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Inherent Limitations in Data-Aided Time
Synchronization of Continuous Phase-Modulation

Signals Over Time-Selective Fading Channels
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Abstract—Time synchronization of continuous phase modula-
tion (CPM) signals over time selective, Rayleigh fading channels
is considered. The Cramér–Rao lower bound (CRLB) for this
problem is studied for data-aided (DA) synchronization (i.e.,
known symbol sequence transmission) over a time-selective
Rayleigh fading (i.e., Gaussian multiplicative noise) channel.
Exact expressions for the bound are derived as well as simplified,
approximate forms that enable derivation of a number of prop-
erties that describe the bound’s dependence on key parameters
such as signal-to-noise ratio (SNR), channel correlation, sampling
rate, sequence length, and sequence choice. Comparison with
the well-known slow fading (i.e., constant) channel bound is
emphasized. Further simplifications are obtained for the special
case of minimum phase keying (MSK), wherein it is shown how
the bound may be used as asequence design toolto optimize
synchronization performance.

Index Terms—Continuous phase modulation, Cramér–Rao
bound, fading channels, minimum shift keying, synchronization,
timing.

I. INTRODUCTION

CONTINUOUS phase modulation (CPM) is an important
class of digital modulation that combines good spectral

efficiency with the desirable property of constant signal mod-
ulus. This latter characteristic enables use of highly efficient,
nonlinear power amplification in transmission and provides in-
herent robustness to amplitude fading in reception, e.g., [1]. It
is well known that like all other digital modulation schemes, ap-
plication of CPM requires synchronization of the time reference
of the receiver to that of the received signal. Due to the popu-
larity of CPM, considerable effort has been directed toward the
problem of time synchronization for such signals, e.g., [2]–[4].
Nevertheless, most work on this subject has concentrated on
the additive white Gaussian noise (AWGN) channel with rela-
tively little research directly addressing CPM time synchroniza-
tion overfast fading(i.e., time-varying) channels (see [5] for an
exception).
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In addition, while the general problem of time synchroniza-
tion over fast fading channels has been considered in the litera-
ture, e.g., [2], [6]–[8], some of this work either neglects the sta-
tistical nature of the fading or imposes additional signal assump-
tions. For example, in [2], a high SNR approximation removes
the influence of the fading statistics from the problem, and in
[6], the channel is simply treated as deterministic time varying,
whereas in [8], a low SNR type “low energy coherence” assump-
tion is used. Time synchronization for linear modulation types
is considered in [9] and [10], where a cyclostationary approach
is used, and [11], which uses a delay-and-multiply method. In
[12], a cyclostationary approach is applied to blind synchroniza-
tion of MSK signals over time selective fading channels.

A study of the inherent limitations in the estimation of fading
parameters (Doppler shift, Doppler rate, and LOS component
strength) was carried out in [13] and [14] under the assump-
tion ofperfect time synchronization. However, an analysis of the
inherent limitationsin time synchronization accuracy for fast
fading channels does not appear to have been treated in detail in
the literature for any type of signal. Note that in [10], a CRLB
is derived for blind time-delay estimation forlinear modulation
by calculating the covariance of the transmitted signal (which is
restricted to be real) and then imposing Gaussianity on the re-
ceived signal. In addition, [10] does not contain an analysis of
the bound and is focused mainly on estimation. Finally, a gen-
eral study of the CRLB for parameters describing the determin-
istic phase component of a constant modulus signal subject to
real Gaussian multiplicative noise can be found in [15].

