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Abstract— In this paper, we study the secrecy capacity of
Gaussian multiple-input multiple-output (MIMO) wiretap chan-
nels (WTCs) with a finite memory, subject to a per-symbol average
power constraint on the MIMO channel input. MIMO channels
with finite memory are very common in wireless communications
as well as in wireline communications (e.g., in communications
over power lines). To derive the secrecy capacity of the Gaussian
MIMO WTC with finite memory, we first construct an asymp-
totically equivalent block-memoryless MIMO WTC, which is
then transformed into a set of parallel, independent, memoryless
MIMO WTCs in the frequency domain. The secrecy capacity of
the Gaussian MIMO WTC with finite memory is obtained as the
secrecy capacity of the set of parallel, independent, memoryless
MIMO WTCs, and is expressed as maximization over the input
covariance matrices in the frequency domain. Finally, we detail
two applications of our result: First, we show that the secrecy
capacity of the Gaussian scalar WTC with finite memory can be
achieved by waterfilling, and obtain a closed-form expression for
this secrecy capacity. Then, we use our result to characterize
the secrecy capacity of narrowband powerline channels, thereby
resolving one of the major open issues for this channel model.

Index Terms— Physical layer security, MIMO channels,
channels with memory, wiretap channels.

I. INTRODUCTION

ONE of the main challenges in the design of commu-
nications schemes for shared channels is to reliably

transmit information to a destination, while keeping potential
eavesdroppers ignorant of the transmitted information. The
fundamental model for studying secure physical-layer commu-
nications over shared mediums is the wiretap channel (WTC)
model [1], which consists of three terminals: A transmit-
ter (Tx), an intended receiver (Rx), and an eavesdropper (Ev).
The secrecy capacity is defined as the maximum information
rate for reliable Tx–Rx communications such that the rate
of information leaked to the eavesdropper asymptotically
vanishes. The initial study of WTCs detailed in [1], considered
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memoryless WTCs in which the channel inputs and the
channel outputs are discrete random variables (RVs) with finite
alphabets, and the Tx–Ev channel is a physically degraded
version of the Tx–Rx channel. The general discrete memory-
less WTC was studied in [2], which characterized its secrecy
capacity by introducing a virtual channel, also referred to as
prefix channel [3, Ch. 3.5].

Memoryless scalar WTCs with additive white Gaussian
noise (AWGN) were first studied in [4], which made three
important observations: (1) No prefix channel is required,
(2) Gaussian codebooks are optimal, and (3) The secrecy
capacity is zero when the noise power at the intended receiver
is equal to or greater than the noise power at the eavesdrop-
per. Several works studied the fundamental limits of secure
communications over memoryless WTCs with AWGN and
multiple antennas at the terminals, referred to as the multiple-
input multiple-output (MIMO) WTC: The work [5] considered
the scenario of two antennas at the Tx, two antennas at
the Rx, and one antenna at the Ev, where the channel input
is subject to a per-codeword average power constraint. The
secrecy capacity of MIMO WTCs with an arbitrary number
of antennas at each node was derived in [6] subject to a per-
codeword average power constraint, and in [7] subject to a
per-symbol average power constraint. An alternative derivation
of the secrecy capacity of MIMO WTCs was carried out
in [8], subject to a more general input covariance matrix
constraint. In [8, Corollary 1] it is shown that the secrecy
capacity subject to a per-codeword average power constraint
on the input can be obtained as a corollary of the main
result of [8]. The more general scenario of AWGN MIMO
broadcast channels with confidential messages was studied
in [9]–[11]. Similarly to the scalar Gaussian case, the secrecy
capacity of MIMO WTCs with AWGN is achieved by using
a Gaussian codebook without channel prefixing, where the
secrecy capacity expression is stated as an optimization over
all possible input covariance matrices which satisfy a specified
power constraint. This optimization problem was shown to
be non-convex [6], [12]–[14], and methods for approach-
ing the maximizing input covariance matrix were proposed
in several works. In particular, [12] proposed an algorithm
based on alternating optimization for approaching the optimal
covariance matrix, [13] studied the conditions for the covari-
ance matrix to be full rank and characterized the optimal
covariance matrix for this case, and in [14] rank deficient
solutions for the optimal covariance matrix were proposed.
Secrecy in the presence of temporally correlated Gaussian
noise was studied in [15], which considered scalar degraded
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block-memoryless WTCs with additive colored Gaussian
noise. Additional scenarios of physical-layer security in mod-
ern networks include fading WTCs, studied in [16]–[18],
independent parallel channels, studied in [19], [20], and an
achievable secrecy rate for multi-carrier systems, characterized
in [21] and [22]. The wiretap framework was further extended
to multi-user channels in [23]–[26] (see also detailed surveys
in [27], [3, Ch. 8], and [28, Ch. 22]). The secrecy capacity
of arbitrary wiretap channels was studied in [29], yet, the
expression derived in [29, Thm. 1] is rather involved and does
not identify the input distribution which maximizes the secrecy
rate. Finally, we note that a suboptimal precoding scheme
for block frequency-selective scalar WTCs with AWGN was
proposed in [30].

In this paper we study the secrecy capacity of MIMO
Gaussian WTCs with finite memory, i.e., MIMO Gaussian
WTCs in which the channel introduces intersymbol interfer-
ence (ISI) of a finite duration at each receive antenna, and the
noise is an additive stationary colored Gaussian process whose
temporal correlation has a finite length. This channel model
applies to many communications scenarios, including wireless
communications and power line communications. However,
despite the importance of this model as a fundamental model
for secure modern communications, the secrecy capacity of
Gaussian finite-memory MIMO WTCs and also of Gaussian
finite-memory scalar WTCs has not been characterized to date.

Main Contributions: In this paper we derive the secrecy
capacity of Gaussian MIMO WTCs with finite memory,
subject to a per-MIMO symbol average power constraint
on the channel input, where the transmitter knows both the
Tx-Rx channel and the Tx-Ev channel. To this aim, we
first construct a block-memoryless Gaussian MIMO WTC
based on the characteristics of the original finite-memory
Gaussian MIMO WTC, and prove that the two channel
models are asymptotically equivalent. Then, we transform
the block-memoryless channel into an equivalent set of par-
allel memoryless Gaussian MIMO WTCs, for which the
secrecy capacity has been characterized in [19]. Our derivation
uses concepts from the derivation of the (non-secure) capac-
ity of finite-memory Gaussian point-to-point channels [31],
multiple-access channels (MACs) [32], and broadcast chan-
nels (BCs) [33], as well as introduce novel techniques and
schemes for the analysis of the information leakage rate at
the eavesdropper. For the special case of the scalar Gaussian
WTC with finite memory, we show that the secrecy capacity
can be obtained via the waterfilling power allocation scheme,
and demonstrate the resulting rate via a numerical example.
Finally, we show how our result directly leads to the secrecy
capacity of narrowband powerline communications (PLC)
channels, which is a major challenge in smart grid commu-
nications networks [34]. Our results provide insights on the
relationship between these seemingly different problems.

The rest of this paper is organized as follows: Section II
introduces the problem formulation; Section III derives the
secrecy capacity for finite-memory Gaussian MIMO WTCs;
Section IV discusses the results and their application to PLC,
and provides a numerical example; Lastly, Section V provides
some concluding remarks.

II. NOTATIONS AND PROBLEM FORMULATION

A. Notations

We use upper-case letters to denote random variables (RVs),
e.g., X , and calligraphic letters to denote sets, e.g., X .
We denote column vectors with boldface letters, e.g., X; the
k-th element of a vector X (k ≥ 0) is denoted with (X)k . Matri-
ces are denoted with Sans-Sarif fonts, e.g., M; the element at
the k-th row and the l-th column of a matrix M is denoted
by (M)k,l . We use Ia to denote the a × a identity matrix, and
0a×b to denote the all-zero a ×b matrix. Hermitian transpose,
transpose, trace, complex conjugate, and stochastic expectation
are denoted by (·)H , (·)T , Tr(·), (·)∗, and E{·}, respectively.
We use I (X; Y ) to denote the mutual information between
the RVs X ∈ X and Y ∈ Y , H (X) to denote the entropy of
a discrete RV X , h(X) to denote the differential entropy of a
continuous RV X , and p(X) to denote the probability density

function (PDF) of a continuous RV X . The symbol
d= denotes

equality in distribution, and we use j to denote
√−1; All

logarithms are taken to base 2. The sets of integers, non-
negative integers, real numbers, and complex numbers are
denoted by Z, N, R, and C, respectively. We use ((a))b to
denote “a modulo b”, i.e., writing c = ((a))b implies that
c is satisfies the relationship a = k · b + c, where k ∈ Z and
0 ≤ c < b. We use a+ to denote max {0, a}, and |·| to denote
the magnitude when applied to scalars, and the determinant
operator when applied to matrices.

For any sequence, possibly multivariate, q[i ], i ∈ Z, and
for any pair of integers, a1, a2, satisfying a1 < a2, we
use qa2

a1 to denote the column vector obtained by stacking[
q[a1]T ,q[a1 + 1]T . . . ,q[a2]T

]T
and define qa2 ≡ qa2

0 .
Lastly, we define the discrete Fourier transform (DFT) of a
real multivariate sequence as follows: For some nq ∈ N, let{
q̂[k]}n−1

k=0 denote the n-point DFT of the multivariate sequence

{q[i ]}n−1
i=0 , q[i ] ∈ Rnq . The sequence

{
q̂[k]}n−1

k=0 is computed
via

q̂[k] =
n−1∑

i=0

q[i ]e− j2π ik
n , (1)

k ∈ {0, 1, . . . , n − 1} � N .

B. Channel Model

We consider the nt × nr × ne MIMO WTC with finite
memory. Let m be a non-negative integer which denotes the
length of the memory of the channel, and let W[i ] ∈ Rnr

and U[i ] ∈ Rne be two multivariate, zero-mean stationary real
Gaussian processes with autocorrelation functions CW [τ ] �
E
{
W[i + τ ](W[i ])T } and CU [τ ] � E

{
U[i + τ ](U[i ])T },

respectively. We assume that W [i1] and U [i2] are uncorrelated
∀i1, i2 ∈ Z, and that CW [τ ] = 0nr ×nr and CU [τ ] = 0ne×ne

for all |τ | > m. We further assume that none of the samples of
W[i ] and U[i ] are deterministically dependent, i.e., there is no
index i0 for which either W[i0] or U[i0] can be expressed as a
linear combination of {W[i ]}i 	=i0 and {U[i ]}i 	=i0 , respectively.
Let {H[τ ]}m

τ=0 denote the real nr × nt Tx–Rx channel transfer
matrices and {G[τ ]}m

τ=0 denote the real ne ×nt Tx–Ev channel
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transfer matrices. The channel transfer matrices, {H[τ ]}m
τ=0

and {G[τ ]}m
τ=0, and the autocorrelation functions of the noises,

CW [τ ] and CW [τ ], τ ∈ Z, are assumed to be a-priori known
at the transmitter. We refer to this assumption as Tx-CSI. The
input-output relationships for the linear time-invariant (LTI)
Gaussian MIMO WTC (LGMWTC) are given by

Y[i ] =
m∑

τ=0

H[τ ]X[i − τ ] + W[i ] (2a)

Z[i ] =
m∑

τ=0

G[τ ]X[i − τ ] + U[i ], (2b)

i ∈ {0, 1, . . . , l − 1}, l ∈ N, where the channel inputs are
subject to a per-MIMO symbol power constraint (hereafter
referred to as per-symbol power constraint for brevity)

E
{
‖X [i ]‖2

}
≤ P, (3)

i ∈ {0, 1, . . . , l − 1}. We note that restricting the power
of the information symbols at all time instants, rather than
over the entire codeword, is very common in the design of
practical communications systems, since the dynamic range of
practical power amplifiers is limited [35, Ch. 09], rendering it
impossible for transmitters to “store” power for later channel
uses. This constraint is therefore a natural model for energy-
constrained channels [31, Sec. I-A]. It should also be noted
that similar constraints were used in related works, e.g., the
derivation of the secrecy capacity of memoryless MIMO
channels in [7], as well as in the derivation of some major
information theoretic results including [31], [36, Section VII],
and [37].

In this work we characterize the secrecy capacity of the
LGMWTC.

C. Definitions

The framework used in this study is based on the following
definitions:

Definition 1: A MIMO WTC with memory, in which the
transmitter has nt antennas, the intended receiver has nr

antennas, and the eavesdropper has ne antennas, abbreviated
as the nt × nr × ne MIMO WTC, consists of an input stream
X[i ] ∈ Rnt , two output streams Y[i ] ∈ Rnr and Z[i ] ∈ Rne ,
observed by the intended receiver and by the eavesdropper,
respectively, i ∈ N, an initial state S0 ∈ S0, and a sequence
of transition probabilities

{
p
(
Yl−1,Zl−1|Xl−1,S0

)}∞
l=1.

In this work we focus on the LGMWTC, which
is an instance of the general class of MIMO WTCs
with memory defined above. From Def. 1 it follows
that the initial state of the LGMWTC is given by

S0 =
[(

X−1−m

)T
,
(

W−1−m

)T
,
(

U−1−m

)T
]T

. Note that complex

MIMO WTCs with memory can be accommodated by the
setup of Def. 1 by representing all complex vectors using real
vectors having twice the number of elements and, representing
the complex channel matrices using real matrices having four
times the number of elements, corresponding to the real parts
and the imaginary parts of the entries, see, e.g., [37, Sec. I].

Definition 2: An [R, l] code with rate R and blocklength
l ∈ N for the WTC consists of: (1) A source of local
randomness at the encoder represented by the RV D ∈ D
with PDF p(D). (2) An encoder el which maps a message
M, uniformly distributed over M � {0, 1, . . . , 2l R − 1}, and
a realization of D into a codeword Xl−1 ∈ X l , i.e.,

el : M × D �→ X l .

(3) A decoder dl which maps the channel output Yl−1 ∈ Y l

into a message M̂ ∈ M. i.e.,

dl : Y l �→ M.

The source of local randomness D facilitates the random
nature of the encoder, and it is emphasized that the realization
of D is known only to the encoder.

Note that we follow the standard setup for channels with
memory and let the encoder and decoder operate using only
the l symbols corresponding to the currently transmitted code-
word [31]–[33], [38, Ch. 5.9], [39]. The encoder is assumed
to be independent of the initial state S0.

Definition 3: The average probability of error of an [R, l]
code, when the initial state is s0, is defined as:

Pl
e (s0) = 1

2l R

2lR −1∑

m̃=0

Pr
(

dl

(
Yl−1

)
	= m̃

∣
∣∣ M = m̃,S0 = s0

)
.

Definition 4: A secrecy rate Rs is achievable for a WTC
if for every positive triplet ε1, ε2, ε3 > 0, ∃l0 > 0 such that
∀l > l0 there exists an [R, l] code which satisfies:

sup
s0∈S0

Pl
e (s0) ≤ ε1, (4a)

sup
s0∈S0

1

l
I
(

M; Zl−1
∣∣
∣S0 = s0

)
≤ ε2, (4b)

and

R ≥ Rs − ε3. (4c)
Def. 4 extends the definition of codes for memoryless WTCs

stated in [3, Ch. 3.5], [28, Ch. 22.1] to finite-memory WTCs.
The term 1

l I
(

M; Zl−1
∣∣ S0 = s0

)
represents the maximum

achievable information rate at the eavesdropper, while the
eavesdropper knows the initial state. This achievable rate is
referred to as the information leakage rate [3, Ch. 3.4].

Definition 5: The secrecy capacity is defined as the supre-
mum of all achievable secrecy rates.

Definition 6: A WTC is said to be memoryless if for every
non-negative integer i

p
(

Y[i ],Z[i ]|Yi−1,Zi−1,Xi ,S0

)
= p (Y[i ],Z[i ]|X[i ]) .

Def. 6 corresponds to the general notion of memory-
less channels as in, e.g., [41, Sec. II-A]. Note that if
there is no feedback to the transmitter, it follows that
p
(
X[i ]∣∣Xi−1,Yi−1,Zi−1,S0

) = p
(
X[i ]∣∣Xi−1

)
. Then, Def. 6

implies that for every positive integer l,

p
(

Yl−1,Zl−1|Xl−1,S0

)
=

l−1∏

i=0

p
(

Y[i ],Z[i ]
∣
∣∣X[i ]

)
, (5)
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which also coincides with the definition of memoryless WTCs
stated in [3, Ch. 3.5]. We henceforth assume that no feedback
is present in any of the channels considered.

Definition 7: A WTC is said to be n-block memoryless if
for every positive integer b

p
(

Yn·b−1,Zn·b−1|Xn·b−1,S0

)

=
b∏

b̃=1

p
(

Yn·b̃−1
n·(b̃−1)

,Zn·b̃−1
n·(b̃−1)

|Xn·b̃−1
n·(b̃−1)

)
.

Def. 7 corresponds to the definition of n-block memoryless
BCs stated in [33, Eq. (8)]. Note that codewords of any
length can be transmitted over n-block memoryless channels,
however, when the length of the codeword is an integer
multiple of the channel block memory n, then the average
probability of error is independent of the initial state S0
[33, Sec. II], and similarly, the information leakage rate is
also independent of S0. This follows since the outputs of the
channels at the receiver and at the eavesdropper corresponding
to the transmitted codeword are independent of the initial
channel state, by the definition of the channel.

