR= 15 dB.

a2l g 2To o o 2T> o 2T 2T

consecutive bits should have different signs. This means thal ; chame l_"i‘( ;I 3 ;] bs, b | bit9 | bit 1
both the | and the Q branches should have alternating bits ! E ! E i —
anne ‘! : !
bits{m;} =—1,1, 1,1, =1, 1, ... S PR ke e [T Trwe | e

b'LtS{mQ} :_17 17 _17 17 _17 17 M (47) Single Quadrature \/

Sample Samples spaced 2To apart

such that the transmitted synchronization bits are si . N i
ince the bits are organized in pairs, we return to the previous case
whcfe Ts=Tb, and M[i)=~l ¥ i in [O,N-1], and the bound is

Wpewr = [—1, =1, 1, 1, =1, =1, 1,1, =1, =1, .. .]*. (48) f2ed. The resulting frequency patier is "
f" fH fl. fN fH fH fl. fH fH ? rl.
In this case, (35) yields —
L Fig. 8. | and Q channel for best MSK sequence sampldd at 27,. K =
CRLB(T|ub€St) = [J_’I_{_’_ighl(ubest)]_ 12, N = 6.
_ 1 T_b2 1-ao? (49) It is important to note that the best and worst sequences are
2AN-1) 72 o2 ~ not “universal” but depend on the sampling rate. For example,

. : : : if we sample the best sequence derivedffor= 7}, with 7, =
.The physmall meaning (.)f the choice (48? 's that the tranﬁ-Tb’ each of the four factors a¥/[:] comes from different bits
mitted MSK_ signal consists of frequenc_les .that alterna@ee Fig. 7). Since the sequence on each branch is alternating,
betwegnFH .and by every Ty seconds (_Wh'Ch is the ff"‘St‘?Stthe total multiplications yield+1 for all A [¢]s resulting in an
switching this modulation allows). Obviously, fast switching,sinite hound. The best case is when the alterations take place
between two frequencies is the best t|me_z synchronization 5'9ﬂﬁ"‘bairs. Such a signal is given in Fig. 8. The physical meaning
that can be generated by MSK modulation. of such a choice is that at every sample, we get a different fre-

Now, let us look for the worst-case signal on which o syryyency and not necessarily at evéfpyinterval. The transmitted
chronize. For this signal, we wantto be positive and large pits will now be

such that the Fisher information is minimized. Following the

same reasoning, it is clear that an obvious choice would be that bits{mr} =1,1, =1, =1, 1,1, ...

of choosing all the bits to be the same and all thgbits to be bits{mqy =1, =1, =1, 1,1, =1, ...
the same. As an example, we can choose such that
bits{ms} =—1, -1, =1, -1, =1, =1, ... Wese = [1, 1,1, =1, =1, =1, =1, 1, 1, 1, 1, =1 7.
Lo As afinal note, since the sequence design procedure based on
bit =1,1,1,1,1,1, ... 50 : ’ ;
itsima} (50) the bound is derived under the AR1 channel correlation model,
such that we present in Fig. 9 a comparison of the bound values for all

11 bits sequences derived for the Jakes and AR1 correlation
,...]*. (51) models (the other scenario parameters are the same as in the

nominal scenario of Section V). Although there is a clear ab-
This corresponds to transmission of only a sinusoid of frequengylute difference in the two bounds, it is found that the or-
Fr,, which, in the absence afpriori knowledge of the channel dering of bound magnitude versus sequence index is identical
phase, makes time synchronization impossible. Here, NV —  for the two models, implying that the results derived under the
1, and the bound for this case is infinite. AR1 model also apply to the Jakes correlation model. Finally,