This paper seeks to characterize the inherent performance
limitations associated with CPM time synchronization over
fading channels via a Cramér–Rao lower bound (CRLB) anal-
ysis. In particular, time-selective fading is assumed, wherein
the channel manifests itself as zero mean complex Gaussian
“multiplicative noise,” giving rise to well-known Rayleigh-type
amplitude fading, e.g., [1]. In addition, attention is focused
on data-aided (DA)synchronization, wherein the transmitted
symbol sequence is knowna priori. Such a scenario may arise,
for example, in communications systems that use some sort
of known pilot transmission to synchronize the receiver to the
transmitter. Another possible application is burst transmission
where a known preamble is transmitted every burst (or every
few bursts) to allow correction of the receiver’s reference clock.
Moreover, the DA CRLB for delay estimation can also be ap-
plied to decision-directed (DD) estimation, where it constitutes
a relatively looser lower bound since DD synchronization is
prone to bursty type of error events that typically cause a larger
error variance. General CPM is considered along with the
special case of minimum shift keying (MSK) e.g., [1].
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The paper is structured as follows. Section II reviews CPM
and MSK, compares two fast-fading channel correlation
models, and specifies the overall model for the received data.
The problem to be solved is formulated, and the well-known
slow fading channel model is briefly reviewed. In Section III,
explicit, exact, and approximate expressions for the CRLB are
presented for both the slow fading and fast fading bounds for
general CPM as well as MSK. Section IV derives a variety of
properties that describe the bound’s dependence on a number
of key parameters such as SNR, channel correlation, and
sequence length. Section V presents numerical examples to
illustrate the results. Section VI introduces an application of the
bound for synchronization sequence design. Last, Section VII
summarizes the work.

II. M ODELING AND PROBLEM FORMULATION

Begin by considering a general, discrete-time complex base-
band signal received over a time-selective fading channel and
sampled at sampling interval

(1)

where , , and are the baseband
equivalent time-varying channel, transmitted signal, and addi-
tive noise components, respectively. The channel component
will be assumed to be a realization of a zero mean, stationary
circular, complex Gaussian random process

of correlation sequence with
. Gaussianity of the channel gives rise to the well-known

Rayleigh distributed amplitude fading. The received signal com-
ponent is simply the transmitted signal subject to a delay

. The additive noise is assumed to be a realization of a sequence
of independent, identically distributed (IID) zero mean, circular,
complex Gaussian random variables .

Before formulating the exact problem to be solved, CPM is
briefly reviewed, and distinct parametric forms of the channel
correlation sequence are presented.

A. Continuous Phase Modulation

The continuous time complex envelope of a CPM waveform
may be written as, e.g., [16]

(2)

where
symbol energy;
symbol duration;
information bearing phase;
arbitrary phase shift (which can be incorporated into
the fading process and is thus taken to be zero).

The information-bearing phase component can be expressed as

(3)

where is an infinitely long
sequence of -ary data symbols, each taking one of the values

(4)

where is assumed even. The variableand the function
are referred to as the modulation index and the frequency pulse
shape, respectively.

MSK signaling is a special case of CPM formed by setting
and while employing the “1REC” frequency

pulse shape

(5)

It is noted that MSK may be viewed as a form of binary con-
tinuous-phase frequency shift keying (CPFSK), where one of
two frequencies and [such that ] is
transmitted every seconds. MSK can also be represented in
terms of linear modulation, e.g., [17]

(6)

where and are the bit period and bit energy, respectively,
which, for MSK, satisfy and . As can
be seen, and are generated from the original bit
stream by taking only the odd bits for and multiplying
them with a rectangular pulse train with pulse length of. The
same is done for with the even bits; however, is
also staggered by with respect to . The relation between
the two representations in (3) and (6) is given by .

B. Fading Modeling and Fading Statistics

The Rayleigh fading model is commonly employed in
so-called nonline-of-sight (NLOS) propagation conditions,
where multiple signal components arrive at the receiverindi-
rectly via scattering, diffraction, and reflection effects, e.g.,
[1]. If the RMS variation in the arrival time of these channel
components is less than a symbol period, then the effect of the
channel can be approximated as purelymultiplicative, giving
rise to the model in (1).

Motion of the receiver, the transmitter, or objects present in
the propagation environment all contribute to the time-varying
nature of the channel. Under the zero mean, stationary, circular
complex Gaussian model of (1), the time-varying nature of the
channel is completely characterized by its correlation sequence
or, equivalently, its Doppler spectrum. A commonly used model
for land-mobile communications scenarios with isotropic scat-
tering and horizontal propagation is the “U-shaped” Jakes
Doppler spectrum [18]

otherwise

(7)



1472 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 6, JUNE 2002

where is the maximum Doppler shift in radians per second,
which, for the above model, also corresponds to the Doppler
bandwidth . The associated correlation sequence is

(8)

where is the zero-order Bessel function of the first kind.
Though common, this representation of the fading process cor-
relation was not found to enable derivation of CRLB expres-
sions that give analytical insight into the CPM time synchro-
nization problem.1 Thus, for the sake of analytical tractability,
the channel will be modeled as an autoregressive process (e.g.,
[14]) of order one (AR1)2

