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On the Capacity of Communication Channels With
Memory and Sampled Additive Cyclostationary
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Abstract— In this work we study the capacity of interference-
limited channels with memory. These channels model
non-orthogonal communications scenarios, such as the
non-orthogonal multiple access (NOMA) scenario and underlay
cognitive communications, in which the interference from other
communications signals is much stronger than the thermal noise.
Interference-limited communications is expected to become
a very common scenario in future wireless communications
systems, such as 5G, WiFi6, and beyond. As communications
signals are inherently cyclostationary in continuous time (CT),
then after sampling at the receiver, the discrete-time (DT)
received signal model contains the sampled desired information
signal with additive sampled CT cyclostationary noise. The
sampled noise can be modeled as either a DT cyclostationary
process or a DT almost-cyclostationary process, where in the
latter case the resulting channel is not information-stable. In a
previous work we characterized the capacity of this model for
the case in which the DT noise is memoryless. In the current
work we come closer to practical scenarios by modelling the
resulting DT noise as a finite-memory random process. The
presence of memory requires the development of a new set
of tools for analyzing the capacity of channels with additive
non-stationary noise which has memory. Our results show,
for the first time, the relationship between memory, sampling
frequency synchronization and capacity, for interference-limited
communications. The insights from our work provide a link
between the analog and the digital time domains, which has been
missing in most previous works on capacity analysis. Thus, our
results can help improving spectral efficiency and suggest optimal
transceiver designs for future communications paradigms.

Index Terms— Interference-limited communications, cyclosta-
tionary processes, almost-cyclostationary processes, information
spectrum, capacity.

I. INTRODUCTION

WE CONSIDER maximizing the information rates
in interference-limited communications, which is a

communications scenario in which message decoding is
impeded by another communications signal, instead of by the
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commonly-studied thermal noise. Interference-limited com-
munications has been attracting much interest in recent
years; One major reason is the emergence of non-orthogonal
multiple access (NOMA) as a major paradigm for 5G
communications [1]. Another important motivation is that
interference-limited communications corresponds to multiple
existing communications scenarios, including, for example,
digital subscriber line (DSL), in which crosstalk is limiting
the rate of information [2], and underlay cognitive communi-
cations, in which the secondary user is the major source of
interference to the primary user [3].

Since communications signals are man-made, then they
inherently possess cyclostationary statistics [4, Ch. 1.3],
which follows as the signal generation process repeats at
every symbol interval. Consequently, when communications
is limited by interference, the corresponding continuous-
time (CT) channel is modeled as a linear channel with
additive wide-sense cyclostationary (WSCS) noise. In modern
communications, the receiver first samples the received CT
signal in order to facilitate digital processing. When the
sampling interval at the receiver is commensurate with the
period of the CT WSCS interference process, a situation
referred to in this work as synchronous sampling, the resulting
sampled discrete-time (DT) interference is also WSCS. This
channel model was extensively analyzed in previous works:
The capacity of point-to-point (PtP) DT channels with a finite
memory and with additive WSCS Gaussian noise (ACGN)
was derived in [5] for the case in which the channel input
is subject to a time-averaged per-symbol power constraint.
Capacity characterization in [5] was obtained via both a
time-domain approach and a frequency-domain approach.
Subsequently, the capacity of DT multiple input-multiple
output (MIMO) channels with finite-memory ACGN was
derived in [6], the secrecy capacity of DT finite-memory
channels with ACGN was derived in [7], and bounds on the
capacity of DT channels with non-Gaussian WSCS noise
were presented in [8]. Algorithmic aspects of reception in
the presence of ACGN have also been studied: In [9] a
receiver structure which uses the periodicity of the noise
correlation function for noise cancellation was presented, and
in [10] optimal adaptive filtering based on least-mean-squares
adaptation for DT jointly WSCS processes was studied.

We note that, practically, the frequency of an oscillator
cannot be deterministically set due to its inherent physical
properties, see, e.g., [11]. Thus, even though in the system
design, symbol clocks are typically set to nominal values given
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by finite-precision decimal numbers, see, e.g., [12], then, as the
interference and the signal-of-interest (SOI) are clocked by
physically separate oscillators, there is no reason to assume
that their actual symbol intervals are related by a rational
factor, due to the clocks’ inherent frequency variability. This is
the main motivation for the model1 considered in the current
work. When the sampling interval at the receiver is incommen-
surate with the period of the CT WSCS interference process,
a situation referred to in this work as asynchronous sampling,
the resulting sampled DT interference is no longer WSCS,
but rather it is a wide-sense almost cyclostationary (WSACS)
random process [13, Sec. 3.9]. As WSACS processes are
non-stationary, the resulting DT channel is generally not
information-stable, namely, the conditional distribution of
the channel output given the input does not behave ergodi-
cally [14]. As a consequence, standard information-theoretic
tools (e.g., based on joint typicality) cannot be applied in the
capacity characterization of such channels. It is noted that,
as in practice, a receiver synchronizes its sampling rate with
the symbol rate of the desired information signal, rather than
with the symbol rate of the interference, asynchronous sam-
pling is necessarily a frequent situation in practical systems,
and thus, analysis of scenarios with asynchronous sampling
carries practical, as well as theoretical, importance.

While communications with synchronous sampling was
extensively analyzed, communications scenarios with asyn-
chronous sampling have not been treated until recently.
In [15], we took a first step towards the capacity analysis of
asynchronously-sampled interference-limited Communication
Channels by considering the memoryless case. In this context,
a DT memoryless interference process is obtained by sampling
a CT finite-memory WSCS process with a sampling interval
that is greater than its correlation length. Thus, the correlation
function of the resulting DT process is either a periodically
time-varying or an almost periodically time-varying, scaled
Kornecker’s delta functions, which, for Gaussian processes
implies that different samples are independent. It follows
that [15] restricts the shape of the CT correlation function as
well as restricts the sampling rate to be low, which restricts
the information rate carried by the SOI. For this scenario, [15]
derived a limiting expression for the capacity. As the channel
is not information-stable, analysis was carried out within the
framework of information spectrum, leading to a capacity
expressed as the limit-inferior of a sequence of capacities
corresponding to synchronously-sampled CT channels with
ACGN. The work [15] presented several interesting insights:
First, it was shown that when sampling is synchronous, capac-
ity depends on the sampling interval and on the sampling
phase, even when the sampling interval is smaller than half
the period of the noise correlation function. Another important
insight obtained from [15] is that when sampling is asyn-
chronous, capacity does not vary with the sampling rate or the
sampling phase. Finally, it was observed that for some syn-

1It is noted that while our model is closer to practicality than the models in
previous works, still it is assumed that the variations of the clocks’ frequencies
around their respective actual values in practice, can be ignored. A complete
model would account also for the impact of such variations on the statistics
of the interference, but this is outside the framework of the current analysis.

chronous sampling rates, capacity in higher than the capacity
obtained with asynchronous sampling rates arbitrarily close
to the corresponding synchronous sampling rates. This means
that practically, capacity of sampled CT interference-limited
channels should be computed assuming asynchronous sam-
pling, to avoid a false notion of a high capacity which hinges
on an impractically accurate sampling frequency synchroniza-
tion between the receiver and the interference. The impact of
sampling frequency synchronization was subsequently studied
in [16] for the dual problem of compressing a DT memoryless
Gaussian random source process, obtained by asynchronously
sampling a CT WSCS Gaussian source process. The rate-
distortion function (RDF) for this scenario was derived for
the low distortion regime, as a limit of RDFs obtained by syn-
chronously sampling the CT source process. It was observed
that asynchronous sampling can result in higher compression
rates than those obtained for synchronous sampling, mirroring
the conclusions of [15] on the channel capacity.

The relationship between the analog domain and the digital
domain has also attracted attention from additional aspects,
as part of the research effort to accurately characterize the
information rates for communications over physical channels:
The work of [17] considered sampling of a CT linear, time-
invariant (LTI) additive stationary noise channel, and showed
that sampling rates higher than the Nyquist rate do not
facilitate increase in capacity. The work of [18], provided
a quantitative analysis of the rate of convergence of the
mutual information between the message and the sampled
(i.e., digital) additive white Gaussian noise (AWGN) channel
outputs, to the CT (i.e., analog) channel’s mutual information,
with and without feedback, under certain conditions.

In the current work we extend the scenario considered in the
previous work of [15] by analyzing the capacity of sampled
CT interference-limited channels, in which the interfering CT
process is a correlated WSCS process, and the sampling
interval is allowed to be shorter than the correlation length
of the interference. Therefore, the scenario considered in the
current work places restrictions on the shape of the CT noise
correlation function, while allowing sampling intervals shorter
than the correlation length. In contrast, [15] restricts both the
shape of the CT noise correlation function and requires the
sampling interval to be longer than the correlation length,
in order to obtain an impulse-shaped DT lag profile. One
important consequence of this difference is that samples of
the DT interference process in the current scenario may be
statistically dependent, while in [15] they must be independent.
When sampling is synchronous, we arrive at the model studied
in [6], thus, the focus of the current work is on asynchronous
sampling. The studied setup provides a connection between the
analog model and the digital model obtained after sampling
at the receiver, when sampling results in a non-stationary DT
channel model with memory – a situation which has a practical
relevance for current and future communications setups, but
has not been analyzed previously.

A. Main Contributions

In this work we analyze the fundamental rate limits for DT
channels with correlated WSACS Gaussian noise having a
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finite correlation length, arising from sampling the output of
CT channels with ACGN. Since additive WSACS Gaussian
noise channels are not information-stable, it is not possible
to employ standard information-theoretic arguments in the
study of their capacity, and we resort to information-spectrum
characterization of the capacity [19], within which we derive a
new set of tools for the capacity analysis of DT channels with
sampled finite-memory cyclostationary noise. We first observe
that due to non-stationarity, the distribution function of the
sampled noise process depends on the sampling time offset
w.r.t. the period of the CT noise correlation function, referred
to in this work as the sampling phase. Then, we obtain a
general expression for the capacity when transmission delay
is not allowed, namely when the transmitter must start trans-
mitting the next message immediately upon completion of the
transmission of the current message. Finally, for the case in
which the correlation function decreases sufficiently fast with
the lag, and the transmitter is allowed to delay the transmission
of the next message by a finite and bounded delay, s.t. the
optimal sampling phase is attained for subsequent message
transmissions, a situation we refer to as transmission delay is
allowed, then capacity can be expressed as the limit-inferior
of a sequence of capacities corresponding to DT ACGN
channels with finite memory, such that the correlation function
of the sequence of DT WSCS noise processes approaches
the correlation function of the DT WSACS noise process as
the sequence index increases. Our characterization leads to
important observations on the relationship between channel
memory, sampling frequency synchronization and the achiev-
able rate: We show that for synchronous sampling, capacity
varies with the sampling rate and the sampling phase. It is then
numerically demonstrated that when the power of the white
thermal noise at the receiver is much smaller than the power of
the interference, then an increase in the sampling rate results
in higher capacity values. This follows as at higher sampling
rates, the power spectral density (PSD) of the DT noise varies
in the frequency domain, thereby facilitating a better allocation
of the transmit power across the noise spectrum.

B. Organization

The rest of this paper is organized as follows: Section II
sets the mathematical notations and quantities applied in
this study. Section III presents the problem formulation and
discusses the initial channel state; Section IV states the
capacity characterization for asynchronously-sampled ACGN
channels with finite memory when transmission delay is not
allowed. Section V characterizes the capacity when a finite and
bounded transmission delay is allowed. Section VI presents
numerical results to demonstrate the impact of the different
scenario parameters on capacity. Lastly, Section VII concludes
the paper. The proofs of the theorems are detailed in the
appendices.

II. PRELIMINARIES

A. Notations

We use upper-case letters, e.g., X , to denote random vari-
ables (RVs), lower-case letters, e.g., x, to denote deterministic

values, and calligraphic letters, e.g., X , to denote sets. The sets
of real numbers, rational numbers, non-negative integers and
integers are denoted by R, Q, N, and Z respectively, where N+

denotes the set of positive integers. Sans-Serif font is used for
denoting matrices, e.g., B, where the element at the i-th row
and the j-th column of B is denoted with (B)i,j , i, j ∈ N. For
k, l ∈ N+ we denote the all-zero k × l matrix with 0k×l, all-
zero k×k square matrix with 0k and the k×k identity matrix
with Ik. For a k × k matrix C we use maxEig{C} to denote
its maximal eigenvalue, Λ(k)

i {C} to denote its i-th ordered
eigenvalue in descending order, 0 ≤ i ≤ k − 1, Tr {C} to
denote its trace, and Det

(
C
)

to denote its determinant. We use
rank(B) to denote the rank of a matrix B and range(B) to
denote its column range. Column vectors are denoted with
boldface letters, where lower-case letters denote deterministic
vectors, e.g., x, and upper-case letters denote random vectors,
e.g., X; the i-th element of x, i ∈ N, is denoted with (x)i, and
for a, b ∈ N, b > a, we write xb

a ≜
[
(x)a, (x)a+1, . . . , (x)b

]T
,

where we also denote x(b) ≡ xb−1
0 . We use X ∼ FX to

denote that the cumulative distribution function (CDF) of the
RV X is FX . Specifically, X ∼ N(x0, C) denotes a real
Gaussian random vector X with mean x0 and covariance
matrix C. For the RVs X and Y we use X ⊥⊥ Y to denote
that they are statistically independent. Transpose, Euclidean
norm, 1-norm, ∞-norm, stochastic expectation, differential
entropy, and mutual information are denoted by (·)T , ∥·∥,
∥·∥1, ∥·∥∞, E{·}, h(·), and I(·; ·), respectively, and we define
a+ ≜ max {0, a}. A square k × k real matrix A is called
positive definite, denoted A ≻ 0 (positive semidefinite, resp.,
denoted A ≽ 0) if for any x(k) ∈ Rk, x(k) ̸= 0k×1, it holds
that (x(k))T ·A ·x(x) > 0 ((x(k))T ·A ·x(x) ≥ 0, resp.). We use
(dist.)

= to denote equality in distribution, log(·) to denote the
base-2 logarithm, and ln(·) to denote the natural logarithm.
Lastly, for any sequence y[i], i ∈ N, and b ∈ N+, we use y(b)

to denote the column vector obtained by stacking the first b

sequence elements
[(

y[0]
)T

, . . . ,
(
y[b− 1]

)T ]T
.

B. Wide-Sense Cyclostationary Processes

We next review some preliminaries from the theory of
cyclostationarity, beginning with the definition of a wide-sense
cyclostationary process:

Definition 1 (A Wide-Sense Cyclostationary Process [20,
Def. 17.1], [4, Pg. 296]): A scalar stochastic process
{X(t)}t∈T , where T = Z or T = R, is referred to as
WSCS if both its mean and its correlation function are periodic
with respect to t ∈ T with some period Tp ∈ T : µX(t) ≜
E{X(t)} = µX(t + Tp) and cX(t, τ) ≜ E{X(t + τ)X(t)} =
cX(t + Tp, τ), ∀t, τ ∈ T .

Next, we consider WSACS random processes, recalling first
the definition of an almost-periodic function:

Definition 2 (An Almost-Periodic Function [21, Defs. 10,
11], [22, Ch.1.2]): A function f(t), t ∈ T , where T = Z or
T = R, is referred to as almost-periodic if for every ϵ > 0,
there exists a number l(ϵ) ∈ T , l(ϵ) > 0, such that for any
t0 ∈ T , there exists τϵ ∈

(
t0, t0 + l(ϵ)

)
, such that

sup
t∈T

|f(t + τϵ)− f(t)| < ϵ.
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Fig. 1. (a). 3D visualization of the correlation function periodic for a CT
WSCS random process at three lag values: |λ| = [0, 1, 2]; (b). Illustration of
the DT correlation function obtained by sampling at different sampling rates
and offsets. ′o′ marks synchronous sampling, with Ts

Tsym
= 1

4
∈ Q, and ′∗′

marks asynchronous sampling, with Ts
Tsym

= 1
3π

/∈ Q.

Definition 3 (A Wide-Sense Almost-Cyclostationary Pro-
cess [20, Def. 17.2], [4, Pg. 296], [22, Ch. 1.3]): A scalar
stochastic process {X(t)}t∈T , where T = Z or T = R,
is called WSACS if its mean and its autocorrelation function
are almost-periodic functions with respect to t ∈ T .

C. Sampling of CT WSCS Random Processes

To facilitate the application of digital processing, the
received signal is sampled at the receiver. Consider a DT
random process XTs,τ0 [i], i ∈ Z, obtained by sampling the
CT WSCS random process X(t), which has a period of Tp,
with a sampling interval of Ts and at a sampling phase of
τ0 ∈ [0, Tp), i.e., XTs,τ0 [i] ≜ X(i · Ts + τ0). In the following,
we demonstrate that contrary to sampled stationary processes,
for CT cyclostationary processes, the values of Ts and τ0 have
a significant impact on the statistics of the resulting sam-
pled process XTs,τ0 [i]. Consequently, the common practice
of applying stationary theory to such scenarios can lead to
erroneous results, e.g., [23]. As an example, we illustrate in Fig
1(a) the correlation function of a CT WSCS random process
at three CT lag values: |λ| = 0, 1, 2 [sec], where the period in
t is Tsym = 1/60 [sec]. The bottom plots in Fig 1(b) depict
two sampling scenarios: In the first case, shown in the bottom-
left plot, the CT signal is sampled at a sampling interval of
Ts = Tsym

4 and the sampling phase is τ0 = Ts
2π . This is depicted

by the ′o′ markers on the CT correlation function at the top
figure in (b). Observe that in this case, the correlation function
at the three lag values, |λ| = 0, 1, 2, depicted by the blue, red
and green plots, respectively, is periodic in DT. As stated in
Section I, such sampling, which maintains the periodicity of
the statistics in DT, is referred to as synchronous sampling,
and the resulting DT process is WSCS. The bottom-right plot
of Fig 1(b) depicts the DT correlation function obtained for
τ0 = 0 and Ts = Tsym

3π , represented by the ′∗′ markers on the
CT correlation function at the top figure in (b). Hence, Ts

Tsym

is an irrational number, and the DT correlation function is
not periodic but is almost-periodic at all lags, contrary to the
first case. Therefore, the resulting DT random process is not
WSCS but WSACS [13, Sec. 3.9]. As stated in Section I such
a sampling scenario is referred to as asynchronous sampling.

This example clearly demonstrates that when sampling CT
WSCS processes, slight variations in the sampling interval
and the sampling phase may result in significantly different
statistics for the sampled processes. As explained in Section I,
such sampling scenarios exist in many Communication Chan-
nels, e.g., in interference-limited communications, in which
the noise component corresponds to a sampled CT WSCS
process. The consequence of the variability of the statistics
of sampled CT WSCS processes is that channel capacity of a
DT channel obtained by sampling the output of a CT additive
WSCS noise channel strongly depends on the actual sampling
rate. In a recent study, [15], we characterized the capacity
of such DT channels assuming the sampled additive noise
is Gaussian and memoryless. This study aims to generalize
the capacity characterization to DT channels with additive
Gaussian noise with a finite memory, where the noise pro-
cesses arise from the sampling of CT finite-memory WSCS
processes representing communications signals, as developed
in the subsequent sections.

III. MODEL AND PROBLEM FORMULATION

In this section we derive the considered channel model
and detail the different assumptions on the communications
scenario. We begin with the mathematical definition of the
setup.

Definition 4: A finite-memory DT real-valued random pro-
cess W [i], i ∈ Z, with memory τm ∈ N+, satisfies that ∀i ∈ Z,

E
{
W [i] ·W [i− λ]

}
= E

{
W [i]

}
· E
{
W [i− λ]

}
, ∀|λ| > τm.

(1)

Such a model is appropriate for processes representing
single-carrier digitally modulated signals with inter-symbol
interference (ISI), where the memory of the process is deter-
mined by the finite length of the overall channel impulse
response (CIR) (i.e., the CIR which accounts for the pulse
shape, propagation through the physical medium and analog
filters in the signal paths at the transmitter and at the receiver).
This model is also appropriate for processes representing
orthogonal frequency division multiplexing (OFDM) modu-
lated signals, as in such processes the lack of correlation
follows from the finite duration of the OFDM symbol, where
the cyclic prefix (CP) interval and receiver processing induce
statistical independence between the received samples corre-
sponding to different OFDM symbols.

Definition 5: An [R, l] code with rate R ∈ R++ and
blocklength l ∈ N+ consists of: 1) A message set U ≜
{1, 2, . . . , 2lR}; 2) An encoder el which maps a message
u ∈ U into a codeword x

(l)
u =

[
xu [0] , xu [1] , . . . , xu [l − 1]

]
;

and 3) A decoder dl which maps the sequence of channel
outputs, denoted y(l), into a message û ∈ U .

The set {x(l)
u }2

lR

u=1 is referred to as the codebook and the
message u is selected uniformly and independently from U .
Note that as the noise process is generally non-stationary, then
the probability distribution of the channel output sequence,
denoted Y (l), depends on an initial channel state s0 ∈ S0,
where S0 is the set of all possible initial channel states. The
set S0 will be explicitly stated in the context of this work in
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Sec. III-C. The average probability of error when the initial
channel state is s0 is defined as:

P l
e(s0) =

1
2lR

2lR∑
u=1

Pr
(

dl

(
Y (l)

)
̸= u

∣∣∣U =u, s0

)
.

Definition 6: A rate Rc ∈ R++ is achievable if for every
η1, η2 > 0, ∃l0 ∈ N+ such that ∀l > l0 there exists an [R, l]
code which satisfies

sup
s0∈S0

P l
e(s0) < η1, (2a)

and

R ≥ Rc − η2. (2b)

Capacity is defined as the supremum over all achievable rates.
Lastly, we recall the definition of the limit-inferior in

probability [19, Def. 1.3.2]:
Definition 7: The limit-inferior in probability of a sequence

of real RVs {Zk}k∈N+ is defined as

p− liminf
k→∞

Zk ≜ sup
{

α ∈ R
∣∣ lim

k→∞
Pr (Zk < α) = 0

}
≜ α0.

(3)

Hence, ∀α̃ > α0, ∃ϵ > 0, such that there exist countably
many k ∈ N+ for which Pr(Zk < α̃) > ϵ.