Wyorst = [_17 17 _17 17 _17 17 _17 17 _17 1
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Ex;:sCRLB,Aﬁn)couelat!lonnwdei,ad‘l’bso‘i»(uw.n) 0.:5xaaCRLB:Jakasconelnﬁonm'odel.BGTD':OJ FOr the Combination (a), we ha\M['L] — _1 for Ts — 2Tb
T : : ; ; ForT, = T3, we have an additional sample witli[:] = 1 (the
] : i ’ f g first two bits) so thatV — 1 — ~ is decreased by one because
R ] e of the newM[¢] but is also increased by one due to the addition
: 5 5 ; of a new sample; thus, in total, increasing the sampling rate did
O I not changeV — 1 — v
P[] R For the combination (b), since each branch has identical bits,

I,

;g “ ‘ ‘ % it is obvious that theM[i] is always one, and increasing the
‘\‘ ‘ I ‘ M’ g : . ; 5 sampling rate will not change the total 8f — 1 — ~.
! o 'é’:;’% boness | - Finally, for combination (c), we havé{[i{] = 1 for T, =

2T,. ForT, = T,, we haveM[i] = —1, and thusN — 1 —

~ was increased by 2 due to the increase in sampling rate. In
conclusion, we see thal — 1 — ~+ may only increase when the
sampling rate in increased.

Increasing the sampling rate froffi-* = (27;)~! up to
Tt= Tb_]L also increases (i.e., higher channel sample corre-
Fig.9. Comparison for CRLB evaluated for all 11 bit MSK sequenges=  lation), which, in turn, decreases the overall bound. Increasing
(T1/2), BJT, = 0.1, SNR= 15 dB,a = 0.73, K = 11 bits, R, = the sampling rate abovE; ! = 7, ! will not further increase
100 KBPS. [N — 1 — 4]. To understand why, note that the bound on time

synchronization is related to changes in the transmitted signal
note the importance of good sequence design; in addition to theough thel/[i]s. Now, observe that;* = 7;~* is the lowest
four worst sequences with infinite bound, the other sequenanpling rate for which all the changes in the signals are ac-
possess bound values that are considerably above the mininmlnted for by theM/[i]s [see (35) and Fig. 11]. Therefore, at
bound. Thus, care should be exercised in choosing the synchfg- = 7, *, we have all existing transition mstances included
nization sequence. in-y. Increasmg the sampling rate abde! = 7;~ L will not re-
veal new transitions. We will have additlonal samples but since
VIl. CONCLUSIONS all the transitions are already accounted for, these samples ap-
ar in the middle of the bit intervals; they do not reveal new
This paper has investigated the inherent limitations involv ansitions. Therefore, for these new samplei] = 1, and

}N't? D’/}\ tc;me s?]/nchrolszatlont of SZPM SIgI’lSJf over time-se; is increased by one for each of these new samples. However,
ective fading channels. Exact and more intuitive approximage _ 1 is also increased by one for each of these new samples;

forms of the CRI.‘B were presented for bOth CPM N 9€NErfiarefore, the two additions nullify each other, thus, not im-
and MSK in particular. A number of properties that highligh roving synchronization. Howevet, does continue to increase
hQW the bound depends on key parameters SPCh as SNR, s he sampling rate increases. This means that no additional in-
pling rate, and t|rne-DoppIer produc_t were derlyed. The resu mation can be extracted from the signal for these high sam-
were compared with the corresponding slow fading bound, an Iﬁ'mg rates, and the improvement in the bound for these rates is

numbe rof Important differences were found. Analytlcal resul Iy because we can better evaluate the effect of the channel on
were illustrated via several numerical examples. Finally, an e signal.

plication of the bound was presented for optimum synchroniza-
tion sequence design. Current work focuses on the design and
analysis of procedures for synchronization of CPM signals in
time-selective channels.