(9)

where is IID.
Although the results obtained with this simplified model are

not numerically identical to the results obtained with the Jakes
model, theanalyticalinsight obtained under the AR1 model also
applies to the Jakes model (see Sections V and VI). Under this
model, the channel correlation function may be written as

(10)

where is the correlation parameter of the continuous time
fading process, and can be viewed as an “effective
correlation parameter” induced by the channel as well as the
sampling rate. Thus, for , we model the channel as an
uncorrelated fading process, and with , we model the
channel as a realization of a single random variable. The cor-
responding Doppler spectrum is given by

(11)

where, for this spectrum, the Doppler bandwidth will be
defined as the 3-dB bandwidth of the spectrum, which is easily
shown to be

[Hz] (12)

Note that for both the Jakes and AR1 correlation models, the
amplitude of the fading process is Rayleigh distributed, and the
phase is uniformly distributed over . To aid in visual-
izing the differences between the two models, Fig. 1 presents
their respective temporal correlation functions. The graphs were
drawn for normalized time-Doppler product of and

. The value of that corresponds to this time-doppler
product, when , is . As can be
seen from the figure, the correlation produced by the AR1 model
lacks the oscillations present in the Jakes model; therefore, there
is no strong peak at , and the spectrum decays more slowly
with frequency.

1While relatively simple, low-order Taylor series approximations of (8) were
found to be of poor accuracy.

2Note that at least for frequency estimation, both [14] and [19] claim that the
actual shape of the Doppler spectrum has no noticeable effect on performance.

Fig. 1. Temporal correlation of the fading process forB T = 0:1 for the
Jakes model and for the AR1 fading correlation model.

C. Statistics of the Received Signal

Assume an observation interval of samples giving rise to
, which, from (1), may be written in matrix form as

diag

(13)

with denoting the transpose operation, and diagde-
noting a diagonal matrix of specified diagonal elements.
Note that the diagonal elements of are the sampled
modulated sequence, which depends on thetransmitted
symbols and on the modulation
scheme. For MSK, it is convenient to define abit vector

. We now calculate the statistics of
the received signal.

Since the transmitted signalis known, of (13) is a sum of
two zero-mean complex Gaussian random vectors, and hence,

is also a zero-mean complex Gaussian random vector with
correlation matrix given by

(14)

where
conjugate transposition;

identity matrix,
fading channel correlation matrix.

The specific fading channel correlation matrix depends on
the fading statistics. For the AR1 model, use of (10) yields the
following correlation matrix:

...
...

...
. . .

...

(15)
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whose inverse will be important in the sequel, e.g., [14]

...
...

...
. ..

...

(16)

It should be noted that such a model was used for the spatial
correlation in [20] for the case of angle estimation with an array
of sensors where the data is corrupted byspatialmultiplicative
noise.3

The probability density function (PDF) for the received signal
can now be written as

(17)

where denotes the determinant of a matrix.
Before formally stating the problem to be solved, it should

be noted that since it is impossible to distinguish between the
fading channel power and the signal power , we
will use to represent their product (i.e., the signal power is
normalized to one) such that SNR is defined as .

D. Estimation Problem

The estimation problem can now be formulated as follows:
Given a received signalwith PDF (17), which is parameterized
by an unknown parameter vector, estimate the time delay.
In this problem, is the parameter of interest, and the three
remaining parameters arenuisanceparameters.

In the sequel, the results for the fast fading channel will be
compared with those of theslow fadingcase described by, e.g.,
[21]

(18)

with unknown parameter vector and corre-
lation matrix .

III. B OUND EXPRESSIONS

Consider a data vectorand its likelihood function ,
which is dependent on a parameter vector. Under a set of reg-
ularity conditions, the CRLB for the mean square error of any
unbiased estimator of the th parameter is given by, e.g.,
[22]

(19)

where the matrix is known as the Fisher information matrix
(FIM), which, for the current statistical model, is given by [22]

tr (20)

3In addition to differences in the parameterization ofS, note that since, in
[20], there is no temporal channel correlation, the Fisher information increases
proportionally with time. However, for the temporal problem, this is not the
case; the samples are statistically dependent. Thus, the covariance matrix dimen-
sion increases with the sample size, and the increase in the Fisher information
now depends on “how fast” the channel correlation decreases, which motivates
a specific analysis of the bound for the temporal case.

where tr denotes the trace of a matrix. The remainder of this
section uses (20) and approximations thereof to obtain expres-
sions for the CRLB for the time synchronization parameter in
slow and fast fading channels.