As was stated in [15], see also [19, Pg. VIII], the quantity
p− liminf

k→∞
Zk is well-defined even when the sequence of RVs

{Zk}k∈N+ does not converge in distribution. This makes
the limit-inferior in probability applicable to the analysis of
scenarios in which methods based on the law of large numbers
cannot be applied, e.g., when non-stationary and non-ergodic
processes are considered [24]. We note, however, that the
application of Def. 7 in information-theoretic analysis typically
results in expressions which are very difficult to compute.

A. Problem Formulation

Consider a real-valued zero-mean CT WSCS Gaussian
random process Wc(t) ∈ R, whose autocorrelation function,
cWc(t, λ) ≜ E

{
Wc(t + λ)Wc(t)

}
, is continuous in t and in

λ, periodic in t with a period Tpw ∈ R++ and has a finite
correlation length λm ∈ R++, i.e., cWc(t, λ) = cWc(t +
Tpw, λ), ∀t, λ ∈ R, and cWc(t, λ) = 0 for any |λ| ≥ λm > 0.

Since the autocorrelation function cWc(t, λ) is continuous
and periodic, it is sufficient to characterize its properties only
over a compact interval T0 ∈ R where T0 = [t0, t0 +Tpw], for
some arbitrary t0 ∈ R; it follows that cWc(t, λ) is bounded
and uniformly continuous with respect to time t ∈ T0 and lag
λ ∈ R [25, Ch. III, Thm. 3.13].

The process Wc(t) is sampled at a finite, positive sampling
interval Ts(ϵ) such that Tpw = (p + ϵ) · Ts(ϵ) where p ∈ N+

and ϵ ∈ [0, 1), resulting in the DT random process Wϵ[i] ≜
Wc(τ0 + i · Ts(ϵ)), i ∈ Z. In this study we focus on the case
in which the sampling interval is smaller than the correlation
span of the CT process Wc(t), hence, letting τ0 ∈ R denote
the sampling phase corresponding to index i = 0, then Wϵ[i] is

a zero-mean Gaussian random process whose autocorrelation
function is given by:

c
{τ0}
Wϵ

[i, ∆] ≡ E
{

Wϵ[i + ∆] ·Wϵ[i]
∣∣∣τ0

}
≜ E

{
Wc

(
(i+∆) · Tpw

p + ϵ
+τ0

)
·Wc

(
i · Tpw

p+ϵ
+τ0

)}
= cWc

(
i · Tpw

p+ϵ
+τ0, ∆ · Tpw

p+ϵ

)
. (4)

It follows that c
{τ0}
Wϵ

[i, ∆] = 0 for all |∆| >
⌈

(p+1)·λm

Tpw

⌉
≜

τm < ∞, hence, the correlation length of Wϵ[i] is finite. In the
following we say that Wϵ[i] has a finite memory τm < ∞,
referring to the finite correlation length of the sampled process
Wϵ[i]. Due to the fact that Wϵ[i] is a sampled physical
noise process, it can be assumed that the correlation matrix
corresponding to any sequence length is positive definite, see
elaboration in Comment A.1.

Next, observe that from (4), see also [15], it follows that
when ϵ ∈ Q++, i.e., ∃u, v ∈ N+ s.t. ϵ = u

v , then the
process Wϵ[i] is WSCS with a period which is equal to pu,v ≜
p·v+u. Such a sampling scenario corresponds to synchronous
sampling, for which capacity was characterized in [5]. On the
other hand, when ϵ is irrational (ϵ /∈ Q), the resulting DT
process Wϵ[i] is WSACS [13, Sec. 3.9], which corresponds
to asynchronous sampling. In this work, we consider DT
channels with real-valued additive, finite-memory WSACS
Gaussian noise. Letting X[i] and Yϵ[i] denote the real-valued
channel input and output, respectively, at time i ∈ Z, the
input-output relationship for the transmission of a sequence
of l ∈ N+ channel inputs is given by:

Yϵ[i] = X[i] + Wϵ[i], i ∈ {0, 1, . . . , l − 1}, (5)

where the subscript ϵ is retained to indicate the synchronization
mismatch between the period of the CT noise and the sampling
interval at the transmitter. The noise process Wϵ[i] has a
temporal correlation length of τm samples. The channel input,
X[i], is subject to a per-codeword power constraint P ,

1
l

l−1∑
i=0

(
xu [i]

)2 ≤ P, u ∈ U . (6)

Lastly, it is assumed that the input and the noise in (5) satisfy
the independence assumption:

Assumption 1:
{
X[i]

}
i∈Z is independent of

{
Wϵ[i]

}
i∈Z.

The channel model in (5) is particularly relevant for mod-
elling channels in which Wc(t) is a digitally modulated
interfering communications signal, and is thus a CT WSCS
process with a period which is equal to its symbol duration
[25, Sec. 5]. For example, when Wc(t) is an OFDM modulated
signal with a sufficiently large number of subcarriers, then it
can be modeled as a Gaussian process [26], and the correlation
function is periodic with a period which is equal to the duration
of an OFDM symbol. As another example, when Wc(t) is a
linearly modulated quadrature amplitude modulation (QAM)
signal with a partial response pulse shaping, then, when the
ISI spans a sufficiently long interval, it follows that Wc(t) is
modeled as a Gaussian process, see [27, Sec. III-A]. Here,
again the correlation function is periodic, where the period
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is equal to the duration of an information symbol. In both
examples, the process Wc(t) has a finite correlation length.
In such interference-limited setups, as the sampling rate at the
receiver is generally not synchronous with the symbol rate
of the interferer, then the resulting DT interfering signal can
be modeled as a finite-memory WSACS process, giving rise
to the channel input-output relationship in (5). Our goal is
to characterize the capacity of the channel (5) subject to the
power constraint (6). We also note that the model of Eqn. (5)
has previously been used in the analysis of communications
systems, e.g., in [28], which studied feedback capacity for
stationary, finite-dimensional Gaussian channels, hence, the
current model adds the non-stationary noise characteristics to
the model considered in [28] (without feedback).

The analysis in this work relies also on the following two
assumptions:

Assumption 2: The transmitter (Tx) and the receiver (Rx),
are both assumed to know the CT noise correlation function
cWc(t, λ).

Note that, as explained in detail in the next subsection,
non-stationarity of the sampled noise statistics implies that
knowledge of cWc(t, λ) is not sufficient for maximizing the
rate, which is in contrast to the situation for DT channels with
additive stationary noise. Therefore, it is also assumed that

Assumption 3: The propagation delay between the transmit-
ter and receiver is negligible compared to the period and to the
maximal slope of the (uniformly continuous) noise correlation
function.

This assumption implies that the receiver can attain perfect
sampling time synchronization with the transmitter, as well
as that both the transmitter and the receiver can identify the
temporal phase within the period of the noise correlation
function at any time instant. This is referred to in the fol-
lowing as perfect Tx-Rx timing synchronization. Note that the
sampling interval used by the transmitter and receiver is not
synchronized with the period of the noise correlation function
in the sense that their ratio is an irrational number.

B. An Example Scenario: Lowpass Channel With ACGN

As another motivating example for the DT model of
Eqn. (5), consider a CT baseband channel model with memory,
in which the received signal is given by Y (t) = h(t)∗X(t)+
W (t), where ′∗′ denotes the linear convolution, and W (t) is
a WSCS Gaussian random process with a finite memory (i.e.,
an interfering communications signal). For simplicity of the
discussion assume that the channel can be approximated as a
first-order stable lowpass filter with a transfer function (TF)

H(s) =
1

s + a
, a ∈ R++, ℜ{s} > −a.

Letting X[m] denote the DT information sequence at a rate of
1
Ts

, the overall received CT signal component can be modeled
as
∞∑

m=−∞
X[m]δ(t−mTs) ∗ h(t) =

∞∑
m=−∞

X[m] · h(t−mTs).

Thus, sampling at intervals of Ts ∈ R++, we obtain the
following DT relationship between X[m], Y [n] ≜ Y (n · Ts),

W [n] ≜ W (n · Ts) and h[n] ≜ h(n · Ts):

Y [n] =
∞∑

m=−∞
X[m] · h[n−m] + W [n],

which is a real-valued linear, time-invariant DT channel with
memory, where W [n] is a DT Gaussian random process
with a finite memory. Observe that the equivalent DT CIR
is obtained from the CIR of the CT channel by sampling
(i.e., via the so-called impulse-invariance method, see, e.g.,
[20, Sec. 11.3.2.2]), which results in a DT TF of the form:

H(z) =
1

1− e−a·Ts · z−1
, |z| > e−a·Ts .

Since α ≜ e−a·Ts < 1 for all considered Ts, then H(z)
corresponds to a stable and causal channel with a stable
and causal inverse. Such a channel model is very popular
in communications, see, e.g., [29]. The zero-forcing equalizer
for this model is the highpass filter whose TF is obtained by
taking the inverse of H(z): HZF (z) = 1 − α · z−1, and its
impulse response is hZF [n] = δ[n] − α · δ[n − 1]. Observe
that after filtering Y [n] with hZF [n], the resulting interference
process, namely, W [n] ∗ hZF [n], is a random process with
a finite memory, hence, after zero-forcing equalization, the
resulting overall DT channel is appropriately modeled via
Eqn. (5). In particular, when the interference is a single-carrier
QAM signal, filtering effectively increases the duration of the
CIR, hence, filtering increases the interference’s memory. Note
that when the interference is an OFDM signal, then, if the
length of the overall CIR is shorter than the length of the
CP (which should hold by design), then subsequent symbols
remain independent.

C. The Initial Channel State

Note that the channel model in Eqn. (5) with the input power
constraint of Eqn. (6) corresponds to an additive Gaussian
noise channel, where the Gaussian noise is non-stationary.
Due to Gaussianity, the distribution of the noise is completely
characterized by the first two moments. As the noise has a
zero-mean, then non-stationarity of the noise manifests itself
via the fact that its correlation matrix is not Toeplitz. It is
noted that such a general model was discussed in [30], subject
to an average sum-power constraint. In this context we make
the following observation: In order to transmit a message,
the transmitter has to select the respective codeword. As the
sampled noise correlation function is generally non-periodic,
then the noise correlation matrices corresponding to different
message intervals may be completely different. Accordingly,
to facilitate analysis of such channels, it is necessary to
introduce an initial state variable which identifies the noise
correlation function present during the transmission of the
message. For the case of sampled cyclostationary noise, the
initial state corresponds to the relative location of the first
sample of the DT noise correlation function within the period
of the CT noise correlation function, which, for the subsequent
discussion is denoted with τ0. Due to the periodicity of
cWc(t, λ) in t ∈ R, it is enough to consider τ0 ∈ [0, Tpw),
hence, the initial state space S0 is the interval [0, Tpw). In this
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context, it is noted that the models [30] and of [31] do not
consider an initial channel state in the model while pertaining
to be relevant to non-stationary channels. This implies that the
models in [30] and [31] make a hidden assumption that while
the channel is non-stationary, there exists a synchronization
mechanism that sets the channel statistics to be identical for
subsequent message intervals.

Moreover, as the correlation function of the optimal input is
a function of the sampled noise correlation function, it follows
that knowledge of the noise correlation function cWc(t, λ)
alone at the transmitter is not sufficient for obtaining the opti-
mal performance, and knowledge of the initial state τ0 for each
message is required. Due to Assumption 3, this knowledge
is available in our setup. This knowledge requirement is not
necessary when the additive noise is stationary.

IV. CAPACITY CHARACTERIZATION WHEN
TRANSMISSION DELAY IS NOT ALLOWED

When the initial state τ0 is known at the transmitter, it is
able to adapt the statistics of the codebook such that the
achievable rate is maximized. When transmission delay is not
allowed, then once a message transmission has been com-
pleted, the subsequent message is transmitted immediately,
without further delay, at the sampling phase τ0 present at
the time the transmission of the current message has finished.
Due to Assumption 3, of perfect Tx-Rx timing synchronization,
it follows that both the receiver and the transmitter know the
DT noise correlation function at every message transmission.
Letting X

(k)
opt denote the input process which maximizes the

mutual information between X(k) and Y
(k)
ϵ when the sampling

phase is τ0, i.e., maximizes I(X(k); Y (k)
ϵ |τ0), we obtain the

following capacity characterization:
Theorem 1: Consider the channel (5) with power con-

straint (6), when the transmitter can identify the sampling
phase within a period of the CT noise correlation function,
τ0 ∈ [0, Tpw), and is allowed to adapt its information rate and
codebook accordingly. If no transmission delay is allowed,
then capacity is given by

Cϵ =
1

Tpw

∫ Tpw

τ0=0

Cϵ(τ0)dτ0,

where Cϵ(τ0) ≜ liminf
k→∞

1
k I(X(k)

opt ; Y (k)
ϵ |τ0), as long as the

maximizing input X
(k)
opt is Gaussian, with a distribution which

depends on τ0 and satisfies 1
kTr

{
C

X
(k)
opt

(τ0)
}

≤ P and

1
k2 Tr

{(
C

X
(k)
opt

(τ0)
)2} −→

k→∞
0.

Proof: The proof is provided in Appendix A.
Comment 1 (The Requirement on the Trace of the Squared

Input Correlation Matrix): We note that the condition
1
k2 Tr

{(
C

X
(k)
opt

(τ0)
)2} −→

k→∞
0 is introduced in order to satisfy

the per-codeword power constraint (6). Such a condition was
also considered in [30, Sec. VIII].

Comment 2 (Capacity With an Average Power Constraint):
Instead of the per-codeword power constraint (6) one may
consider a more-relaxed average sum-power constraint, as in,

e.g., [32, Eqn. (7)], [30, Eqn. (7)]:

1
l

l−1∑
i=0

EU |xU [i]|2 ≤ P. (7)

With such a constraint then Thm. 1 holds without requiring
the consideration of Tr

{(
C

X
(k)
opt

(τ0)
)2}

. This follows as any

codebook of length k, generated randomly according to a
Gaussian distribution X

(k)
opt ∼ N

(
0k×1, CX

(k)
opt

(τ0)
)

such that

1
kTr

{
C

X
(k)
opt

(τ0)
}

= P − δ, where δ > 0 is arbitrarily small,

will satisfy

1
k

k−1∑
i=0

EU

{
|xU,opt[i]|2|

} (a)
=

1
2kR

2kR−1∑
u=0

1
k

k−1∑
i=0

|xu,opt[i]|2

(b)
=

1
2kR

2kR−1∑
u=0

ωu

(c)−→
k→∞

E{Ω1} (in probability)

≤ P,

where (a) follow by the uniform selection of codewords
for transmission; in (b) we consider the realizations ωu ≜
1
k

∑k−1
i=0 |xu,opt[i]|2: Note that for different indexes u ∈ U ,

the realizations ωu are generated independently using the
same multivariate distribution for all messages u ∈ U . The
expectation of the generating RV, E{Ω1}, is equal to

E{Ω1} = E
{1

k

k−1∑
i=0

|X1,opt[i]|2|
}

=
1
k

Tr
{

C
X

(k)
opt

(τ0)
}
≤ P, u ∈ U .

Step (c) follows by the weak law of large numbers [33, Sec.
7.4], as the mean of 2kR independent realizations of the
independent and identically distributed (i.i.d) RVs {Ωu}u∈U
converges in probability to its expectation.

Then, we can conclude that the corresponding
p− liminf

k→∞
Zk,ϵ

(
F

X
(k)
opt |τ0

|τ0

)
, defined in (A.11), is achievable

by considering the proof of the direct part of [19, Thm.
3.2.1], as there is no need to restrict the selected codewords
when generating them according to the distribution
N
(
0k×1, CX

(k)
opt

(τ0)
)

. This follows as for sufficiently

large k the codebooks generated according to this Gaussian
distribution satisfy the average constraint (7) with a probability
arbitrarily close to 1, as k increases. Thus, subject to (7), the
optimal input for Thm. 1 is X

(k)
opt ∼ N

(
0k×1, CX

(k)
opt

(τ0)
)

,

with 1
kTr

{
C

X
(k)
opt

(τ0)
}
≤ P .

When codebook adaptation is allowed but the rate has to be
fixed, the following corollary is immediate:

Corollary 1: Consider the channel (5) with power con-
straint (6), when the transmitter can identify the sampling
phase within a period of the CT noise correlation function,
τ0 ∈ [0, Tpw), and is allowed to adapt its codebook accord-
ingly. If the message rate has to be fixed, and no transmission
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delay is allowed, then capacity is given by

Cϵ = min
τ0∈[0,Tpw)

liminf
k→∞

1
k

I(X(k)
opt ; Y (k)

ϵ |τ0),

as long as the maximizing input X
(k)
opt is Gaussian,

with a distribution which depends on τ0 and satisfies
1
kTr

{
C

X
(k)
opt

(τ0)
}
≤ P and 1

k2 Tr
{(

C
X

(k)
opt

(τ0)
)2} −→

k→∞
0.

V. CAPACITY CHARACTERIZATION WHEN TRANSMISSION
DELAY IS ALLOWED

In this section we consider a transmission scenario in which
the transmitter is allowed to delay the transmission of the next
message such that it would begin at the optimal sampling
phase within the period of the noise correlation function.
In such a scenario, capacity can be expressed via a sequence
of capacities of DT additive WSCS Gaussian noise channels.

A. Approaching the Relationship (5) via a Sequence of DT
ACGN Channels

To characterize the capacity of the channel (5), we define
for each n ∈ N+ a rational number ϵn ≜ ⌊n·ϵ⌋

n and a
corresponding DT process Wn[i] ≜ Wc

(
i·Tpw
p+ϵn

+ τ0

)
, i ∈ Z,

τ0 ∈ [0, Tpw). As follows from the discussion in Sec. III-A,
the DT process Wn[i] is a zero-mean WSCS Gaussian random
process with period pn = p · n + ⌊n · ϵ⌋. Note that as

τm ≜

⌈
(p + 1) · λm

Tpw

⌉
≥
⌈

(p + ϵn) · λm

Tpw

⌉
,

then the correlation length of the noise Wn[i] can be set to
τm for all n ∈ N+, hence, the noise process Wn[i] has a finite
memory of τm.

Next, we define a channel with input X[i] and output Yn[i]
via the input-output relationship:

Yn[i] = X[i] + Wn[i], (8)

where the channel input is subject to the per-codeword power
constraint (6). The channel (8) is an additive noise channel
with correlated, finite-memory WSCS Gaussian noise Wn[i],
whose period is pn. The capacity of the channel (8) was
explicitly derived in [6, Thm. 1], by transforming the DT chan-
nel (8) into a MIMO channel via the decimated component
decomposition (DCD) [20, Sec. 17.2]. For blocklengths which
are integer multiples of pn, the DCD transforms the process
Wn[i] into an equivalent pn-dimensional stationary process
W̃ {pn}

n [i], such that
(
W̃ {pn}

n [i]
)
b

= Wn[i · pn + b], 0 ≤ b ≤
pn − 1. We define the correlation matrix for sampling phase

τ0 as C
W̃
{pn}
n

[τ ; τ0] ≜ E

{
W̃ {pn}

n [i+ τ ] ·
(
W̃ {pn}

n [i]
)T
∣∣∣∣τ0

}
.

From the finite correlation length of the process Wn[i], it fol-
lows that for all n such that pn > τm,

(
C

W̃
{pn}
n

[τ ; τ0]
)

k1,k2

=

0, ∀|τ | > 1, ∀k1, k2 ∈ {0, 1, . . . , pn − 1}, see [5,
Sec. IV]. Next, for all θ ∈ [−π, π), define the pn ×

pn matrix C′
W̃
{pn}
n

(θ; τ0) ≜
1∑

τ=−1
C

W̃
{pn}
n

[τ ; τ0] e−jθτ , let

{Λ′k,n(θ; τ0)}pn−1
k=0 be the eigenvalues of

(
C′

W̃
{pn}
n

(θ; τ0)
)−1

,

and let ∆̄{pn;τ0} be the unique solution to

1
2π · pn

pn−1∑
k=0

π∫
θ=−π

(
∆̄{pn;τ0}−

(
Λ′k,n(θ; τ0)

)−1
)+

dθ = P.

(9)

Then, the capacity of the channel (8), denoted Cn(τ0), is given
as [6, Thm. 1]:

Cn(τ0)=
1

4π · pn

pn−1∑
k=0

π∫
θ=−π

(
log
(
∆̄{pn;τ0}· Λ′k,n(θ; τ0)

))+

dθ

[bits per channel use]. (10)

Note that the capacity Cn(τ0) generally depends on the initial
sampling phase τ0. Then, maximizing over the initial sampling
phase we define

Cn = max
τ0∈[0,Tpw]

Cn(τ0). (11)

With the aid of (9)-(11), we subsequently obtain a char-
acterization for the capacity of the asynchronously-sampled
channel (5), denoted Cϵ, when transmission delay of up to
τm · Ts(ϵ) + Tpw between subsequent messages is allowed.
This is stated in the following theorem:

Theorem 2: Consider the channel (5) with power con-
straint (6), when the transmitter can identify the sampling
phase within a period of the noise correlation function, τ0 ∈
[0, Tpw), and may delay its message transmission time by up
to τm ·Ts(ϵ)+Tpw time units. If the noise correlation function
cWc(t, τ), characterized in Section III-A, satisfies

min
0≤t≤Tpw

{
cWc(t, 0)− 2τm · max

|λ|> Tpw
p+1

{
|cWc(t, λ)|

}}
≥γ1 >0,

(12)

and the power constraint P satisfies

P > max
t∈[0,Tpw]

(
cWc(t, 0) + 2τm · max

|λ|> Tpw
p+1

{
|cWc(t, λ)|

})
, (13)

then, for any fixed value of ϵ ∈ (0, 1), ϵ /∈ Q, capacity is given
by

Cϵ = liminf
n→∞

Cn, (14)

where Cn is obtained via (9)-(11). Furthermore, Gaussian
inputs are optimal.