APPENDIX B
DERIVATION OF THE CROSSCOVARIANCE ELEMENTS OF
J— ng, JW? AND J., FORFAST FADING CASE

APPENDIX A 1. Calculation ofJ,:
PROOF OFPROPERTY4 Recall that

As seen from (35), the FIM element consists of a channel- IR IR
dependent factor and a signal-dependent factor. Increasing the Jor =1r {R;l aay R;* aTy} .
sampling rate from, say, the minimum rate for data detection of '
Tt = (2T) 7, up toZ; ! = T;*, increases (or at least does Usmg (14) and (25) and denotin®S” 2 oR,/da,
not decrease) the S|gnal dependent fagdor- 1 — 4] in (35) g 2 8S/8r we have
(which, as is shown in Section VI, for the appropriate sequencé — '
can decrease the overall bound). To understand why, observe 1 1 1 -1
that there are, in general, three basic combinations of | and QJar ZU{ [I S <R_ I) SH] R{™
bits, which are depicted in Fig. 10. All other combinations can
be derived by multiplying the | and/or Q channels-b%. Such 1 1 —1
multiplication, however, will not change the evaluationidf:] < [I - =S <Rf_1 +— I) SH]
[see (35)]. We will now examine what happensifo— 1 — i In
for each of these basic combinations when the sampling rate is
increased fron;"! = (27;)~* up to 7! = 7, * with the aid x (S.ReSH + SR;SH) } .

o2 o2
O—n n O—n

n n

of Fig. 10.
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Fig. 10. Basic combinations of the | and Q bits for MSK transmission.

Legend

(®  Sampled sequence gencraied when Ts = 2Tb
x  Sampled sequence gencrated when Ts = Th

Start Transmission

MSK Transmission Parameters:

K =9 transmitted bits
N = 8 samples for Ts = Tb
N = 4 samples for Ts = 2Tb

2T

End Transmission

i =3 bit9

Q Channel

Single Quadratuny
Sample

Samples spaced Tb apart:

NN =

Samples spaced 2Tv
apart

1tis scen that for the sequence with maximum number of transitions, sampling with 2Tb gencrates a sequence
with a single frequency, f,,. However sampling with Tb generates a sequence with altermnating frequencies

Fig. 11. 1 and Q channels for (best) MSK sequence for Bath= T, and
T, =2T,. K = 9.

Defining Z = (R;* + (1/02)1)~! anddRg/da = R, we
haveRg,“) = SRga)SH. RecallingthaBS# = Iand properties
of the trace operation, we can expahgd as

[R{VZS"S, R + R{VZR,S,"'s]

1 2
+ <—2) ZR{"Z [S"S.Re + ReS. 'S } .
g,

n

Now, if D is a diagonal matrix and. andB are symmetric
matrices, then

tr{ABD} = tr{BAD} (B.1)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 6, JUNE 2002

so thatJ, can also be written as
1 o 1 (a
S IR - S RMZ

Jor =1 { [R&) -
O—n O—n

1 2 (@) 1 2
X <%> ZRy Z] x [8HS, +SS] Rf} <%> .

Next, examineés? S, + SZS. SinceS is a diagonal matrix,
so areS# S, andSZS. Theith diagonal element 7S, for
example, is

[SHS_’_]” — e_j‘;@(iTs_Ty "l) 83 ejtp(iTs -7, 1’)
T

=J % <P(iTS -7, "7)'
However, theth diagonal element 882S is given by

[SHS] = 2 C*j‘,?(iTs —7,n) Cj‘rc(iTs —7.m)
T or

ar s ’ Tl
Therefore

sfs +ss=o0 (B.2)

driving the entire expression fof,., to zero.
The calculation Of‘]“’? and J,,: follows along the same
lines as the calculation of .

APPENDIX C
CALCULATION OF JHighl () FOR THEFAST FADING MODEL

We first write the derivatives of the correlation matrix (14)
with respect to the unknown parameters

‘9?_(") _ 83 (SReS? + 021) = S, RS + SR, S
T T
B0
JR, (0 a 1
) (SRS 4 020) = L SRysY
o 0% Iy
Tl D (sres+ o) =sR(ST (€
(0% (0%

whereS, = (9/07) S, andR{™ = (9/da) Ry.