A. Slow Fading

Recall that parameter vector for the slow fading case of (18)
contains three elements: . It is not difficult to
show that the constant modulus property of CPM signal yields
a FIM of the form [23]4

(21)

which means that the error in the estimation ofis asymptoti-
cally uncorrelatedwith the errors of the estimation of the nui-
sance parameters and that the bound onmay be written as
CRLB . Straightforward calculations indicate that

may be written in a form analogous to that for bearing es-
timation, e.g., [23]

(22)

where is the projection matrix onto the subspace orthogonal
to the signal subspace (spanned by), and . This im-
plies that the bound is determined by the norm of the projection
of on the signal subspace’s orthogonal complement and that
for minimum error, the derivative of the signal vectorshould
be orthogonal to the signal vector itself. Note that for asymptot-
ically high SNR, the bound tends to zero.

The bound can also be written in terms of the phase as

(23)

which, for MSK, yields, via (6)

(24)

4Note that calculation of the bound on� (for either slow or fast fading) re-
quires the elements of the (respective) data covariance to be differentiable with
respect to� . More specifically, the samples of the CPM signal should not occur
at times where the complex envelope has no derivative. For MSK, for example,
(6), this occurs everyT . Therefore, in general, this analysis is valid for MSK, as
long as the (unsynchronized) receiver does not sample exactly at the transition
instances (which happens with probability zero). Moreover, many CPM for-
mats have continuous derivatives with respect to the time [e.g., Gaussian MSK
(GMSK)]; therefore, this question does not even arise.
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B. Fast Fading

Bound expressions for the fast fading case are now presented.
Begin by noting that application of the matrix inversion lemma
to the data covariance together with the constant modulus
property of CPM (implying ) yields

(25)

Use of (25) in (20) followed by simple manipulations leads
to the fact that, as in the slow fading case, the asymptotic error
in the delay parameter is decoupled from those of the nuisance
parameters (see Appendix B)

(26)

yielding CRLB . It is emphasized that this result is
valid for any type of fading correlation (e.g., Jakes, AR) when
the fading process is complex normal and of zero mean. In ad-
dition, note that this asymptotic decoupling both in the slow and
fast fading scenarios implies that there is no inherent accuracy
penalty due to the absence ofa priori knowledge of the signal
and noise power (as well as the channel correlation parameter
for the fast fading case). To proceed, a variety of approximations
are now considered.

1) Zero-Order High SNR Approximation:Begin by consid-
ering the “zero-order” high SNR approximation to the data co-
variance, which is similar to [20] and [24], by simply neglecting
the noise term such that

(27)

Plugging (27) into (20) and using the fact that

(28)

yields the following expression for the FIM element for at
asymptotically high SNR:

tr (29)

where . Remembering that ,
the following diagonal matrix will be defined:

(30)

such that

(31)

The second element in the trace in (29) yields

(32)

and using tr tr , we can write the first element of
(29) as tr tr . Tedious
but straightforward calculations yield a final expression of the
form (see Appendix C)

(33)

which can be seen to depend only on the transmitted sequence
and the channel correlation parameter. Most importantly, in
contrast to the slow fading case, it is evident from (33) that
the bound on does notgo to zero for asymptotically high
SNR; there is an inherent asymptotic error generated due to the
random fading channel process. It also appears that the bound
is not valid when since is a rank one matrix and
is, therefore, noninvertible. If it is knowna priori that
(corresponding toslow fading), then the CRLB analysis is to
be formulated accordingly as in Section III A.

For MSK, observe that

(34)

Plugging (34) into (29) yields

(35)

where the placement of the factor on the right-hand side of
(35) yields a bit period normalized version of the bound. It can
be seen that counts changes in the transmitted I and
Q signal components. When there is a change in the bit values
between consecutive samples in either the I or Q components,
the associated equals 1; otherwise, equals 1 . De-
pending on the transmitted bit sequence, the value ofcan range
between for the worst-case sequence and for
the best-case sequence (see Section VI).