Proof: The proof is detailed in Appendix B.
Comment 3 (On the Capacity for Synchronous Sampling):

When ϵ ∈ Q++, i.e., ϵ = u
v for some u, v ∈ N+, then the DT

noise process Wϵ[i] is WSCS with a period which is equal
to pu,v = p · v + u. As noted in Sections I and II-C, such
a sampling scenario corresponds to synchronous sampling,
whose capacity, when τ0 is given, was characterized
in [5], [6] and is given by (9)−(10), where pn is replaced
by pu,v , W̃ {pn}

n [i] is replaced by W̃ {pu,v}
u,v [i], and the

quantities appearing in the statement of (9)−(10) are
replaced by appropriate corresponding quantities. Note that
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for such an ϵ, then when n = b · v, b ∈ N+, we have
that ϵn = u

v , consequently, for ϵ ∈ Q++ it follows that
liminf
n→∞

Cn ≤ Cu
v

. Yet, from the upper bound in (B.17)
it holds that Cϵ ≤ liminf

n→∞
Cn, hence for ϵ ∈ Q++ we

immediately obtain Cϵ = liminf
n→∞

Cn.
Comment 4 (Elaboration on Condition (12)): Condition

(12) guarantees that for any sequence of k samples of
the noise process, denoted W

(k)
n ≡

{
Wn[i]

}k−1

i=0
, and

for any sampling phase τ0 ∈ [0, Tpw), the correlation
matrix, denoted C

W
(k)
n

(τ0), is strictly diagonally dominant

(SDD) [34, Eqn. (4)]. To see this, recall that by definition,(
C

W
(k)
n

(τ0)
)
u,v

≜ E
{
Wn[u] · Wn[v]

∣∣τ0

}
≡ c

{τ0}
Wn

[v, u − v],
0 ≤ u, v ≤ k− 1. The diagonal dominance can be verified by
noting that for any 0 ≤ u ≤ k − 1 it holds that∣∣∣(CW

(k)
n

(τ0)
)
u,u

∣∣∣− k−1∑
v=0,v ̸=u

∣∣∣(CW
(k)
n

(τ0)
)
u,v

∣∣∣
=
∣∣∣E{(Wn[u]

)2∣∣τ0

}∣∣∣− k−1∑
v=0,v ̸=u

∣∣∣E{Wn[u] ·Wn[v]
∣∣τ0

}∣∣∣
(a)
= cWc

(
u · Tpw

p + ϵn
+ τ0, 0

)
−

k−1∑
v=0,v ̸=u

∣∣∣∣cWc

(
u · Tpw

p + ϵn
+ τ0, (v − u) · Tpw

p + ϵn

)∣∣∣∣
≥ min

0≤t≤Tpw

{
cWc(t, 0)− 2τm · max

|λ|> Tpw
p+1

{
|cWc(t, λ)|

}}
≥ γ1 > 0, (15)

where (a) follows from the definition of the autocorrelation
function (4), since for the real-valued random process Wn[i],
i ∈ N we can write E

{
Wn[u] · Wn[v]

∣∣τ0

}
= E

{
Wn[v] ·

Wn[u]
∣∣τ0

}
, 0 ≤ u, v ≤ k − 1.

Thus, condition (12) guarantees that the correlation
decreases sufficiently fast as the lag increases, such that
a strictly diagonally dominant noise correlation matrix is
obtained for any n, k ∈ N+. This facilitates upper bounding
the eigenvalues of the inverse noise correlation matrix, see
Appendix B-A. It is noted, however, that condition (12) is
stricter than the actual requirement, which is more involved
to state analytically: In fact, from step (c) in the derivation
of Eqn. (B.6), it is only required that for every n ∈ N+

sufficiently large, as well as for ϵ, the correlation matrices
C

W
(k)
n

(τ0) and C
W

(k)
ϵ

(τ0) are SDD for all τ0 ∈ [0, Tpw]. In the
simulations in Sec. VI we directly verify the SDD condition.

Comment 5 (Elaboration on Condition (13)): The lower
bound on the power P guarantees that for any sequence
of k noise samples, the eigenvalues of the corresponding
noise correlation matrix are smaller than P . Then, when in
Step (b) in the derivation of (B.29), waterfilling is applied
over the eigenvalues of the noise correlation matrix, see, e.g.,
[30, Eqns. (15)-(16)], it follows that power is allocated to
all eigenvalues. This facilitates the bounding of the WSCS
channel capacity by the mutual information of any segment
of length k, where k is sufficiently large, up to an arbitrarily
small error.

Comment 6 (Intuition From Stationary Analysis Does Not
Apply Here): We emphasize that while it seems intuitive that
the limit in (14) holds, our result shows that for this limit to
hold, additional conditions on the noise statistics are required.
This highlights the fact that when considering non-stationary
channels, then intuition based on stationary processes may
lead to incorrect perceptions. In the current work, we obtain
capacity characterization when the noise correlation decays
sufficiently fast. If this is not the case, it is not possible to uni-
formly bound the difference between the mutual information
expressions corresponding to the channels (5) and (8), subject
to (6), and consequently, showing the interchangeability of the
limits in n (the approximation index) and in k (the sequence
length) becomes an involved task. We also require P to be
sufficiently large to allow relating the mutual information of
a finite segment of length k and capacity. Let FX denote
the CDF of the RV X . and consider, for example, the limit
liminf
k→∞

1
k I(X(k); Y (k)

ϵ |τ0) in Corollary 1. In Lemma B.1 we

show that lim
n→∞

1
k I(X(k)

n,opt; Y
(k)
n |τopt

n,k ) = 1
k I(X(k)

opt ; Y (k)
ϵ |τopt

ϵ,k ),

where (F
X

(k)
n,opt

, τopt
n,k ) and (F

X
(k)
opt

, τopt
ϵ,k ) maximize the left-

hand side (LHS) and right-hand side (RHS) respectively.
Following the proof of Lemma B.1 it is straightforward to
conclude that

liminf
k→∞

1
k

I(X(k)
opt ; Y (k)

ϵ |τopt
ϵ,k )

= liminf
k→∞

lim
n→∞

1
k

I(X(k)
n,opt; Y

(k)
n |τopt

n,k ).

However, since the convergence of the sequence{
1
k I(X(k)

n,opt; Y
(k)
n |τopt

n,k )
}

n∈N+
is generally not uniform

in k ∈ N+, it is not possible to switch the order of the limits
on the RHS, and we cannot relate liminf

k→∞
1
k I(X(k)

opt ; Y (k)
ϵ |τopt

ϵ,k )
and Cn. This lack of uniform convergence follows as
we show in the proof of Lemma B.1 that the distance∣∣∣ 1k I(X(k)

opt ; Y (k)
ϵ |τopt

ϵ,k )− 1
k I(X(k)

n,opt; Y
(k)
n |τopt

n,k )
∣∣∣ is proportional

to the distance ζ[i] ≜
∣∣∣cWc

(
i·Tpw
p+ϵ + τopt

ϵ,k ,
∆·Tpw
p+ϵ

)
−

cWc

(
i·Tpw
p+ϵn

+ τopt
n,k ,

∆·Tpw
p+ϵn

) ∣∣∣, 0 ≤ i ≤ k − 1. For a fixed
n ∈ N+, we obtain that ζ[i] periodically increases and
decreases over the range 0 ≤ i ≤ k− 1. Then, as k increases,
this distance may increase up to the maximal magnitude
of the correlation function, and as consequence the mutual
information expressions do not converge as k increases.
Thus, to keep this distance bounded as k increases, n has to
increase as well, which implies that convergence in n is not
uniform in k.

Comment 7 (Relationship With the Work of Cover and Pom-
bra): In [30], the capacity of additive Gaussian noise channels
with and without feedback was considered. By analyzing the
distribution of a quadratic form in Gaussian RVs, it is shown
in [30] that the asymptotic equipartition property applies to
nonergodic Gaussian processes. While in Appendix A we
also analyze a quadratic form in Gaussian RVs, it is empha-
sized that the analysis for our situation is considerably more
involved than for the situation in [30, Sec. V], as in our sce-
nario the weighting matrix is not the inverse of the correlation
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matrix of the Gaussian vector, and moreover, it is an indefinite
matrix. The resulting RV is thus a weighted sum of chi-
square RVs, which is not distributed as a chi-square RV with a
higher degree-of-freedom, differently from [30]. In fact, there
is no explicit expression for the probability density function
(PDF) of the above resulting RV, which necessities the use
of a completely different set of arguments in the analysis in
Appendix A. It is also noted that the information-spectrum
framework, which was introduced several years after the work
of [30], has not been applied, as far as we know, to the capacity
analysis of channels with additive non-stationary Gaussian
noise. Lastly, note that in the achievability proof in [30], the
exponent of the probability of decoding error depends on the
blocklength, see [30, Eqns. (66)-(67)]. Thus, it is not clear
how it is possible to conclude a vanishing probability of error
for a given rate Cn,FB in the asymptotic as the blocklength
increases to infinity, using the arguments in [30, Sec, VII]
without additional conditions.

Comment 8 (Evaluating Capacity in the Presence of Multi-
ple Interferers): The setup in Sec. III-A considered the case of
a single interferer. We note that when multiple interferers are
present at fixed locations and when the channels between the
interferers and the receiver are invariant, then the aggregate
interference is a CT WSCS Gaussian process. In addition
to Gaussianity of the aggregate interference, we note that,
in order to apply the scheme derived in the proof of Thm. 2,
the transmitter should acquire and synchronize with the noise
correlation function. In this context we may consider two
possible scenarios: In the first scenario, referred to as partial
coordination, the receiver and transmitter can obtain (e.g.,
through a control channel) the signal parameters of each
interferer (e.g., modulation type, symbol duration, pulse shape
for single carrier or subcarrier frequencies for OFDM). With
these parameters, the receiver and transmitter can obtain the
CT correlation function of each interferer. Then, to obtain
the aggregate CT correlation function, the receiver needs to
inform the transmitter the delays at which each interferer
is received. In multi-interferers scenarios in which this is
feasible, then the approach of Thm. 2 can be applied. In the
second scenario, referred to as uncoordinated interferers, the
transmitter and receiver each need to independently obtain the
correlation function of the aggregate CT interference. In such
a case, as the relative delays from each interferer to the
receiver and to the transmitter are different, then the estimated
aggregate correlation function will likely be different between
the transmitter and the receiver. Therefore, in such a scenario,
multiple uncoordinated interferers cannot be handled via the
scheme of Thm. 2.

VI. NUMERICAL EXAMPLES AND DISCUSSION

In this section we use numerical evaluations to derive
insights from the analytic capacity characterization of Thm. 2.
First, in Subsection VI-A, we consider the evolution of Cn(τ0)
w.r.t the index n and the impact of the sampling phase
ϕ = τ0/Tpw ∈ [0, 1) on capacity. Next, in Subsection VI-B,
we study the variations of the capacity of the sampled DT
channel for different sampling rates and different sampling

Fig. 2. The correlation function cWc (t, λ) of Eqn. (17) at positive lags
λ ≥ 0, with normalized sampling time offset ϕ = 0 and tdc = 0.75.

phases. We also compare the capacity results with the capac-
ity obtained for additive memoryless WSCS Gaussian noise
channels having the same noise power and signal power.

To model the correlation function of the CT WSCS noise we
define a periodic pulse function, Πtdc,trf (t), having a rise/fall
time of trf = 0.01, a period of 1, and a duty cycle (DC)
of tdc, which is varied in the range 0 ≤ tdc ≤ 0.75; hence,
Πtdc,trf (t) = Πtdc,trf (t + 1) ∀t ∈ R, and for t ∈ [0, 1) the
pulse function is expressed mathematically as:

Πtdc,trf (t) =



t

trf
t ∈ [0, trf ]

1 t ∈ (trf , tdc + trf)

1− t− tdc − trf
trf

t ∈ [tdc + trf , tdc + 2 · trf ]

0 t ∈ (tdc + 2 · trf , 1).

(16)

Let the period of the CT correlation function cWc(t, λ) be
Tpw = 5 [µsec]. Then, given a normalized sampling time
offset ϕ ∈ [0, 1), we express the time-varying variance,
cWc(t, 0), as

cWc(t, 0) = 1 + 4 ·Πtdc,trf

(
t

Tpw
− ϕ

)
.

For our setup, the correlation length of the noise process in
CT is set to λm = 4 [µsec] and the temporal correlation is
modeled as a decaying exponential function for all lags |λ| ≤
λm, i.e., the correlation at any lag λ > 0 is given by

cWc(t, λ) =

{
e−λ·106 · cWc(t, 0) , 0 ≤ λ ≤ λm

0 , λ > λm

, (17)

and for λ < 0 we use cWc(t, λ) = cWc(t + λ,−λ). This
correlation function is depicted in Fig. 2 for a single period,
0 ≤ t ≤ Tpw, tdc = 0.75, ϕ = 0, and 0 ≤ λ ≤ 6.

A. Convergence of {Cn(τ0)}n∈N+

As stated in Theorem 2, if the correlation function of the
DT noise satisfies the condition (12) and the power satisfies
condition (13), then the capacity with asynchronous sampling,
Cϵ, is equal to the limit-inferior of a sequence of capacities
corresponding to synchronous sampling, {Cn(τ0)}n∈N+ . For
evaluating this sequence, we set the following parameter
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Fig. 3. Cn(τ0) versus n, for τ0 = 0.

Fig. 4. Cn(τ0) versus n, τ0 = π
20

Tpw.

values: ϵ = π
7 , p = 2, tdc ∈ {0.45, 0.75}, ϕ ∈

{
0, π

20

}
,

and the input power constraint P = 10. First, we evaluate
Cn(τ0) using (9)–(10) for each n and then normalize it by its
respective sampling interval Ts(ϵn) ≜ Tpw

p+ϵn
to obtain Cn(τ0)

in bits per second (bps). We note that Cn(τ0) can be evaluated
irrespective of condition (12), yet to conclude about Cϵ, either
(12) or the SDD condition have to be verified as discussed in
Comment 4, in addition to condition (13). Recall the definition
of ϵn: ϵn = ⌊n·ϵ⌋

n → ϵ as n → ∞; then, it follows that
the sampling interval Ts(ϵn) converges to Ts(ϵ) ≜ Tpw

p+ϵ as n
increases. We recall that since ϵn is rational, then the resulting
DT sampled noise is WSCS with a fundamental period of
pn = p · n + ⌊n · ϵ⌋.

Figs. 3 and 4 depict Cn(τ0) for normalized sampling time
offsets of 0 and π

20 respectively, for both considered tdc

values, where n = {1, 2, . . . , 130}. We observe from the
figures that capacity is lower when tdc is higher. This can
be explained by the fact that the time-averaged noise power
increases as tdc increases. We also observe that the variations
in the capacity Cn(τ0) are more pronounced at smaller n. This
is because at smaller n, the resulting fundamental period of
the DT noise correlation function, pn, consists of only a few
samples, which are sparsely spaced across the period of the

CT noise correlation function. Then, for the smaller values
of n, as n varies, the sampling interval varies significantly,
and consequently, the values of the sampled noise correlation
function may significantly vary as well. At higher n, (i.e.,
higher pn), it is observed that, as expected, the sequence
{Cn(τ0)}n∈N+ does not converge to a limiting value, since
the limiting noise process Wϵ[i] is non-stationary. However, for
sufficiently large n, the variations of Cn(τ0) as n increases,
seem to follow a regular pattern. This can be explained by
noting that for higher n, as n increases, the variations of
the sampling instances of the CT noise correlation function
become smaller, and accordingly, the values of the sampled
correlation function do not vary significantly with n ∈ N+.

It is also observed from both Figs. 3 and 4 that at the
smaller values of n, the nature of the variations in Cn(τ0)
is highly dependent on ϕ = τ0/Tpw. For example, with
tdc = 0.45 and at n ∈ [2, 25] the value of Cn(0) is within the
range Cn(0) ∈ [0.601, 0.690] megabits per second (Mbps) and
Cn( π

20 ·Tpw) ∈ [0.510, 0.652] Mbps; with tdc = 0.75 and n ∈
[2, 25] then Cn(0) ∈ [0.501, 0.525] Mbps and Cn( π

20 · Tpw) ∈
[0.457, 0.510] Mbps. At higher n, these capacity variations
become periodic within a constant range.

Figs. 3 and 4 also clearly demonstrate that the capacity with
synchronous sampling may depend on the sampling phase ϕ
(i.e., the values of Cn(ϕ · Tpw) as n increases may depend
on ϕ). Note that the capacity with asynchronous sampling,
which is the limit-inferior of {Cn}n∈N+ , is independent of
the sampling phase. This is in agreement with engineering
intuition: Since with asynchronous sampling the resulting DT
process is WSACS, it is reasonable that capacity should be
affected mainly by the DC and not by the sampling phase.
In the setup of Thm. 2 this follows as the transmitter may
delay the transmission of a message to start at the optimal
phase, which is also known at the receiver (via knowledge
of the autocorrelation function), thereby facilitating Tx-Rx
coordination. Numerically, the limit-inferior of Cn(ϕ·Tpw) for
tdc = 0.45 was evaluated at 0.648 Mbps for both ϕ = 0 and
ϕ = π

20 , and for tdc = 0.75 it was evaluated at 0.503 Mbps
for both values of ϕ.

To further illustrate this behaviour, Figs. 5 and 6 depict the
capacity values for sampling time offsets ϕ ∈ [0, 2] for two
values of the approximation indices n: At n = 1 (pn = p = 2)
we observe significant variations of C1(ϕ · Tpw) for both DC
values, 45% and 75%. On the other hand, at a sufficiently
high n, e.g., n = 40 (pn = 97), we observe that capacity
C40(ϕ · Tpw) varies very little with ϕ for both DC values.
This follows as at longer periods the correlation function of
the process Wn[i] more closely resembles cWc(t, λ). We also
observe that the variations are periodic in all setups, which
is expected, as for a fixed and finite n ∈ N+, the DT noise
process Wn[i] is WSCS, thus, its DT correlation function will
repeat identically after a single period shift (i.e., an integer
value of ϕ).

B. Variations of Capacity With the Sampling Rate

Next, we examine how variation of the sampling rate
affects the capacity of DT channels obtained by sampling CT
channels with additive WSCS Gaussian noise having a finite
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Fig. 5. Cn(τ0) versus ϕ = τ0/Tpw; tdc = 0.45.

Fig. 6. Cn(τ0) versus ϕ = τ0/Tpw; tdc = 0.75.

memory, and compare their capacity with that of DT channels
with memoryless sampled noise having the same variance
as the noise with finite memory. The results are depicted in
Figs. 7 and 8, which present the evaluated capacity (in bits
per channel use) for ϕ = 0 and for ϕ = π

20 , respectively, for
sampling intervals in the range 2 ≤ Tpw

Ts(ϵ)
≤ 30. Recall from

the problem formulation in Section III-A that Tpw
Ts(ϵ)

= p + ϵ

where p ∈ N+ and ϵ ∈ [0, 1). In Figs. 7 and 8 we plot the
capacity values Cϵ for synchronous sampling, i.e., when ϵ can
be written as ϵ = u

v , u, v ∈ N+, and hence, the fundamental
period of the noise statistics is given by pu,v = p·v+u. Recall
that in this case, capacity depends on τ0, thus we denote Cϵ ≡
Cu

v
(τ0), yet, this dependence becomes weaker as the period

pu,v increases. To highlight the transition from memoryless
channels to channels with memory, we use 107 instead of
106 in the power of the exponential function in (17).

For both figures, we observe an increase in the capacity
(in bits per channel use) as the sampling rate increases.
In addition, we note that when the values of p and ϵ = u

v
result in a smaller value of the period pu,v , the capacity
varies significantly, as can be seen by the peaks and dips
in both the memoryless Gaussian noise plot and the plot

Fig. 7. C u
v

(τ0) versus Tpw
Ts(ϵ)

for offset τ0 = 0.

for Gaussian noise with a finite memory; it is also observed
that the variations are different for different sampling time
offsets. On the other hand, when the period pu,v is large,
the capacity approaches the asynchronous-sampling capacity
and the peaks/dips notably reduce. Moreover, at the longer
periods, it is observed that capacity values are very similar
for both sampling time offsets, which is reasonable when
approaching the asynchronous sampling situation. Finally, it is
evident from the figures that a slight change in the sampling
rate can result in a significant change in the capacity. As an
example, consider the plots for the finite-memory noise in
Figs. 7 and 8, at Tpw

Ts(ϵ)
= 5 (i.e., pu,v = 5, which is a relatively

small period) and ϕ = 0: The capacity values for the noise
with finite memory are 1.356 and 1.170 bits per channel use,
for tdc = 45% and tdc = 75%, respectively. However, when
the sampling rate changes to Tpw

Ts(ϵ)
= 5.2, these values change

to 1.302 and 1.039, respectively. The impact of the sampling
phase is more pronounced at smaller Tpw

Ts(ϵ)
: For Tpw

Ts(ϵ)
= 5,

the capacities at ϕ = π
20 for tdc = 45% and tdc = 75% are

1.170 and 0.980 bits per channel use, respectively, which are
very different from the respective values at ϕ = 0 noted above.
Lastly, consider Tpw

Ts(ϵ)
= 23.2, i.e. pu,v = 116, which is a

relatively long period for the DT correlation function. For this
sampling rate, the capacities (with memory) for tdc = 45%
and tdc = 75% are 1.298 and 1.015 bits per channel use,
respectively, for both ϕ = π

20 and for ϕ = 0.
Another property observed from Figs. 7 and 8 is that at

relatively low sampling rates (i.e., when Tpw
Ts(ϵ)

is smaller, e.g.,
Tpw
Ts(ϵ)

< 12), the sampled channels for memoryless noise and
for noise with a finite memory have approximately the same
capacity. As the sampling rate is increased, it is observed
that the sampled channel with a finite-memory noise has a
higher capacity than the sampled memoryless channel, whose
capacity does not vary much with the sampling rate variation.
This is explained by observing that as the sampling rate
increases, the sampled noise for the case of finite-memory CT
noise begins to exhibit noise correlation, which can be utilized
to increase capacity via waterfilling. As an Example, at tdc =
75%, ϕ = π

20 and Tpw
Ts(ϵ)

= 8.5 the capacity is 1.014 bits per
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Fig. 8. C u
v

(τ0) versus Tpw
Ts(ϵ)

for offset τ0 = π
20

Tpw.

channel use for both the finite-memory and the memoryless
cases. However, as Tpw

Ts(ϵ)
increases, e.g., at Tpw

Ts(ϵ)
= 29, and

ϕ = π
20 , the capacity is 1.310 bits per channel use for the

channel with a finite-memory Gaussian noise, whereas it is
1.285 bits per channel use for the channel with memoryless
Gaussian noise. Observe that this gap, in favor of the channel
with sampled finite-memory noise widens as the sampling rate
is further increased. That said, we note that while the model
considered (5) does not account for additive thermal noise
(since cWc(t, λ) has finite values), then at higher sampling
rates, the impact of the thermal noise should also be accounted
for in addition to the interference, as higher sampling rates are
associated with higher receiver bandwidths. Accounting for the
thermal noise will limit the capacity increase observed in the
figures.