III. THE SECRECY CAPACITY OF THE LGMWTC

Our main result is the characterization of the secrecy
capacity of the LTI Gaussian MIMO WTC with finite memory,
defined in Subsection II-B. This secrecy capacity is stated in
the following theorem:

Theorem 1: Consider the LGMWTC defined in (2) subject
to the per-symbol power constraint (3) and with Tx-CSI.

Define C′
W(ω) �

m∑

τ=−m
CW [τ ] e− jωτ , C′

U(ω) �
m∑

τ=−m
CU [τ ] e− jωτ , H′(ω) �

m∑

τ=0
H [τ ] e− jωτ , and

G′(ω) �
m∑

τ=0
G [τ ] e− jωτ .

Let CP denote the set of nt × nt positive semi-definite
Hermitian matrix functions C′

X(ω), defined over the interval
ω ∈ [0, π), such that

1

π

π∫

ω=0

Tr
(
C′

X(ω)
)
dω ≤ P, (6a)

and define ψ(ω) as:

ψ(ω) �

∣
∣∣Inr + H′(ω)C′

X(ω)
(
H′(ω)

)H (C′
W(ω)

)−1
∣
∣∣

∣
∣
∣Ine + G′(ω)C′

X(ω)
(
G′(ω)

)H (C′
U(ω)

)−1
∣
∣
∣
. (6b)

Then, the secrecy capacity of the LGMWTC is given by

Cs = max
C′

X(ω)∈CP

1

2π

π∫

ω=0

logψ(ω)dω. (6c)

In the proof we use elements from the capacity derivation
for the finite-memory MAC [32] and BC [33], as well as novel
approach and techniques for analyzing the information leakage
rate.

Proof Outline: First, for n > 2m, we define the n-block
memoryless circular Gaussian MIMO wiretap channel

(n-CGMWTC) as follows: Let ˜W[i ] and ˜U[i ] be zero mean
multivariate Gaussian processes, whose autocorrelation func-
tions, denoted C

˜W
[τ ] and C

˜U
[τ ], respectively, are defined by

C
˜W

[τ ] � CW [τ ] + CW [τ + n] + CW [τ − n] , (7a)

C
˜U

[τ ] � CU [τ ] + CU [τ + n] + CU [τ − n] , (7b)

when the noise samples belong to the same n-block. Noise
samples that belong to different n-blocks are independent
since the channel is n-block memoryless. The outputs of the
n-CGMWTC over any given n-block, i.e., for i = 0,
1, . . . , n − 1, are defined as

˜Y[i ] =
m∑

τ=0

H[τ ]X [
((i − τ ))n

]+ ˜W[i ] (8a)

˜Z[i ] =
m∑

τ=0

G[τ ]X [
((i − τ ))n

]+ ˜U[i ]. (8b)

The n-CGMWTC is subject to the same per-symbol average
power constraints as the LGMWTC, stated in (3). Note that
the definition of the n-CGMWTC is a natural extension of
the definition of the n-block memoryless circular Gaussian
channel (without secrecy), defined in [33, Sec. II], to secure
communications.

The proof now proceeds in the following steps:
• In Subsection III-A, we prove that the secrecy capacity

of the LGMWTC can be obtained from the secrecy
capacity of the n-CGMWTC by taking n → ∞. Note
that while the asymptotic relationship between finite-
memory channels and their circular block-memoryless
counterparts has been used in the (non-secure) capac-
ity analysis of finite-memory Gaussian channels in,
e.g., [31], [32], and [33], to the best of our knowl-
edge, this is the first time this approach is applied in
the study of the secrecy capacity, and in such sce-
narios analyzing the information leakage presents a
substantial challenge, as is evident from the analysis
in Appendix A.

• Next, in Subsection III-B, we derive a closed-form
expression for the secrecy capacity of the n-CGMWTC
for a finite n.

• Lastly, in Subsection III-C, we let n → ∞ and use
the capacity expression derived for the n-CGMWTC
in Subsection III-B, to obtain an explicit optimization
problem whose maximal solution is the secrecy capacity
of the LGMWTC.

A. Equivalence Between the Secrecy Capacity of the
LGMWTC and the Asymptotic Secrecy Capacity
of the n-CGMWTC

We now show that the secrecy capacity of the finite-memory
LTI Gaussian MIMO WTC can be obtained as the secrecy
capacity of the n-CGMWTC, by taking n → ∞. Letting
Cn−CG

s denote the secrecy capacity of the n-CGMWTC, the
result is summarized in the following proposition:

Proposition 1: The secrecy capacity of the LGMWTC
defined in (2), subject to the power constraint (3) can be
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written as

Cs = lim
n→∞ Cn−CG

s . (9)

Proof: We provide here an outline of the proof; The
detailed proof is provided in Appendix A. First, recall that
the n-CGMWTC is defined for n > 2m. Next, for n > 2m we
define the n-block memoryless Gaussian MIMO wiretap chan-
nel (n-MGMWTC) as follows: The n-MGMWTC is obtained
from the LGMWTC by considering the last n − m vector
channel outputs out of each n-block at both the eavesdropper
and the receiver, i.e., the outputs of the n-MGMWTC are
defined as the outputs of the LGMWTC for 0 ≤ ((i))n ≥ m,
while for ((i))n < m the outputs of the n-MGMWTC are
not defined, see, e.g., [40]. The n-MGMWTC is subject
to the power constraint (3) on the channel input, similarly
to the LGMWTC. With this definition, we formulate the
secrecy capacity of the n-MGMWTC in the form of the
result of Csiszár and Körner [2, Eq. (11)]. Note that since
the LGMWTC is transformed into the n-MGMWTC by
setting the first m vector channel outputs out of each
n-block of channel outputs to be “undefined” (see also,
e.g., [33, Appendix A]), then by construction the codeword
transmission starts at the beginning of an n-block, i.e., an
n-block begins at time i = 0. Next, we show that the secrecy
capacity of the LGMWTC can be obtained as the secrecy
capacity of the n-MGMWTC by taking n → ∞. For non-
secure communications over BCs, it immediately follows that
the capacity of the n-block memoryless Gaussian BC is not
larger than the capacity of the LTI Gaussian BC, as the
n-block memoryless Gaussian BC is a special case of the
LTI Gaussian BC, obtained by letting the intended receiver
discard m channel outputs out of every block of n received
channel outputs, as was already shown in [33, Appendix A].
However, in the secure setup, this no longer holds, as the
decoder at the eavesdropper cannot be forced to discard m
vector channel outputs out of every block of n received channel
outputs, and we conclude that such an inequality relationship
between the secrecy capacities of the n-MGMWTC and of
the LGMWTC can be proved only for the asymptotic case
n → ∞. This presents a fundamental difference from non-
secure scenarios as will be elaborated in Comment A.2 in
Appendix A. Lastly, we show that in the asymptotic regime
of n → ∞, the n-MGMWTC and the n-CGMWTC have the
same secrecy capacity, from which we conclude that Cs is the
secrecy capacity of the n-CGMWTC, in the limit n → ∞.

Comment 1: In the proof of Proposition 1 in Appendix A,
the secrecy capacity of the n-MGMWTC is obtained from the
secrecy capacity of a memoryless Gaussian MIMO channel in
which the number of antennas is set to be an integer multiple
of n. Consequently, the computation of the secrecy capacity
of the n-MGMWTC for n → ∞ becomes prohibitive, and
the expression for the secrecy capacity of the n-MGMWTC
provides only little insight on the characterization of the
channel inputs that achieve the secrecy capacity. However,
the secrecy capacity of the n-CGMWTC for n → ∞ can
be obtained as a maximization problem with a closed-form
objective, as will be shown in the sequel. For this reason,
the n-MGMWTC is only an intermediate step, and in order to

obtain a useful characterization of Cs we consider the secrecy
capacity of the n-CGMWTC.

Comment 2: As the secrecy capacity of the n-MGMWTC is
independent of the initial channel state, we conclude that the
secrecy capacity of the finite-memory Gaussian MIMO WTC
is also independent of the initial state. This is intuitive as the
finite-memory property of the channel makes the impact of the
initial state vanish when considering very large blocklengths.

Comment 3: The coding scheme that achieves the secrecy
capacity of the n-MGMWTC does not require a prefix channel.
In Lemma A.5 it is shown that every achievable rate Rs for
the LGMWTC can be approached by applying codes for the
n-MGMWTC which approach the same Rs after adding a fixed
number of zero symbols at the beginning of each codeword.
Since in Lemma A.3 it is shown that the coding scheme that
achieves the secrecy capacity for the n-MGMWTC does not
require a prefix channel, it follows from this code construction
that the coding scheme that achieves the secrecy capacity
of the LGMWTC does not require a prefix channel. This
conclusion simplifies the design of secure coding schemes for
such channels.

B. Characterizing the Secrecy Capacity of the n-CGMWTC

Next, we derive Cn−CG
s for a fixed and finite n > 2m.

The derivation begins with applying the DFT to each n-block

of the n-CGMWTC. Let
{

˜Ŵ[k]
}n−1

k=0
and

{

˜Û[k]
}n−1

k=0
be the

n-point DFTs of { ˜W[i ]}n−1
i=0 and { ˜U[i ]}n−1

i=0 , respectively, i.e.,

˜Ŵ[k] �
n−1∑

i=0 ˜W[i ]e− j2π ik
n and ˜Û[k] �

n−1∑

i=0 ˜U[i ]e− j2π ik
n . Let

C
˜Ŵ

[k] and C
˜Û

[k] denote the covariance matrices of ˜Ŵ[k]
and ˜Û[k], respectively. Define Ĥ[k] �

m∑

τ=0
H[τ ]e− j2π τk

n and

Ĝ[k] �
m∑

τ=0
G[τ ]e− j2π τk

n . The secrecy capacity of the n-

CGMWTC for a fixed and finite n is stated in the following
proposition:

Proposition 2: Let Ĉn
P denote the collection of n-sets of

nt ×nt positive semi-definite Hermitian matrices
{
CX̂ [k]

}n−1
k=0 ,

which satisfy CX̂ [k] = (
CX̂ [n − k]

)∗
for

⌊ n
2

⌋
< k < n, and

n−1∑

k=0

Tr
(
CX̂ [k]

) ≤ n2 P. (10a)

Further define ψ̂[k] as:

ψ̂[k] �

∣
∣∣
∣Inr + Ĥ[k]CX̂ [k]

(
Ĥ[k]

)H (
C

˜Ŵ
[k]

)−1
∣
∣∣
∣

∣
∣∣
∣Ine + Ĝ[k]CX̂ [k]

(
Ĝ[k]

)H (
C

˜Û
[k]

)−1
∣
∣∣
∣

. (10b)

The secrecy capacity of the n-CGMWTC defined in (8), for
a fixed and finite n, subject to the per-symbol constraint (3)
is

Cn−CG
s = max{

CX̂[k]
}n−1

k=0∈Ĉn
P

1

2n

n−1∑

k=0

log ψ̂[k]. (10c)
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Proof: A detailed proof is provided in Appendix B, and
in the following we present only the outline of the proof:
By applying the multivariate DFT to the channel outputs of the
n-CGMWTC, we obtain an equivalent set of n MIMO WTCs
in the frequency domain, such that each component WTC
has no ISI and has additive Gaussian noise. We then show
that the noise components in the equivalent set of n MIMO
WTCs at different frequency indexes are mutually indepen-
dent and that each noise component is a circularly symmet-
ric complex normal random process, i.i.d. across different
n-blocks. Next, relaxing the power constraint to the per
n-block power constraint, it follows that the equivalent set of n
parallel MIMO WTCs can be analyzed as a set of independent
parallel memoryless MIMO WTCs with additive circularly
symmetric complex normal noise, i.i.d. in time (here, we refer
to the frequency index as “time”). The secrecy rate of the
component MIMO WTCs for a given power allocation, has
already been established in [6] and [7]. In Prop. 2 we state
that the secrecy rate of the equivalent set of n MIMO WTCs
subject to a given power allocation for each subchannel can
be written as the sum of the secrecy rates of the independent
subchannels, divided by the number of subchannels. In order
to arrive at this expression, we use an obvious extension
of [19, Thm. 1] to the memoryless Gaussian MIMO case. The
secrecy capacity for the equivalent set of n parallel MIMO
WTCs is obtained by maximizing over all secrecy rates which
satisfy the relaxed sum-power constraint, eventually resulting
in (10). Lastly, we show that the channel input which achieves
the secrecy capacity satisfies the per-symbol average power
constraint (3), hence (10) characterizes the secrecy capacity
of the n-CGMWTC subject to (3).

C. The Secrecy Capacity of the LGMWTC

In the final step, we first derive the asymptotic expression
for Cn−CG

s in the limit of n → ∞. Then, we obtain Cs

as the limit lim
n→∞ Cn−CG

s . The asymptotic expression for

lim
n→∞ Cn−CG

s is stated in the following Proposition:

Proposition 3: lim
n→∞ Cn−CG

s converges to the expression

in (6).
Proof: Similarly to [31, Lemma 5], [33, Sec. V], and

[42, Appendix A], we note that (10c) can be expressed as an
average over n samples of a Riemann integrable even function
over the range [0, 2π). Thus, by definition of Riemann integra-
bility [43, Ch. 6], it follows that for n → ∞, (10c) converges
to (6c), and that the energy constraint in (10a) asymptotically
coincides with the energy constraint in (6a).

From Proposition 1 it follows that Cs = lim
n→∞ Cn−CG

s .
Therefore, it follows from Proposition 3 that Cs is given by (6),
which completes the proof of Thm. 1.

IV. DISCUSSION AND NUMERICAL EXAMPLES

In the following we discuss the insights obtained from
the results derived above. In Subsection IV-A we present
a necessary and sufficient condition for non-zero secrecy
capacity; Then, in Subsection IV-B we present the application
of our result to the characterization of the secrecy capacity
of narrowband PLC channels; Lastly, in Subsection IV-C we

show that the secrecy capacity of the scalar finite-memory LTI
Gaussian WTC can be obtained in closed-form, and provide
numerical examples.

A. Necessary and Sufficient Condition for Cs > 0

The secrecy capacity expression (6c) is the solution to
a non-convex optimization problem (see, e.g., [6] for the
memoryless case), which makes it hard to directly develop
a practical interpretation. To assist with the understanding
of Thm. 1 , we now present a necessary and sufficient
condition for non-zero secrecy capacity, which follows from
Thm. 1.

Proposition 4: Define H′
w(ω) �

(
C′

W(ω)
)− 1

2 H′ (ω) and

G′
w(ω) �

(
C′

U(ω)
)− 1

2 G′ (ω). The secrecy capacity of the
LGMWTC is strictly positive if and only if ∃� ⊂ [0, π) with
a non-zero Lebesgue measure, such that ∀ω ∈ �

sup
v(ω)∈C nt ×1

∥
∥H′

w(ω) v (ω)
∥
∥

∥
∥G′

w(ω) v (ω)
∥
∥ > 1. (11)

Proof: The proof is similar to that of [6, Corollary 2],
and is provided in Appendix C.

Note that the vector v (ω) can be considered as a beamform-
ing vector. Therefore, Proposition 4 implies that the secrecy
capacity is strictly positive only when there exists a continuous
set of frequencies for which the sender can beamform the
transmitted signal such that the intended receiver observes a
higher SNR than the eavesdropper at each frequency in the set
of frequencies.

B. Application: The Secrecy Capacity of Narrowband
PLC Channels

An important application of our result is the characteri-
zation of the secrecy capacity of scalar PLC channels in
the frequency range of 3 − 500 kHz, referred to as nar-
rowband (NB) PLC. NB-PLC plays an important role in the
realization of smart power grids [44], in which secure commu-
nications is a critical issue [44]–[46]. Despite the importance
of secure NB-PLC, to date there is no characterization of
the secrecy capacity for this channel, which accounts for its
unique characteristics [34]: The NB-PLC channel is a linear
channel with additive noise , in which the channel impulse
response (CIR) is commonly modeled as a real periodically
time-varying signal with a finite memory [47], [48], while the
additive noise is commonly modeled as a real cyclostationary
Gaussian process with a finite correlation length [48], [49].
In the following we fill the knowledge gap of secure commu-
nications rates over NB-PLC channels by characterizing the
secrecy capacity of the NB-PLC wiretap channel.