2) First-Order High SNR Approximation:A “first-order”
high SNR approximation to the inverse of the data covariance
can be obtained by writing the first-order Taylor expansion for

around (similarly to [15] and
[20])5

5Actually,� R = (1=�(1� � ))R ,R = � (1� � )R [see
(16)], and therefore, the first-order high SNR approximation requires that�(1�
� ) ! 1.
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(36)

Now, can be approximated as

(37)

Inserting (37) and (28) in (20) and using the fact that
yields, after simple manipulations

tr (38)

The first-order high SNR expression is seen to be the zero-order
high SNR expression minus an SNR dependent term.

3) Low SNR Approximation:First, note that the constant
modulus property enables expression of the inverse of the data
covariance as

A low SNR approximation can be obtained by performing a
first-order Taylor series expansion of about

, yielding

(39)

Plugging (39) and (28) into (20) yields the following low SNR
approximation for the Fisher information:

tr

(40)
Using (30) and (31) gives

(41)

Unlike the zero-order high SNR case, depends on SNR
and the transmitted sequence.

IV. BOUND PROPERTIES

This section uses the results of the previous section to obtain a
series of bound properties for the slow and fast fading channels.

A. Slow Fading

Property 1: For sufficiently high SNR, the bound on delay
estimation for slow fading is approximately inversely propor-
tional to SNR.

Proof: Follows from direct inspection of (22).
Property 2: The bound on delay estimation for slow fading

is monotonically nonincreasing function of the sample size.
Proof: See Appendix D.

B. Fast Fading

Property 1: In contrast to the slow fading case, for low SNR,
the fast fading bound is proportional to (decreasing
rapidly with SNR), whereas for high SNR, the fast fading bound
is proportional to for some constant (decreasing
much more slowly with SNR).

Proof: The low and high SNR parts of the property follow
immediately from (40) and (38), respectively.

Property 2: At high SNR, the bound on delay estimation
for fast fading is monotonically nonincreasing function of the
sample size .

Proof: Examining (33), it is seen that appears only in
the signal-dependent factor. Define

(42)

To show that , write

which completes the proof.
Property 3: For sufficiently low and sufficiently high SNR,

the bound on delay estimation is a monotonically decreasing
function of the channel correlation parameter () which varies
from infinity (at ) to the slow fading bound (at ).

Proof: Monotonicity can be proven directly from (33),
which (at least for high SNR) indicates that the bound’s depen-
dence on the channel correlation parameter is contained in the
term , which, for , is a monotonically
increasing function of .

The fact that the bound tends to infinity at is also seen
from the above channel-dependent term or, more generally, by
the fact that as , can be approximated as
such that

(43)

where the last equality follows from the constant modulus prop-
erty of CPM. This means that as , or, equiva-
lently, that the bound is infinite. This property is very intuitive
since, as goes to zero, the channel becomes increasingly more
white—decorrelating the signal samples to the point where there
is no structure on which an estimator can synchronize.

In the case of asymptotically high SNR, convergence of the
fast fading bound to the slow fading bound astends to one
again follows from the bound term of (33), which
approaches infinity. This implies that the CRLB tends to zero, as
does the slow fading bound for asymptotically increasing SNR.
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For low SNR, monotonicity can be proven directly from the
fast-fading FIM element for, , which is given by (41).
Next, to prove convergence to the slow fading bound, examine
again (41). When approaches 1, (41) becomes

(44)

Inserting as defined in (30), we can write

(45)

Examining expressed in terms of the phase (23)

(46)

we see that as , (since
), and the resulting expression is identical to (45), thus

completing proof of the property.
Property 4 (for MSK Only):For asymptotically high SNR,

the bound on delay estimation for MSK over a fast-fading
channel decreases as the sampling rate increases.

Proof: See Appendix A

V. NUMERICAL EXAMPLE

This section presents numerical examples that illustrate the
behavior of the CRLB on as a function of SNR, time-doppler
product, sampling rate, and sample size. A nominal MSK modu-
lation scenario is considered with a bit rate of
KBPS, a sampling rate of , an AR1 fading channel
model with (corresponding to ), an SNR
of dB, and an alternating bit sequence of length
bits. Graphs of the exact and approximate forms of the square
root of the CRLB are plotted as one of the above listed param-
eters is varied from its nominal value.