Our numerical evaluations reveal a very interesting phe-
nomenon that should be considered when designing com-
munications systems: It is observed that capacity is greatly
dependent upon the precise value of the sampling rate. It is
thus recommended to take the asynchronous capacity as the
practical capacity value, even if the analytical capacity value
due to the nominal sampling rate used in the system design
is higher. The results also imply that increasing the sampling
rate can increase the capacity even when the sampling rate
is higher than the Nyquist rate.2 This observation stands in
contrast to the observation in [17], which studied linear, time-
invariant channels with stationary Gaussian noise. Intuitively,
this follows as in the current scenario, sampling is applied to
a two-dimensional periodic function, hence it is not enough
to be able to identify the temporal correlation profile, but also
the periodicity of the correlation function, which may require
higher sampling rates.

VII. CONCLUSION

In this work we analyzed the capacity of additive Gaussian
noise channels obtained by sampling CT channels with addi-
tive WSCS Gaussian noise, focusing on the scenario in which

2See [35, Ch. 12.4.3] for elaboration on the Nyquist rate for bandlimited
WSCS processes.

the sampled noise is non-stationary. We first explained that
in this case, maximizing the information rate requires Tx-Rx
time synchronization w.r.t the correlation function of the CT
noise, and it is not sufficient to have both the transmitter and
the receiver know the noise correlation function without such
synchronization. Subsequently, we derived a general capac-
ity characterization when transmission delay is not allowed.
Finally, we considered the scenario in which transmission
delay of up to sum of the noise memory the noise period is
allowed, for which we obtained a limiting capacity expres-
sion derived using original bounds on the optimal mutual
information density rate of the channel. We then used the
limiting expression to examine the impact of the combination
of channel memory and sampling on the information rates
of the resulting DT channel, and presented novel insights
arising from this examination. This work is another step in the
study of the relationship between sampling and capacity, which
provides a much needed missing link between the analog
domain models and the respective digital models obtained after
sampling.

APPENDIX A
PROOF OF THM. 1

We consider the mutual information density rate for the
channel (5): Let τ0 ∈ [0, Tpw) denote the sampling phase
within a period of the correlation function of the CT noise pro-
cess Wc(t). For a given k ∈ N+ and a given τ0 ∈ [0, Tpw), let
FX(k)|τ0

≡ FX(k)|τ0

(
x(k)|τ0

)
denote the CDF of the random

vector
{
X[i]

}k−1

i=0
, which is the channel input process when

transmission begins at the sampling phase τ0. Recall that the
transmitter is aware of τ0, hence, it can choose its codebook
accordingly. Furthermore, the transmission scheme appends
each codeword with τm zeros, and the receiver discards the
last τm received channel outputs for each message reception.
Thus, the received channel output sequences for different
messages are statistically independent. In a similar manner
as in [5, Appendix A], it follows that for sufficiently large
k, this assumption does not affect the capacity. Lastly, define
the random variable corresponding to the mutual information
density rate for this transmission as (see [36, Lemma 7.16]):

Zk,ϵ

(
FX(k)|τ0

|τ0

)
≜

1
k

log
p

Y
(k)

ϵ |X(k),τ0

(
Y

(k)
ϵ

∣∣X(k), τ0

)
p

Y
(k)

ϵ |τ0

(
Y

(k)
ϵ |τ0

) .

Note that by [30], when τ0 is given, then the mutual
information for each k ∈ N+, for the additive Gaussian
noise channel (5), 1

k I
(
X(k); Y (k)

ϵ |τ0

)
, is maximized, subject

to an average sum-power constraint, by a Gaussian ran-
dom input vector. We now analyze Zk,ϵ

(
FX(k)|τ0

|τ0

)
when{

X[i]
}k−1

i=0
is distributed according to the Gaussian distri-

bution which maximizes 1
k I
(
X(k); Y (k)

ϵ |τ0

)
subject to the

constraint 1
k

∑k−1
i=0 E

{
(X[i])2

}
≤ P . In Lemma A.1, at the

end of the proof, we will show that such a random codebook
generation process results in the constraint (6) satisfied with
a probability which is arbitrarily close to 1, as long as
{X[i]}k−1

i=0 satisfies the trace constraint which appears in the
statement of the theorem. Let X

(k)
opt denote a random process
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generated according to this maximizing input distribution, let
C

Y
(k)

ϵ
(τ0), C

W
(k)
ϵ

(τ0), and C
X

(k)
opt

(τ0) denote the correlation

matrices of Y
(k)
ϵ , W

(k)
ϵ and of X

(k)
opt , respectively, when

τ0 is given, and recall the definition of the correlation matrix
C

W
(k)
ϵ

(τ0):(
C

W
(k)
ϵ

(τ0)
)

u,v
≜ E

{
Wϵ[u]·Wϵ[v]

∣∣τ0

}
≡ c

{τ0}
Wϵ

[v, u−v],

(A.1)

for (u, v) ∈ K ×K, see Eqn. (4).
Comment A.1: Note that as Wϵ[i] is a sampled physical

noise process then the matrix C
W

(k)
ϵ

(τ0) has a full rank. This
follows as if C

W
(k)
ϵ

(τ0) does not have a full rank, then by
the definition of a multivariate Normal RVs, see [37, Def.
16.1], we obtain that at least one element in the vector W

(k)
ϵ is

identically equal to a linear combination of the other elements.
Such a linear relationship can be used to design a linear
transformation at the receiver which completely eliminates the
noise at one or more time indexes of the received sequence,
leading to an infinite capacity value, which naturally does not
correspond to physical scenarios.

Consider the scalar RV Vk,ϵ(τ0) ≜ k · Zk,ϵ

(
F

X
(k)
opt |τ0

|τ0

)
:

Vk,ϵ(τ0)

≜ log
p

Y
(k)

ϵ |X(k)
opt ,τ0

(
Y

(k)
ϵ

∣∣X(k)
opt , τ0

)
p

Y
(k)

ϵ |τ0

(
Y

(k)
ϵ |τ0

)
= log

(
p

W
(k)
ϵ |τ0

(
Y (k)

ϵ −X
(k)
opt |τ0

))
− log

(
p

Y
(k)

ϵ |τ0

(
Y (k)

ϵ |τ0

))
(a)
=

1
2

log

(
Det

(
C

Y
(k)

ϵ
(τ0)

)
Det

(
C

W
(k)
ϵ

(τ0)
))

+
log(e)

2

(
Y (k)

ϵ

)T (
C

Y
(k)

ϵ
(τ0)

)−1
Y (k)

ϵ

− log(e)
2

(
Y (k)

ϵ −X
(k)
opt

)T(
C

W
(k)
ϵ

(τ0)
)−1
(
Y (k)

ϵ −X
(k)
opt

)
,

where (a) follows since p
Y

(k)
ϵ |τ0

(
y(k)|τ0

)
and p

W
(k)
ϵ |τ0

(
y(k)−

x(k)|τ0

)
are Gaussian PDFs (note that since C

W
(k)
ϵ

(τ0) ≻
0 then also C

Y
(k)

ϵ
(τ0) ≻ 0). Next, consider the

scalar RV Ṽk,ϵ(τ0) defined in Eqn. (A.2), as shown at
the bottom of the next page. Using Ṽk,ϵ(τ0) we can

write Vk,ϵ(τ0)
(dist.)

= 1
2 log

(
Det
(
C

Y
(k)
ϵ

(τ0)
)

Det
(
C

W
(k)
ϵ

(τ0)
))+ log(e)

2 Ṽk,ϵ(τ0).

Define next the matrix C̃
(k)
ϵ (τ0) via Eqn. (A.3), as shown

at the bottom of the next page. Combining this def-
inition with (A.2), we can express Ṽk,ϵ as Ṽk,ϵ =

−

[
X

(k)
opt

W
(k)
ϵ

]T

C̃
(k)
ϵ (τ0)

[
X

(k)
opt

W
(k)
ϵ

]
. Note that the matrix

C̃
(k)
ϵ (τ0) is a real, symmetric, full-rank, indefinite matrix,

which is different from the inverse correlation matrix of

the Gaussian vector
[(

X
(k)
opt
)T

,
(
W

(k)
ϵ

)T ]T
, hence, it is not

possible to apply a simple decomposition as was done in, e.g.,
[30, Sec. V], to express the distribution of Zk,ϵ

(
F

X
(k)
opt |τ0

|τ0

)
.

As generally C
X

(k)
opt W

(k)
ϵ

(τ0) ≜

[
C

X
(k)
opt

(τ0) 0k

0k C
W

(k)
ϵ

(τ0)

]
may not be a full-rank matrix, then let
rank

(
C

X
(k)
opt W

(k)
ϵ

(τ0)
)

= 2k −
≈
kϵ,k, where

≈
kϵ,k ∈ N

denotes the number of degenerate elements of X
(k)
opt . We can

now write the distribution of the Gaussian random vector[(
X

(k)
opt
)T

,
(
W

(k)
ϵ

)T ]T
, separating the degenerate and the

non-degenerate components, as follows [38, Sec. III-A–III-B]:
First, decompose C

X
(k)
opt W

(k)
ϵ

(τ0) as

C
X

(k)
opt W

(k)
ϵ

(τ0) =
[

PCW
ϵ,k (τ0) P0

ϵ,k(τ0)
]

·

[
C

X̃
(k)
optW

(k)
ϵ

(τ0) 0
(2k−

≈
kϵ,k)×

≈
kϵ,k

0≈
kϵ,k×(2k−

≈
kϵ,k)

0≈
kϵ,k×

≈
kϵ,k

]
·
[

PCW
ϵ,k (τ0) P0

ϵ,k(τ0)
]T

, (A.4)

where
[

PCW
ϵ,k (τ0) P0

ϵ,k(τ0)
]

is an orthogonal 2k × 2k

matrix, C
X̃

(k)
optW

(k)
ϵ

(τ0) ∈ R(2k−
≈
kϵ,k)×(2k−

≈
kϵ,k) is a symmetric

positive-definite matrix, C
X̃

(k)
optW

(k)
ϵ

(τ0) ≻ 0, the columns

of PCW
ϵ,k (τ0) ∈ R2k×(2k−

≈
kϵ,k) form an orthonormal basis

for range
(
C

X
(k)
opt W

(k)
ϵ

(τ0)
)

and the columns of P0
ϵ,k(τ0) ∈

R2k×
≈
kϵ,k form an orthonormal basis for the null space of

C
X

(k)
opt W

(k)
ϵ

(τ0). Then,

[
PCW

ϵ,k (τ0) P0
ϵ,k(τ0)

]T [ X
(k)
opt

W
(k)
ϵ

]
(dist.)

=

 B(2k−
≈
kϵ,k)

ϵ

0≈
kϵ,k×1

 ,

B(2k−
≈
kϵ,k)

ϵ ∼ N
(

0
(2k−

≈
kϵ,k)×1

, C
X̃

(k)
optW

(k)
ϵ

(τ0)
)

,

and we obtain that[
X

(k)
opt

W
(k)
ϵ

]T

C̃(k)
ϵ (τ0)

[
X

(k)
opt

W
(k)
ϵ

]

=

[
X

(k)
opt

W
(k)
ϵ

]T

·
[

PCW
ϵ,k (τ0) P0

ϵ,k(τ0)
]

·
[

PCW
ϵ,k (τ0) P0

ϵ,k(τ0)
]T

·C̃(k)
ϵ (τ0) ·

[
PCW

ϵ,k (τ0) P0
ϵ,k(τ0)

]
·
[

PCW
ϵ,k (τ0) P0

ϵ,k(τ0)
]T · [ X

(k)
opt

W
(k)
ϵ

]
(dist.)

=
(

B(2k−
≈
kϵ,k)

ϵ

)T

·
(
PCW

ϵ,k (τ0)
)T · C̃(k)

ϵ (τ0)

·PCW
ϵ,k (τ0) · B

(2k−
≈
kϵ,k)

ϵ .

Observe that PCW
ϵ,k (τ0) is a full-rank matrix, and since C̃

(k)
ϵ (τ0)

is also a full-rank matrix, then
(
PCW

ϵ,k (τ0)
)T · C̃

(k)
ϵ (τ0) ·

PCW
ϵ,k (τ0) is full-rank. Since C

X̃
(k)
optW

(k)
ϵ

(τ0) ≻ 0 and symmetric,

it can be expressed as [39, Thm. 13.11] C
X̃

(k)
optW

(k)
ϵ

(τ0) =(
Rϵ,k(τ0)

)2
; where Rϵ,k(τ0) ∈ R(2k−

≈
kϵ,k)×(2k−

≈
kϵ,k) is a
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positive-definite symmetric matrix. Then, letting R−1
ϵ,k(τ0) ∈

R(2k−
≈
kϵ,k)×(2k−

≈
kϵ,k) denote the inverse of Rϵ,k(τ0), we can

write[
X

(k)
opt

W
(k)
ϵ

]T

C̃(k)
ϵ (τ0)

[
X

(k)
opt

W
(k)
ϵ

]
(dist.)

=
(
B(2k−

≈
kϵ,k)

ϵ

)T

· R−1
ϵ,k(τ0) · Rϵ,k(τ0) ·

(
PCW

ϵ,k (τ0)
)T

·C̃(k)
ϵ (τ0) · PCW

ϵ,k (τ0) · Rϵ,k(τ0)

·R−1
ϵ,k(τ0) · B

(2k−
≈
kϵ,k)

ϵ .

Next, observe that

Γ(2k−
≈
kϵ,k)

ϵ ≜ R−1
ϵ,k(τ0) · B

(2k−
≈
kϵ,k)

ϵ ∼N
(
0
(2k−

≈
kϵ,k)×1

, I
2k−

≈
kϵ,k

)
,

and note that since Rϵ,k(τ0) and
(
PCW

ϵ,k (τ0)
)T · C̃

(k)
ϵ (τ0) ·

PCW
ϵ,k (τ0) are full-rank matrices, then also Rϵ,k(τ0) ·(
PCW

ϵ,k (τ0)
)T ·C̃(k)

ϵ (τ0)·PCW
ϵ,k (τ0)·Rϵ,k(τ0) is a full-rank, square,

symmetric, real, indefinite matrix, whose rank is 2k −
≈
kϵ,k.

Thus, we can write [39, Thm. 11.27]:

˜̃C(k)
ϵ (τ0) ≜ Rϵ,k(τ0) ·

(
PCW

ϵ,k (τ0)
)T

·C̃(k)
ϵ (τ0) · PCW

ϵ,k (τ0) · Rϵ,k(τ0)

=
(
Pϵ,k(τ0)

)T · Dϵ,k(τ0) · Pϵ,k(τ0),

where
(
Pϵ,k(τ0)

)T · Pϵ,k(τ0) = I
2k−

≈
kϵ,k

and Dϵ,k(τ0) ∈

R(2k−
≈
kϵ,k)×(2k−

≈
kϵ,k) is a diagonal matrix whose diagonal ele-

ments are the eigenvalues of ˜̃C(k)
ϵ (τ0) ∈ R(2k−

≈
kϵ,k)×(2k−

≈
kϵ,k).

Let d
{τ0}
ϵ,ii,k denote the i-th eigenvalue of the matrix ˜̃C(k)

ϵ (τ0).

Since ˜̃C(k)
ϵ (τ0) is full-rank it follows that d

{τ0}
ϵ,ii,k ̸= 0 for

0 ≤ i ≤ 2k −
≈
kϵ,k − 1. Using this representation, we write

[
X

(k)
opt

W
(k)
ϵ

]T

C̃(k)
ϵ (τ0)

[
X

(k)
opt

W
(k)
ϵ

]
(dist.)

=
(
Γ(2k−

≈
kϵ,k)

ϵ

)T

·
(
Pϵ,k(τ0)

)T · Dϵ,k(τ0)

· Pϵ,k(τ0) · Γ
(2k−

≈
kϵ,k)

ϵ

(dist.)
=

(
Γ̃(2k−

≈
kϵ,k)

ϵ

)T

· Dϵ,k(τ0) · Γ̃
(2k−

≈
kϵ,k)

ϵ , (A.5)

where we define

Γ̃(2k−
≈
kϵ,k)

ϵ ≜Pϵ,k(τ0) · Γ
(2k−

≈
kϵ,k)

ϵ ∼N
(
0
(2k−

≈
kϵ,k)×1

, I
2k−

≈
kϵ,k

)
.

(A.6)

Eventually, we obtain

Ṽk,ϵ(τ0)
(dist.)

= −
(
Γ̃(2k−

≈
kϵ,k)

ϵ

)T

· Dϵ,k(τ0) · Γ̃
(2k−

≈
kϵ,k)

ϵ

=
2k−

≈
kϵ,k−1∑
i=0

(
−d

{τ0}
ϵ,ii,k

)
·
(
Γ̃ϵ,i,k

)2
, d

{τ0}
ϵ,ii,k ∈ R,

where Γ̃ϵ,i,k, 0 ≤ i ≤ 2k −
≈
kϵ,k − 1 denotes the i-th element

of the vector Γ̃(2k−
≈
kϵ,k)

ϵ . Observe from (A.6) that the elements
Γ̃ϵ,i,k are i.i.d Gaussian RVs, hence,

(
Γ̃ϵ,i,k

)2
is a central

chi-square random variable with a single degree of freedom
[40, Example 5.2], which is denoted as

(
Γ̃ϵ,i,k

)2 ∼ X 2(1), and(
Γ̃ϵ,i,k

)2
, 0 ≤ i ≤ 2k −

≈
kϵ,k − 1, are mutually independent

Ṽk,ϵ(τ0) ≜
(
Y (k)

ϵ

)T(
C

Y
(k)

ϵ
(τ0)

)−1

Y (k)
ϵ −

(
Y (k)

ϵ −X
(k)
opt
)T(

C
W

(k)
ϵ

(τ0)
)−1(

Y (k)
ϵ −X

(k)
opt
)

(dist.)
=

(
X

(k)
opt + W (k)

ϵ

)T(
C

X
(k)
opt

(τ0) + C
W

(k)
ϵ

(τ0)
)−1(

X
(k)
opt + W (k)

ϵ

)
−
(
W (k)

ϵ

)T(
C

W
(k)
ϵ

(τ0)
)−1(

W (k)
ϵ

)
= −

[
X

(k)
opt

W
(k)
ϵ

]T[
Ik Ik
0k Ik

]T

 −
(

C
X

(k)
opt

(τ0)+C
W

(k)
ϵ

(τ0)
)−1

0k

0k

(
C

W
(k)
ϵ

(τ0)
)−1

[ Ik Ik
0k Ik

][
X

(k)
opt

W
(k)
ϵ

]
(A.2)

C̃(k)
ϵ (τ0) ≜

[
Ik 0k

Ik Ik

] −
(

C
X

(k)
opt

(τ0) + C
W

(k)
ϵ

(τ0)
)−1

0k

0k

(
C

W
(k)
ϵ

(τ0)
)−1

[ Ik Ik
0k Ik

]

=

 −
(

C
X

(k)
opt

(τ0) + C
W

(k)
ϵ

(τ0)
)−1

−
(

C
X

(k)
opt

(τ0) + C
W

(k)
ϵ

(τ0)
)−1

−
(

C
X

(k)
opt

(τ0) + C
W

(k)
ϵ

(τ0)
)−1

−
(

C
X

(k)
opt

(τ0) + C
W

(k)
ϵ

(τ0)
)−1

+
(
C

W
(k)
ϵ

(τ0)
)−1

 (A.3)
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X 2(1) RVs. We can now express Zk,ϵ

(
F

X
(k)
opt |τ0

|τ0

)
as:

Zk,ϵ

(
F

X
(k)
opt |τ0

|τ0

)
(dist.)

=
1
2k
· log

(
Det

(
C

Y
(k)

ϵ
(τ0)

)
Det

(
C

W
(k)
ϵ

(τ0)
))

+
log(e)

2k

2k−
≈
kϵ,k−1∑
i=0

(
−d

{τ0}
ϵ,ii,k

)
·
(
Γ̃ϵ,i,k

)2
.

Examining Zk,ϵ

(
F

X
(k)
opt |τ0

|τ0

)
, we note that since

E
{

Zk,ϵ

(
F

X
(k)
opt |τ0

|τ0

)}
= 1

2k · log

(
Det
(
C

Y
(k)
ϵ

(τ0)
)

Det
(
C

W
(k)
ϵ

(τ0)
))

[36, Eqn. (7.31)], then it necessarily should hold that
2k−

≈
kϵ,k−1∑
i=0

(
−d

{τ0}
ϵ,ii,k

)
= 0. This can be verified via a direct

derivation detailed in Eqns. (A.7), as shown at the bottom of
the next page. In the steps leading to (A.7c), (a) follows since

[
PCW

ϵ,k (τ0) P0
ϵ,k(τ0)

]
·

[
C

X̃
(k)
optW

(k)
ϵ

(τ0) 0
(2k−

≈
kϵ,k)×

≈
kϵ,k

0≈
kϵ,k×(2k−

≈
kϵ,k)

0≈
kϵ,k×

≈
kϵ,k

]
·
[

PCW
ϵ,k (τ0) P0

ϵ,k(τ0)
]T

= PCW
ϵ,k (τ0) · CX̃

(k)
optW

(k)
ϵ

(τ0) ·
(
PCW

ϵ,k (τ0)
)T ;

and (b) follows from (A.4).

We now compute Tr
{(˜̃C(k)

ϵ (τ0)
)2 }

: Begin by using
Eqn. (A.7a) and write

Tr
{(˜̃C(k)

ϵ (τ0)
)2 }

= Tr
{

C̃(k)
ϵ (τ0) · CX

(k)
opt W

(k)
ϵ

(τ0)

·C̃(k)
ϵ (τ0) · CX

(k)
opt W

(k)
ϵ

(τ0)
}

.