Let WPLC[i ] and UPLC[i ] be zero-mean scalar additive
cyclostationary Gaussian noises (ACGNs), each with a period
of tnoise and a temporal correlation which has a finite-duration,
whose length is mnoise. Let mch be a non-negative integer
representing the length of the memory of the NB-PLC CIR,
and let {hPLC[i, τ ]}mch

τ=0 and {gPLC[i, τ ]}mch
τ=0 denote the channel

coefficients of the Tx-Rx channel and of the Tx-Ev channel,
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respectively, both with period1 tch , i.e., hPLC[i, τ ] = hPLC[i +
tch , τ ] and gPLC[i, τ ] = gPLC[i + tch , τ ], ∀i,∈ Z, ∀τ ∈
{0, 1, . . . ,mch − 1}, and hPLC[i, τ ] = gPLC[i, τ ] = 0, for all
integer τ < 0 or τ > mch . Let mPLC = max {mch,mnoise}.
We use X[i ] to denote the transmitted scalar signal, and
YPLC[i ] and ZPLC[i ] to denote the channel outputs at the
destination and at the eavesdropper, respectively, all at time i .
The input-output relationships of the NB-PLC WTC can be
written as

YPLC[i ] =
mPLC∑

τ=0

hPLC[i, τ ]X[i − τ ] + WPLC[i ] (12a)

ZPLC[i ] =
mPLC∑

τ=0

gPLC[i, τ ]X[i − τ ] + UPLC[i ]. (12b)

Set nPLC to be the least common multiple of tch and tnoise

which satisfies nPLC > mPLC. We assume that the channel
input is subject to an average power constraint

1

l

l−1∑

k=0

E
{∣∣X [i ]

∣∣2
}

≤ P, (13a)

for any blocklength l, and we assume that for all i ≥ 0 it
holds that

1

nPLC

nPLC−1∑

k=0

E
{∣
∣X [i · nPLC + k]

∣
∣2
}

≤ P, (13b)

i.e., over any block of nPLC symbols, starting from the
first transmitted symbol, the average power is upper bound
by P . Applying the decimated components decomposition
[50, Sec. 17.2] to the cyclostationary processes WPLC[i ]
and UPLC[i ], we define the nPLC × 1 multivariate processes

WPLC

[
ĩ
]

and UPLC

[
ĩ
]
, ĩ ∈ Z, whose elements are given

by
(

WPLC

[
ĩ
])

k
= WPLC

[
ĩ · nPLC + k

]
and

(
UPLC

[
ĩ
])

k
=

UPLC

[
ĩ · nPLC + k

]
, respectively, k ∈ {0, 1, . . . , nPLC −

1} � NPLC. From [50, Sec. 17.2] it follows that WPLC

[
ĩ
]

1In NB-PLC systems, tch is equal to the mains period and tnoise is equal
to half the mains period [48]. However, our secrecy capacity result applies
also to the more general case in which the periods of the Tx-Rx CIR and
of the Tx-Ev CIR are not identical, by setting tch to be the least common
multiple of these periods. The same applies to the noises and tnoise , see further
explanations in [51, Footnote 1].

and UPLC

[
ĩ
]

are each a stationary Gaussian process. Let

CWPLC

[
τ̃
]

and CUPLC

[
τ̃
]

denote the autocorrelation function

of WPLC

[
ĩ
]

and the autocorrelation function of UPLC

[
ĩ
]
,

respectively. Finally, let HPLC
[
τ̃
]

and GPLC
[
τ̃
]
, τ̃ ∈ {0, 1},

be nPLC × nPLC matrices whose entries at the k1-th row and
the k2-th column are given in (14), as shown at the bottom of
this page ∀k1, k2 ∈ NPLC.

The secrecy capacity of the NB-PLC WTC is stated in the
following corollary:

Corollary 1: Consider the NB-PLC WTC defined in (12),
subject to the power constraints (13). Define C′

WPLC
(ω) �

1∑

τ̃=−1
CWPLC

[
τ̃
]

e− jωτ̃ , C′
UPLC

(ω) �
1∑

τ̃=−1
CUPLC

[
τ̃
]

e− jωτ̃ ,

H′
PLC(ω) �

1∑

τ̃=0
HPLC

[
τ̃
]

e− jωτ̃ , and G′
PLC(ω) �

1∑

τ̃=0
GPLC

[
τ̃
]

e− jωτ̃ .

Let CPLC
P denote the set of nPLC×nPLC positive semi-definite

Hermitian matrix functions C′
X (ω) defined over the interval

ω ∈ [0, π), which satisfy

1

π

π∫

ω=0

Tr
(
C′

X (ω)
)
dω ≤ P · nPLC, (15a)

and define ψPLC(ω) as:

ψPLC(ω)

�

∣
∣∣
∣InPLC + H′

PLC(ω)C′
X (ω)

(
H′

PLC(ω)
)H

(
C′

WPLC
(ω)

)−1
∣
∣∣
∣

∣
∣∣
∣InPLC + G′

PLC(ω)C′
X (ω)

(
G′

PLC(ω)
)H

(
C′

UPLC
(ω)

)−1
∣
∣∣
∣

.

(15b)

Then, the secrecy capacity of the NB-PLC WTC is given by

Cs,PLC = 1

nPLC
max

C′
X(ω)∈CP LC

P

1

2π

π∫

ω=0

logψPLC(ω)dω. (15c)

Proof: The proof follows from the representation of
NB-PLC channels as Gaussian MIMO channels with finite
memory, see, e.g., [51, Appendix B], and is provided in
Appendix D.

(HPLC[0])k1,k2
=
{

hPLC [k1, k1 − k2] , 0 ≤ k1 − k2 ≤ mPLC

0, otherwise,
(14a)

(HPLC[1])k1,k2
=
{

hPLC [k1, nPLC + k1 − k2] , 1 ≤ nPLC + k1 − k2 ≤ mPLC

0, otherwise,
(14b)

(GPLC[0])k1,k2
=
{

gPLC [k1, k1 − k2] , 0 ≤ k1 − k2 ≤ mPLC

0, otherwise,
(14c)

(GPLC[1])k1,k2
=
{

gPLC [k1, nPLC + k1 − k2] , 1 ≤ nPLC + k1 − k2 ≤ mPLC

0, otherwise.
(14d)
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C. Scalar Gaussian WTCs With Finite Memory

To analytically evaluate (6c) it is required to search over all
possible input correlation matrix functions in CP . However, for
the special case of the scalar linear Gaussian WTC (LGWTC),
obtained from the general model by setting nt = nr = ne = 1,
the secrecy capacity can be obtained explicitly. This result is
stated in the following corollary:

Corollary 2: Consider the scalar LGWTC. Define the
scalar functions h′ (ω) � H′ (ω), g′ (ω) � G′ (ω), c′

W (ω) �
C′

W(ω), c′
U (ω) � C′

U(ω), α
′
r (ω) � |h′(ω)|2

c′
W (ω)

, and α′
e (ω) �

|g′(ω)|2

c′
U (ω)

, where the domain for all the functions is [0, π). The
secrecy capacity of the scalar LGWTC is given by

Cs,Scalar = 1

2π

π∫

ω=0

log

(
1 + α′

r (ω) c′
X (ω)

1 + α′
e (ω) c′

X (ω)

)
dω, (16a)

where c′
X (ω), ω ∈ [0, π), is obtained as follows: If α′

r (ω) ≤
α′

e (ω) then c′
X (ω) = 0, otherwise

c′
X (ω)=

(√(
α′

r (ω)− α′
e (ω)

2α′
r (ω) α

′
e (ω)

)2

+ α′
r (ω)− α′

e (ω)

μ′ · α′
r (ω) α

′
e (ω)

−α
′
r (ω)+ α′

e (ω)

2α′
r (ω) α

′
e (ω)

)+
, (16b)

and μ′ > 0 is selected such that 1
π

π∫

0
c′

X (ω) dω = P.

Proof: For the scalar n-block memoryless circular
Gaussian WTC (n-CGWTC), define the scalar functions
ĥ[k] � Ĥ[k], ĝ[k] � Ĝ[k], c ˆ

˜W
[k] � C

˜Ŵ
[k], c ˆ

˜U
[k] � C

˜Û
[k],

αr [k] �
∣
∣ĥ[k]

∣
∣2

c ˆ
˜W

[k] , and αe[k] �
∣
∣ĝ[k]

∣
∣2

c ˆ
˜U
[k] , k ∈ {0, 1, . . . , n − 1}.

The secrecy capacity of the scalar n-CGWTC is given by the
solution of the optimization problem in (10) with the matrices
replaced by the corresponding scalar quantities. The resulting
expression is [21, Thm. 1], [19, Thm. 2]:

Cn−CG
s,Scalar = 1

2n

n−1∑

k=0

log

(
1 + αr [k]cX̂ [k]
1 + αe[k]cX̂ [k]

)
, (17a)

where cX̂ [k], k ∈ {0, 1, . . . , n − 1}, is obtained as follows:
If αr [k] ≤ αe[k] then cX̂ [k] = 0, otherwise

cX̂ [k] =
(√(

αr [k] − αe[k]
2αr [k]αe[k]

)2

+ αr [k] − αe[k]
μ · αr [k]αe[k]

−αr [k] + αe[k]
2αr [k]αe[k]

)+
, (17b)

and μ > 0 is selected such that
n−1∑

k=0
cX̂ [k] = n2 P .

Now, it follows from Proposition 1 that Cs,Scalar =
lim

n→∞ Cn−CG
s,Scalar, thus, the corollary is proved by first showing

that in the limit of n → ∞ the power constraint on cX̂ [k]
(17b) converges to the power constraint on c′

X (ω) in (16b),
and then showing that (17a) can be expressed as an average

Fig. 1. The magnitudes of h′ (ω) and g′ (ω). The shadowed region
corresponds to frequencies in which |h′ (ω) | ≥ |g′ (ω) |.

over n samples of a Riemann integrable even function2 over
the range [0, 2π). Therefore, from [43, Ch. 6], it follows
for n → ∞, (17a) coincides with (16a). As these steps are
essentially the same as the steps in the proof of Proposition 3,
they are not repeated here.

While Corollary 2 applies only to scalar Gaussian WTCs
with finite memory, it facilitates a deeper understanding of the
main result stated in Thm. 1: Recall that for scalar Gaussian
WTCs without memory, i.e., without ISI and with AWGN, the
secrecy capacity is zero if the signal-to-noise ratio (SNR) at
the intended receiver (SNRr ) is less than or equal to the SNR
at the eavesdropper (SNRe) [4]. In contrast, Corollary 2 and
Proposition 4 imply that for scalar Gaussian WTCs with finite
memory, the secrecy capacity is zero if and only if α′

r (ω) ≤
α′

e (ω) for all sets � ⊂ [0, π) of positive Lebesgue measure.
This implies that Cs,Scalar is zero if and only if the “SNR

density” at the intended receiver, i.e., |h′(ω)|2

c′
W (ω)

, is less than that

at the eavesdropper, i.e., |g′(ω)|2

c′
U (ω)

, over the entire frequency

range. It thus follows that the finite memory of the channel
introduces additional degrees-of-freedom for concealing the
information from the eavesdropper. To demonstrate this, con-
sider the following two-tap channels to the receiver and to the
eavesdropper, respectively: h′ (ω) = 1 + e− jω and g′ (ω) =
3.1−3.1e− jω. Let the noises in both channels be AWGN with
unit variance, thus, SNRr ≈ 3[dB] while SNRe ≈ 13[dB]. The
magnitude of the frequency response for these two channels is
depicted in Fig. 1. From the above discussion it follows that the
shaded region in which |h′ (ω) | ≥ |g′ (ω) | facilitates a positive
secrecy capacity, and this is achieved by waterfilling over this
region according to (16b). Therefore, although SNRe is 10[dB]
higher than SNRr , the secrecy capacity of this channel, derived
via (16), is 0.21 bits per channel use.

V. CONCLUSIONS

In this work we characterized for the first time the
secrecy capacity of finite-memory MIMO Gaussian WTCs.

2The function is even in the sense that for 1 ≤ k ≤ � n
2 �, then ξ [k] �

log

(
1+αr [k]cX̂ [k]
1+αe[k]cX̂ [k]

)
satisfies ξ [k] = ξ [n − k].
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The secrecy capacity is derived via the analysis of an equiv-
alent multivariate block-memoryless channel model, and the
result is stated as a maximization over the input covariance
matrices in the frequency domain. Based on the capacity
characterization we were able to characterize a necessary and
sufficient condition for non-zero secrecy capacity. We also
derived the secrecy capacity of narrowband PLC channels, as
a special case of the main result, thereby resolving one of the
major open problems for this communications channel. For
the scalar case, we explicitly demonstrated that the frequency
selectivity of the channel can be utilized to facilitate secure
communications over scenarios in which the SNR at the
intended receiver is less than the SNR at the eavesdropper.

APPENDIX A
PROOF OF PROPOSITION 1

In order to prove that Cs is obtained from Cn−CG
s by

taking n → ∞, we begin by characterizing the secrecy
capacity of the n-MGMWTC, which was defined in the proof
outline in Subsection III-A. This capacity is characterized in
Subsection A-A. Then, in Subsection A-B we show that Cs

can be obtained from the secrecy capacity of the n-MGMWTC
by taking n → ∞. Lastly, in Subsection A-C we show that
for n → ∞, the secrecy capacity of the n-MGMWTC is equal
to the secrecy capacity of the n-CGMWTC. Combining these
results we obtain (9).

Define

Cn−MG
s � 1

n
sup

p
(
Vn−1,Xn−1

):
E
{‖X[i]‖2

}≤P, ∀0≤i<n

{
I
(

Vn−1; Yn−1
m

)

− I
(

Vn−1; Zn−1
m

)}
. (A.1)

A. Characterizing the Secrecy Capacity of the n-MGMWTC

The secrecy capacity of the n-MGMWTC is stated in the
following proposition:

Proposition A.1: The secrecy capacity of the n-MGMWTC
defined in Subsection III-A is given by Cn−MG

s .
Proof: In order to obtain the secrecy capacity of the

n-MGMWTC defined in Subsection III-A, we first show
that Cn−MG

s is the maximum achievable secrecy rate for the
n-MGMWTC when considering only codes whose blocklength
is an integer multiple of n, i.e, [R, b · n] codes, where b ∈ N.
Then, we show that any secrecy rate achievable for the
n-MGMWTC can be achieved by considering only codes
whose blocklength is an integer multiple of n.

Let us consider the n-MGMWTC constrained to using
only codes whose blocklength is an integer multiple of n.
In this case, we can represent the channel as an equivalent
n · nt × (n − m) · nr × (n − m) · ne MIMO WTC (without
loss of information), via the following assignments: Define
the input of the transformed channel at time i ∈ N by the

n ·nt ×1 vector Xeq

[
ĩ
]

� X

(
ĩ+1

)
·n−1

ĩ·n , ĩ ≥ 0, the output at the
intended receiver at time i ∈ N by the (n − m) · nr × 1 vector

Yeq

[
ĩ
]

� Y

(
ĩ+1

)
·n−1

ĩ ·n+m
, and the output at the eavesdropper

at time ĩ ∈ N by the (n − m) · ne × 1 vector Zeq

[
ĩ
]

�

Z

(
ĩ+1

)
·n−1

ĩ ·n+m
. The transformation is clearly bijective, and thus,

the secrecy capacity of the equivalent channel is equal to
the secrecy capacity of the original n-MGMWTC. Since the
n-MGMWTC is n-block memoryless, it follows from Def. 6
that the equivalent transformed MIMO channel obtained above
is memoryless, with the transmitter having n times more
antennas than in the n-MGMWTC, and both the intended
receiver and the eavesdropper having (n − m) times more
antennas than in the n-MGMWTC. The signals received at the
intended receiver and at the eavesdropper are corrupted by the

additive noise vectors Weq

[
ĩ
]

� W

(
ĩ+1

)
·n−1

ĩ ·n+m
and Ueq

[
ĩ
]

�

U

(
ĩ+1

)
·n−1

ĩ ·n+m
, respectively. From the noise characterization in

Subsection II-B and the definition of the n-MGMWTC,
it follows that both Weq

[
ĩ
]

and Ueq

[
ĩ
]

are zero-mean
Gaussian with positive-definite covariance matrices (since the
elements of the random vectors are not linearly dependent, see
[57, Ch. 8.1]), and each process Weq

[
ĩ
]

and Ueq

[
ĩ
]

is

i.i.d. in time (here we refer to the index ĩ as ”time”). The
secrecy capacity of the transformed channel, denoted Qeq

n , can
be expressed in the form of the result of Csiszár and Körner
[2, Eq. (11)]3

Qeq
n = sup

p(Veq ,Xeq)

{
I
(
Veq; Yeq

) − I
(
Veq; Zeq

)}

(a)= sup
p
(
Vn−1,Xn−1

):
E
{‖X[i]‖2}≤P, ∀0≤i<n

{
I
(

Vn−1; Yn−1
m

)

−I
(

Vn−1; Zn−1
m

)}
, (A.2)

where (a) follows from the definition of the quantities used in
the equivalent channel, and E

{‖X[i ]‖2} ≤ P, ∀0 ≤ i < n
corresponds to the per-symbol power constraint of the n-
MGMWTC. As every channel use in the transformed MIMO
channel corresponds to n channel uses in the n-MGMWTC, it
follows from (A.2) that the maximal achievable secrecy rate
of the n-MGMWTC in bits per channel use, subject to the
restriction that only codes whose blocklength is an integer
multiple of n are allowed, is 1

n Qeq
n = Cn−MG

s .
Next, we show that any secrecy rate achievable for the

n-MGMWTC can be achieved by considering only codes
whose blocklength is an integer multiple of n: Consider a
secrecy rate Rs achievable for the n-MGMWTC and fix
ε1 > 0, ε2 > 0, ε3 > 0. From Def. 4 it follows that
∃l0 > 0 such that ∀l > l0 there exists an [R, l] code which
satisfies (4a)-(4c). Thus, by setting b0 as the smallest integer
for which b0 ·n ≥ l0, it follows that for all integer b > b0 there
exists an [R, b · n] code which satisfies (4a)-(4c). Therefore,
the secrecy rate Rs is also achievable when considering only

3While [2] considered discrete alphabets, it is noted that the result can
be extended to incorporate continuous-valued power-constrained inputs as
considered in this paper, see [2, Sec. VI], [3, Ch. 5.1], [6, Sec. IV.A],
and [8, Sec. I].
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codes whose blocklength is an integer multiple of n. We thus
conclude that Cn−MG

s is the maximum achievable secrecy rate
for the n-MGMWTC.