Begin with Fig. 2, which presents a comparison of the bound
on delay estimation calculated with the Jakes and the AR1 cor-
relation model. Examining the figure, it can be seen that while
the Jakes bound is lower than the AR1 bound, both exhibit the
sametypeof behavior versus SNR. This was also found to be
the case for a wide variety of scenarios (not shown).

Next, Fig. 3 presents the bound on delay estimation versus
SNR. Fig. 3(a) plots the bound for SNRs ranging from15
to 30 dB, whereas Fig. 3(b) zooms in on the high SNRs.
Examining the figure, we observe a slow and fast fading
CRLB dependence on SNR as predicted by Property 1 in
Sections IV-A and B, respectively. In particular, note how the

Fig. 2. Exact bounds on delay estimation for DA time synchronization with a
fast fading channel versus SNR size for the Jakes and AR1 correlation model
R = 100 KBPS, SNR= 15 dB,T = (T =2), B T = 0:1.

fast-fading bound decreases more rapidly for low SNR than the
slow-fading bound. At higher SNR, however, the fast-fading
bound decreases more slowly than the slow-fading bound. We
can also see [Fig. 3(b)] that the fast-fading bound arrives at
some nonzero asymptotic value (see Property 1, Section IV-B)
for asymptotically increasing SNR, whereas the slow-fading
bound drops to zero as SNR increases. Additionally, we
observe that the first-order high SNR approximation is better
than the zero-order high SNR approximation for SNRs that are
higher than 14 dB. However, for lower SNRs, the first-order
approximation yields performance that is far inferior to that
of the zero-order approximation. To understand why, recall
that the zero-order high SNR approximation for the inverse of
the correlation matrix is . This formula is
meaningful at all SNRs, which implies that the approximate
bound will deteriorate gradually as the SNR decreases. The
first-order high SNR approximation for the inverse of the
correlation matrix is . This
approximation is better than the zero-order approximation
at moderate to high SNR; however, at some point when the
SNR decreases, the second term becomes dominant, making

negative definite, which means that the approximation
collapses. The SNR at which the approximation collapses is
also determined by the correlation parameter[we require
that will be large enough]. At SNRs near the col-
lapse of the approximation, the first-order approximation will
deteriorate faster than the zero-order high SNR approximation.
Finally, we note that for sufficiently high SNR, the SNR does
not have a significant effect on the fast-fading bound on delay
estimation, and the zero-order high SNR approximation gives
quite good results, even for SNRs as low as 10 dB.

Fig. 4 presents the behavior of the CRLB versus the sample
size . It is seen that as increases, the bound decreases
for both slow-fading and fast-fading channels, as predicted by
Property 2 in Sections IV-A and B for slow fading and fast
fading, respectively. Note that the bound is not necessarily a
monotonically decreasing function as in Fig. 4 and that there
are sequences for which the inclusion of additional symbols
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Fig. 3. Bounds on delay estimation for DA time synchronization with a fast-fading channel versus SNR,R = 100 KBPS,K = 31 bits, T = (T =2),
B T = 0:1.

Fig. 4. Bounds on delay estimation for DA time synchronization with a
fast-fading channel versus sample size,R = 100 KBPS, SNR= 15 dB,
T = (T =2),B T = 0:1.

will not decrease the bound. We give an example of such a
“bad” sequence in Section VI.

Next, Fig. 5 presents the dependence of the bound on the
time-Doppler product. The figure indicates that the bound in-
creases as the time-Doppler product increases. This is consistent
with Property 3 of Section IV-B, which predicts that asin-
creases toward unity (i.e., the time-Doppler product approaches
zero for fixed bit rate), the bound decreases, whereas asde-
creases toward zero (i.e., the time-Doppler product increases
to infinity), the bound increases to infinity. The time-Doppler
product has a significant effect on the bound. This is because
the fading becomes more uncorrelated as increases, such
that the received signal phase becomes increasingly more white,
making it difficult to extract timing information. We also see
from Fig. 5 that the first-order high SNR approximation breaks
down, even though only is varied, whereas the SNR remains
constant. The reason is that the first-order high SNR approxi-
mation actually requires that will be large enough for

Fig. 5. Bounds on delay estimation for DA time synchronization with a
fast-fading channel versus time-Doppler product,R = 100 KBPS,K = 31
bits,T = (T =2), SNR= 15 dB.

the approximation to be valid. As decreases, increases
toward unity, and the first-order high SNR assumption is vio-
lated. Finally, consider the bound on delay estimation as a func-
tion of the sampling rate. Fig. 6 shows that as the sampling rate
increases, the bound on delay estimation decreases, as indicated
by Property 4 of Section IV-B.