By computing explicitly the matrix product we obtain that

C̃(k)
ϵ (τ0) · CX

(k)
opt W

(k)
ϵ

(τ0) · C̃(k)
ϵ (τ0) · CX

(k)
opt W

(k)
ϵ

(τ0)

=

 (C
X

(k)
opt

(τ0) + C
W

(k)
ϵ

(τ0)
)−1

C
X

(k)
opt

(τ0)

0k×k

0k×k(
C

X
(k)
opt

(τ0) + C
W

(k)
ϵ

(τ0)
)−1

C
X

(k)
opt

(τ0)

 , (A.8)

hence,

Tr
{(˜̃C(k)

ϵ (τ0)
)2 }

= 2 · Tr
{(

C
X

(k)
opt

(τ0) + C
W

(k)
ϵ

(τ0)
)−1

C
X

(k)
opt

(τ0)
}

.

With this result we can compute the variance of Ṽk,ϵ(τ0),
denoted by σ̃2

ϵ,k(τ0), as follows:

σ̃2
ϵ,k(τ0) =

2k−
≈
kϵ,k−1∑
i=0

var
(
d
{τ0}
ϵ,ii,k ·

(
Γ̃ϵ,i,k

)2)

= 2 ·
2k−

≈
kϵ,k−1∑
i=0

(
d
{τ0}
ϵ,ii,k

)2

= 2 · Tr
{(˜̃C(k)

ϵ (τ0)
)2 }

= 4·
(
k−Tr

{(
Ik+

(
C

W
(k)
ϵ

(τ0)
)−1

C
X

(k)
opt

(τ0)
)−1})

.

(A.9)

From the results of (A.7c) and (A.9) it follows

that E

{
Zk,ϵ

(
F

X
(k)
opt |τ0

|τ0

)}
= 1

k I
(
X

(k)
opt ; Y (k)

ϵ |τ0

)
,

and var
(
Zk,ϵ

(
F

X
(k)
opt |τ0

|τ0

))
≤ 3

k . Since the variance

of Zk,ϵ

(
F

X
(k)
opt |τ0

|τ0

)
decreases as k increases, then,

by Chebyshev’s inequality [40, Eqn. (5-88)], we obtain
Pr
(∣∣∣Zk,ϵ

(
F

X
(k)
opt |τ0

|τ0

)
− 1

k I
(
X

(k)
opt ; Y (k)

ϵ |τ0

)∣∣∣ > 1
k1/3

)
<

3
k1/3 , and we conclude that ∀δ > 0, ∃k0(δ) ∈ N+ s.t.
∀k > k0(δ), it follows that

Pr
(
Zk,ϵ

(
F

X
(k)
opt |τ0

|τ0

)
<

1
k

I
(
X

(k)
opt ; Y (k)

ϵ |τ0

)
− δ
)

< 3δ.

(A.10)

Note that by definition of the limit-inferior, ∀δ > 0,
∃k1(δ) ∈ N+ s.t. ∀k > k1(δ) (recall that X

(k)
opt maximizes

1
k I
(
X(k); Y (k)

ϵ |τ0

)
)

1
k

I
(
X

(k)
opt ; Y (k)

ϵ |τ0

)
> liminf

k→∞

1
k

I
(
X

(k)
opt ; Y (k)

ϵ |τ0

)
− δ,

hence, for all k > max
{
k0(δ), k1(δ)

}
.

Pr
(
Zk,ϵ

(
F

X
(k)
opt |τ0

|τ0

)
< liminf

k→∞

1
k

I
(
X

(k)
opt ;Y (k)

ϵ |τ0

)
−2δ

)
<3δ,

and we conclude that

p− liminf
k→∞

Zk,ϵ

(
F

X
(k)
opt |τ0

|τ0

)
≜ sup

{
α ∈ R

∣∣ lim
k→∞

Pr
(
Zk,ϵ

(
F

X
(k)
opt |τ0

|τ0

)
< α

)
= 0
}

≥ liminf
k→∞

1
k

I
(
X

(k)
opt ; Y (k)

ϵ |τ0

)
. (A.11)

Next, we consider the power constraint. The following
lemma asserts that a Gaussian codebook generated accord-
ing to a distribution which satisfies the trace constraints
1
kTr

{
C

X
(k)
opt

(τ0)
}
≤ P and 1

k2 Tr
{(

C
X

(k)
opt

(τ0)
)2} −→

k→∞
0, sat-

isfies the per-codeword power constraint (6) asymptotically as
k →∞ with a probability which is arbitrarily close to 1:

Lemma A.1: Let X
(k)
opt ∼ N

(
0k, C

X
(k)
opt

(τ0)
)
, with

1
kTr

{
C

X
(k)
opt

(τ0)
}
≤ P , and assume that

1
k2 Tr

{(
C

X
(k)
opt

(τ0)
)2} −→

k→∞
0. Then, ∀δ > 0, there exists
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kδ ∈ N+ such that ∀k ∈ N+, k > kδ it holds that
Pr
(

1
k

∑k−1
i=0

(
Xopt[i]

)2 ≤ P
)

> 1− δ.

Proof: We consider the distribution of
(
X

(k)
opt
)T · X(k)

opt .
First note that C

X
(k)
opt

(τ0) is in general positive semidefinite.

Let k̃X,k denote the number of zero eigenvalue of C
X

(k)
opt

(τ0).

Then, as in (A.4), C
X

(k)
opt

(τ0) can be decomposed as

C
X

(k)
opt

(τ0) =
[

PCW
X,k(τ0) P0

X,k(τ0)
]

·

[
C

X̃
(k)
opt

(τ0) 0(k−k̃X,k)×k̃X,k

0k̃X,k×(k−k̃X,k) 0k̃X,k×k̃X,k

]
·
[

PCW
X,k(τ0) P0

X,k(τ0)
]T

, (A.12)

where
[

PCW
X,k(τ0) P0

X,k(τ0)
]

is an orthogonal k×k matrix,
C

X̃
(k)
opt

(τ0) ∈ R(k−k̃X,k)×(k−k̃X,k) is a symmetric positive-
definite matrix. Repeating the steps leading to the derivation
of (A.6) we obtain

Γ(k)
X ≜

(
C

X̃
(k)
opt

(τ0)
)− 1

2·
(
PCW

X,k(τ0)
)T ·X(k)

opt ∼ N
(
0k, Ik−k̃X,k

)
.

It follows that the RV Γ(k)
X is a vector of k− k̃X,k i.i.d. Gaus-

sian RVs,
{
ΓX,i

}k−k̃X,k−1

i=0
, each has a zero mean and unit

variance. Therefore, as derived in (A.13), shown at the bottom

of the next page, we can write
(
X

(k)
opt
)T ·X(k)

opt
(dist.)

=
(
Γ(k)

X

)T

·
C

X̃
(k)
opt

(τ0) · Γ(k)
X . As C

X̃
(k)
opt

(τ0) ≻ 0, symmetric, we can write

its eigenvalue decomposition as C
X̃

(k)
opt

(τ0) =
(
PX(τ0)

)T ·
DX(τ0) · PX(τ0), where PX(τ0) is an orthogonal matrix and

DX(τ0) a diagonal matrix with k − k̃X,k positive elements{
d
{τ0}
X,i

}k−k̃X,k

i=0
. Finally we conclude that

1
k

(
X

(k)
opt
)T ·X(k)

opt
(dist.)

=
1
k

k−k̃X,k−1∑
i=0

d
{τ0}
X,i · Γ

2
X,i,

where Γ2
X,i ∼ χ2(1), chi-square RVs, mutually independent

over the index i. Then

E
{1

k

(
X

(k)
opt
)T ·X(k)

opt

}
=

1
k

k−k̃X,k−1∑
i=0

d
{τ0}
X,i

=
1
k

Tr
{
C

X̃
(k)
opt

(τ0)}

=
1
k

Tr
{
C

X
(k)
opt

(τ0)
}

(a)

≤ P

var
(1

k

(
X

(k)
opt
)T ·X(k)

opt

)
=

k−k̃X,k−1∑
i=0

1
k2

(
d
{τ0}
X,i

)2

· var
(
Γ2

X,i

)
=

2
k2
· Tr
((

C
X

(k)
opt

(τ0)
)2)

,

where (a) follows by choice of the statistics used for
generating the channel input X

(k)
opt . As by assumption

1
k2 Tr

{(
C

X
(k)
opt

(τ0)
)2} −→

k→∞
0, then repeating the argument in

the discussion after (A.9), we can apply Chebyshev’s inequal-
ity and conclude that for any arbitrary δ, taking k sufficiently
large we obtain Pr

(∣∣∣ 1k(X(k)
opt
)T ·X(k)

opt − (P − δ)
∣∣∣ > δ

)
< δ.

2k−
≈
kϵ,k−1∑
i=0

d
{τ0}
ϵ,ii,k = Tr

{˜̃C(k)
ϵ (τ0)

}
= Tr

{
Rϵ,k(τ0) ·

(
PCW

ϵ,k (τ0)
)T · C̃(k)

ϵ (τ0) · PCW
ϵ,k (τ0) · Rϵ,k(τ0)

}
= Tr

{
C̃(k)

ϵ (τ0) · PCW
ϵ,k (τ0) · Rϵ,k(τ0) · Rϵ,k(τ0) ·

(
PCW

ϵ,k (τ0)
)T}

= Tr
{

C̃(k)
ϵ (τ0) · PCW

ϵ,k (τ0) · CX̃
(k)
optW

(k)
ϵ

(τ0) ·
(
PCW

ϵ,k (τ0)
)T}

(a)
= Tr

{
C̃(k)

ϵ (τ0) ·
[

PCW
ϵ,k (τ0) P0

ϵ,k(τ0)
][ C

X̃
(k)
optW

(k)
ϵ

(τ0) 0
(2k−

≈
kϵ,k)×

≈
kϵ,k

0≈
kϵ,k×(2k−

≈
kϵ,k)

0≈
kϵ,k×

≈
kϵ,k

] [
PCW

ϵ,k (τ0) P0
ϵ,k(τ0)

]T}
(b)
= Tr

{
C̃(k)

ϵ (τ0) · CX
(k)
opt W

(k)
ϵ

(τ0)
}

(A.7a)

= −Tr



(

C
X

(k)
opt

(τ0) + C
W

(k)
ϵ

(τ0)
)−1

C
X

(k)
opt

(τ0)
(

C
X

(k)
opt

(τ0) + C
W

(k)
ϵ

(τ0)
)−1

C
W

(k)
ϵ

(τ0)(
C

X
(k)
opt

(τ0) + C
W

(k)
ϵ

(τ0)
)−1

C
X

(k)
opt

(τ0)
(

C
X

(k)
opt

(τ0) + C
W

(k)
ϵ

(τ0)
)−1

C
W

(k)
ϵ

(τ0)− Ik




= Tr
{
−
(

C
X

(k)
opt

(τ0) + C
W

(k)
ϵ

(τ0)
)−1

C
X

(k)
opt

(τ0)

−
(

C
X

(k)
opt

(τ0) + C
W

(k)
ϵ

(τ0)
)−1

C
W

(k)
ϵ

(τ0) + Ik
}

(A.7b)

= 0 (A.7c)
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As X
(k)
opt has a specific distribution, and it satisfies the

per-codeword power constraint (6) with a probability arbi-
trarily close to 1, as k increases, then, from the gen-
eral capacity formula [19, Thm. 3.6.1] it follows that
p− liminf

k→∞
Zk,ϵ

(
F

X
(k)
opt |τ0

|τ0

)
is a lower bound on capacity

Cϵ(τ0). Hence, we obtain the following lower bound on
capacity:

Cϵ(τ0) ≥ p− liminf
k→∞

Zk,ϵ

(
F

X
(k)
opt |τ0

|τ0

)
≥ liminf

k→∞

1
k

I
(
X

(k)
opt ; Y (k)

ϵ |τ0

)
. (A.14)

Next, recall that from Fano’s inequality, for any [R, k] code,
designed for delay τ0, having an average probability of error
P k

e (τ0) ≤ ρ, ρ ∈ [0, 1), we obtain (see, e.g., [31, Thm. 3]):

R
(a)

≤ 1
1− ρ

· 1
k

I
(
X̄(k); Ȳ (k)

ϵ |τ0

)
+

h(ρ)
k

(b)

≤ 1
1− ρ

· 1
k

sup{
EU{ 1

k

∑k−1
i=0

(
xU [i]

)2
}≤P

}
k∈N+

I
(
X̄(k); Ȳ (k)

ϵ |τ0

)

+
h(ρ)
k

(c)

≤ 1
1− ρ

· 1
k

sup
F

X̄(k)|τ0
:

E

{
1
k

∑k−1
i=0

(
X̄[i]
)2}

≤P


k∈N+

I
(
X̄(k); Y (k)

ϵ |τ0

)

+
h(ρ)
k

where in (a) X̄(k) is an RV which places probability mass
of 1

|U| on each codeword x
(l)
u , u ∈ U , and Ȳ

(k)
ϵ = X̄(k) +

W
(k)
ϵ ; (b) follows as when each codeword u ∈ U satisfies

1
k

∑k−1
i=0

(
xu [i]

)2 ≤ P , then the average over all codewords
in the codebook satisfies the same constraint; (c) follows as we
define X̄[i] = xU [i] and then relax the restrictions on the input
codebook by directly maximizing over the RV X̄(k). Hence,
we obtain the upper bound on capacity as

Cϵ(τ0)≤liminf
k→∞

sup
F

X̄(k)|τ0
:

E

{
1
k

∑k−1
i=0

(
X̄[i]
)2}

≤P


k∈N+

1
k

I
(
X̄(k); Y (k)

ϵ |τ0

)
.

(A.15)

By [30], for every given k ∈ N+, the supremum in Eqn.
(A.15) is achieved by Gaussian random vector. If the optimal
distribution in (A.15) satisfies the conditions of Lemma A.1,

then (A.15) is maximized by the distribution X
(k)
opt ∼ F

X
(k)
opt |τ0

,

which is used in the derivation of the lower bound (A.14), i.e.,

Cϵ(τ0) ≤ liminf
k→∞

1
k

I
(
X

(k)
opt ; Y (k)

ϵ |τ0

)
, (A.16)

which, combined with the lower bound of (A.14), results in
Cϵ(τ0) = liminf

k→∞
1
k I
(
X(k); Y (k)

ϵ |τ0

)
.

Finally, as the sampling interval is incommensurate with
Tpw, then for the transmission of asymptotically long sequence
of messages, the sequence of sampling phases τ0 is a
uniformly distributed sequence over the interval [0, Tpw),
[41, Example 2.1]. As transmitter’s and receiver’s knowledge
of τ0 ∈ [0, Tpw) allows both units to select the appropriate
codebook with a rate of liminf

k→∞
1
k I
(
X

(k)
opt ; Y (k)

ϵ |τ0

)
, it follows

that when rate adaptation is allowed, capacity can be expressed
as the average rate

Cϵ =
1

Tpw

∫ Tpw

τ0=0

Cϵ(τ0)dτ0.

APPENDIX B
PROOF OF THM. 2

A. Convergence of the Noise Correlation Matrices and Their
Inverses

Define the set K ≜ {0, 1, 2, . . . , k − 1}, and consider the
k-dimensional, zero-mean, real random vectors W

(k)
n and

W
(k)
ϵ . Recall the definition of the correlation matrix C

W
(k)
ϵ

(τ0)
in Eqn. (A.1) and define the correlation matrix C

W
(k)
n

(τ0) in
a similar manner:(

C
W

(k)
n

(τ0)
)

u,v
≜ E

{
Wn[u] ·Wn[v]

∣∣τ0

}
≡ c

{τ0}
Wn

[v, u− v],

(B.1)

for (u, v) ∈ K × K. Note that since E
{
Wn[u] ·Wn[v]

∣∣τ0

}
=

E
{
Wn[v] · Wn[u]|

∣∣τ0

}
, then c

{τ0}
Wn

[v, u − v] = c
{τ0}
Wn

[u, v −
u], and

(
C

W
(k)
n

(τ0)
)

u,v
=

(
C

W
(k)
n

(τ0)
)

v,u
. Similarly,

c
{τ0}
Wϵ

[v, u − v] = c
{τ0}
Wϵ

[u, v − u], and
(
C

W
(k)
ϵ

(τ0)
)

u,v
=(

C
W

(k)
ϵ

(τ0)
)

v,u
.

Next, we note that by the definition of ϵn ≜ ⌊n·ϵ⌋
n it directly

follows that nϵ−1
n ≤ ϵn ≤ nϵ

n , hence,

lim
n→∞

ϵn = ϵ. (B.2)

Define c
{τ0}
Wn

[i, ∆] ≜ cWc

(
i · Tpw

p+ϵn
+ τ0, ∆ · Tpw

p+ϵn

)
. Then,

by the definition of a continuous function, we obtain that

(
X

(k)
opt
)T ·X(k)

opt
(dist.)

=
(
X

(k)
opt
)T · [ PCW

X,k(τ0) P0
X,k(τ0)

]
·
[

PCW
X,k(τ0) P0

X,k(τ0)
]T ·X(k)

opt

(dist.)
=

(
X

(k)
opt
)T · (PCW

X,k(τ0)
)
·
(
PCW

X,k(τ0)
)T ·X(k)

opt

(dist.)
=
(
X

(k)
opt
)T·(PCW

X,k(τ0)
)
·
(
C

X̃
(k)
opt

(τ0)
)− 1

2·C
X̃

(k)
opt

(τ0)·
(
C

X̃
(k)
opt

(τ0)
)− 1

2·
(
PCW

X,k(τ0)
)T·X(k)

opt

(dist.)
=

(
Γ(k)

X

)T

· C
X̃

(k)
opt

(τ0) · Γ(k)
X (A.13)
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continuity of cWc(t, λ) in t and in λ, combined with (B.2),
implies that ∀i, ∆ ∈ Z,

lim
n→∞

c
{τ0}
Wn

[i, ∆]

= lim
n→∞

cWc

(
i · Tpw

p + ϵn
+ τ0, ∆ · Tpw

p + ϵn

)
= cWc

(
i · Tpw

p + ϵ
+ τ0, ∆ · Tpw

p + ϵ

)
≡ c

{τ0}
Wϵ

[i, ∆]. (B.3)

Recall that as the autocorrelation function cWc(t, λ) is
bounded and continuous in (t, λ) ∈ R2, periodic in t ∈ R,
and is zero ∀|λ| ≥ λm, then it is bounded and uniformly
continuous with respect to time t ∈ [0, Tpw] and lag λ ∈ R
[23, Ch. III, Thm. 3.13]. Also recall that the correlation matri-
ces C

W
(k)
ϵ

(τ0) and C
W

(k)
n

(τ0) are non-singular (the rationale
for this assumption is given in Comment A.1). Combining
these properties with the definitions of the correlation matrices
C

W
(k)
ϵ

(τ0) and C
W

(k)
n

(τ0) in (A.1) and (B.1), respectively, and
with the limit in (B.3) we obtain that

lim
n→∞

max
τ0∈[0,Tpw],
(u,v)∈K×K

{∣∣∣∣(CW
(k)
n

(τ0)
)

u,v
−
(
C

W
(k)
ϵ

(τ0)
)

u,v

∣∣∣∣}=0.

(B.4)

Next, consider the mapping mk : Rk2 7→ Rk2
, defined via

mk

(
C(k)

)
=
(
C(k)

)−1
, C(k) ∈ Rk2

.

This is a continuous mapping over the set of positive-definite
k×k matrices C(k) ≻ 0, see, e.g., [42, Eqns. (1.5)-(1.6)]. Con-
sider now the positive-definite matrix

(
C

W
(k)
ϵ

(τ0)
)−1

. By the
strict diagonal dominance of C

W
(k)
ϵ

(τ0) (see condition (12))
we obtain that

maxEig
{(

C
W

(k)
ϵ

(τ0)
)−1
}

(B.5)

(a)

≤
∥∥∥(CW

(k)
ϵ

(τ0)
)−1
∥∥∥

1

(b)
=
∥∥∥(CW

(k)
ϵ

(τ0)
)−1
∥∥∥
∞

(c)

≤
(

min
0≤u≤k−1

{∣∣∣(CW
(k)
ϵ

(τ0)
)
u,u

∣∣∣−k−1∑
v=0,v ̸=u

∣∣∣(CW
(k)
ϵ

(τ0)
)
u,v

∣∣∣})−1

(d)

≤
(

min
0≤t≤Tpw

{
cWc(t, 0)− 2τm · max

|λ|> Tpw
p+1

{
|cWc(t, λ)|

}})−1

,

(B.6)

where (a) follows from the upper bound of [43, Thm. 5];
(b) follows from the symmetry of

(
C

W
(k)
ϵ

(τ0)
)−1

, due to
which we can obtain explicitly∥∥∥(CW

(k)
ϵ

(τ0)
)−1
∥∥∥

1
≜ max

0≤v≤k−1

{ k−1∑
u=0

∣∣((C
W

(k)
ϵ

(τ0)
)−1)

u,v

∣∣∣}
= max

0≤v≤k−1

{ k−1∑
u=0

∣∣((C
W

(k)
ϵ

(τ0)
)−1)

v,u

∣∣}
= max

0≤u≤k−1

{ k−1∑
v=0

∣∣((C
W

(k)
ϵ

(τ0)
)−1)

u,v

∣∣}
=
∥∥∥(CW

(k)
ϵ

(τ0)
)−1
∥∥∥
∞

;

(c) follows from the bound in [34, Eqn. (4)] (see also
[44, Eqn. (3)]), as, by condition (12), the matrix
C

W
(k)
ϵ

(τ0) is SDD, see Comment 4; and lastly, (d) follows
from Eqn. (15). Evidently, the same bound applies to
maxEig

{(
C

W
(k)
n

(τ0)
)−1
}

and we note that it is independent

of τ0. Then, since the magnitudes of the elements of a
positive-definite real, symmetric matrix are upper-bounded by
its largest eigenvalue3 we conclude that the elements of the
matrices

(
C

W
(k)
ϵ

(τ0)
)−1

and
(
C

W
(k)
n

(τ0)
)−1

belong to a finite
interval whose end points are independent of k, τ0 and n.