B. Proving That Cs = lim
n→∞ Cn−MG

s

Next, we prove that the secrecy capacity of the LGMWTC,
Cs , coincides with Cn−MG

s in the limit of n → ∞. We begin
by defining

Cn (s0)�
1

n
sup

p
(
Vn−1,Xn−1

):
E
{‖X[i]‖2}≤P, ∀0≤i<n

{
I
(

Vn−1; Yn−1
∣∣
∣ S0 = s0

)

− I
(

Vn−1; Zn−1
∣
∣
∣ S0 = s0

)}
. (A.3)

The outline of the proof is as follows:

• First, we show in Lemma A.1 and Lemma A.2 that for
the LGMWTC (2), the mutual information between the
channel inputs and any m channel outputs can be upper
bounded by a fixed and finite number.

• Next, in Lemma A.3, we prove that Cs ≤
inf

s0∈S0

(
lim inf
n→∞ Cn (s0)

)
.

• Then, in Lemma A.4, we show that
inf

s0∈S0

(
lim inf
n→∞ Cn (s0)

)
≤ lim inf

n→∞ Cn−MG
s .

• Lastly, in Lemma A.5, we prove that
lim sup

n→∞
Cn−MG

s ≤ Cs .

By combining these lemmas, we conclude in Proposition A.2
that the secrecy capacity of the LGMWTC is equal to
lim

n→∞ Cn−MG
s and that the limit exists.

Lemma A.1: There exists a finite and fixed η > 0, such that
for all positive integers a, b, n, l, satisfying b > l, n > 2m,
and n + m > a ≥ m, it holds that

I

(
Xb·n+a−1; Za+m−1

a

∣
∣
∣Zn+a−1

a+m ,Z2n+a−1
n+a+m , . . . ,Zb·n+a−1

(b−1)·n+a+m,

Ua−1
a−m

)
≤ η, (A.4a)

and

I

(
Xb·n+a−1;Zl·n+a+m−1

l·n+a

∣
∣
∣Zn+a−1

a+m ,Z2n+a−1
n+a+m , . . . ,Zb·n+a−1

(b−1)·n+a+m,

Za+m−1
a ,Zn+a+m−1

n+a , . . . ,Z(l−1)·n+a+m−1
(l−1)·n+a ,Ua−1

a−m

)

≤ η. (A.4b)
Proof: We now provide a sketch of the proof of the lemma;

The detailed proof appears in [64]. From the input-output
relationship of the LGMWTC (2) it follows that any sequence
of k > 0 consecutive channel outputs corresponding to indexes
i0, i0 +1, . . . , i0 +k −1, when their subsequent and preceding
channel outputs are given, depends on the channel inputs at
indexes i0 − m, i0 − m + 1, . . . , i0 + k − 1, due to the finite
length of the channel impulse response, and the dependence
extends also to the channel inputs at indexes {i0 − 2m, i0 −
2m +1, . . . , i0 −m −1}∪{i0 +k, i0 +k +1 . . . , i0 +k +m −1},
due to the temporal span of the noise correlation. The latter
follows as, given the corresponding channel outputs, these

inputs are statistically dependent on the noise at these indexes.
Therefore, similarly to the derivation in [53, Eq. (63)-(65)], we
obtain that each of the two conditional mutual information
expressions in (A.4) is upper-bounded by the mean of a
quadratic function of at most 4m channel inputs. Since the
channel input X[i ] is subject to a per-symbol power constraint,
the lemma follows.

Lemma A.2: There exists a finite and fixed η̃ > 0, such
that for any positive integer n > 2m, and for all initial states
s0 ∈ S0, it holds that

I
(

Xn−1; Ym−1
∣∣
∣Yn−1

m ,S0 = s0

)
≤ η̃. (A.5)

Proof: Note that

I
(

Xn−1; Ym−1
∣
∣
∣Yn−1

m ,S0 = s0

)

= h
(

Ym−1
∣
∣
∣Yn−1

m ,S0 = s0

)

− h
(

Ym−1
∣∣
∣Xn−1,Yn−1

m ,S0 = s0

)

(a)≤ h
(

Ym−1
∣
∣∣ S0 = s0

)
− h

(
Ym−1

∣
∣∣Xn−1,Yn−1

m ,S0 = s0

)
,

(A.6)

where (a) follows since conditioning reduces entropy
[52, Ch. 8.6]. From the input-output relationship of the
LGMWTC it follows that ∃H1,H0 ∈ R(nr ·m)×(nt ·m) such
that Ym−1 = H1Xm−1 + H0X−1−m + Wm−1 and ∃LH ∈
R(nr ·(n−m))×(nt ·n) such that Yn−1

m = LHXn−1 + Wn−1
m .

Therefore,

h
(

Ym−1
∣
∣
∣Xn−1,Yn−1

m ,S0 = s0

)

= h
(

H1Xm−1 + H0X−1−m + Wm−1
∣
∣
∣Xn−1,Yn−1

m ,S0 = s0

)

(a)= h
(

Wm−1
∣
∣
∣Xn−1,Wn−1

m ,W−1−m = w−1−m

)

(b)= h
(

Wm−1
∣∣
∣Wn−1

m ,W−1−m = w−1−m

)

(c)= h
(

Wm−1
∣
∣∣W2m−1

m ,W−1−m = w−1−m

)

=
∫

w2m−1
m ∈Rnr ·m

h
(

Wm−1
∣∣
∣W2m−1

m = w2m−1
m ,W−1−m = w−1−m

)

×pW2m−1
m

(
w2m−1

m

)
dw2m−1

m , (A.7)

where (a) follows as S0 =
[ (

X−1−m

)T
,
(

W−1−m

)T
,

(
U−1−m

)T ]T
; (b) follows since the noise W[i ] is independent

of the channel input X[i ]; (c) follows since the temporal
correlation of the multivariate Gaussian process W[i ] is finite
and shorter than m +1, and therefore Wm−1 is independent of

Wn−1
2m . Since Wm−1 and

[
(
W2m−1

m

)T
,
(

W−1−m

)T
]T

are jointly

Gaussian, the conditional distribution Wm−1
∣
∣W2m−1

m =
w2m−1

m ,W−1−m = w−1−m is a multivariate Gaussian dis-
tribution [59, Proposition 3.13], with covariance matrix
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Q̃ ∈ R(nr m)×(nr m) given by

Q̃ �E

{
Wm−1

(
Wm−1

)T
}

−E

{
Wm−1

[(
W2m−1

m

)T
,
(

W−1−m

)T
]}

×
(
E

{[(
W2m−1

m

)T
,
(

W−1−m

)T
]T

×
[(

W2m−1
m

)T
,
(

W−1−m

)T
]})−1

×E

{[(
W2m−1

m

)T
,
(

W−1−m

)T
]T (

Wm−1
)T

}

. (A.8)

We note that as the noise samples are not linearly depen-
dent,4 it follows that

∣
∣Q̃
∣
∣ > 0 [57, Ch. 8.1]. Then,

from the differential entropy of a multivariate Gaussian RV
[52, Thm. 8.4.1] we conclude that (A.7) can be written as

h
(

Ym−1
∣
∣
∣Xn−1,Yn−1

m ,S0 = s0

)
= 1

2
log

(
(2πe)nr m

∣
∣Q̃
∣
∣
)
,

(A.9)

where
∣
∣Q̃
∣
∣ is positive, finite, and independent of n. Next, note

that

h
(

Ym−1
∣
∣∣S0 = s0

)

= h
(

H1Xm−1 + H0X−1−m + Wm−1
∣
∣
∣S0 = s0

)

= h
(

H1Xm−1 + Wm−1
∣
∣
∣X−1−m = x−1−m,W−1−m = w−1−m

)
.

(A.10)

Let KY be the covariance matrix of the conditional distrib-
ution H1Xm−1 + Wm−1

∣
∣X−1−m = x−1−m,W−1−m = w−1−m , KX be

the covariance matrix of Xm−1, and KW be the covariance
matrix of the conditional distribution Wm−1

∣
∣W−1−m = w−1−m .

Since the channel input X[i ] is subject to a per-symbol
power constraint P for i ≥ 0, it follows that the entries
of KX are all not larger than P for any initial state x−1−m .
As Wm−1 and W−1−m are jointly Gaussian, it follows from
[59, Proposition 3.13] that KW is independent of the realization

of W−1−m , w−1−m . Since X[i ]∣∣X−1−m,W−1−m
d= X[i ]∣∣X−1−m and

W[i ]∣∣X−1−m,W−1−m
d= W[i ]∣∣W−1−m are mutually independent,

and the encoder is independent of the initial channel state,
it follows that KY = H1KXHT

1 + KW. As the noise samples
are not linearly dependent, we obtain |KY| > 0 [57, Ch. 8.1].

Defining γk as γk �
m·nt −1∑

k1=0

m·nt −1∑

k2=0

∣
∣(H1)k,k2 (H1)k,k1

∣
∣, it follows

4Note that for any pair of jointly-Gaussian real-valued random

vectors A and B, such that the entries of
[
AT ,BT

]T
are not linearly

dependent, it follows from [58, Ch. 3.5] that the entries of A conditioned
on B = b are also not linearly dependent.

from Hadamard’s inequality [52, Thm. 17.9.2] that

|KY| ≤
m·nr −1∏

k=0

(KY)k,k

=
m·nr −1∏

k=0

((
H1KXHT

1

)

k,k
+ (KW)k,k

)

=
m·nr −1∏

k=0

( m·nt −1∑

k1=0

m·nt −1∑

k2=0

(H1)k,k2 (KX)k2,k1(H1)k,k1

+ (KW)k,k

)

≤
m·nr −1∏

k=0

(
γk P + (KW)k,k

)
.

It follows that |KY| is positive, finite, and independent of n.
Plugging (A.9) and (A.10) into (A.6) leads to

I
(

Xn−1; Ym−1
∣
∣
∣Yn−1

m ,S0 = s0

)

≤ h
(

H1Xm−1 + Wm−1
∣∣
∣X−1−m = x−1−m,W−1−m = w−1−m

)

− 1

2
log

(
(2πe)nr m

∣
∣Q̃
∣
∣
)

(a)≤ 1

2
log

(
(2πe)nr m |KY|) − 1

2
log

(
(2πe)nr m

∣∣Q̃
∣∣
)
,

(A.11)

where (a) follows since h
(

H1Xm−1 + Wm−1
∣
∣X−1−m =

x−1−m,W−1−m = w−1−m

)
is upper-bounded by the differential

entropy of an nr · m × 1 multivariate Gaussian RV with
the same covariance matrix [52, Thm. 8.6.5]. It therefore
follows from (A.11) that ∃η̃ independent of n such that
I
(

Xn−1; Ym−1
∣
∣Yn−1

m ,S0 = s0
) ≤ η̃.

Comment A.1: Note that the per-symbol power con-
straint (3) is required in the proofs of Lemmas A.1 and A.2
in order to upper bound the mutual information between a
transmitted block of b · n + a channel inputs (for Lemma A.1)
or n channel inputs (for Lemma A.2) and a received block
of m channel outputs, by a finite quantity independent of
n. Consequently, the per-symbol constraint is essential for
proving the asymptotic secrecy capacity equivalence stated in
Proposition 1.

Lemma A.3: The secrecy capacity of the LGMWTC satisfies
Cs ≤ inf

s0∈S0

(
lim inf
n→∞ Cn (s0)

)
.

Proof: We prove the lemma by showing that every
secrecy rate Rs achievable for the LGMWTC satisfies Rs ≤
lim inf
n→∞ Cn (s0) for any initial state s0. By definition, if Rs

is achievable for the LGMWTC, then for every non-negative
triplet ε1, ε2, ε3 > 0 and for all sufficiently large n there exists
an [R, n] code, such that (4a)-(4c) are satisfied. Fix S0 = s̃0,
and recall that from Fano’s inequality [52, Sec. 2.10] it follows
that

H
(

M| Yn−1,S0 = s̃0

)
≤ 1 + Pr

(
M 	= M̂

∣
∣
∣S0 = s̃0

)
· n R

(a)≤ 1 + ε1 · n R, (A.12)
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where (a) follows from (4a) since Pr
(

M 	= M̂
∣
∣∣ S0 = s̃0

)
≤

sup
s0∈S0

Pr
(

M 	= M̂
∣
∣
∣ S0 = s0

)
≤ ε1. Therefore,

I
(

M; Yn−1
∣
∣
∣ S0 = s̃0

)
− I

(
M; Zn−1

∣
∣
∣ S0 = s̃0

)

= H (M| S0 = s̃0)− H
(

M| Yn−1,S0 = s̃0

)

− I
(

M; Zn−1
∣
∣
∣ S0 = s̃0

)

(a)≥ H (M| S0 = s̃0)− 1 − ε1 · n R − ε2 · n
(b)= n R − 1 − ε1 · n R − ε2 · n, (A.13)

where (a) follows from (A.12) and from (4b), as
I
(

M; Zn−1
∣
∣S0 = s̃0

) ≤ sup
s0∈S0

I
(

M; Zn−1
∣
∣S0 = s0

)
< ε2 · n;

and (b) follows since M is uniformly distributed and is
independent of S0. Combining (4c) and (A.13) leads to

(1 − ε1) (Rs − ε3)− 1

n
− ε2

≤ 1

n

(
I
(

M; Yn−1
∣
∣
∣S0 = s̃0

)
− I

(
M; Zn−1

∣
∣
∣ S0 = s̃0

))

(a)≤ 1

n
sup

p
(
Vn−1,Xn−1):

E
{‖X[i]‖2}≤P, ∀0≤i<n

{
I
(

Vn−1; Yn−1
∣
∣
∣ S0 = s̃0

)

− I
(

Vn−1; Zn−1
∣
∣∣ S0 = s̃0

)}

≡ Cn (s̃0) , (A.14)

where (a) follows since we can define a pair
(
Vn−1,Xn−1

)

such that Vn−1 is a random variable representing the uniformly
distributed message M and p

(
Xn−1|Vn−1

)
is defined by the

encoder of the [R, n] code (either deterministic or stochastic),
as done in the proof of [29, Lemma 4]. Since (A.14) holds for
all sufficiently large n, it follows from [43, Thm. 3.19] that
lim inf
n→∞

(
(1 − ε1) (Rs − ε3)− 1

n − ε2
) ≤ lim inf

n→∞ Cn (s̃0), thus

(1 − ε1) (Rs − ε3)− ε2 ≤ lim inf
n→∞ Cn (s̃0) . (A.15)

Since ε1, ε2, and ε3 can also be made arbitrarily small, (A.15)
implies that

Rs ≤ lim inf
n→∞ Cn (s̃0) , (A.16)

and as (A.16) is true for any achievable secrecy rate Rs , we
conclude that for all s̃0 ∈ S0, Cs ≤ lim inf

n→∞ Cn (s̃0),5 thus

Cs ≤ inf
s0∈S0

(
lim inf
n→∞ Cn (s0)

)
.

Lemma A.4: Cn−MG
s , defined in (A.1), satisfies

inf
s0∈S0

(
lim inf
n→∞ Cn (s0)

)
≤ lim inf

n→∞ Cn−MG
s .

5As the supremum is defined as the least upper bound [43, Def. 1.8], it
follows that if every achievable secrecy rate Rs is not larger than a given real
number γ ∈ R, then the supremum of all achievable secrecy rates, Cs , is also
not larger than γ .