VI. SYNCHRONIZATION SEQUENCEDESIGN

It is clear from the preceding sections that the bounds on the
time delay parameter depend, in general, on the transmitted bit
sequence. An interesting question that arises is how the choice
of transmitted bit sequence can help improve synchronization
performance. Begin by reconsidering the asymptotic high SNR
bound expression (35) when (implying ).
To minimize the bound, is to be as negative as possible. For

, consists of two samples of the same bit that
multiply to one and two samples from two consecutive bits (see
Fig. 7). If is to be as negative as possible, the elements from
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Fig. 6. Bounds on delay estimation for DA time synchronization with a
fast-fading channel versus sampling rate,R = 100 KBPS,K = 31 bits,
T = (T =2), SNR= 15 dB.

consecutive bits should have different signs. This means that
both the I and the Q branches should have alternating bits

(47)

such that the transmitted synchronization bits are

(48)

In this case, (35) yields

CRLB

(49)

The physical meaning of the choice (48) is that the trans-
mitted MSK signal consists of frequencies that alternate
between and every seconds (which is the fastest
switching this modulation allows). Obviously, fast switching
between two frequencies is the best time synchronization signal
that can be generated by MSK modulation.

Now, let us look for the worst-case signal on which to syn-
chronize. For this signal, we want to be positive and large
such that the Fisher information is minimized. Following the
same reasoning, it is clear that an obvious choice would be that
of choosing all the bits to be the same and all thebits to be
the same. As an example, we can choose

(50)

such that

(51)

This corresponds to transmission of only a sinusoid of frequency
, which, in the absence ofa priori knowledge of the channel

phase, makes time synchronization impossible. Here,
, and the bound for this case is infinite.

Fig. 7. I and Q channel for best MSK sequence sampled atT = T .K = 9,
N = 8.

Fig. 8. I and Q channel for best MSK sequence sampled atT = 2T .K =
12,N = 6.

It is important to note that the best and worst sequences are
not “universal” but depend on the sampling rate. For example,
if we sample the best sequence derived for with

, each of the four factors of comes from different bits
(see Fig. 7). Since the sequence on each branch is alternating,
the total multiplications yield 1 for all s resulting in an
infinite bound. The best case is when the alterations take place
in pairs. Such a signal is given in Fig. 8. The physical meaning
of such a choice is that at every sample, we get a different fre-
quency and not necessarily at everyinterval. The transmitted
bits will now be

such that

As a final note, since the sequence design procedure based on
the bound is derived under the AR1 channel correlation model,
we present in Fig. 9 a comparison of the bound values for all
11 bits sequences derived for the Jakes and AR1 correlation
models (the other scenario parameters are the same as in the
nominal scenario of Section V). Although there is a clear ab-
solute difference in the two bounds, it is found that the or-
dering of bound magnitude versus sequence index is identical
for the two models, implying that the results derived under the
AR1 model also apply to the Jakes correlation model. Finally,
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Fig. 9. Comparison for CRLB evaluated for all 11 bit MSK sequences.T =

(T =2), B T = 0:1, SNR= 15 dB,� = 0:73, K = 11 bits, R =
100 KBPS.

note the importance of good sequence design; in addition to the
four worst sequences with infinite bound, the other sequences
possess bound values that are considerably above the minimal
bound. Thus, care should be exercised in choosing the synchro-
nization sequence.

VII. CONCLUSIONS

This paper has investigated the inherent limitations involved
with DA time synchronization of CPM signals over time-se-
lective fading channels. Exact and more intuitive approximate
forms of the CRLB were presented for both CPM in general
and MSK in particular. A number of properties that highlight
how the bound depends on key parameters such as SNR, sam-
pling rate, and time-Doppler product were derived. The results
were compared with the corresponding slow fading bound, and a
number of important differences were found. Analytical results
were illustrated via several numerical examples. Finally, an ap-
plication of the bound was presented for optimum synchroniza-
tion sequence design. Current work focuses on the design and
analysis of procedures for synchronization of CPM signals in
time-selective channels.