Next, note that boundedness of cWc(t, λ) (see Section III-A)
implies that the elements of C

W
(k)
n

(τ0) and of C
W

(k)
ϵ

(τ0) are
all bounded. It therefore follows from (B.4), the boundedness
of the elements of C

W
(k)
ϵ

(τ0), C
W

(k)
n

(τ0),
(
C

W
(k)
ϵ

(τ0)
)−1

and(
C

W
(k)
n

(τ0)
)−1

, boundedness and uniform continuity of the
CT correlation function cWc (t, λ) in t and in λ, continuity of
the mapping mk : Rk2 7→ Rk2

,4 and from [46, Thm. 11.2.3]
that

lim
n→∞

max
τ0∈[0,Tpw],
(u,v)∈K×K

{∣∣∣∣((CW
(k)
n

(τ0)
)−1
)

u,v

−
((

C
W

(k)
ϵ

(τ0)
)−1
)

u,v

∣∣∣∣} = 0. (B.7)

B. Showing That lim
n→∞

1
k I(X(k)

n,opt; Y
(k)
n |τopt

n,k ) =
1
k I(X(k)

opt ; Y
(k)
ϵ |τopt

ϵ,k ) for the Optimal Sampling Phases
and Inputs Distributions

(
τopt
n,k , F

X
(k)
n,opt|τ

opt
n,k

)
and(

τopt
ϵ,k , F

X
(k)
opt |τ

opt
ϵ,k

)
Consider a fixed k ∈ N+, let

CX(k) ≜

{
τ ∈ [0, Tpw), CX(k) ∈ Rk×k

∣∣∣ k−1∑
i=0

(CX(k))ii ≤ k · P,

CX(k) = (CX(k))T
, CX(k) ≽ 0

}
, (B.8)

3for a positive-definite real, symmetric matrix C, we have

0 < (ei − ej)
T · C · (ei − ej)

= eT
i · C · ei + eT

j · C · ej − eT
i · C · ej − eT

j · C · ei

⇒
1

2
·
(
eT

i · C · ei + eT
j · C · ej

)
> eT

i · C · ej

0 < (ei + ej)
T · C · (ei + ej)

= eT
i · C · ei + eT

j · C · ej + eT
i · C · ej + eT

j · C · ei

⇒−
1

2
·
(
eT

i · C · ei + eT
j · C · ej

)
< eT

i · C · ej

Hence, 0 ≤
∣∣eT

i · C · ej

∣∣ < 1
2
·
(
eT

i · C · ei + eT
j · C · ej

)
. Now, letting ei

denote the all-zero vector except for 1 at the i-th element (i ∈ N), we note
that the (i, j)-th element of C is given by∣∣∣(C)i,j

∣∣∣ =
∣∣∣eT

i · C · ej

∣∣∣ <
1

2
·
(
eT

i · C · ei + eT
j · C · ej

)
≤maxEig {C} ,

where the last inequality follows from [45, Thm. 4.2.2].
4Since the inverse is a continuous mapping from a compact and finite set

to a compact and finite set.
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and denote

(τopt
n,k , Copt

X
(k)
n

)

= argmax
(τ0,C

X(k) )∈CX(k)

1
2k

log
(Det

(
CX(k) + C

W
(k)
n

(τ0)
)

Det
(
C

W
(k)
n

(τ0)
) )

(B.9a)
(τopt

ϵ,k , Copt

X
(k)
ϵ

)

= argmax
(τ0,C

X(k) )∈CX(k)

1
2k

log
(Det

(
CX(k) + C

W
(k)
ϵ

(τ0)
)

Det
(
C

W
(k)
ϵ

(τ0)
) )

.

(B.9b)

Then, the zero-mean Gaussian random vectors X
(k)
n,opt and

X
(k)
opt , with covariance matrices Copt

X
(k)
n

and Copt

X
(k)
ϵ

, respectively,

at the respective sampling phases τopt
n,k and τopt

ϵ,k , maximize
the mutual information expressions 1

k I(X(k)
n ; Y (k)

n |τ0) and
1
k I(X(k); Y (k)

ϵ |τ0), respectively, when maximization is over
all sampling phases and associated input distributions which
satisfy the respective trace constraint, 1

kTr
{
C

X
(k)
n

}
≤ P ,

1
kTr

{
CX(k)

}
≤ P , see, e.g., [30, Eqn. (6)]. We now have

the following lemma:
Lemma B.1: When k ∈ N+ is fixed, and X

(k)
n,opt and

X
(k)
opt are zero-mean Gaussian random vectors with covariance

matrices Copt

X
(k)
n

and Copt

X
(k)
ϵ

, respectively, where (τopt
n,k , Copt

X
(k)
n

)

and (τopt
ϵ,k , Copt

X
(k)
ϵ

) satisfy (B.9), then

lim
n→∞

1
k

I(X(k)
n,opt; Y

(k)
n |τopt

n,k ) =
1
k

I(X(k)
opt ; Y (k)

ϵ |τopt
ϵ,k ).

(B.10)

Proof: First, recall that by [30], when the covariance
matrix and sampling phase pairs are given as (τopt

n,k , Copt

X
(k)
n

)

and (τopt
ϵ,k , Copt

X
(k)
ϵ

) satisfying Eqns. (B.9), then the mutual

information expressions in (B.10), evaluated for X
(k)
n,opt and

X
(k)
opt Gaussian inputs processes corresponding to the sampling

phase-correlation matrix pairs of Eqns. (B.9), are equal to the
maximal values of the objective functions in (B.9):

1
k

I(X(k)
n,opt; Y

(k)
n |τopt

n,k ) =
1
2k

log
(Det

(
Copt

X
(k)
n

+C
W

(k)
n

(τopt
n,k )
)

Det
(
C

W
(k)
n

(τopt
n,k )

) )

1
k

I(X(k)
opt ; Y (k)

ϵ |τopt
ϵ,k )=

1
2k

log
(Det

(
Copt

X
(k)
ϵ

+C
W

(k)
ϵ

(τopt
ϵ,k )
)

Det
(
C

W
(k)
ϵ

(τopt
ϵ,k )

) )
.

Therefore, convergence of the limit in (B.10) corresponds
to having that the optimal values of the objective function
in the optimization problem (B.9a) converge, as n → ∞,
to the optimal value of the objective function in (B.9b).
To prove this convergence we employ [47, Thm. 2.1]5. The

5 [47, Thm. 2.1]: Let fn → f uniformly as n → ∞. Then, the
sequence of problems Pn : an = inf

x∈X
fn(x) converges to the problem

P : a = inf
x∈X

f(x) as n →∞.

See additional conditions regarding the application of [47, Thm. 2.1] in
Footnotes 7 and 8.

main requirement for the application of [47, Thm. 2.1] is that
lim

n→∞
1
2k log

(
Det
(
CX(k) + C

W
(k)
n

(τ0)
)
/Det

(
C

W
(k)
n

(τ0)
))

=
1
2k log

(
Det
(
CX(k) + C

W
(k)
ϵ

(τ0)
)
/Det

(
C

W
(k)
ϵ

(τ0)
))

uni-
formly over CX(k) . In the following we show that such a
uniform convergence holds.

It follows from the limit in (B.7) that for any δ1 > 0 there
exists n0(δ1) ∈ N+ sufficiently large such that for all 0 ≤
l, q ≤ k − 1, τ0 ∈ [0, Tpw), and for all n > n0(δ1),
it holds that

∣∣∣((CW
(k)
n

(τ0)
)−1 −

(
C

W
(k)
ϵ

(τ0)
)−1
)

l,q

∣∣∣ ≤ δ1.

Now, we note that since CX(k) is a positive semi-definite
matrix which satisfies a constraint on the sum of its diagonal
elements (B.8), then from the Cauchy-Schwartz inequality
[40, Eqn. (9-176)], [33, Sec. 3.6] we have that∣∣∣(CX(k)

)
l,q

∣∣∣ = ∣∣E{X[l]X[q]}
∣∣

≤
√
E {(X[l])2}E {(X[q])2}

≤
√

(k · P )2 = k · P, ∀ 0 ≤ l, q ≤ k − 1.

(B.11)

It thus follows that all the matrices CX(k) ∈
CX(k) have bounded elements. We now bound∣∣∣∣((CW

(k)
n

(τ0)
)−1

CX(k)

)
l,q

−
((

C
W

(k)
ϵ

(τ0)
)−1

CX(k)

)
l,q

∣∣∣∣
for all n > n0(δ1) as follows:∣∣∣((CW

(k)
n

(τ0)
)−1

CX(k)

)
l,q
−
((

C
W

(k)
ϵ

(τ0)
)−1

CX(k)

)
l,q

∣∣∣
=
∣∣∣∣ k−1∑

m=0

((
C

W
(k)
n

(τ0)
)−1 −

(
C

W
(k)
ϵ

(τ0)
)−1
)

l,m
(CX(k))m,q

∣∣∣∣
≤ δ1 ·

k−1∑
m=0

∣∣ (CX(k))m,q

∣∣ ≤ δ1 · P · k2,

where we recall that P and k are finite and given. Thus, for
any δ > 0,∃n0(δ) ∈ N+ sufficiently large such that for all
0 ≤ l, q ≤ k − 1, n > n0(δ), and for all (τ0, CX(k)) ∈ CX(k)∣∣∣∣((CW

(k)
n

(τ0)
)−1

CX(k)

)
l,q
−
((

C
W

(k)
ϵ

(τ0)
)−1

CX(k)

)
l,q

∣∣∣∣ ≤ δ.

(B.12)

Observe that the product
(
C

W
(k)
ϵ

(τ0)
)−1

CX(k) has non-

negative eigenvalues, [48, Thm. 7.5], and the maximal eigen-
value, denoted maxEig

{(
C

W
(k)
ϵ

(τ0)
)−1

CX(k)

}
, can be upper

bounded as follows:

maxEig
{(

C
W

(k)
ϵ

(τ0)
)−1

CX(k)

}
(a)

≤ maxEig
{(

C
W

(k)
ϵ

(τ0)
)−1
}
·maxEig

{
CX(k)

}
(b)

≤
∥∥∥(CW

(k)
ϵ

(τ0)
)−1
∥∥∥

1
· ∥CX(k)∥1

(c)

≤ k2 · P

min
0≤t≤Tpw

{
cWc(t, 0)− 2τm · max

|λ|> Tpw
p+1

{
|cWc(t, λ)|

}}
︸ ︷︷ ︸

≜β0(k)

,

(B.13)

Authorized licensed use limited to: Princeton University. Downloaded on September 17,2023 at 22:42:45 UTC from IEEE Xplore.  Restrictions apply. 



DABORA AND ABAKASANGA: ON THE CAPACITY OF COMMUNICATION CHANNELS 6157

where (a) follows from [49, Eqn. (9)], see also [48, Thm.
8.12]; in (b) we use the upper bound from [43, Thm. 5]; and
step (c) follows from the bounds in (B.6) and (B.11).

Since the magnitudes of the elements of
(
C

W
(k)
ϵ

(τ0)
)−1

are upper bounded by (B.6) (see Footnote 3) and the mag-
nitudes of the elements of CX(k) are upper bounded by
k · P , we obtain that the magnitudes of the elements of the
matrix product

(
C

W
(k)
ϵ

(τ0)
)−1

CX(k) are upper bounded by k2·(
min

0≤t≤Tpw

{
cWc(t, 0)−2τm · max

|λ|> Tpw
p+1

{
|cWc(t, λ)|

}})−1

·P ≡

β0(k). As the upper bound β0(k) is finite and independent of
ϵ, then the same upper bound applies also to the magnitudes
of the elements of

(
C

W
(k)
n

(τ0)
)−1

CX(k) , and we conclude that

the magnitudes of the elements of
(
C

W
(k)
n

(τ0)
)−1

CX(k) and

of
(
C

W
(k)
ϵ

(τ0)
)−1

CX(k) are all finite and upper bounded by a
bound which increases as k2, and is independent of n and τ0.

Consider next the ordered sets of eigenvalues of(
C

W
(k)
n

(τ0)
)−1

CX(k) and of
(
C

W
(k)
ϵ

(τ0)
)−1

CX(k)

arranged in descending order: Let Λ(k)
i,n (CX(k) ; τ0) ≡

Λ(k)
i

{(
C

W
(k)
n

(τ0)
)−1

CX(k)

}
and Λ(k)

i,ϵ (CX(k) ; τ0) ≡

Λ(k)
i

{(
C

W
(k)
ϵ

(τ0)
)−1

CX(k)

}
, 0 ≤ i ≤ k − 1. Then,

continuity of the eigenvalues of square real matrices
[45, Sec. 2.4.9, Thm. 2.4.9.2], combined with the
boundedness of the elements of

(
C

W
(k)
ϵ

(τ0)
)−1

CX(k)

and of
(
C

W
(k)
n

(τ0)
)−1

CX(k) , boundedness of their
corresponding eigenvalues, and the fact that convergence
of
(
C

W
(k)
n

(τ0)
)−1

CX(k) to
(
C

W
(k)
ϵ

(τ0)
)−1

CX(k) is uniform
over CX(k) , see Eqn. (B.12), imply that the ordered sets
of eigenvalues of

(
C

W
(k)
n

(τ0)
)−1

CX(k) converge to the

ordered set of eigenvalues of
(
C

W
(k)
ϵ

(τ0)
)−1

CX(k) uniformly
in (τ0, CX(k)) ∈ CX(k) , namely, ∀δ > 0, ∃ñ0(δ) ∈ N+

sufficiently large such that for all n > ñ0(δ), and for all
(τ0, CX(k)) ∈ CX(k)∣∣∣Λ(k)

i,n (CX(k) ; τ0)− Λ(k)
i,ϵ (CX(k) ; τ0)

∣∣∣ ≤ δ, 0 ≤ i ≤ k − 1.

(B.14)

Lastly, consider the distance between the objective functions
in (B.9): For any (τ0, CX(k)) ∈ CX(k) , the distance between
the objective functions can now be expressed as6:∣∣∣ 1

2k
logdet

((
C

W
(k)
n

(τ0)
)−1

CX(k) + Ik
)

− 1
2k

logdet
((

C
W

(k)
ϵ

(τ0)
)−1

CX(k) + Ik
)∣∣∣

=
1
2k

∣∣∣∣ k−1∑
i=0

log
(
1 + Λ(k)

i,n

(
CX(k) ; τ0

))
−

k−1∑
i=0

log
(
1 + Λ(k)

i,ϵ

(
CX(k) ; τ0

))∣∣∣∣.
6Note that since

(
C

W
(k)
ϵ

(τ0)
)−1 ≻ 0, symmetric, then

(
C

W
(k)
ϵ

(τ0)
)−1 ·

CX(k) + Ik =
(
C

W
(k)
ϵ

(τ0)
)− 1

2 ·
((

C
W

(k)
ϵ

(τ0)
)− 1

2 CX(k) ·(
C

W
(k)
ϵ

(τ0)
)− 1

2 + Ik

)
·
(
C

W
(k)
ϵ

(τ0)
) 1

2 .

Using the first order Taylor expansion [50, Pgs. 415-418] we
can write

log
(
1 + Λ(k)

i,n (CX(k) ; τ0)
)

= log
(
1 + Λ(k)

i,ϵ (CX(k) ; τ0)
)

+
1

ln 2
1

1 + Λ(k)
i,ϵ (CX(k) ; τ0)

(
Λ(k)

i,n (CX(k) ; τ0)

−Λ(k)
i,ϵ (CX(k) ; τ0)

)
+ ξi

(
Λ(k)

i,n (CX(k) ; τ0)
)

,

where ξi

(
Λ(k)

i,n (CX(k) ; τ0)
)

is a reminder term. Thus, ∀n >

ñ0(δ) such that (B.14) is satisfied, we obtain ∀(τ0, CX(k)) ∈
CX(k) that

1
2k

∣∣∣∣log det
((

C
W

(k)
n

(τ0)
)−1

CX(k) + Ik

)
− logdet

((
C

W
(k)
ϵ

(τ0)
)−1

CX(k) + Ik

)∣∣∣∣
=

1
2k

∣∣∣∣ k−1∑
i=0

(
1

ln 2
1

1 + Λ(k)
i,ϵ

(
CX(k) ; τ0

)(Λ(k)
i,n

(
CX(k) ; τ0

)
−Λ(k)

i,ϵ

(
CX(k) ; τ0

))
+ξi

(
Λ(k)

i,n

(
CX(k) ; τ0

)))∣∣∣∣
≤ 2

1
2k

k−1∑
i=0

∣∣∣Λ(k)
i,n (CX(k) ; τ0)− Λ(k)

i,ϵ (CX(k) ; τ0)
∣∣∣

+
1
2k

k−1∑
i=0

∣∣∣ξi

(
Λ(k)

i,n (CX(k) ; τ0)
)∣∣∣

≤ δ +
1
2

max
0≤i≤k−1

∣∣∣ξi

(
Λ(k)

i,n (CX(k) ; τ0)
)∣∣∣

(a)

≤ δ +
1
2
δ2.

Note that uniformity in CX(k) of the inequality
in step (a) follows from the uniform boundedness
of

∣∣∣Λ(k)
i,n (CX(k) ; τ0)− Λ(k)

i,ϵ (CX(k) ; τ0)
∣∣∣ over CX(k) ,

as established in (B.14), combined with the bound in
(B.15), as shown at the bottom of the next page, derived
using [50, Pg. 418], which holds uniformly over CX(k) .
Note that step (a′) in the derivation of (B.15) follows
since ζ ≥ 0, by the non-negativity of the eigenvalues of(
C

W
(k)
ϵ

(τ0)
)−1

CX(k) .
It follows that the distance between the logdet functions

is uniformly upper bounded for all (τ0, CX(k)) ∈ CX(k) ,
hence, convergence of 1

2k logdet
((

C
W

(k)
n

(τ0)
)−1

CX(k) + Ik
)

to 1
2k logdet

((
C

W
(k)
ϵ

(τ0)
)−1

CX(k) + Ik
)

as n → ∞ is
uniform over the feasible set CX(k) . We conclude that for
a sequence of optimization problems (B.9a), the objective
functions converge uniformly to a limiting objective function
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(B.9b). Thus, it follows from the proof of [47, Thm. 2.1]7,8

that the sequence of optimal objective values of the sequence
of problems (B.9a) converges to the optimal objective value
of the limiting problem (B.9b):

lim
n→∞

1
2k

logdet
((

C
W

(k)
n

(τopt
n,k )

)−1
Copt

X
(k)
n

+ Ik
)

=
1
2k

logdet
((

C
W

(k)
ϵ

(τopt
ϵ,k )

)−1
Copt

X(k) + Ik
)
.

C. Equivalence Between and Cϵ and liminf
n→∞

Cn for the Setup
of Theorem 2

Let F
X

(k)
opt |τ

opt
ϵ,k

denote a k-dimensional Gaussian CDF with

a correlation matrix denoted by Copt
X(k) , such that

(
τopt
ϵ,k , Copt

X(k)

)
maximizes 1

k I(X(k); Y (k)
ϵ |τϵ,k). Let Zk,ϵ

(
F

X
(k)
opt |τ

opt
ϵ,k

|τopt
ϵ,k

)
denote the corresponding mutual information density rate.
We now have the following Lemma:

Lemma B.2: For the setup of Theorem 2 it holds that

Cϵ = p− liminf
k→∞

Zk,ϵ

(
F

X
(k)
opt |τ

opt
ϵ,k

|τopt
ϵ,k

)
= liminf

n→∞
Cn, (B.16)

where Cn is defined in Eqn. (11).
Proof: First, consider the upper bound on capacity:

Recall that by Lemma B.1, for every finite k ∈ N+,
letting τopt

n,k and τopt
ϵ,k denote the optimal sampling phases

within the noise period, and letting X
(k)
n,opt and X

(k)
opt denote

the corresponding Gaussian inputs with the optimal corre-
lation matrices, it holds that lim

n→∞
1
k I(X(k)

n,opt; Y
(k)
n |τopt

n,k ) =

7For the application of [47, Thm. 2.1]: X in the theorem corresponds to
the union of the interval [0, Tpw) and the space of real symmetric, positive

semidefinite matrices, subject to a constraint on their trace:
{

CX(k) ∈

Rk×k

∣∣∣∣ 1
k

∑k−1
i=0

(
CX(k)

)
ii
≤ P, CX(k) =

(
CX(k)

)T
, CX(k) ≽ 0

}
,

which is a convex space. Y in the theorem corresponds to the set of real
numbers and the positive cone corresponds to the set of non-negative real
numbers, thus, this cone is clearly normal [51, Example 6.3.5].

8Note that while [47, Thm. 2.1] is stated for convex objectives, convexity
of the objective is not required for the convergence of the optimal objective
values, only for the convergence of the optimal solutions. As we are not
interested in the convergence of the optimal solutions (i.e., not interested in
the convergence of

(
τopt
n,k , Copt

X
(k)
n

)
), then we can apply the steps in proof of

[47, Thm. 2.1] to conclude that the optimal objective values converge also
for non-convex objectives, without considering convergence of the solutions.

1
k I(X(k)

opt ; Y (k)
ϵ |τopt

ϵ,k ). Then, we can write

Cϵ

(a)

≤ liminf
k→∞

1
k

I
(
X

(k)
opt ; Y (k)

ϵ |τopt
ϵ,k

)
(b)
= liminf

k→∞
lim

n→∞

1
k

I
(
X

(k)
n,opt; Y

(k)
n |τopt

n,k

)
(c)
= liminf

k→∞
liminf
n→∞

1
k

I
(
X

(k)
n,opt; Y

(k)
n |τopt

n,k

)
(d)

≤ liminf
k→∞

liminf
n→∞

Cn(τopt
n,k )

(e)

≤ liminf
k→∞

liminf
n→∞

Cn

= liminf
n→∞

Cn, (B.17)

where (a) follows from similar arguments as in the derivation
of (A.15):

Cϵ ≤ liminf
k→∞

sup
(
F

X̄(k)|τ̄ϵ,k
,τ̄ϵ,k

)
:

1
k

∑k−1
i=0 (x̄u[i])2≤P, u∈U,

τ̄ϵ,k∈[0,Tpw]


k∈N+

1
k

I
(
X̄(k); Ȳ (k)

ϵ |τ̄ϵ,k

)

≤ liminf
k→∞

sup
(
F

X̄(k)|τ̄ϵ,k
,τ̄ϵ,k

)
:

E

{
1
k

∑k−1
i=0 (X̄[i])2

}
≤P,

τ̄ϵ,k∈[0,Tpw]


k∈N+

1
k

I
(
X̄(k); Ȳ (k)

ϵ |τ̄ϵ,k

)
,

where Ȳ
(k)
ϵ is the channel output for input X̄(k), and τ̄ϵ,k is

the sampling phase, and in the first inequality we maximize
over all input distributions which facilitate selection of a
codebook which satisfies the per-codeword power constraint.
As the channel (5) is an additive Gaussian noise channel,
then, subject to a trace constraint on the input correlation
matrix, it follows that for every given k ∈ N+, the mutual
information expression between the channel input and its
output is maximized by Gaussian inputs [30, Eqns. (4), (30)],
which satisfy the trace constraint, and we use the maximizing
sampling phase according to (B.9b). Step (b) follows from
Lemma B.1; and step (c) follows since the limit in n exists
and is finite [46, Thm. 33.1.1]. Step (d) follows as the
channel (8) is a DT ACGN channel, then, by the discussion in
[6, Eqns. (14)-(16)] it is equivalent to a finite-memory sta-
tionary multivariate Gaussian channel. Hence, Step (d) follows
directly from the converse in [52, Eqn. (21)]: For every finite
k ∈ N+ and a given τopt

n,k , the achievable rate is not greater
than the capacity: Cn

(
τopt
n,k

)
≥ 1

k I
(
X

(k)
n ; Y (k)

n |τn,k

)
. Lastly,

step (e) follows as by (11), Cn ≥ Cn

(
τopt
n,k

)
.