Proof: First, we show that for all s0 ∈ S0, Cn (s0) ≤
Cn−MG

s + η̃
n . Note that

I
(

Vn−1; Yn−1
∣
∣∣ S0 = s0

)

(a)= I
(

Vn−1; Yn−1
m

∣
∣
∣S0 = s0

)

+ I
(

Vn−1; Ym−1
∣
∣
∣Yn−1

m ,S0 = s0

)

(b)≤ I
(

Vn−1; Yn−1
m

∣
∣
∣S0 = s0

)

+ I
(

Xn−1; Ym−1
∣∣
∣Yn−1

m ,S0 = s0

)

(c)≤ I
(

Vn−1; Yn−1
m

∣
∣∣S0 = s0

)
+ η̃

(d)= I
(

Vn−1; Yn−1
m

)
+ η̃, (A.17)

where (a) follows from the mutual information chain rule
[52, Sec. 2.5]; (b) follows from the data processing inequality
and the Markov chain6 Vn−1|S0 → Xn−1|S0 → Yn−1|S0;
(c) follows from Lemma A.2; and (d) follows since Y[i ] is
independent of the initial state ∀i ≥ m. Using (A.17) in the
definition of Cn (s0) in (A.3) we obtain

Cn (s0)
(a)≤ 1

n
sup

p
(
Vn−1,Xn−1

):
E
{‖X[i]‖2}≤P, ∀0≤i<n

{
I
(

Vn−1; Yn−1
m

)
+ η̃

− I
(

Vn−1; Zn−1
∣
∣
∣S0 = s0

)}

(b)≤ 1

n
sup

p
(
Vn−1,Xn−1

):
E
{‖X[i]‖2}≤P, ∀0≤i<n

{
I
(

Vn−1; Yn−1
m

)

− I
(

Vn−1; Zn−1
m

∣
∣
∣S0 = s0

)}
+ 1

n
η̃

(c)= 1

n
sup

p
(
Vn−1,Xn−1

):
E
{‖X[i]‖2}≤P, ∀0≤i<n

{
I
(

Vn−1; Yn−1
m

)

− I
(

Vn−1; Zn−1
m

)}
+ 1

n
η̃

≡ Cn−MG
s + η̃

n
,

where (a) follows from (A.17); (b) follows from the non-
negativity of the mutual information which implies that
I
(

Vn−1; Zn−1
m

∣
∣S0 = s0

) ≤ I
(

Vn−1; Zn−1
∣
∣ S0 = s0

)
; and (c)

follows since Z[i ] is independent of the initial state ∀i ≥ m.
Now, since for all s0 ∈ S0, Cn (s0) ≤ Cn−MG

s + η̃
n , then

lim inf
n→∞ Cn (s0)≤ lim inf

n→∞ Cn−MG
s , therefore,

inf
s0∈S0

(
lim inf
n→∞ Cn (s0)

)
≤ lim inf

n→∞ Cn−MG
s .

This proves the lemma.

6The Markov chain Vn−1|S0 → Xn−1|S0 → Yn−1|S0 is a
short notation for the relationship p

(
Vn−1,Xn−1,Yn−1

∣
∣
∣S0 = s0

)
=

p
(

Vn−1
∣
∣
∣S0 = s0

)
p
(

Xn−1
∣
∣
∣Vn−1,S0 = s0

)
p
(

Yn−1
∣
∣
∣Xn−1, S0 = s0

)
,

for all s0 ∈ S0, see, e.g., [65].
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Lemma A.5: Cn−MG
s , defined in (A.1), satisfies

lim sup
n→∞

Cn−MG
s ≤ Cs.

Proof: In order to prove the lemma we show that every
non-negative Rs < lim sup

n→∞
Cn−MG

s is an achievable secrecy

rate for the LGMWTC7 To that aim, consider such Rs <
lim sup

n→∞
Cn−MG

s : From [60, Thm. 5.5] it follows that if Rs <

lim sup
n→∞

Cn−MG
s , then there are infinitely many values of n ∈ N

such that Rs ≤ Cn−MG
s , hence, Rs is an achievable secrecy

rate for the n-MGMWTC for these values of n. Consequently,
it follows that for a given real number η > 0 and for any
arbitrarily fixed non-negative triplet ε1, ε2, ε3 > 0, ∃n >

n1 �
⌈

2η
ε2

⌉
such that Rs is an achievable secrecy rate for the n-

MGMWTC. Note that since n > n1 it follows that ε2− 2η
n > 0.

By Def. 4, the achievability of Rs implies that we can find a
sufficiently large b0 ∈ N, such that for all integer b > b0 there
exists an [R1, b · n] code for the n-MGMWTC which satisfies

sup
s0∈S0

Pb·n
e (s0)

(a)= Pb·n
e ≤ ε1, (A.18a)

sup
s0∈S0

1

b · n
I
(

M; Zn−1
m ,Z2n−1

n+m , . . . ,Zb·n−1
(b−1)·n+m

∣
∣∣ S0 = s0

)

(b)= 1

b · n
I
(

M; Zn−1
m ,Z2n−1

n+m , . . . ,Zb·n−1
(b−1)·n+m

)

≤ ε2 − 2η

n
, (A.18b)

and

R1 ≥ Rs − ε3

2
, (A.18c)

where (a) and (b) follow since the n-MGMWTC is n-block
memoryless, hence, the channel outputs and the probability
of error are independent of the initial state, when the length
of the codeword is an integer multiple of n. Denote this
code by CMG

b·n , and recall that from the definition of the
n-MGMWTC, it follows that the decoders at the intended
receiver and at the eavesdropper use only the last n−m channel
outputs out of each block of n consecutive channel outputs of
the LGMWTC. Let Xb·n−1

MG denote the codeword of length b ·n
used for transmitting a message ζ ∈ M via the code CMG

b·n for
the n-MGMWTC.

Next, based on the code CMG
b·n , we construct a code for the

LGMWTC with codeword length l = b · n + a, where a can
be selected arbitrarily from a ∈ {m,m + 1, . . . , n + m − 1}.
We denote this code by CLG

l , and in the following we analyze
the performance of CLG

l . In the analysis we use Ȳ[i ] and
Z̄[i ] to denote the channel outputs of the LGMWTC at the
intended receiver and at the eavesdropper, respectively, when
the code CLG

l is employed. The encoder of the CLG
l code

encodes the message ζ ∈ M into the codeword Xl−1
LG by

7Note that if every non-negative Rs < lim sup
n→∞

Cn−MG
s

satisfies Rs ≤ Cs , then necessarily, lim sup
n→∞

Cn−MG
s ≤ Cs .

This follows since if lim sup
n→∞

Cn−MG
s > Cs then ∃R̃s , such that

Cs < R̃s < lim sup
n→∞

Cn−MG
s , i.e., R̃s does not satisfy out initial assumption.

setting Xa−1
LG = 0a·nt×1 and setting Xl−1

LG,a to be equal to
the codeword used for transmitting ζ using the CMG

b·n code,
i.e., Xl−1

LG,a = Xb·n−1
MG for the same message ζ . The decoder

of the CLG
l code discards the first a channel outputs of the

codeword, and then discards the first m channel outputs of each
block of n channel outputs. The remaining channel outputs,

namely ȲLG �
(

Ȳn+a−1
a+m , Ȳ2n+a−1

n+a+m , . . . , Ȳb·n+a−1
(b−1)·n+a+m

)
, are

then used for decoding the message using the decoder for the
CMG

b·n code.
Define

YMG �
(

Yn−1
m ,Y2n−1

n+m , . . . ,Yb·n−1
(b−1)·n+m

)
,

and

Wa �
(

Wn+a−1
a+m ,W2n+a−1

n+a+m , . . . ,Wb·n+a−1
(b−1)·n+a+m

)
.

It follows from the definition of the LGMWTC that ∃H̄ ∈
Rnr ·b·(n−m)×nt ·b·n such that ȲLG = H̄Xl−1

LG,a + Wa and also
YMG = H̄Xb·n−1

MG + W0. It now follows from the stationarity
of W[i ] and the relationship between CLG

l and CMG
b·n that

the decoder for the CLG
l code operates on channel outputs

which have the same statistical characterization as the chan-
nel outputs YMG , which result from transmitting codewords
using the CMG

b·n code. Hence, the probability of error for the
code CLG

l is identical to that for the code CMG
b·n . Similarly,

by defining Z̄LG �
(

Z̄n+a−1
a+m , Z̄2n+a−1

n+a+m , . . . , Z̄b·n+a−1
(b−1)·n+a+m

)
,

ZMG �
(

Zn−1
m ,Z2n−1

n+m , . . . ,Zb·n−1
(b−1)·n+m

)
and Ua �

(
Un+a−1

a+m ,U2n+a−1
n+a+m , . . . ,Ub·n+a−1

(b−1)·n+a+m

)
, it follows that ∃Ḡ ∈

Rne·b·(n−m)×nt ·b·n such that Z̄LG = ḠXl−1
LG,a + Ua and also

ZMG = ḠXb·n−1
MG + U0, which implies that Z̄LG and ZMG

both have the same statistical characterization. Consequently,

I (M; ZMG )
(a)= I

(
M,Xb·n−1

MG ; ZMG

)
− I

(
Xb·n−1

MG ; ZMG

∣
∣
∣ M

)

(b)= I
(

Xb·n−1
MG ; ZMG

)
− I

(
Xb·n−1

MG ; ZMG

∣∣
∣ M

)

(c)= I
(

Xl−1
LG,a; Z̄LG

)
− I

(
Xl−1

LG,a; Z̄LG

∣
∣∣ M

)

(d)= I
(
M; Z̄LG

)
, (A.19)

where (a) follows from the chain rule for mutual information
[52, Ch. 2.5]; (b) follows since M → Xb·n−1

MG → ZMG

form a Markov chain; (c) follows from the combination of
the following three properties: (1) the stationarity of U[i ];
(2) the definition of the encoder of the CLG

l code; (3) the fact
that the channel matrix Ḡ is identical for both the LGMWTC
and the n-MGMWTC, which imply that the joint distribution
of

(
Xb·n−1

MG ,ZMG

)
is identical to the joint distribution of

(
Xl−1

LG,a, Z̄LG

)
, and also implies that the joint distribution of

(
Xb·n−1

MG ,ZMG

)
given M is identical to the joint distribu-

tion of
(

Xl−1
LG,a, Z̄LG

)
given M; and (d) follows from the
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construction of the CLG
l code, which sets Xa−1

LG to be the
all zero vector, and by applying the reverse of the transition
from (a) to (b).

Next, let Z̄l−1 denote the entire set of l vector channel
outputs obtained when transmitting using the code CLG

l . When
this transmission is applied, the information leakage rate for
the LGMWTC satisfies

sup
s0∈S0

1

l
I
(

M; Z̄l−1
∣
∣
∣ S0 = s0

)

= sup
s0∈S0

1

b · n + a
I
(

M; Z̄b·n+a−1
∣
∣
∣ S0 = s0

)

(a)= sup
s0∈S0

1

b · n + a

(
I
(

M; Z̄
a−1

∣∣
∣ S0 = s0

)

+ I
(

M; Z̄b·n+a−1
a

∣
∣
∣ Z̄

a−1
,S0 = s0

))

(b)= sup
s0∈S0

1

b · n + a
I
(

M; Z̄b·n+a−1
a

∣∣
∣ Z̄

a−1
,S0 = s0

)

(c)= sup
s0∈S0

1

b · n + a
I
(

M; Z̄b·n+a−1
a

∣
∣
∣Ua−1,S0 = s0

)

(d)= 1

b · n + a
I
(

M; Z̄b·n+a−1
a

∣
∣
∣Ua−1

a−m

)
, (A.20)

where (a) follows from the chain rule for mutual information
[52, Ch. 2.5]; (b) follows since when using the code CLG

l , the
first a channel outputs depend only on the initial state and
the noise, hence, M and Z̄a−1 are mutually independent; (c)
follows since Xa−1

LG is all zeros, thus ∃Ǧ ∈ Rne ·a×nt ·m such that
Z̄a−1 = ǦX−1−m +Ua−1; (d) follows since the finite memory of
the channel implies that Z̄b·n+a−1

a is independent of the initial
state and of Ua−m−1, regardless of the code. This can be shown

by noting that we can define a matrix ˇ̌G ∈ Rne·b·n×nt (b·n+m)

such that Z̄b·n+a−1
a = ˇ̌GXb·n+a−1

LG,a−m + Ub·n+a−1
a , and noting that

XLG[i ] is independent of both Ua−m−1 and S0 for all a ≤ i ≤
b·n+a−1, and that, due to the finite memory of the noise, then
for all i ≥ a ≥ m U[i ] is independent of both S0 as well as
Ua−m−1. Next, we note that 1

b·n I
(

M; Z̄
b·n+a−1
a

∣
∣
∣Ua−1

a−m

)
can

be upper bounded as stated in (A.21) as shown at the top of
next page, where (a) follows from the chain rule for mutual
information [52, Ch. 2.5]; (b) follows from the data-processing
inequality [52, Ch. 2.8]; (c) follows from Lemma A.1, and
from the finite memory of the channel which implies that
for i ≥ a + m Z̄[i ] is independent of Ua−1

a−m; (d) follows
from (A.19); (e) follows from (A.18b). Plugging (A.21) into
(A.20) yields

sup
s0∈S0

1

l
I
(

M; Z̄l−1
∣
∣
∣ S0 = s0

)
≤ b · n

b · n + a

(
ε2 − η

n

)
≤ ε2.

The code rate for CLG
l is obtained from

RLG = R1 · b · n

b · n + a
(a)≥

(
Rs − ε3

2

) b · n

b · n + a
,

where (a) follows from (A.18c). Thus, for sufficiently large b,
namely, b > 2a(Rs−ε3)

n·ε3
, it follows that RLG ≥ Rs − ε3.

It therefore follows that for all sufficiently large b and

a ∈ {m,m + 1, . . . , n + m − 1}, there exists a code for
the LGMWTC with blocklength l = b · n + a which
satisfies (4a)-(4c). Consequently, for any secrecy rate Rs ≤
lim sup

n→∞
Cn−MG

s , ∃l0 ∈ N large enough such that reliable secure

communications is achievable for the LGMWTC at any rate
arbitrarily close to Rs , for all blocklengths larger than l0. Thus,
Rs ≤ Cs , from which it follows that lim sup

n→∞
Cn−MG

s ≤ Cs .

Comment A.2: Note that without an eavesdropper,
the n-MGMWTC becomes an instance to the n-block
memoryless Gaussian multiterminal channel (n-MGMC),
defined in [33, Appendix A], and the LGMWTC becomes
an instance to the linear Gaussian multiterminal
channel (LGMC), defined in [33, Appendix A].
In [33, Lemma 2] it is shown that the capacity of the
n-MGMC is not greater than the capacity of the LGMC for
all n > 2m. However, when the eavesdropper is present, the
secrecy capacity of the n-MGMWTC can be shown to be
upper-bounded by that of the LGMWTC only for n → ∞, as
the information leakage due to the first m channel outputs
of each n-block received at the eavesdropper, which are not
accounted for in the leakage model of the n-MGMWTC, is
negligible only for asymptotic blocklengths with n → ∞.

Proposition A.2: The secrecy capacity of the LGMWTC
defined in (2) subject to the power constraint in (3) satisfies

Cs = lim
n→∞ Cn−MG

s ,

where Cn−MG
s is the secrecy capacity of the n-MGMWTC,

which is stated in (A.1), and the limit exists.
Proof: By combining the above lemmas it follows that

lim sup
n→∞

Cn−MG
s

(a)≤ Cs

(b)≤ inf
s0∈S0

(
lim inf
n→∞ Cn (s0)

)

(c)≤ lim inf
n→∞ Cn−MG

s ,

where (a) follows from Lemma A.5, (b) follows from
Lemma A.3, and (c) follows from Lemma A.4. Since
lim inf
n→∞ Cn−MG

s ≤ lim sup
n→∞

Cn−MG
s , it follows from [43,

Sec. 3.18] that

Cs = lim
n→∞ Cn−MG

s ,

and the limit exists. This proves the proposition.

C. Proving That lim
n→∞ Cn−MG

s is Equal to lim
n→∞ Cn−CG

s

We next prove that in the limit of n → ∞, the n-CGMWTC
and the n-MGMWTC have the same secrecy capacity. This is
done in the following steps:

• First, we obtain in Lemma A.6 an expression for the
secrecy capacity of the n-CGMWTC, Cn−CG

s , by proving
that it can be transformed into an equivalent memoryless
MIMO WTC.

• Next, in Lemma A.7 we prove that for a single n-block,
the mutual information between the channel input and
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1

b · n
I
(

M; Z̄
b·n+a−1
a

∣
∣
∣Ua−1

a−m

)

(a)= 1

b · n
I
(

M; Z̄n+a−1
a+m , Z̄2n+a−1

n+a+m , . . . , Z̄b·n+a−1
(b−1)·n+a+m

∣∣
∣Ua−1

a−m

)

+ 1

b · n

(
I
(

M; Z̄a+m−1
a

∣
∣
∣ Z̄n+a−1

a+m , Z̄2n+a−1
n+a+m , . . . , Z̄b·n+a−1

(b−1)·n+a+m ,Ua−1
a−m

)

+
b−1∑

k=1

I
(

M; Z̄k·n+a+m−1
k·n+a

∣
∣
∣ Z̄n+a−1

a+m , Z̄2n+a−1
n+a+m , . . . , Z̄b·n+a−1

(b−1)·n+a+m ,

Z̄a+m−1
a , Z̄n+a+m−1

n+a , . . . , Z̄(k−1)·n+a+m−1
(k−1)·n+a ,Ua−1

a−m

))

(b)≤ 1

b · n
I
(

M; Z̄n+a−1
a+m , Z̄2n+a−1

n+a+m , . . . , Z̄b·n+a−1
(b−1)·n+a+m

∣
∣
∣Ua−1

a−m

)

+ 1

b · n

(
I
(

Xb·n+a−1
LG ; Z̄a+m−1

a

∣∣
∣ Z̄n+a−1

a+m , Z̄2n+a−1
n+a+m , . . . , Z̄b·n+a−1

(b−1)·n+a+m ,Ua−1
a−m

)

+
b−1∑

k=1

I
(

Xb·n+a−1
LG ; Z̄k·n+a+m−1

k·n+a

∣∣
∣ Z̄n+a−1

a+m , Z̄2n+a−1
n+a+m , . . . , Z̄b·n+a−1

(b−1)·n+a+m ,

Z̄a+m−1
a , Z̄n+a+m−1

n+a , . . . , Z̄(k−1)·n+a+m−1
(k−1)·n+a ,Ua−1

a−m

))

(c)≤ 1

b · n
I
(

M; Z̄n+a−1
a+m , Z̄2n+a−1

n+a+m , . . . , Z̄b·n+a−1
(b−1)·n+a+m

)
+ η

n
(d)= 1

b · n
I
(

M; Zn−1
m ,Z2n−1

n+m , . . . ,Zb·n−1
(b−1)·n+m

)
+ η

n
(e)≤ ε2 − η

n
, (A.21)

the last n − m channel outputs is the same for both the
n-CGMWTC and the n-MGMWTC.