APPENDIX A
PROOF OFPROPERTY4

As seen from (35), the FIM element consists of a channel-
dependent factor and a signal-dependent factor. Increasing the
sampling rate from, say, the minimum rate for data detection of

, up to , increases (or at least does
not decrease) the signal dependent factor in (35)
(which, as is shown in Section VI, for the appropriate sequence
can decrease the overall bound). To understand why, observe
that there are, in general, three basic combinations of I and Q
bits, which are depicted in Fig. 10. All other combinations can
be derived by multiplying the I and/or Q channels by1. Such
multiplication, however, will not change the evaluation of
[see (35)]. We will now examine what happens to
for each of these basic combinations when the sampling rate is
increased from up to with the aid
of Fig. 10.

For the combination (a), we have for .
For , we have an additional sample with (the
first two bits) so that is decreased by one because
of the new but is also increased by one due to the addition
of a new sample; thus, in total, increasing the sampling rate did
not change .

For the combination (b), since each branch has identical bits,
it is obvious that the is always one, and increasing the
sampling rate will not change the total of .

Finally, for combination (c), we have for
. For , we have , and thus,

was increased by 2 due to the increase in sampling rate. In
conclusion, we see that may only increase when the
sampling rate in increased.

Increasing the sampling rate from up to
also increases (i.e., higher channel sample corre-

lation), which, in turn, decreases the overall bound. Increasing
the sampling rate above will not further increase

. To understand why, note that the bound on time
synchronization is related to changes in the transmitted signal
through the s. Now, observe that is the lowest
sampling rate for which all the changes in the signals are ac-
counted for by the s [see (35) and Fig. 11]. Therefore, at

, we have all existing transition instances included
in . Increasing the sampling rate above will not re-
veal new transitions. We will have additional samples, but since
all the transitions are already accounted for, these samples ap-
pear in the middle of the bit intervals; they do not reveal new
transitions. Therefore, for these new samples, , and

is increased by one for each of these new samples. However,
is also increased by one for each of these new samples;

therefore, the two additions nullify each other, thus, not im-
proving synchronization. However,does continue to increase
as the sampling rate increases. This means that no additional in-
formation can be extracted from the signal for these high sam-
pling rates, and the improvement in the bound for these rates is
only because we can better evaluate the effect of the channel on
the signal.

APPENDIX B
DERIVATION OF THE CROSS-COVARIANCE ELEMENTS OF

, AND FOR FAST FADING CASE

1. Calculation of :

Recall that

tr

Using (14) and (25) and denoting ,

, we have

tr
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Fig. 10. Basic combinations of the I and Q bits for MSK transmission.

Fig. 11. I and Q channels for (best) MSK sequence for bothT = T and
T = 2T . K = 9.

Defining and , we
have . Recalling that and properties
of the trace operation, we can expand as

tr

Now, if is a diagonal matrix and and are symmetric
matrices, then

tr tr (B.1)

so that can also be written as

tr

Next, examine . Since is a diagonal matrix,
so are and . The th diagonal element of , for
example, is

However, the th diagonal element of is given by

Therefore

(B.2)

driving the entire expression for to zero.
The calculation of and follows along the same

lines as the calculation of .

APPENDIX C
CALCULATION OF FOR THEFAST FADING MODEL

We first write the derivatives of the correlation matrix (14)
with respect to the unknown parameters

(C.1)

where , and .
Now, in Section III-B1, using (30) and (32), we obtained (29)

as tr with and given
by (15) and (16), respectively. Beginning with the first element,
we use the definition of in (30) to explicitly write
as

...
...

...
. . .

...
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The next step is to multiply this matrix with . Since we per-
form the trace operation on the resulting matrix, we will calcu-
late only the diagonal elements of

diag

where diag denotes “the diagonal elements of.” The final
step is to sum these elements with those of (32) resulting in (33)

APPENDIX D
PROOF OFPROPERTY2 FOR THESLOW FADING BOUND

We begin with the expressed in term of the phase (23),
where for ease of notation, we replace
with . The resulting expression is

(D.1)

Examining this expression, we conclude that in order to prove
the property, it is enough to show that

is a nondecreasing function of or, equivalently,
, .
Begin by writing the difference explicitly

That is

(D.2)

The first two elements can be expanded as

Plugging this back into (D.2), we are now required to prove that

Expanding and then collecting, we get

The last expression is obviously non-negative, implying that
increasing the number of samples does not decrease the,
which proves the property.
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