To show achievability of liminf
n→∞

Cn, we consider a trans-
mission scheme which partitions the transmitted sequence into
finite-length blocks, all of length k ∈ N+, and appends each

∣∣∣ξi

(
Λ(k)

i,n (CX(k) ; τ0)
) ∣∣∣ = ∣∣∣∣12 · 1

ln 2
· 1(

1 + ζ
)2(Λ(k)

i,n

(
CX(k) ; τ0

)
− Λ(k)

i,ϵ

(
CX(k) ; τ0

))2
∣∣∣∣,

min
{
Λ(k)

i,ϵ

(
CX(k) ; τ0

)
, Λ(k)

i,n

(
CX(k) ; τ0

)}
≤ ζ ≤ max

{
Λ(k)

i,ϵ

(
CX(k) ; τ0

)
, Λ(k)

i,n

(
CX(k) ; τ0

)}
(a′)⇒

∣∣∣ξi

(
Λ(k)

i,n (CX(k) ; τ0)
) ∣∣∣ ≤ 1

2
· 1
ln 2

(
Λ(k)

i,n

(
CX(k) ; τ0

)
− Λ(k)

i,ϵ

(
CX(k) ; τ0

))2

≤ δ2 (B.15)
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k-block with a guard interval, sufficient to facilitate statistical
independence between the noise process samples belonging to
the different k-blocks as well as to facilitate synchronization
of the transmission start times of all k-blocks to begin at the
initial sampling phase τopt

ϵ,k , which is selected to maximize the
mutual information of the k-block subject to a trace constraint,
as in (B.9b). Note that such synchronization is permissible as
the setup of Thm. 2 allows for transmission delay. We now
detail the operations at the transmitter and at the receiver,
recalling that Wϵ[i] has a finite memory τm < ∞. In the
following description we use the tilde symbol to denote the
channel input and output with the additional guard intervals,
as well as the appropriate noise sequence. The channel inputs
which carry information and the processed outputs used for
decoding are denoted without the tilde symbol, and so does
the corresponding noise sequence.

1) Transmitter’s Operations: Let k ∈ N+ denote the
blocklength, and set the duration of the guard interval between
subsequent blocks to τm · Ts(ϵ) + ∆g time units (in CT),
0 ≤ ∆g ≤ Tpw will be explicitly defined later in the
proof. Due to the finite memory and Gaussianity of the
noise process it follows that noise sequences belonging to
different k-blocks are statistically independent. Moreover, the
additional guard time of ∆g beyond τm allows the transmitter
to synchronize the sampling phase of the i-th k-block, denoted
τ

(i)
ϵ,k , to the sampling phase which maximizes the k-block

mutual information, i.e., τ
(i)
ϵ,k = τopt

ϵ,k . The codewords are
generated according to a Gaussian distribution F

X
(k)
opt |τ

opt
ϵ,k

with

a correlation matrix Copt
X(k) , s.t.

(
τopt
ϵ,k , Copt

X(k)

)
are selected

according to (B.9b). Hence, a codeword consisting of l · k
code symbols is transmitted over a time interval corresponding
to l · (k + τm + ∆g/Ts(ϵ)) channel symbols. Note that as
the transmitter knows the correlation function of the noise,
and, naturally, knows its own symbol interval Ts(ϵ), it can
deterministically compute the delay ∆g needed to arrive again
at τopt

ϵ,k , which is given by (B.18), as shown at the bottom of
the next page. A codebook CB(i)

k (τopt
ϵ,k ) of rate R for the i-th

k-block is generated by selecting 2kR codewords randomly
and independently according to F

X
(k)
opt |τ

opt
ϵ,k

. The codeword for

the i-th k-block, 1 ≤ i ≤ l, denoted Xi·k−1
(i−1)·k, is independent

of the codewords selected for the other k-blocks.
Note that with this construction, the codebook satisfies that

for each message u ∈ U ,

1
l · k

l·k−1∑
i=0

(
xu[i]

)2 =
1
l

l−1∑
l′=0

(1
k

k−1∑
k′=0

(
xu[l′ · k + k′]

)2)

=
1
k

k−1∑
k′=0

(1
l

l−1∑
l′=0

(
xu[l′ · k + k′]

)2)
(in prob.)−→

l→∞

1
k

k−1∑
k′=0

E
{(

X[k′]
)2}≤P, (B.19)

where the limit as l → ∞ follows from the weak law of
large numbers, see e.g., [53, Sec. 9.1], and the inequality
follows from the trace constraint in the definition of CX(k) .
It follows that for every δ > 0, we can select l ∈ N+

sufficiently large s.t. ∀u ∈ U ,

Pr
( 1

l · k

l·k−1∑
i=0

(
Xu[i]

)2
> P

)
≤ δ.

A message u of rate R is transmitted via a codeword

X
(l·k)
u ≡

{
Xi·k−1

u,(i−1)·k

}l

i=1
, by splitting the information bit

sequence of length l · k · R into l blocks, each contains
k · R bits, where each block of k · R bits is mapped into a
codeword of length k, e.g., the i-th block of the message u is
mapped into Xi·k−1

u,(i−1)·k ∈ CB
(i)
k (τopt

ϵ,k ). Lastly, the transmitted

X
(l·k)
u is transmitted as a sequence X̃(l·(k+τm)) of l · (k + τm)

samples, which is sent over l · (k + τm) · Ts(ϵ) + l ·∆g time
units. The rate of this scheme is then R · k

k+τm+∆g/Ts(ϵ)
=

R ·
(
1− τm+∆g/Ts(ϵ)

k+τm+∆g/Ts(ϵ)

)
.

2) Receiver’s Operations: At the beginning of reception,
the receiver identifies the start time of the received sequence.
From that point, as the symbol rate at the receiver is syn-
chronized with Ts(ϵ), the receiver can maintain k-block syn-
chronization as applied at the transmitter: Let Ỹ

(l·(k+τm))
ϵ =

X̃(l·(k+τm)) + W̃
(l·(k+τm))
ϵ denote the received samples,

observed over l ·(k+τm) ·Ts(ϵ)+l ·∆g time units, obtained by
receiving a block of k + τm samples, and then waiting for ∆g

times units to process the next block of k + τm samples. The
receiver then keeps only the first k samples of each block,
discarding the last τm samples. This processing results in a

received sequence of l k-blocks denoted
{

Y i·k−1
ϵ,(i−1)·k

}l

i=1
≡

Y
(l·k)
ϵ , which are used by the decoder to receover the message

u ∈ U .
In the following we denote the mutual infor-

mation density rate for the i-th k-block, with
initial sampling time τ

(i)
ϵ,k and input distribution

F
Xi·k−1

(i−1)·k|τ
(i)
ϵ,k

, with Z
(i)
k,ϵ

(
F

Xi·k−1
(i−1)·k|τ

(i)
ϵ,k

|τ (i)
ϵ,k

)
≜

1
k log

(
p

Y
i·k−1
ϵ,(i−1)·k|X

i·k−1
(i−1)·k,τ

(i)
ϵ,k

(
Y i·k−1

ϵ,(i−1)·k

∣∣Xi·k−1
(i−1)·k,τ

(i)
ϵ,k

)
p

Y
i·k−1
ϵ,(i−1)·k|τ

(i)
ϵ,k

(
Y i·k−1

ϵ,(i−1)·k|τ
(i)
ϵ,k

) )
. Note

that the guard interval also facilitates statistical independence
between channel outputs at the decoder corresponding to
different transmitted messages. The addition of the guard
interval effectively decreases the information rate, however,
as the blocklength k increases, the impact of such fixed-length
guard interval on the information rate becomes asymptotically
negligible, and hence, it does not impact capacity. Recall that
k ∈ N+ denotes the length of a block of symbols without
guard interval.

Using the above scheme it is shown that when{
Xi·k−1

(i−1)·k, opt

}l

i=1
are Gaussian with the optimal covariance

matrix, Copt
X(k) , designed for the optimal sampling phase τopt

ϵ,k ,
and X

(l·k)
opt is the corresponding input sequence, then

Cϵ ≥ p− liminf
k→∞

Zk·l,ϵ

(
F

X
(l·k)
opt |τopt

ϵ,k

|τopt
ϵ,k

)
≥ liminf

n→∞
Cn,

(B.20)

where the first inequality follows from [19, Thm. 3.6.1], as by
(B.19) the constructed codebook satisfies the per-codeword
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power constraint (6) with a probability which is arbitrarily
close to 1, and the limit-inferior in probability of any given
input process which satisfies the per-codeword power con-
straint (6), clearly does not exceed capacity. Hence, it remains
to show the inequality on the RHS.

Letting τopt
ϵ,k denote the sampling phase at the start of

the transmitted message, then as the guard interval facilitates
statistical independence between the k-blocks we obtain that

Zl·k,ϵ

(
FX(l·k)|τopt

ϵ,k
|τopt

ϵ,k

)
=

1
l

l∑
i=1

Z
(i)
k,ϵ

(
FXi·k−1

(i−1)·k|τ
opt
ϵ,k
|τopt

ϵ,k

)
via the derivation leading to (B.21), as shown at the bottom
of the page, where in step (a) in the derivation of (B.21),
τ

(i)
ϵ,k denotes the sampling phase of the i-th k-block which is

generated by the transmission scheme, and the equality follows
since both the input k-blocks

{
Xi·k−1

(i−1)·k
}l

i=1
and the noise

k-blocks
{
W i·k−1

ϵ,(i−1)·k
}l

i=1
are mutually independent (over 1 ≤

i ≤ l): For the noise,
{
W i·k−1

ϵ,(i−1)·k
}l

i=1
, independence among

the k-blocks follows as the k-blocks are separated more than
τm samples apart, while the noise memory is τm; for the
channel output,

{
Y i·k−1

ϵ,(i−1)·k
}l

i=1
, independence follows as both

the noise k-blocks are independent (as explained above) and
the input k-blocks are independent by the assumption of
uniformity and independence of the messages, as well as
the codebook generation process; step (b) in the derivation

of (B.21) follows since at each block, sampling phase syn-
chronization is applied, which results in τ

(i)
ϵ,k = τopt

ϵ,k for all
k-blocks 1 ≤ i ≤ l.

Note that as the sampling phase (within a period of
the noise correlation function), τopt

ϵ,k , is identical for all
k-blocks, it follows that the noise process has the same
correlation matrix for every k-block. Therefore, the CDF
FXi·k−1

(i−1)·k,opt|τ
opt
ϵ,k

which maximizes the mutual information for

the i-th k-block, 1
k I(Xi·k−1

(i−1)·k; Y i·k−1
ϵ,(i−1)·k|τ

opt
ϵ,k ), is identical for

all the k-blocks (i.e., for all of the l blocks, each of length
k): FXi·k−1

(i−1)·k,opt|τ
opt
ϵ,k

= F
X

(k)
opt|τ

opt
ϵ,k

, i = 1, 2, . . . , l. Letting

F
X

(l·k)
opt |τopt

ϵ,k

=
∏l

i=1 FXi·k−1
(i−1)·k,opt|τ

opt
ϵ,k

, we conclude that the

RVs
{

Z
(i)
k,ϵ

(
FXi·k−1

(i−1)·k,opt|τ
opt
ϵ,k
|τopt

ϵ,k

)}l

i=1
all have identical dis-

tributions. Thus,

E
{

Zl·k,ϵ

(
F

X
(l·k)
opt |τopt

ϵ,k

|τopt
ϵ,k

)}
= E

{
1
l

l∑
i=1

Z
(i)
k,ϵ

(
FXi·k−1

(i−1)·k,opt|τ
opt
ϵ,k
|τopt

ϵ,k

)}

=
1
l

l∑
i=1

E

{
Z

(i)
k,ϵ

(
FXi·k−1

(i−1)·k,opt|τ
opt
ϵ,k
|τopt

ϵ,k

)}
(a)
=

1
k

I
(
X

(k)
opt ; Y (k)

ϵ |τopt
ϵ,k

)

∆g =

 τopt
ϵ,k −

((
τopt
ϵ,k + (k + τm) · Ts(ϵ)

)
mod Tpw

)
,
((

τopt
ϵ,k + (k + τm)·Ts(ϵ)

)
modTpw

)
≤τopt

ϵ,k

τopt
ϵ,k +Tpw−

((
τopt
ϵ,k +(k+τm)·Ts(ϵ)

)
modTpw

)
,
((

τopt
ϵ,k + (k + τm)·Ts(ϵ)

)
modTpw

)
>τopt

ϵ,k

(B.18)

Zl·k,ϵ

(
FX(l·k)|τopt

ϵ,k
|τopt

ϵ,k

)
≜

1
l · k

log

(
p

Y
(l·k)

ϵ |X(l·k),τϵ,k

(
Y

(l·k)
ϵ

∣∣X(l·k), τopt
ϵ,k

)
p

Y
(l·k)

ϵ |τϵ,k

(
Y

(l·k)
ϵ |τopt

ϵ,k

) )

=
1

l · k
log

(p{
Y i·k−1

ϵ,(i−1)·k

}l

i=1

∣∣{Xi·k−1
(i−1)·k

}l

i=1
,τϵ,k

({
Y i·k−1

ϵ,(i−1)·k
}l

i=1

∣∣∣{Xi·k−1
(i−1)·k

}l

i=1
, τopt

ϵ,k

)
p{

Y i·k−1
ϵ,(i−1)·k

}l

i=1

∣∣τϵ,k

({
Y i·k−1

ϵ,(i−1)·k
}l

i=1

∣∣τopt
ϵ,k

)
)

=
1

l · k
log

(p{
W i·k−1

ϵ,(i−1)·k

}l

i=1

∣∣τϵ,k

({
Y i·k−1

ϵ,(i−1)·k −Xi·k−1
(i−1)·k

}l

i=1

∣∣∣τopt
ϵ,k

)
p{

Y i·k−1
ϵ,(i−1)·k

}l

i=1

∣∣τϵ,k

({
Y i·k−1

ϵ,(i−1)·k
}l

i=1

∣∣τopt
ϵ,k

)
)

(a)
=

1
l · k

log

(
l∏

i=1

p
W i·k−1

ϵ,(i−1)·k|τ
(i)
ϵ,k

(
Y i·k−1

ϵ,(i−1)·k −Xi·k−1
(i−1)·k

∣∣τ (i)
ϵ,k

)
p

Y i·k−1
ϵ,(i−1)·k|τ

(i)
ϵ,k

(
Y i·k−1

ϵ,(i−1)·k|τ
(i)
ϵ,k

) )

(b)
=

1
l · k

log

(
l∏

i=1

pY i·k−1
ϵ,(i−1)·k|X

i·k−1
(i−1)·k,τϵ,k

(
Y i·k−1

ϵ,(i−1)·k
∣∣Xi·k−1

(i−1)·k, τopt
ϵ,k

)
pY i·k−1

ϵ,(i−1)·k|τϵ,k

(
Y i·k−1

ϵ,(i−1)·k|τ
opt
ϵ,k

) )

=
1
l

l∑
i=1

1
k

log

(
pY i·k−1

ϵ,(i−1)·k|X
i·k−1
(i−1)·k,τϵ,k

(
Y i·k−1

ϵ,(i−1)·k
∣∣Xi·k−1

(i−1)·k, τopt
ϵ,k

)
pY i·k−1

ϵ,(i−1)·k|τϵ,k

(
Y i·k−1

ϵ,(i−1)·k|τ
opt
ϵ,k

) )

=
1
l

l∑
i=1

Z
(i)
k,ϵ

(
FXi·k−1

(i−1)·k|τ
opt
ϵ,k
|τopt

ϵ,k

)
(B.21)
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var
(
Zl·k,ϵ

(
F

X
(l·k)
opt |τopt

ϵ,k

|τopt
ϵ,k

))
(b)
=

1
l2

l∑
i=1

var
(
Z

(i)
k,ϵ

(
FXi·k−1

(i−1)·k,opt|τ
opt
ϵ,k
|τopt

ϵ,k

))
(c)

≤ 3
l · k

,

where steps (a) and (c) follow from the derivation in
Appendix A, after Eqn. (A.9): E

{
Zk,ϵ

(
F

X
(k)
opt|τϵ,k

|τϵ,k

)}
=

1
k I
(
X

(k)
opt ; Y (k)

ϵ |τϵ,k

)
and var

(
Zk,ϵ

(
F

X
(k)
opt|τϵ,k

|τϵ,k

))
≤ 3

k ; step
(b) follows since the mutual information density rates of the
different k-blocks are mutually independent.

Since the variance of Zl·k,ϵ

(
F

X
(l·k)
opt |τopt

ϵ,k

|τopt
ϵ,k

)
decreases

as l · k increases, then, by Chebyshev’s inequality
[40, Eqn. (5-88)], we obtain Pr

(∣∣∣Zl·k,ϵ

(
F

X
(l·k)
opt |τopt

ϵ,k

|τopt
ϵ,k

)
−

1
k I
(
X

(k)
opt ; Y (k)

ϵ |τopt
ϵ,k

)∣∣∣ > 1
(l·k)1/3

)
< 3

(l·k)1/3 , and we conclude
that ∀k ∈ N+ and ∀δ > 0, ∃l0(k, δ) ∈ N+ s.t. ∀l > l0(k, δ),
it follows that

Pr
(
Zl·k,ϵ

(
F

X
(l·k)
opt |τopt

ϵ,k

|τopt
ϵ,k

)
<

1
k

I
(
X

(k)
opt ; Y (k)

ϵ |τopt
ϵ,k

)
−δ
)

<3δ.

(B.22)

To show achievability of liminf
n→∞

Cn we will show the RHS
of (B.20). First, recall that

p− liminf
k→∞

Zk,ϵ

(
FX(k)|τϵ,k

|τϵ,k

)
= sup

{
α ∈ R

∣∣ lim
k→∞

Pr
(
Zk,ϵ

(
FX(k)|τϵ,k

|τϵ,k

)
< α

)
= 0
}

,

hence, liminf
n→∞

Cn is achievable if, for a given finite and
bounded constant ξ (that will be defined later), ∀δ > 0,
Pr
(
Zl·k,ϵ

(
FX(l·k)|τϵ,k

|τϵ,k

)
< liminf

n→∞
Cn − δ · (5 + 2 · ξ)

)
,

can be made arbitrarily small by properly selecting k ∈ N+,
τϵ,k and FX(k)|τϵ,k

, and taking l sufficiently large. Next, define
γ(k) via Eqn. (B.23), as shown at the bottom of the next page,
and pick k ∈ N+ s.t. τm·γ(k)

k+τm
< δ. In addition, k is selected

sufficiently large such that the values of the sampled variance
c
{τ0}
Wϵ

[i, 0] over a k-block starting at sampling phase τ0 satisfy∣∣∣1
k

k−1∑
i=0

c
{τ0}
Wϵ

[i, 0]− 1
Tpw

∫ Tpw

t=0

cWc(t + τ0, 0)dt
∣∣∣ < δ

2
,

∀τ0 ∈ [0, Tpw). (B.24)

Such a selection is possible since the sampling interval Ts(ϵ)
is incommensurate with the noise period Tpw. Then, for a suf-
ficiently large k, the sampling points will be nearly uniformly
distributed over [0, Tpw), see also discussion after Eqn. (A.16).
By definition of a uniformly distributed modulo 1 sequence,9

[41, Def. 1.1], it follows that the empirical distribution of
the sampling instances approaches a uniform distribution on
[0, Tpw]. Then, by [41, Thm. 1.1], as the correlation function
(at any given lag, and hence also at lag λ = 0) is a continuous
mapping of the time, then (B.24) follows.

9Note that switching from modulo 1 to modulo Tpw amounts to scaling of
the time axis, which can be incorporated into the definition in a straightforward
manner.