• Then, we show in Lemma A.8 that the mutual information
between the channel inputs and any m channel outputs of
the n-CGMWTC can be upper bounded by a fixed and
finite number.

• Lastly, in Proposition A.3 we use Lemma A.6,
Lemma A.7, and Lemma A.8 to prove that there exists
a finite

˜
η, such that ∀n > 2m, Cn−MG

s − ˜
η

n ≤ Cn−CG
s ≤

Cn−MG
s + ˜

η

n , thus in the limit of n → ∞, Cn−MG
s is

equal to Cn−CG
s .

Lemma A.6: The secrecy capacity of the n-CGMWTC sub-
ject to the power constraint in (3) is given by

Cn−CG
s = 1

n
sup

p
(
Vn−1,Xn−1

):
E
{‖X[i]‖2}≤P, ∀0≤i<n

{
I
(

Vn−1; ˜Y
n−1

)

−I
(

Vn−1; ˜Z
n−1

)}
. (A.22)

Proof: The proof of this lemma follows the same outline
as in the proof of Proposition A.1. We first show that (A.22)
characterizes the maximum achievable secrecy rate when con-
sidering only codes whose blocklength is an integer multiple
of n, i.e, [R, b · n] codes where b is a positive integer. This
is proved by transforming the n-CGMWTC into an equivalent
memoryless MIMO WTC using a bijective transformation, and
then characterizing the capacity of the transformed channel.
Then, we show that every secrecy rate achievable for the

n-CGMWTC can be achieved by considering only codes
whose blocklength is an integer multiple of n.

Let us consider the n-CGMWTC subject to the constraint
that only codes with blocklengths that are integer multiples
of n are allowed. In this case we can transform the channel
into an equivalent n · nt × n · nr × n · ne memoryless MIMO
wiretap channel without loss of information, via the following
assignment: Define the input of the transformed channel by

the n · nt × 1 vector Xeq

[
ĩ
]

� X

(
ĩ+1

)
·n−1

ĩ ·n , ĩ ≥ 0, the
output at the intended receiver by the n · nr × 1 vector

˜Yeq

[
ĩ
]

� ˜Y
(

ĩ+1
)
·n−1

ĩ ·n , and the output at the eavesdrop-

per by the n · ne × 1 vector ˜Zeq

[
ĩ
]

� ˜Z
(

ĩ+1
)
·n−1

ĩ ·n . The
transformation is clearly bijective thus, the secrecy capacity
of the transformed channel is equal to the secrecy capacity
of the original channel. Since the n-CGMWTC is n-block
memoryless, it follows from Def. 6 and Def. 7 that the
transformed MIMO channel is memoryless. The outputs at the
intended receiver and at the eavesdropper are corrupted by the

additive noise vectors ˜Weq

[
ĩ
]

� ˜W
(

ĩ+1
)
·n−1

ĩ ·n and ˜Ueq

[
ĩ
]

�

˜U
(

ĩ+1
)
·n−1

ĩ ·n , respectively. From the definition of ˜W[i ] and ˜U[i ]
in Section III it follows that both ˜Weq

[
ĩ
]

and ˜Ueq

[
ĩ
]

are zero-mean real Gaussian vectors with positive-definite
covariance matrices (this follows since the elements of the
random vectors are not linearly dependent, see [57, Ch. 8.1]).
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From the construction of the transformed equivalent channel,
the definition of the noises for the n-CGMWTC in the proof
outline of Thm. 1, and of block-memorylessness in Def. 7, it
follows that both ˜Weq

[
ĩ
]

and ˜Ueq

[
ĩ
]

are i.i.d. and mutually

independent. The secrecy capacity of the transformed channel,
denoted Ceq

n , can be written in the form of the result of
Csiszár and Körner [2, Eq. (11)]:

Ceq
n = sup

p
(
Vn−1,Xn−1

):
E
{‖X[i]‖2}≤P, ∀0≤i<n

{
I
(

Vn−1; ˜Y
n−1

)

− I
(

Vn−1; ˜Z
n−1

) }
,

where the constraint E
{‖X[i ]‖2} ≤ P, ∀0 ≤ i < n follows

from the per-symbol power constraint of the n-CGMWTC.
As each MIMO channel use corresponds to n channel uses in
the original channel, it follows that the achievable secrecy rate
of the n-CGMWTC, subject to the constraint that only codes
with blocklengths that are integer multiples of n are allowed,
in bits per channel use, is 1

n Ceq
n , which coincides with (A.22).

Next, we show that any secrecy rate achievable for the
n-CGMWTC can be achieved by considering only codes with
blocklengths that are integer multiples of n: Consider a secrecy
rate Rs achievable for the n-CGMWTC and fix ε1, ε2, and ε3
to arbitrary positive real numbers. From Def. 4 it follows that
∃n0 > 0 such that ∀l > n0 there exists an [R, l] code which
satisfies (4a)-(4c). Thus, by setting b0 as the smallest integer
such that b0 ·n ≥ n0 it follows that for all integer b > b0 there
exists a [R, b · n] code which satisfies (4a)-(4c). Therefore, the
secrecy rate Rs is also achievable when considering only codes
whose blocklength is an integer multiple of n. We therefore
conclude that (A.22) denotes the maximum achievable secrecy
rate for the n-CGMWTC, which completes the proof of the
lemma.

Lemma A.7: For any joint distribution p
(
Vn−1,Xn−1

)

such that Vn−1 → Xn−1 → Yn−1
m ,Zn−1

m and Vn−1 →
Xn−1 → ˜Y

n−1
m , ˜Z

n−1
m form a Markov chain, the channel

outputs of the n-MGMWTC and of the n-CGMWTC satisfy

I
(

Vn−1; Yn−1
m

)
= I

(
Vn−1; ˜Y

n−1
m

)
, (A.23a)

and

I
(

Vn−1; Zn−1
m

)
= I

(
Vn−1; ˜Z

n−1
m

)
. (A.23b)

Proof: It follows from (2) and (8) that ∃ ˜H ∈
R(nr ·(n−m))×(nt ·n) such that Yn−1

m = ˜HXn−1 + Wn−1
m and

˜Y
n−1
m = ˜HXn−1 + ˜W

n−1
m . Hence, as the channel input Xn−1 is

independent of the noise in both channels it follows that

p
Yn−1

m

∣
∣
∣Xn−1

(
yn−1

m

∣
∣
∣ xn−1

)

= pWn−1
m

(
yn−1

m − ˜Hxn−1
)

(a)= p
˜W

n−1
m

(
yn−1

m − ˜Hxn−1
)

= p
˜Y

n−1
m

∣
∣
∣Xn−1

(
yn−1

m

∣
∣
∣ xn−1

)
, (A.24)

where (a) follows as, by definition, the random vectors
Wn−1

m and ˜W
n−1
m are identically distributed, as both are zero-

mean real Gaussian random vectors with the same correlation
matrix: To see this, the ∀i1, i2 ∈ {m,m + 1, . . . , n − 1} we
write

E
{

˜W[i1] ˜W
H [i2]

}
= C

˜W
[i1 − i2]

= CW [i1 − i2] + CW [i1 − i2 + n] + CW [i1 − i2 − n]
(b)= CW [i1 − i2]

= E
{

W[i1]WH [i2]
}
,

where (b) follows from (7a) as |i1 − i2| < n − m. It therefore
follows that

pVn−1,Yn−1
m

(
vn−1, yn−1

m

)

=
∫

xn−1∈Rnt ·n

pVn−1,Xn−1,Yn−1
m

(
vn−1, xn−1, yn−1

m

)
dxn−1

(a)=
∫

xn−1∈Rnt ·n

p
Yn−1

m

∣
∣
∣Xn−1

(
yn−1

m

∣∣
∣ xn−1

)

× pVn−1,Xn−1

(
vn−1, xn−1

)
dxn−1

(b)=
∫

xn−1∈Rnt ·n

p
˜Y

n−1
m

∣
∣∣Xn−1

(
yn−1

m

∣
∣∣ xn−1

)

× pVn−1,Xn−1

(
vn−1, xn−1

)
dxn−1

(c)=
∫

xn−1∈Rnt ·n

pVn−1,Xn−1, ˜Y
n−1
m

(
vn−1, xn−1, yn−1

m

)
dxn−1

= pVn−1, ˜Y
n−1
m

(
vn−1, yn−1

m

)
, (A.25)

where (a) follows since Vn−1 → Xn−1 → Yn−1
m form a

Markov chain; (b) follows from (A.24); and (c) follows since
Vn−1 → Xn−1 → ˜Y

n−1
m form a Markov chain. Equality (A.25)

directly leads to (A.23a). The proof of (A.23b) is obtained
using similar steps with the letters Y and W in the derivations
of (A.24) and (A.25) replaced by Z and U , respectively. This
completes the proof of the lemma.

Lemma A.8: There exists a finite and fixed
˜
η > 0, such that

the channel outputs of the n-CGMWTC satisfy

I
(

Xn−1; ˜Y
m−1

∣
∣
∣ ˜Y

n−1
m

)
≤

˜
η, (A.26a)

and

I
(

Xn−1; ˜Z
m−1

∣
∣
∣ ˜Z

n−1
m

)
≤

˜
η. (A.26b)

Proof: The proof follows similar steps as the proof of
Lemma A.2 and will not be repeated here.

Proposition A.3: The secrecy capacity of the n-MGMWTC
and the secrecy capacity of the n-CGMWTC satisfy

lim
n→∞ Cn−MG

s = lim
n→∞ Cn−CG

s , (A.27)

and the limits exist.
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Proof: It follows from the mutual information chain rule
[52, Sec. 2.5] that

I
(

Vn−1; ˜Y
n−1

)

= I
(

Vn−1; ˜Y
n−1
m

)
+ I

(
Vn−1; ˜Y

m−1
∣
∣
∣ ˜Y

n−1
m

)

(a)≤ I
(

Vn−1; ˜Y
n−1
m

)
+ I

(
Xn−1; ˜Y

m−1
∣∣
∣ ˜Y

n−1
m

)

(b)≤ I
(

Vn−1; ˜Y
n−1
m

)
+

˜
η, (A.28a)

where (a) follows from the data processing inequality
[52, Thm. 2.8.1] and the Markov chain Vn−1 → Xn−1 →
˜Y

n−1, ˜Z
n−1, and (b) follows from Lemma A.8. Similarly,

I
(

Vn−1; ˜Z
n−1

)
≤ I

(
Vn−1; ˜Z

n−1
m

)
+

˜
η. (A.28b)

Now, for any given joint distribution p
(
Vn−1,Xn−1

)
, it fol-

lows from (A.28a) that

I
(

Vn−1; ˜Y
n−1

)
− I

(
Vn−1; ˜Z

n−1
)

≤ I
(

Vn−1; ˜Y
n−1
m

)
+

˜
η − I

(
Vn−1; ˜Z

n−1
)

(a)≤ I
(

Vn−1; ˜Y
n−1
m

)
− I

(
Vn−1; ˜Z

n−1
m

)
+

˜
η

(b)= I
(

Vn−1; Yn−1
m

)
− I

(
Vn−1; Zn−1

m

)
+

˜
η, (A.29)

where (a) follows from the chain rule for mutual information
[52, Sec. 2.5] and the fact that mutual information is non-
negative; (b) follows from Lemma A.7. From Lemma A.6 it
follows that

Cn−CG
s = 1

n
sup

p
(
Vn−1,Xn−1):

E
{‖X[i]‖2}≤P, ∀0≤i<n

{
I
(

Vn−1; ˜Y
n−1

)

−I
(

Vn−1; ˜Z
n−1

)}

(a)≤ 1

n
sup

p
(
Vn−1,Xn−1):

E
{‖X[i]‖2}≤P, ∀0≤i<n

{
I
(

Vn−1; Yn−1
m

)

−I
(

Vn−1; Zn−1
m

)}
+ ˜
η

n

= Cn−MG
s + ˜

η

n
, (A.30)

where (a) follows from (A.29).
Next, for any given p

(
Vn−1,Xn−1

)
, we also have the

following relationship

I
(

Vn−1; Yn−1
m

)
− I

(
Vn−1; Zn−1

m

)

(a)= I
(

Vn−1; ˜Y
n−1
m

)
− I

(
Vn−1; ˜Z

n−1
m

)

(b)≤ I
(

Vn−1; ˜Y
n−1
m

)
− I

(
Vn−1; ˜Z

n−1
)

+
˜
η

(c)≤ I
(

Vn−1; ˜Y
n−1

)
− I

(
Vn−1; ˜Z

n−1
)

+
˜
η, (A.31)

where (a) follows from Lemma A.7; (b) follows from (A.28b);
(c) follows from the chain rule for mutual information
[52, Sec. 2.5] and as mutual information is non-negative which

implies that I
(
Vn−1; ˜Y

n−1
) ≥ I

(
Vn−1; ˜Y

n−1
m

)
. From the

definition of Cn−MG
s in (A.1) it follows that

Cn−MG
s = 1

n
sup

p
(
Vn−1,Xn−1

):
E
{‖X[i]‖2

}≤P, ∀0≤i<n

{
I
(

Vn−1; Yn−1
m

)

−I
(

Vn−1; Zn−1
m

)}

(a)≤ 1

n
sup

p
(
Vn−1,Xn−1

):
E
{‖X[i]‖2}≤P, ∀0≤i<n

{
I
(

Vn−1; ˜Y
n−1

)

−I
(

Vn−1; ˜Z
n−1

)}
+ ˜
η

n

= Cn−CG
s + ˜

η

n
, (A.32)

where (a) follows from (A.31). Combining (A.30) and (A.32)
yields

Cn−MG
s − ˜

η

n
≤ Cn−CG

s ≤ Cn−MG
s + ˜

η

n
. (A.33)

Since lim
n→∞ ˜

η

n = 0, and since lim
n→∞ Cn−MG

s = Cs exists, letting
n → ∞ in (A.33) proves the proposition.

Combining Propositions A.2 and A.3 proves Proposition 1.

APPENDIX B
PROOF OF PROPOSITION 2

Recall that the secrecy capacity of the n-CGMWTC subject
to the per-symbol power constraint (3), is denoted by Cn−CG

s .
In order to derive the expression in (10) for Cn−CG

s , we first
derive the secrecy capacity of the n-CGMWTC subject to the
time-averaged power constraint [6, Sec. II], [31, Eq. (7)], [33,
Eq. (7)]:

E

{
1

l

l−1∑

i=0

‖X [i ]‖2

}

≤ P, (B.1a)

for all blocklengths l, and specifically, for each n-block of the
n-CGMWTC we require,

E

{
1

n

n−1∑

i=0

‖X [i ]‖2

}

≤ P. (B.1b)

We denote the secrecy capacity of the n-CGMWTC subject
to (B.1) with Cn−CG

s,T A . The derivation consists of the following
steps:

• First, in Lemma B.1 we show that applying the DFT
transforms the n-CGMWTC into a set of independent par-
allel MIMO WTCs. We then explain that any achievable
rate for the n-CGMWTC can be obtained by considering
only codewords whose length is an integer multiple of n.

• Next, in Lemma B.2 we derive the maximal achievable
secrecy rate given a fixed power allocation, when the
blocklength is an integer multiple of n, by a simple
extension of the results of [19, Thm. 1]. We conclude
that Cn−CG

s,T A can be written as a maximization of the sum
of the per-subchannel secrecy capacities over all power
allocations satisfying a specified sum-power constraint.
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• Then, in Lemma B.3 we characterize symmetry condi-
tions on the maximal achievable secrecy rate expres-
sion and on the optimal input distribution for the n-
CGMWTC, subject to (B.1). This results in an explicit
expression for Cn−CG

s,T A stated in (B.14).
• Lastly, in Corollary B.1 we prove that Cn−CG

s = Cn−CG
s,T A .

The approach of characterizing the capacity of a channel
subject to a per-symbol power constraint by considering a
time-averaged power constraint was also used in [31] for the
point-to-point LTI channel (without an eavesdropper).