Now, in Section 111-B1, using (30) and (32), we obtained (29)
asJHishl — otr{ AR AP Ry + A%} with Re andR; given
by (15) and (16), respectively. Beginning with the first element,
we use the definition oA\ in (30) to explicitly writeAR;lAH
as

1
ARS‘MAY = — —
o1 —a?)
apgag —oapal 0 0
—aaray (1+ao®)aral —aaral 0 0

X :

0 0 0 —aN_2GN_4

0 0 0 0 aN_10N_
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The next step is to multiply this matrix witR¢. Since we per- The first two elements can be expanded as
form the trace operation on the resulting matrix, we will calcu-

late only the diagonal elements AfR;lAHRf N=2
2 2
. 1 Npy 1 +N ) (pi)
diag (AR A" Ry) = 1—— M ;
—
; 2 ;
X ao(a*—OcQa*), al a*—i—aQ(a* —ay—az)), ... N2 N2
ol - o)y e o + o(el — o - ) (X n) +mex X nsia
an—2 (ay_o+a(ay o —aj 3 —ai 1)) —o =0
ay-1(ay_1—a’ay_y)] N_2 N2 \2
where diag-) denotes “the diagonal elements(ef.” The final —(N-1) Z (p:)? + Z ;
step is to sum these elements with those of (32) resulting in (33) =0 prd
) 202 N—-2 N-2 N-2
Highl _ ) o« o
J‘r‘rg (7’) - 1 — a2 Z al(2ai a; 1 ai-l—l) = (N — 1)p%f71 + Z(pi)Q — 2prl Z Di

N

(V)

— aoa] —an-_1ax_p + aoag + GA’—IGR’—I] . (px_1 — 2pn—1pi + (pi)?)

™

Il
=

T

.

4
[N

APPENDIX D
PROOF OFPROPERTY2 FOR THE SLOW FADING BOUND

(pyv—1—pi)*.

o

We begin with theJsf expressed in term of the phase (23), _ _ _ _
where for ease of notation, we repla@@/d7) ¢(iT, — v, n) Plugging this back into (D.2), we are now required to prove that
with p,;. The resulting expression is

N-2

N-1 N-1 2
20° (1+Np) Y (pv1—p)
I () = N )2 — .| |. (D1 ’
=2 v e (X a) |- @
Examining this expression, we conclude that in order to prove = = :
Xamining |__xp on, w u | prov —p NZ(Pi)Q— Zpi >0
the property, it is enough to show that prd prd
A1 N1 N1 2
A 2 . .
Zn = 1+ Np N Z(pi) - <Z pi) Expanding and then collecting, we get
=0 :=0
is a nondecreasing function 8f or, equivalentlyZy—Zn_1 > N-2 N-2
0,YN > 1. Z (pv—1 —pi)? + Np Z (pv-1—pi)’
Begin by writing the difference explicitly i=0 i=0
1 N-1 N-1 2 N-1 N-1 2
In—Ina=7——— | NI m) - » —NpY ) +e| Y pi
1+ Np =0 =0 =0 1=0
1 N—2
1+(N-1)p = Z (pn-1—Dpi)
1=0
N—2 N—2 2 NN Nz
x [(N=1))> (m) - pi > 0. ~ ~
; ; +p ;pz —2Npn_1 ; pi
That is
N-1 N-1 \?2
+ N¥(pn_1)* = 2N(py_1)*
N (pi) - <§j pi> (pr—1) (pv-1)
7=0 7=0
Moo Moo 5 N—2 N-1 2
N2 4 = (pn—1—Pi)* +0p i | — NPN—1> .
(T w —(Z pz> 2 ((2_: )
=0 =0
N-1 N-1 2 The last expression is obviously non-negative, implying that
S N> (pi) - <Z pi> >0. (D.2) increasing the number of samples does not decreasé:the
1+ Np i=0 i=0 which proves the property.
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