When k is fixed, we pick n ∈ N+ s.t. liminf
n0→∞

Cn0 < Cn +δ,
and also

∣∣∣1
k

I(X(k)
opt ; Y (k)

ϵ |τopt
ϵ,k )− 1

k
I(X(k)

n,opt; Y
(k)
n |τopt

n,k )
∣∣∣ < δ,

(B.25)

where we recall that F
X

(k)
opt |τ

opt
ϵ,k

and F
X

(k)
n,opt|τ

opt
n,k

are Gaus-

sian CDFs,
(
τopt
n,k , X

(k)
n,opt

)
maximize 1

k I(X(k)
n ; Y (k)

n |τn,k), and(
τopt
ϵ,k , X

(k)
opt
)

maximize 1
k I(X(k); Y (k)

ϵ |τϵ,k). Such n ∈ N+

exists by the convergence in Lemma B.1. Lastly, the selected
n is increased to guarantee that

∣∣∣1
k

k−1∑
i=0

c
{τ0}
Wϵ

[i, 0]− 1
k

k−1∑
i=0

c
{τ0}
Wn

[i, 0]
∣∣∣ < δ

2
, ∀τ0 ∈ [0, Tpw),

which implies that

∣∣∣1
k

k−1∑
i=0

c
{τ0}
Wn

[i, 0]− 1
Tpw

∫ Tpw

t=0

cWc(t + τ0, 0)dt
∣∣∣ < δ,

∀τ0 ∈ [0, Tpw). (B.26)

After picking n, we pick l ∈ N+ such that

Cn ≤
1

l · (k + τm)
I
(
X̃(l·(k+τm))

n ; Ỹ (l·(k+τm))
n |τn,l

)
+ δ,

τn,l ∈ [0, Tpw],

where X̃n[i] is the capacity-achieving input process for the
channel (8), see [6, Thm. 1], and Ỹn[i] is the corresponding
output process: Ỹn[i] = X̃n[i] + Wn[i]. Such τn,l exists since
we can set τn,l = argmax

τ0∈[0,Tpw]

Cn(τ0) ≜ τopt
n . Then, for τopt

n , k

and n, as X̃n[i] is the capacity-achieving input process, there
is a codeword length beyond which the mutual information
between the channel input and output is less than δ away from
capacity. Next, define RVs the X1, X2, Y1, and Y2 as follows:

X1 =
{
X̃

i·(k+τm)−1
n,i·τm+(i−1)·k

}l

i=1
,

X2 =
{
X̃

(i−1)·(k+τm)+τm−1
n,(i−1)·(k+τm)

}l

i=1
,

Y1 =
{
Ỹ

i·(k+τm)−1
n,i·τm+(i−1)·k

}l

i=1
,

Y2 =
{
Ỹ

(i−1)·(k+τm)+τm−1
n,(i−1)·(k+τm)

}l

i=1
.

We note that (XT
2 ,XT

1 )T is a permutation of the vector
X̃

l·(k+τm)
n . Let us denote this permutation with the matrix

P, i.e., (XT
2 ,XT

1 )T = P · X̃
l·(k+τm)
n . Similarly, we write

(WT
2 ,WT

1 )T = (YT
2 ,YT

1 )T − (XT
2 ,XT

1 )T = P ·W l·(k+τm)
n .

Note that cov
(
(WT

2 ,WT
1 )T

∣∣τn,l

)
= E

{
P · W

l·(k+τm)
n ·(

W
l·(k+τm)
n

)T ·PT
∣∣τn,l

}
= P·C

W
l·(k+τm)
n

(τn,l)·PT . With these
definitions, applying the chain rules for differential entropy
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and for mutual information, we write

I
(
X̃ l·(k+τm)

n ; Ỹ l·(k+τm)
n |τn,l

)
≡ I(X1,X2;Y1,Y2|τn,l)
= I(X1;Y1,Y2|τn,l) + I(X2;Y1,Y2|X1, τn,l)
= I(X1;Y1|τn,l) + I(X1;Y2|Y1, τn,l)

+ I(X2;Y1,Y2|X1, τn,l)
= I(X1;Y1|τn,l) + h(Y2|Y1, τn,l)− h(Y2|X1,Y1, τn,l)

+ h(Y1,Y2|X1, τn,l)− h(Y1,Y2|X1,X2, τn,l)
= I(X1;Y1|τn,l) + h(Y2|Y1, τn,l)− h(Y2|X1,Y1, τn,l)

+ h(Y1|X1, τn,l) + h(Y2|X1,Y1, τn,l)
− h(Y1,Y2|X1,X2, τn,l)

= I(X1;Y1|τn,l) + h(Y2|Y1, τn,l) + h(Y1|X1, τn,l)
− h(Y1,Y2|X1,X2, τn,l)

(a)
= I(X1;Y1|τn,l) + h(Y2|Y1, τn,l) + h(W1|X1, τn,l)

− h(W1,W2|X1,X2, τn,l)
(b)
= I(X1;Y1|τn,l) + h(Y2|Y1, τn,l) + h(W1|τn,l)

− h(W1,W2|τn,l)
= I(X1;Y1|τn,l) + h(Y2|Y1, τn,l)− h(W2|W1, τn,l),

where (a) follows as Y1 = X1 + W1 and Y2 = X2 + W2;
and (b) follows as (W1,W2) ⊥⊥ (X1,X2). Next, denoting the
maximal diagonal element of the matrix A with maxDiag

{
A
}

,
we can upper bound h(Y2|Y1, τn,l) − h(W2|W1, τn,l) via
(B.27), as shown at the bottom of the next page. In the
derivation of (B.27), step (a) follows from [53, Corollary on
Pg. 253]; (b) follows since Y2|τn,l and (WT

2 ,WT
1 )T |τn,l are

Gaussian vectors, and since the conditional covariance for
jointly Gaussian RVs is independent of the conditioning value,
see, e.g., [54, Ch. 21.6]:

2 · h(W2|W1, τn,l)

= 2 ·
∫
w1∈Rl·k

fW1|τn,l
(w1|τn,l)h(W2|W1 = w1, τn,l)dw1

(a′)
=
∫
w1∈Rl·k

fW1|τn,l
(w1|τn,l)·logdet

(
(2πe)·

(
cov(W2|τn,l)

−cov(W2,W1|τn,l)
(
cov(W1|τn,l)

)−1
cov(W1,W2|τn,l)

))
dw1

= logdet
(
(2πe) ·

(
cov(W2|τn,l)

− cov(W2,W1|τn,l)
(
cov(W1|τn,l)

)−1
cov(W1,W2|τn,l)

))
,

where the expression for the conditional correlation matrix
is step (a′) is given in [54, Ch. 21.6]. Step (c) follows
from Hadamard’s inequality [53, Eqn. (8.64)], as the
determinant of a symmetric positive semidefinite matrix is
upper bounded by the product of its diagonal elements,
and we take l · τm multiples of the largest possible

diagonal element to further upper bound this product.
In step (d) we used [55, Lemma 11.6] and the fact that
for any positive x it holds that log(x) = ln(x) · log(e) ≤
(x − 1) · log(e); step (e) follows since

(
cov(W2|τn,l) −

cov(W2,W1|τn,l)
(
cov(W1|τn,l)

)−1
cov(W1,W2|τn,l)

)−1

is the upper-left block of the inverse covariance matrix of
the vector (WT

2 ,WT
1 )T , namely, the upper-left block of(

cov
(
(WT

2 ,WT
1 )T |τn,l

))−1

, [45, Eqn. (0.7.3.1)]. Then,
having more elements can only increase the maximum.
In step (f) we upper bound the largest diagonal element by
the matrix 1-norm, as in step (a) in the derivation of (B.6);
in step (g) we use the fact that permutation matrices are
orthogonal, hence,(

P · C
W

(l·(k+τm))
n

(τn,l) · PT
)−1

=
(
PT
)−1 ·

(
C

W
(l·(k+τm))
n

(τn,l)
)−1 · P−1

= P ·
(
C

W
(l·(k+τm))
n

(τn,l)
)−1 · PT ,

and the fact that induced matrix norms are sub-
multiplicative [45, Ch. 5.6 and Example 5.6.4],
thereby

∥∥∥P · (CW
(l·(k+τm))
n

(τn,l)
)−1 · PT

∥∥∥
1

≤ ∥P∥1 ·∥∥∥(CW
(l·(k+τm))
n

(τn,l)
)−1
∥∥∥

1
·
∥∥PT

∥∥
1
=
∥∥∥(CW

(l·(k+τm))
n

(τn,l)
)−1
∥∥∥

1
,

where the last equality follows since for a permutation matrix
P, ∥P∥1 =

∥∥PT
∥∥

1
= 1. Lastly, step (h) in the derivation

of (B.27) follows similarly to step (c) in the derivation of
(B.13). Using the definition of γ(k) in (B.23) we obtain

h(Y2|Y1, τn,l)− h(W2|W1, τn,l) ≤ l · τm · γ(k).

With this bound, letting EW ≜ 1
Tpw

∫ Tpw

t=0
cWc(t + τ0, 0)dt

and setting ξ ≜ 3
P+EW

< ∞, considering δ ≤ P+EW

2 we can
bound Cn via (B.29), where in the derivation of (B.29), in step
(a) τi denotes the sampling phase of the i-th block, and we also
use the fact that conditioning decreases the differential entropy
[53, Corollary on Pg. 253], and the fact that the noise process
Wn[i] has a memory of τm; in (b) Ȳn[i] = X̄n[i] + Wn[i].
The bound is obtained as follows: The mutual information
in (B.28), corresponds to the sum of the mutual information
of l blocks, each consisting of k symbols. Note that the
period of the noise in this additive Gaussian WSCS noise
channel is pn, and each period of pn samples consists of
nk ≜ pn/(k + τm) independent10 MIMO subchannels, each of
size k× k. Applying the DCD, as in the proof of [5, Thm. 1]
we obtain an equivalent (nk · k)× (nk · k) MIMO channel:

Ỹ (nk·k)[i] = X̃(nk·k)[i] + W̃ (nk·k)
n [i], (B.30)

10Note that if pn/(k + τm) is not an integer we can set nk = pn, since
pn · (k + τm) consecutive samples contain an integer number of periods and
is thus a period of the noise.

γ(k) ≜
1
2
· log

(
P · k + max

0≤t≤Tpw

{
cWc(t, 0)

})
+

1
2
· log(e) · 1

min
0≤t≤Tpw

{
cWc(t, 0)− 2τm · max

|λ|> Tpw
p+1

{
|cWc(t, λ)|

}} (B.23)
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where W̃
(nk·k)
n [i] is a memoryless stationary noise process.

Then, as argued in [32, Sec, I.D], capacity subject to the power
constraint (6) is equivalent to capacity subject to a (MIMO)
per-symbol average power constraint, i.e.,

Tr
{

X̃(nk·k) ·
(
X̃(nk·k)

)T}
< nk · k · P.

Next, observe that the capacity of the channel (B.30)
subject to the above power constraint is obtained by water-
filling over the eigenvalues, see e.g., [30, Eqns. (15)-(16)].
As by condition (13), P > max

t∈[0,Tpw]

(
cWc(t, 0) + 2τm ·

max
|λ|> Tpw

p

{
|cWc(t, λ)|

})
, then, by [45, Corollary 6.1.5] it fol-

lows that that P > maxEig
{
C

W
(k̃)
n

(τ0)
}

for any k̃ ∈ N+.
This implies that the waterfilling solution will use all the
eigenvalues of the noise correlation matrix. Recall that by
the selection of n, see (B.26), for each k-block the trace of the
noise correlation matrix is within δ from EW . Then, letting
C

W̃
(nk·k)
n

(τ0) ≜ E
{

W̃
(nk·k)
n ·

(
W̃

(nk·k)
n

)T ∣∣∣τ0

}
we obtain from

(B.26) that∣∣∣Tr
{

C
W̃

(nk·k)
n

(τ0)
}
− nk · k · EW

∣∣∣ < nk · k · δ.

2 ·
(
h(Y2|Y1, τn,l)− h(W2|W1, τn,l)

)
(a)

≤ 2 ·
(
h(Y2|τn,l)− h(W2|W1, τn,l)

)
(b)
= logdet

(
(2πe) · cov(Y2|τn,l)

)
−logdet

(
(2πe) ·

(
cov(W2|τn,l)− cov(W2,W1|τn,l)

(
cov(W1|τn,l)

)−1
cov(W1,W2|τn,l)

))
= logdet

(
cov(Y2|τn,l)

)
− logdet

(
cov(W2|τn,l)

−cov(W2,W1|τn,l)
(
cov(W1|τn,l)

)−1
cov(W1,W2|τn,l)

)
(c)

≤ (l · τm) · log
(
P · k + max

0≤t≤Tpw

{
cWc(t, 0)

})
−logdet

(
cov(W2|τn,l)− cov(W2,W1|τn,l)

(
cov(W1|τn,l)

)−1
cov(W1,W2|τn,l)

)
(d)

≤ (l · τm) · log
(
P · k + max

0≤t≤Tpw

{
cWc(t, 0)

})
+ log(e) ·

(
Tr
{(

cov(W2|τn,l)− cov(W2,W1|τn,l)
(
cov(W1|τn,l)

)−1
cov(W1,W2|τn,l)

)−1}
−l · τm

)
≤ (l · τm) · log

(
P · k + max

0≤t≤Tpw

{
cWc(t, 0)

})
+(l · τm) · log(e) ·maxDiag

{(
cov(W2|τn,l)

−cov(W2,W1|τn,l)
(
cov(W1|τn,l)

)−1
cov(W1,W2|τn,l)

)−1}
(e)

≤ (l · τm) · log
(
P · k + max

0≤t≤Tpw

{
cWc(t, 0)

})
+ log(e) · (l · τm) ·maxDiag

{(
cov
(
(WT

2 ,WT
1 )T |τn,l

))−1}
(f)

≤ (l · τm) · log
(
P · k + max

0≤t≤Tpw

{
cWc(t, 0)

})
+ (l · τm) · log(e) ·

∥∥∥(P · CW
(l·(k+τm))
n

(τn,l) · PT
)−1
∥∥∥

1

(g)

≤ (l · τm) · log
(
P · k + max

0≤t≤Tpw

{
cWc(t, 0)

})
+ (l · τm) · log(e) ·

∥∥∥(CW
(l·(k+τm))
n

(τn,l)
)−1
∥∥∥

1

(h)

≤ (l · τm) · log
(
P · k + max

0≤t≤Tpw

{
cWc(t, 0)

})
+(l · τm) · log(e) · 1

min
0≤t≤Tpw

{
cWc(t, 0)− 2τm · max

|λ|> Tpw
p+1

{
|cWc(t, λ)|

}} (B.27)
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The waterfilling rate for this case is then

2Rtot =
1

k · nk
log


(
P + 1

nk·kTr
{

C
W̃

(nk·k)
n

(τ0)
})k·nk

Det
(
C

W̃
(nk·k)
n

(τ0)
)


(B.31)

≤ 1
k · nk

log


(
P + EW + δ

)k·nk

Det
(
C

W̃
(nk·k)
n

(τ0)
)


= log

 P + EW + δ

k·nk

√
Det
(
C

W̃
(nk·k)
n

(τ0)
)
 . (B.32)

Due to the discarding of τm samples every k samples, the
nk k-blocks of the noise process W̃

(nk·k)
n are independent,

thus, (B.30) consists of nk parallel MIMO subchannels. The
waterfilling solution to channel ic within this set results in a
rate of

2Ric
=

1
k

log


(
P + 1

kTr
{

C
W̃

(k)
n

(τic
)
})k

Det
(
C

W̃
(k)
n

(τic
)
)



≤ log

 P + EW + δ

k

√
Det
(
C

W̃
(k)
n

(τic
)
)


Then, the sum-rate over the nk k-blocks can be upper bounded
as

2
1
nk

nk∑
ic=1

Ric
≤ log

 P + EW + δ

nk

√∏nk

ic=1
k

√
Det
(
C

W̃
(k)
n

(τic)
)


= log

 P + EW + δ

k·nk

√
Det
(
C

W̃
(nk·k)
n

(τ0)
)
 ,

which coincides with the upper bound in (B.32). Finally,
recalling that δ ≤ P+EW

2 , then, as we are interested in
bounding the distance between the upper bound and (B.31),
we consider

log (P + EW + δ)− log (P + EW − δ)

= log
(

(P + EW )
(

1 +
δ

P + EW

))
− log

(
(P + EW )

(
1− δ

P + EW

))
= log(e) · ln

(
1 +

δ

P + EW

)
− log(e) · ln

(
1− δ

P + EW

)

Cn ≤ 1
l · (k + τm)

· I
(
X̃(l·(k+τm))

n ; Ỹ (l·(k+τm))
n |τn,l

)
+ δ

≤ 1
l · (k + τm)

· I
({

X̃
i·(k+τm)−1
n,i·τm+(i−1)·k

}l

i=1
;
{
Ỹ

i·(k+τm)−1
n,i·τm+(i−1)·k

}l

i=1

∣∣∣τn,l

)
+

l · τm · γ(k)
l · (k + τm)

+ δ

=
1

l · (k + τm)
·
(

h
({

Ỹ
i·(k+τm)−1
n,i·τm+(i−1)·k

}l

i=1

∣∣∣τn,l

)
−h
({

Ỹ
i·(k+τm)−1
n,i·τm+(i−1)·k

}l

i=1

∣∣∣{X̃i·(k+τm)−1
n,i·τm+(i−1)·k

}l

i=1
, τn,l

))
+

τm · γ(k)
k + τm

+ δ

=
1

l · (k + τm)
·
(

h
({

Ỹ
i·(k+τm)−1
n,i·τm+(i−1)·k

}l

i=1

∣∣∣τn,l

)
− h
({

W
i·(k+τm)−1
n,i·τm+(i−1)·k

}l

i=1

∣∣∣τn,l

))
+

τm · γ(k)
k + τm

+ δ

(a)

≤ 1
l · (k + τm)

·
l∑

i=1

(
h
(
Ỹ

i·(k+τm)−1
n,i·τm+(i−1)·k

∣∣∣τi

)
− h
(
W

i·(k+τm)−1
n,i·τm+(i−1)·k

∣∣∣τi

))
+

τm · γ(k)
k + τm

+ δ

=
1

l · (k + τm)
·

l∑
i=1

(
h
(
Ỹ

i·(k+τm)−1
n,i·τm+(i−1)·k

∣∣∣τi

)
− h
(
Ỹ

i·(k+τm)−1
n,i·τm+(i−1)·k

∣∣∣X̃i·(k+τm)−1
n,i·τm+(i−1)·k, τi

))
+

τm · γ(k)
k + τm

+ δ

=
1

l · (k + τm)
·

l∑
i=1

I
(
X̃

i·(k+τm)−1
n,i·τm+(i−1)·k; Ỹ i·(k+τm)−1

n,i·τm+(i−1)·k

∣∣∣τi

)
+

τm · γ(k)
k + τm

+ δ (B.28)

(b)

≤ 1
k + τm

· max{
F

X̄
(k)
n

: 1
k

∑k−1
i=0 E{(X̄n[i])2}≤P,

τ̄0∈[0,Tpw]

} I
(
X̄(k)

n ; Ȳ (k)
n

∣∣τ̄0

)
+

τm · γ(k)
k + τm

+ δ · (1 + 2 · ξ)

(c)
=

k

k + τm
· 1
k

I(X(k)
n,opt; Y

(k)
n |τopt

n,k ) +
τm · γ(k)
k + τm

+ δ · (1 + 2 · ξ)

(d)

≤ 1
k

I(X(k)
n,opt; Y

(k)
n |τopt

n,k ) + 2δ · (1 + ξ) (B.29)
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(a′)

≤ log(e) ·

(
δ

P + EW
−

− δ
P+EW

1− δ
P+EW

)

= δ · log(e) ·
(

1
P + EW

+
1

P + EW − δ

)
(b′)

≤ δ · log(e) · 3
P + EW

< 2 · δ · ξ,

where in (a′) we used x
1+x < ln(1 + x) < x, ∀x > −1,

which holds for δ ≤ P+EW

2 ; and (b′) follows as δ ≤
P+EW

2 . Thus, step (b) in the derivation of (B.29) follows
as we can upper bound the capacity of the channel in
(B.28) by the capacity of the best k-block subchannel, with
a maximum error of 2 · δ · ξ, and we further maximize the
mutual information over the initial phase; step (c) follows
as the maximization in step (b) coincides with (B.9a). As
detailed in Section B-B, we use τopt

n,k to denote the optimal
sampling phase, X

(k)
n,opt to denote the corresponding optimal

input vector, and Y
(k)
n to denote the corresponding channel

output, for the channel (8). Step (d) follows from our choice
of k ∈ N+.

Lastly, we analyze the mutual information density rate of
the scheme considered in Subsections B-C.1-B-C.2. For any
δ ∈ R s.t. 0 < δ ≤ P+EW

2 , we can select k, n and l s.t.

Pr
(
Zl·k,ϵ

(
F

X
(l·k)
opt |τopt

ϵ,k

|τopt
ϵ,k

)
≤ liminf

n→∞
Cn − δ · (5 + 2 · ξ)

)
(a)

≤ Pr
(
Zl·k,ϵ

(
F

X
(l·k)
opt |τopt

ϵ,k

|τopt
ϵ,k

)
≤ Cn − δ · (4 + 2 · ξ)

)
(b)

≤ Pr
(
Zl·k,ϵ

(
F

X
(l·k)
opt |τopt

ϵ,k

|τopt
ϵ,k

)
≤ 1

k
I(X(k)

n,opt; Y
(k)
n |τopt

n,k )−2δ
)

(c)

≤ Pr
(
Zl·k,ϵ

(
F

X
(l·k)
opt |τopt

ϵ,k

|τopt
ϵ,k

)
≤ 1

k
I
(
X

(k)
opt ; Y (k)

ϵ

∣∣τopt
ϵ,k

)
− δ
)

(d)

≤ 3δ,

where (a) follows as liminf
n0→∞

Cn0 < Cn + δ by the selection

of n ∈ N+; (b) follows from (B.29) and our selection
of k, n and l. Step (c) follows as the mutual information
expressions 1

k I(X(k)
n,opt; Y

(k)
n |τopt

n,k ) and 1
k I(X(k)

opt ; Y (k)
ϵ |τopt

ϵ,k )
are maximized by Gaussian inputs [30, Eqns. (4), (30)]. Then,
due to Lemma B.1, for the fixed k ∈ N+, n can be selected
such that (B.25) is satisfied. Lastly, step (d) follows from the
bound in Eqn. (B.22), as l ∈ N+ can be selected arbitrarily
large. Consequently, we conclude that

lim
l→∞

Pr
(
Zl·k,ϵ

(
F

X
(l·k)
opt |τopt

ϵ,k

|τopt
ϵ,k

)
< liminf

n→∞
Cn

)
= 0.

By the rate expression in Section B-C.1 we obtain that a rate
of liminf

n→∞
Cn ·

(
1 − τm+∆g/Ts(ϵ)

k+τm+∆g/Ts(ϵ)

)
is achievable. Note that

fixing k sufficiently large, we can approach liminf
n→∞

Cn arbi-
trarily close. As a final comment, we note that we considered
blocklengths which are integer multiple of k. Since k is fixed,
then by taking l sufficiently large, we can use zero-padding
of up to k − 1 zeros and obtain a code with any blocklength,
causing only an arbitrarily small rate decrease.

It thus follows that liminf
n→∞

Cn is both achievable and,
by (B.17), it is the upper bound on the achievable rate, hence

it is the capacity for the situation in which the transmitter can
select the most appropriate sampling phase for transmission.
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