We begin with some preliminary properties of the mul-
tivariate DFT defined in (1). Recall that in (1), each entry
l ∈ {0, 1, . . . , nq − 1} of the multivariate DFT

{
q̂[k]}n−1

k=0 is
obtained as the scalar DFT of the l-th entries of the sequence
of vectors {q[i ]}n−1

i=0 . Consequently, the following properties of
the multivariate DFT of real-valued multivariate sequences can
be obtained as straightforward extensions of the corresponding
properties of scalar DFTs, see, e.g., [56, Ch. 8.5-8.6]:

P1 The multivariate DFT defined in (1) is invertible, and the
l-th entry of the inverse DFT is obtained as the scalar
inverse DFT of the set of the l-th entries of the sequence
of vectors

{
q̂[k]}n−1

k=0. Hence, we can write

q[i ] = 1

n

n−1∑

k=0

q̂[k]e j2π ik
n . (B.2)

P2 Since q[i ] is real, then q̂[k] = (
q̂[n − k])∗ for all 1 ≤

k ≤ n − 1. Consequently,
{
q̂[k]}n−1

k=0 can be obtained

from
{
q̂[k]}�

n
2 �

k=0 . Note that q̂[0] is real for any n and

that q̂
[⌊ n

2

⌋]
is real for even n.

P3 Parseval’s relationship for the multivariate DFT is given

by
n−1∑

i=0
‖q[i ]‖2 = 1

n

n−1∑

k=0

∥
∥q̂[k]∥∥2.

P4 The DFT of a multivariate circular convolution is
the product of the corresponding DFT sequences: Let
nq1, nq2 ∈ N, and consider the pair of sequences of
length n, p[i ] ∈ Rnq1 and R[i ] ∈ Rnq2×nq1 , i ∈ N . Let{
p̂[k]}n−1

k=0 be the n-point DFT of {p[i ]}n−1
i=0 , and define

R̂[k] �
n−1∑

i=0
R[i ]e− j2π ik

n , k ∈ N . Consider the sequence

{q[i ]}n−1
i=0 given by q[i ] =

n−1∑

τ=0
R[τ ]p [((i − τ ))n

]
. The

n-point DFT of {q[i ]}n−1
i=0 is given by q̂[k] = R̂[k]p̂[k],

k ∈ N .

A. Step 1: Transforming the n-CGMWTC Into a Set of
Independent Parallel MIMO WTCs

Focusing on the n-CGMWTC, consider the input sequence
transmitted during one n-block, Xn−1, and the corresponding
channel outputs observed at the intended receiver and at the
eavesdropper, denoted ˜Y

n−1 and ˜Z
n−1, respectively. Recall

that by definition of the n-CGMWTC, the outputs are inde-
pendent of the initial channel state S0. For τ ∈ N define
the zero-padded extensions of the Tx–Rx and of the Tx–Ev
channel impulse responses by ˜H[τ ] and ˜G[τ ], respectively,
where ˜H[τ ] = H[τ ] and ˜G[τ ] = G[τ ] for 0 ≤ τ ≤ m, while

˜H[τ ] = 0nr ×nt and ˜G[τ ] = 0ne×nt for m < τ < n. Using
these definitions, Eqn. (8) can be written as

˜Y[i ] =
n−1∑

τ=0 ˜H[τ ]X [
((i − τ ))n

]+ ˜W[i ] (B.3a)

˜Z[i ] =
n−1∑

τ=0 ˜G[τ ]X [
((i − τ ))n

]+ ˜U[i ], (B.3b)

i ∈ N . Let
{

X̂[k]
}n−1

k=0
,
{

˜Ŷ[k]
}n−1

k=0
, and

{

˜Ẑ[k]}n−1
k=0 be the n-

point DFTs of
{
X[i ]}n−1

i=0 ,
{

˜Y[i ]}n−1
i=0 , and

{

˜Z[i ]}n−1
i=0 , respec-

tively. Note that Ĥ[k] and Ĝ[k], defined in Section III-B
in terms of {H[τ ]}m

τ=0 and {G[τ ]}m
τ=0, can be equivalently

stated in terms of
{

˜H[τ ]}n−1
τ=0 and

{

˜G[τ ]}n−1
τ=0 via Ĥ[k] =

n−1∑

τ=0 ˜H[τ ]e− j2π τk
n and Ĝ[k] =

n−1∑

τ=0 ˜G[τ ]e− j2π τk
n . Using the

sequences
{

˜Ŵ[k]
}n−1

k=0
and

{

˜Û[k]
}n−1

k=0
, which correspond to

the DFTs of { ˜W[i ]}n−1
i=0 and { ˜U[i ]}n−1

i=0 , respectively (see Sub-
section III-B) and property P4 for the DFT of a multivariate
circular convolution, we obtain the following relationships:

ˆ
˜Y[k] = Ĥ[k]X̂[k] + ˆ

˜W[k] (B.4a)
ˆ
˜Z[k] = Ĝ[k]X̂[k] + ˆ

˜U[k], (B.4b)

k ∈ N . Since the DFT is an invertible transformation and
the channel outputs are real, it follows that the channel
outputs { ˜Y[i ]}i∈N and { ˜Z[i ]}i∈N can be obtained from (B.4)
for k ∈ {0, 1, . . . ,

⌊ n
2

⌋} � LCG . Therefore, it is sufficient

to consider
{ ˆ

˜Y[k]
}

k∈LCG
and

{ ˆ
˜Z[k]

}

k∈LCG
for deriving the

secrecy capacity of the n-CGMWTC. Define next

Pk � E

{∥
∥
∥X̂[k]

∥
∥
∥

2
}
. (B.5)

The average power constraint (B.1) yields a per n-block power
constraint

n2 P ≥ nE

{
n−1∑

i=0

‖X [i ]‖2

}

(a)= E

{
n−1∑

k=0

∥∥
∥X̂[k]

∥∥
∥

2
}

=
n−1∑

k=0

Pk, (B.6)

where (a) follows from Parseval’s relationship (property P3).

As X̂[k] =
(

X̂[n − k]
)∗

, it follows that Pn−k = Pk must
hold. In conclusion, when the codeword length is an integer
multiple of n, then the secrecy capacity of the n-CGMWTC
(8) subject to the time-averaged power constraint (B.1) is equal
to the secrecy capacity of the memoryless WTC (B.4) subject
to the power constraint (B.6).

Finally, as explained in the last paragraph in the proof of
Lemma A.6, the capacity of the n-CGMWTC can be com-
pletely characterized by considering only codewords whose
length is an integer multiple of n.
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Lemma B.1: For k ∈ LCG, ˆ
˜W[k] and ˆ

˜U[k] are zero mean
Gaussian random vectors statistically independent over k, i.e.,
for all k1 	= k2, ˆ

˜W [k1] and ˆ
˜W [k2] are independent, and ˆ

˜U [k1]
and ˆ

˜U [k2] are independent. For 1 ≤ k < n
2 , ˆ

˜W[k] and ˆ
˜U[k] are

circularly symmetric complex random vectors, and for k = 0,
and also for k = n

2 when n is even, ˆ
˜W[k] and ˆ

˜U[k] are zero-
mean real Gaussian random vectors. The covariance matrices
are given by

C
˜Ŵ

[k] � E

{
ˆ
˜W[k]

( ˆ
˜W[k]

)H
}

= n
m∑

τ=−m

CW [τ ] e− j2π kτ
n

(B.7a)

and

C
˜Û

[k] � E

{
ˆ
˜U[k]

( ˆ
˜U[k]

)H
}

= n
m∑

τ=−m

CU [τ ] e− j2π kτ
n .

(B.7b)

Furthermore, for each fixed k1, ˆ
˜W[k1] obtained from different

n-blocks are i.i.d., and also ˆ
˜U[k1] obtained from different

n-blocks are i.i.d. Finally, ˆ
˜W[k1] and ˆ

˜U[k2] are mutually
independent for any (k1, k2) ∈ LCG × LCG

Proof: The proof follows similar arguments to those used
in the proof in [33, Appendix B] for scalar noises and is thus
omitted here. Please refer to [64] for the detailed proof.

Since the noises
{ ˆ

˜W [k]
}

k∈LCG
,
{ ˆ

˜U [k]
}

k∈LCG
are mutually

independent it follows that the channels (B.4) are parallel
Gaussian channels.

B. Step 2: The Maximal Achievable Secrecy Rate Cn−CG
s,T A

Define for k ∈ LCG

Rk
n (Pk) � sup

p
(

V[k],X̂[k]
)
,

E

{∥
∥
∥X̂[k]

∥
∥
∥

2
}
≤Pk

{
I
(

V[k]; ˆ
˜Y[k]

)
− I

(
V[k]; ˆ

˜Z[k]
)}
.

(B.8)

Note that Rk
n (Pk) represents the secrecy capacity of an nt ×

nr ×ne memoryless MIMO WTC with additive Gaussian noise
i.i.d. in time, subject to input power constraint Pk [6, Corollary

1]. Let R′
n

(
{Pk}�

n
2 �

k=0

)
denote the maximal achievable secrecy

rate for the WTC (B.4) subject to a given a set of per-channel

power constraints

{
E

{∥
∥
∥X̂[k]

∥
∥
∥

2
}

≤ Pk

}� n
2 �

k=0
.

Lemma B.2: When the codeword length is restricted to be

an integer multiple of n, R′
n

(
{Pk}�

n
2 �

k=0

)
satisfies:

R′
n

(
{Pk}�

n
2 �

k=0

)
=

� n
2 �∑

k=0

Rk
n (Pk) . (B.9)

Proof: From Lemma B.1 we have that the noises at
each subchannel k are each i.i.d. over different n-blocks, and
that the noises at subchannel k are independent of the noises
at all other subchannels. It thus follows that (B.4) can be
considered as

⌊ n
2

⌋ + 1 parallel memoryless MIMO WTCs
(e.g., by extending the definition in [19, Sec. 1.3] for scalar

channels to the MIMO case). In [19, Thm. 1] it was shown
that the secrecy capacity of independent memoryless parallel
scalar WTCs is given by the sum of the secrecy capacities
of each subchannel. Although differently from [19, Sec. 1.3],
which considered the secrecy capacity of parallel scalar WTCs,
in the current analysis we consider the maximization of the
achievable secrecy rate of parallel MIMO WTCs subject to a
fixed per-subchannel power allocation, the proof for our case
follows identical steps to the proof of [19, Thm. 1], and thus
it is not repeated here.

Note that (B.9) is the maximum achievable secrecy rate

for the WTC (B.4) for a given assignment of {Pk}�
n
2 �

k=0 when
the codeword length is an integer multiple of n; The secrecy
capacity of the n-CGMWTC subject to the power constraint
(B.1) is therefore obtained by finding the assignment of

{Pk}�
n
2 �

k=0 which maximizes (B.9) subject to (B.6) while the

set
{

Pk
}n−1

k=0 is constrained to satisfy Pn−k = Pk for every
1 ≤ k < n

2 . As each of the � n
2 � channel uses - one for each

subchannel in the set of
⌊ n

2

⌋
parallel subchannels, corresponds

to n channel uses of the n-CGMWTC, we can summarize the
above discussion in the following result

Cn−CG
s,T A = 1

n
max

{Pk}�
n
2 �

k=0 :
n−1∑

k=0
Pk≤n2 P, Pn−k=Pk>0

R′
n

(
{Pk}�

n
2 �

k=0

)

= max
{Pk}�

n
2 �

k=0 :
n−1∑

k=0
Pk≤n2 P, Pn−k=Pk>0

1

n

� n
2 �∑

k=0

Rk
n (Pk) . (B.10)

C. Step 3: Deriving an Explicit Expression for the
Maximization (B.10)

Define L̃n as L̃n = {0} for n odd and L̃n = {
0, n

2

}
for n

even. From Lemma B.1, it follows that for 1 ≤ k < n
2 , the

k-th subchannel is a complex memoryless MIMO WTC with
circularly symmetric complex normal additive white Gaussian
noise. For the remaining values of k, i.e., for k ∈ L̃n , it follows
from Lemma B.1 that the k-th subchannel is a real memoryless
Gaussian MIMO WTC. For a fixed ρ ≥ 0, let Qρ be the set
of nt × nt Hermitian positive semi-definite matrices Q such
that Tr (Q) ≤ ρ. We define8 for k ∈ N ,

R̃k
n (ρ) � max

Q∈Qρ

1

2
log

∣
∣
∣
∣Inr + Ĥ[k]Q

(
Ĥ[k]

)H (
C

˜Ŵ
[k]

)−1
∣
∣
∣
∣

∣
∣
∣
∣Ine + Ĝ[k]Q

(
Ĝ[k]

)H (
C

˜Û
[k]

)−1
∣
∣
∣
∣

.

(B.11)

Lemma B.3: For
⌊ n

2

⌋
< k < n, R̃k

n (ρ) = R̃n−k
n (ρ).

When R̃k
n (ρ) is obtained with Qopt , then R̃n−k

n (ρ) is obtained
with Q∗

opt .
Proof: Define

Fk
r (Q) � Inr +

(
C

˜Ŵ
[k]

)− 1
2

Ĥ[k]Q
(
Ĥ[k]

)H (
C

˜Ŵ
[k]

)− 1
2
,

8Following [6, (20)] and [7, Thm. 1], R̃k
n (ρ) can be written as a maximiza-

tion over Qρ , instead of a supremum.
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and

Fk
e (Q) � Ine +

(
C

˜Û
[k]

)− 1
2

Ĝ[k]Q
(
Ĝ[k]

)H (
C

˜Û
[k]

)− 1
2
.

Since C
˜Ŵ

[k] and C
˜Û

[k] are positive-definite Hermitian matri-

ces ∀k ∈ N , it follows from [62, Thm. 7.2.6] that
(
C

˜Ŵ
[k]

)− 1
2

and
(
C

˜Û
[k]

)− 1
2

are also positive-definite Hermitian matrices.

Thus, ∀Q ∈ Qρ , Fk
r (Q) and Fk

e (Q) are Hermitian matrices.
As H[τ ] and G[τ ] are real matrices, it follows that Ĥ[n −

k] =
(
Ĥ[k]

)∗
and Ĝ[n −k] =

(
Ĝ[k]

)∗
. Note that due to Her-

mitian and positive definiteness of the covariance matrices of

the noises we have that
(
C

˜Ŵ
[n − k]

)− 1
2 =

((
C

˜Ŵ
[k]

)− 1
2
)∗

and
(
C

˜Û
[n − k]

)− 1
2 =

((
C

˜Û
[k]

)− 1
2
)∗

. It therefore follows

that
(
Fk

r (Q)
)∗

=
(

Inr +
(
C

˜Ŵ
[k]

)− 1
2

Ĥ[k]Q
(
Ĥ[k]

)H (
C

˜Ŵ
[k]

)− 1
2
)∗

(a)= Inr +
(
C

˜Ŵ
[n − k]

)− 1
2

Ĥ[n − k]Q∗ (Ĥ[n − k]
)H

×
(
C

˜Ŵ
[n − k]

)− 1
2

= Fn−k
r

(
Q∗) , (B.12)

where (a) follows from [61, Ch. 3.6], and from plugging
(
C

˜Ŵ
[n − k]

)− 1
2 =

((
C

˜Ŵ
[k]

)− 1
2
)∗

and Ĥ[n − k] =
(
Ĥ[k]

)∗
. Similarly, Fk

e (Q) = (
Fn−k

e (Q∗)
)∗

. Therefore

R̃n−k
n (ρ)

(a)= max
Q∈Qρ

1

2
log

∣
∣Fn−k

r (Q)
∣
∣

∣∣
∣Fn−k

e (Q)
∣∣
∣

(b)= max
Q∈Qρ

1

2
log

∣
∣Fk

r (Q
∗)
∣
∣

∣
∣Fk

e (Q∗)
∣
∣

(c)= max
Q∈Qρ

1

2
log

∣∣Fk
r (Q)

∣∣
∣
∣Fk

e (Q)
∣
∣

= R̃k
n (ρ) ,

where (a) follows from applying Sylvester’s determinant theo-
rem [61, Ch. 6.2] to (B.11); (b) follows since the determinant
of a Hermitian matrix is the same as the determinant of its
conjugate [61, Ch. 7.5], thus

∣
∣Fn−k

r (Q)
∣
∣ =

∣
∣
∣
(
Fn−k

r (Q)
)∗∣∣
∣ =

∣
∣(Fk

r (Q
∗)
)∣∣ and

∣
∣Fn−k

e (Q)
∣
∣ =

∣∣
∣
(
Fn−k

e (Q)
)∗∣∣
∣ = ∣

∣(Fk
e (Q

∗)
)∣∣;

(c) follows since the definition of Qρ implies that if Q ∈
Qρ then also Q∗ ∈ Qρ . Let Qopt � arg max

Q∈Qρ

1
2 log

∣∣Fk
r (Q)

∣∣

|Fk
e(Q)| .

Since 1
2 log

∣
∣Fk

r (Qopt)
∣
∣

|Fk
e(Qopt)| = 1

2 log

∣
∣
∣Fn−k

r

(
Q∗

opt

)∣∣
∣

∣
∣
∣Fn−k

e
(
Q∗

opt
)∣∣
∣
, it follows that Q∗

opt

maximizes 1
2 log

∣
∣Fn−k

r (Q)
∣
∣

∣∣
∣Fn−k

e (Q)
∣∣
∣
. This proves the lemma.

It follows from [6, Thm. 1], [7, Thm. 1], and [8, Corollary 1]
that Rk

n (Pk) defined in (B.8) is given by

Rk
n (Pk) =

{
2R̃k

n (Pk) 1 ≤ k < n
2

R̃k
n (Pk) k ∈ L̃n , (B.13)

and that the maximizing channel input for the k-th subchannel,
X̂[k], is circularly symmetric complex normal for 1 ≤ k < n

2
and zero-mean normal for k ∈ L̃n , with the covariance matrix
of X̂[k], denoted CX̂ [k], satisfying Tr

(
CX̂ [k]

) ≤ Pk . Let Bn
P

be the set of containing all sets of non-negative scalars {Pk}n−1
k=0

such that
n−1∑

k=0
Pk ≤ n2 P and Pk = Pn−k . Plugging (B.13) into

(B.10) yields

Cn−CG
s,T A = max

{Pk}n−1
k=0∈Bn

P

1

n

⎛

⎜
⎜
⎝

� n
2 �∑

k=0

R̃k
n (Pk)+

⌊
n−1

2

⌋

∑

k=1

R̃k
n (Pk)

⎞

⎟
⎟
⎠

= max
{Pk}n−1

k=0∈Bn
P

1

n

⎛

⎝
� n

2 �∑

k=0

R̃k
n (Pk)+

n−1∑

k=� n
2 �+1

R̃k
n (Pk)

⎞

⎠

(a)= max
{Pk}n−1

k=0∈Bn
P

1

n

n−1∑

k=0

R̃k
n (Pk)

(b)= max{
CX̂[k]

}n−1
k=0∈Ĉn

P

1

2n

n−1∑

k=0

log ψ̂[k], (B.14)

where (a) follows since for
⌊ n

2

⌋
< k < n we conclude

from Lemma B.3 that R̃k
n (Pk) = R̃k

n (Pn−k) = R̃n−k
n (Pn−k);

and (b) follows from plugging the definition of R̃k
n (Pk) from

(B.11), from Lemma B.3 which restrict the sets of matrices to
Ĉn

P , and from the definition of ψ̂[k] in (10b). Note that (B.14)
coincides with (10).

D. Step 4: Proving That Cn−CG
s = Cn−CG

s,T A

So far we have derived Cn−CG
s,T A , the secrecy capacity

of the n-CGMWTC subject to the time-averaged power
constraint (B.1) when the blocklength is an integer multiple
of n. However, we are interested in Cn−CG

s , the secrecy
capacity of the n-CGMWTC subject to the per-symbol power
constraint (3). As the per-symbol constraint (3) is more
restrictive than the time-averaged constraint (B.1), it fol-
lows that Cn−CG

s ≤ Cn−CG
s,T A . In this subsection we prove

that the secrecy capacities are equal. Let
{
CX̂,opt [k]

}n−1

k=0
be the set of n matrices which maximize (B.14). From
the derivation of the secrecy capacity of the n-CGMWTC
subject to a time-averaged power constraint (B.1) derived in
subsections B-A - B-C we note the following characteristics
of the optimal channel input:

• As X[i ] is a real multivariate sequence it
follows from the properties of the DFT that
for

⌊ n
2

⌋
< k < n, X̂[k] is obtained from

X̂[k] =
(

X̂[n − k]
)∗

.
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• From the secrecy capacity for real-valued memoryless
Gaussian MIMO WTCs [11, Corollary 1]9 it follows that
for k ∈ L̃n , X̂[k] is a zero-mean real-valued Gaussian
random vector with covariance matrix CX̂,opt [k].

• From the secrecy capacity for complex
memoryless Gaussian MIMO WTCs with circularly
symmetric complex normal noise [6, Thm. 1]10 it
follows that for 1 ≤ k < n

2 , X̂[k] is a circularly
symmetric complex normal RV with covariance matrix
CX̂,opt [k].

• As the subchannels are independent, the optimal
input which achieves (B.14) satisfies p

(
X̂� n

2 �
)

=
� n

2 �∏
k=0

p
(

X̂[k]
)

, i.e.,
{

X̂ [k]
}� n

2 �
k=0

are mutually

independent RVs.
The above characteristics give rise to the following
corollary:

Corollary B.1: The secrecy capacity of the n-CGMWTC
with a time-averaged power constraint, Cn−CG

s,T A , is obtained
with an equal per-symbol power allocation.

Proof: Let Ln− be set of indexes k ∈ N such that k /∈ L̃n .

Note that for k ∈ L̃n−, X̂[k] =
(

X̂[n − k]
)∗

. We consider
the autocorrelation of the time-domain optimal channel input
which obtains Cn−CG

s,T A . As the time-domain channel input of
the n-CGMWTC is real-valued we can write:

E
{

X [i1] (X[i2])T
}

= E
{

X [i1] (X[i2])H
}

(a)= 1

n2

n−1∑

k1=0

n−1∑

k2=0

E
{

X̂ [k1] (X̂[k2])H
}

e j2π i1k1−i2k2
n

(b)= 1

n2

( n−1∑

k1=0

E
{

X̂ [k1] (X̂[k1])H
}

e j2πk1
i1−i2

n

+
∑

k1∈Ln−

E
{

X̂ [k1] (X̂[k1])H
}

e j2πk1
i1+i2

n

)

(c)= 1

n2

n−1∑

k1=0

E
{

X̂ [k1] (X̂[k1])H
}

e j2πk1
i1−i2

n , (B.15)

where (a) follows by plugging the inverse DFT (B.2); (b) fol-

lows since
{

X̂ [k]
}� n

2 �
k=0

are zero-mean and mutually indepen-

dent, thus E
{

X̂ [k1] (X̂[k2])H
}

is non zero only when k2 = k1

9Note that the real-valued memoryless Gaussian MIMO WTC is a special
case of the real-valued memoryless Gaussian MIMO BC with common and
confidential messages studied in [11], when there is no common message and
only a single confidential message.

10Note that [6] showed that circularly symmetric complex normal inputs
are optimal for complex memoryless Gaussian MIMO WTCs with additive
circularly-symmetric complex normal (ACSCN) noise, subject to the more
general time-averaged power constraint, which subsumes the per-symbol
power constraint. It directly follows from [6] and [63, Lemma 1] that the
optimal codeword that achieves the secrecy capacity in [6] also satisfies the
per-symbol power constraint. Thus, we conclude that circularly symmetric
complex normal input are also optimal for complex memoryless Gaussian
MIMO WTCs with ACSCN noise subject to the per-symbol power constraint.

and when k2 = n−k1, and since X̂[k] =
(

X̂[n − k]
)∗

; (c) fol-

lows since for k ∈ Ln−, the optimal X̂[k] is circularly symmet-

ric complex normal, thus E
{

X̂ [k] (X̂[k])T [k]
}

= 0nt ×nt [54,

Sec. III-A.]. It follows from (B.15) that E
{
X [i ] (X[i ])T } =

1
n2

n−1∑

k1=0
E
{

X̂ [k1] (X̂[k1])H
}

, thus, the covariance matrix of

the time-domain optimal channel input X[i ] which achieves
Cn−CG

s,T A is independent of the time index i ∈ N . As the
constraint is the same for all n-blocks we conclude that Cn−CG

s,T A
is obtained with an equal per-symbol power allocation, namely
satisfies (3) with equality.

Since Cn−CG
s ≤ Cn−CG

s,T A , then Corollary B.1 implies that
Cn−CG

s = Cn−CG
s,T A . Combining this with (B.14), and noting

that it is enough to consider blocklengths which are integer
multiples of n to characterize the secrecy capacity of the n-
CGMWTC, proves that Cn−CG

s is obtained by (10).

APPENDIX C
PROOF OF PROPOSITION 4

In order to prove Proposition 4, we first show that if (11)
is satisfied, then the secrecy capacity of the LGMWTC, Cs , is
strictly positive; then, we prove that if Cs is strictly positive,
it follows that (11) must be satisfied. The proof follows a
similar outline to that of [6, Corollary 2]. Before we begin, we

note that defining H′
w(ω) = (

C′
W(ω)

)− 1
2 H′ (ω) and G′

w(ω) =
(
C′

U(ω)
)− 1

2 G′ (ω), and using Sylvester’s determinant theorem
[61, Ch. 6.2] (6c) can be written as

Cs = max
C′

X(ω)∈CP

1

2π

π∫

ω=0

log

∣
∣
∣Inr +H′

w(ω)C′
X(ω)

(
H′
w(ω)

)H
∣
∣
∣

∣
∣
∣Ine +G′

w(ω)C′
X(ω)

(
G′
w(ω)

)H
∣
∣
∣
dω.

(C.1)

Assume that (11) is satisfied, then, ∀ω ∈ �, there exists a
vector v (ω) such that

∥
∥G′

w(ω) v (ω)
∥
∥ <

∥
∥H′

w(ω) v (ω)
∥
∥ . (C.2)

Note that if v (ω) satisfies (C.2) then v(ω)
‖v(ω)‖ also

satisfies (C.2), hence we can consider only vectors
v (ω) such that ‖v (ω)‖ = 1. Now, let |�| denote the Lebesgue
measure of � and set C′

X(ω) = 0nt ×nt for ω /∈ � and
C′

X(ω) = π ·P
|�| v (ω) (v (ω))H for ω ∈ �. Note that C′

X(ω) is a
positive definite Hermitian matrix which satisfies (6a), hence
C′

X(ω) ∈ CP . It follows that

Cs

(a)≥ 1

2π

∫

ω∈�
log

∣
∣
∣Inr + π ·P

|�| H′
w(ω) v (ω) (v (ω))H

(
H′
w(ω)

)H
∣
∣
∣

∣∣
∣Ine + π ·P

|�| G′
w(ω) v (ω) (v (ω))H

(
G′
w(ω)

)H
∣∣
∣
dω

(b)= 1

2π

∫

ω∈�

(
log

(
1 + π · P

|�| · ∥∥H′
w(ω) v (ω)

∥∥2
)

− log
(

1 + π · P

|�| · ∥∥G′
w(ω) v (ω)

∥
∥2
))

dω, (C.3)

where (a) follows from plugging C′
X(ω) defined

above into (C.1), and (b) follows from Sylvester’s
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determinant theorem [61, Ch. 6.2]. Note that
∀ω ∈ �, log

(
1 + π ·P

|�| · ∥∥H′
w(ω) v (ω)

∥
∥2
)

>

log
(

1 + π ·P
|�| · ∥∥G′

w(ω) v (ω)
∥
∥2
)

. As the Lebesgue measure

of � is non-zero, it follows that (C.3) is strictly positive,
thus Cs is strictly positive, i.e., (11) is a sufficient condition
for a strictly positive secrecy capacity.

Next, we show that if (11) is not satisfied, then Cs = 0.
Let C′

X,opt (ω) ∈ CP be the maximizing covariance matrix
for (C.1). Thus, we have

Cs = 1

2π

π∫

ω=0

log

∣
∣
∣Inr + H′

w(ω)C′
X,opt (ω)

(
H′
w(ω)

)H
∣
∣
∣

∣
∣
∣Ine + G′

w(ω)C′
X,opt (ω)

(
G′
w(ω)

)H
∣
∣
∣
dω.

(C.4)

Since C′
X,opt (ω) ∈ CP , it follows that ∀ω ∈ [0, π),

C′
X,opt (ω) is a positive semi-definite Hermitian matrix, thus,

from [61, Ch. 7.5-7.6] it can be written as
C′

X,opt (ω) = L (ω) (L (ω))H . Plugging this decomposition
into (C.4) we write

Cs = 1

2π

π∫

ω=0

log

∣∣
∣Inr + H′

w(ω) L (ω) (L (ω))H (H′
w(ω)

)H
∣∣
∣

∣∣
∣Ine + G′

w(ω) L (ω) (L (ω))H (G′
w(ω)

)H
∣∣
∣
dω

(a)= 1

2π

π∫

ω=0

log

∣
∣
∣Int + (L (ω))H (H′

w(ω)
)H H′

w(ω) L (ω)
∣
∣
∣

∣
∣
∣Int + (L (ω))H (G′

w(ω)
)H G′

w(ω) L (ω)
∣
∣
∣
dω,

(C.5)

where (a) follows from Sylvester’s determinant theorem
[61, Ch. 6.2]. Now, define

B (ω)� (L (ω))H (G′
w(ω)

)H G′
w(ω) L (ω)

− (L (ω))H (H′
w(ω)

)H H′
w(ω) L (ω) .

B (ω) is clearly Hermitian. If (11) is not satisfied, then for
all ω ∈ [0, π), possibly except for a zero-measure subset of
[0, π), B (ω) is positive semi-definite, since ∀a ∈ Cnt

aH B (ω) a = ∥∥G′
w(ω) L (ω) a

∥∥2 − ∥∥H′
w(ω) L (ω) a

∥∥2

(a)= ∥
∥G′

w(ω) ã
∥
∥2 − ∥

∥H′
w(ω) ã

∥
∥2

(b)≥ 0,

where (a) follows by setting ã � L (ω) a, and (b) follows
since

∥
∥H′

w(ω) ã
∥
∥

∥∥G′
w(ω) ã

∥∥ ≤ sup
v∈Cnt

∥
∥H′

w(ω) v
∥
∥

∥∥G′
w(ω) v

∥∥ ≤ 1.

Let λG,k(ω) and λH,k(ω) be the k-th largest eigenvalue of
(L (ω))H (G′

w(ω)
)H G′

w(ω) L (ω) and the k-th largest eigen-

value of (L (ω))H (H′
w(ω)

)H H′
w(ω) L (ω), respectively, k ∈

{1, 2, . . . , nt }. As B (ω) is a positive semi-definite Hermitian
matrix, it follows from the min-max theorem [61, Ch. 7.5]
[62, Ch. 7.7] that ∀k ∈ {1, 2, . . . , nt },

λG,k(ω) ≥ λH,k(ω) ≥ 0, (C.6)

where the non-negativity of the eigenvalues λG,k(ω) and
λH,k(ω) follows since (L (ω))H (G′

w(ω)
)H G′

w(ω) L (ω) and

(L (ω))H (H′
w(ω)

)H H′
w(ω) L (ω) are positive semi-definite.

Therefore, for all ω ∈ [0, π), except for maybe a zero-measure
subset of [0, π), it follows that

∣∣
∣Int + (L (ω))H (G′

w(ω)
)H G′

w(ω) L (ω)
∣∣
∣

(a)=
nt∏

k=1

(
1 + λG,k(ω)

)

(b)≥
nt∏

k=1

(
1 + λH,k(ω)

)

(c)=
∣
∣
∣Int + (L (ω))H (H′

w(ω)
)H H′

w(ω)L (ω)
∣
∣
∣ , (C.7)

where (a) and (c) follow from [61, Ch. 7.5] since
(L (ω))H (G′

w(ω)
)H G′

w(ω) L (ω) and (L (ω))H (H′
w(ω)

)H

H′
w(ω) L (ω) are Hermitian; (b) follows from (C.6). Applying

the relationship (C.7) to (C.5) yields Cs ≤ 0, therefore (11) is
a necessary condition for a strictly positive secrecy capacity.
This completes our proof.

APPENDIX D
PROOF OF COROLLARY 1

We first consider only blocklengths which are an inte-
ger multiple of nPLC. Define the nPLC × 1 multivari-
ate processes XPLC

[
ĩ
]
, YPLC

[
ĩ
]
, and ZPLC

[
ĩ
]
, using the

following assignments:
(

XPLC

[
ĩ
])

k
= X

[
ĩ · nPLC + k

]
,

(
YPLC

[
ĩ
])

k
= YPLC

[
ĩ · nPLC + k

]
, and

(
ZPLC

[
ĩ
])

k
=

ZPLC

[
ĩ · nPLC + k

]
, respectively, k ∈ NPLC. It follows

from (13b) that

E

{∥
∥
∥XPLC

[
ĩ
]∥∥
∥

2
}

=
nPLC−1∑

k=0

E

{∣
∣
∣X

[
ĩ · nPLC + k

]∣∣
∣
2
}

≤ P · nPLC, (D.1)

thus, XPLC

[
ĩ
]

is subject to a per-symbol power constraint
P · nPLC. From [51, Appendix B], it follows that the scalar
NB-PLC WTC (12) can be transformed into the follow-
ing equivalent MIMO Gaussian channel with finite memory
m = 1:

YPLC

[
ĩ
]
=

1∑

τ̃=0

HPLC
[
τ̃
]

XPLC

[
ĩ − τ̃

]
+ WPLC

[
ĩ
]

(D.2a)

ZPLC

[
ĩ
]
=

1∑

τ̃=0

GPLC
[
τ̃
]

XPLC

[
ĩ − τ̃

]
+ UPLC

[
ĩ
]
,

(D.2b)

where the transformation is bijective as we consider only
codes with blocklength which is an integer multiple of nPLC.
It follows from Thm. 1 that the secrecy capacity of the
equivalent MIMO WTC (D.2) is given by nPLC · Cs,P LC ,
where Cs,P LC is given by (15c), subject to (15a). Since each
channel input in the equivalent MIMO channel corresponds



1896 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 3, MARCH 2017

to nPLC channel inputs in the original NB-PLC WTC, the
corollary follows for codes whose blocklength which is an
integer multiple of nPLC. Lastly, we note that as nPLC is fixed
and finite, then any achievable secrecy rate can be achieved
using codes whose blocklength is an integer multiple of nPLC,
where the proof is similar to that of Proposition A.1 and of
Lemma A.6.
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