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Abstract— In this paper, we study linear encoding for a
pair of correlated Gaussian sources transmitted over a two-
user Gaussian broadcast channel in the presence of unit-delay
noiseless feedback, abbreviated as the GBCF. Each pair of source
samples is transmitted using a linear transmission scheme in a
finite number of channel uses. We investigate three linear trans-
mission schemes: A scheme based on the Ozarow–Leung (OL)
code, a scheme based on the linear quadratic Gaussian (LQG)
code of Ardestanizadeh et al., and a novel scheme derived in
this paper using a dynamic programming (DP) approach. For
the OL and LQG schemes we present lower and upper bounds
on the minimal number of channel uses needed to achieve a
target mean-square error (MSE) pair. For the LQG scheme in
the symmetric setting, we identify the optimal scaling of the
sources, which results in a significant improvement of its finite
horizon performance, and, in addition, characterize the (exact)
minimal number of channel uses required to achieve a target
MSE. Finally, for the symmetric setting, we show that for any
fixed and finite number of channel uses, the DP scheme achieves
an MSE lower than the MSE achieved by either the LQG or the
OL schemes.

Index Terms— Broadcasting, channel coding, feedback com-
munications, Gaussian channels, source coding.

I. INTRODUCTION

WE STUDY the transmission of a pair of corre-
lated Gaussian sources over a two-user memoryless

Gaussian broadcast channel (GBC) with correlated noise
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components at the receivers, in which the transmitter has
access to noiseless causal feedback (FB) from both receivers.
We abbreviate this channel as the GBCF. Motivated by practi-
cal broadcast scenarios with strict power, delay and complexity
constraints, e.g., live multimedia broadcast [3], transmission
of critical system parameters in a smart grid [4], or body-area
sensor networks [5], we focus on uncoded linear transmission
schemes, namely, schemes that do not encode over blocks of
source symbol pairs.1

Previous studies on GBCFs focused on the channel coding
problem which assumes independent and uniformly distributed
messages and characterized performance for the infinite hori-
zon regime, i.e., the number of channel uses is unbounded.
In the present work we study lossy joint source-channel
coding (JSCC) for GBCFs focusing on the finite horizon
regime: The sources are assumed to be correlated, and each
source is to be reconstructed at its corresponding receiver
within a target non-zero mean-square error (MSE) distortion.
Our objective is to characterize the minimal number of channel
uses required to achieve a target MSE pair.

We focus on linear and memoryless transmission schemes
[7, Sec. III], i.e., the transmitted signal at any time index
is restricted to be a linear combination of the encoder state
at the same time index, while the encoder state is a linear
combination of the state at the previous time index and the
channel outputs from the previous transmission. In particu-
lar, we consider the following three transmission schemes:
1) A JSCC scheme based on the Ozarow-Leung (OL) chan-
nel coding scheme developed in [8], to which we refer
as the JSCC-OL scheme; 2) A JSCC scheme based on
the linear quadratic Gaussian (LQG) channel code derived
in [9], to which we refer as the JSCC-LQG scheme; and
3) A novel JSCC transmission scheme, which is derived
in this work, whose parameters are obtained using dynamic
programming (DP) [10], to which we refer as the JSCC-DP
scheme. While the JSCC-OL and the JSCC-DP schemes are
time-varying and are designed based on signal processing
arguments, the JSCC-LQG scheme is time-invariant and is
based on a control theoretic approach. As we show in the
sequel, these differences lead to different performances in the
finite horizon regime.

1This is motivated by the work [6] which showed that for a zero-delay
source coding problem with memoryless sources, joint encoding of all the
source symbols does not provide any gain.
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A. Prior Work

While FB does not increase the capacity of memoryless
point-to-point (PtP) channels [11], it was shown in [12] that
for Gaussian PtP channels FB can reduce the complexity
and delay required for achieving a target error probability.
In fact, the scheme presented in [12] (referred herein as
the SK scheme) achieves a doubly exponential decay in the
probability of error with the number of transmitted symbols,
whereas only a single exponential decay can be achieved
without feedback. In the SK scheme, the receiver applies
minimum MSE (MMSE) estimation to iteratively estimate the
transmitted source (or message). Using the FB, the transmitter
can track the estimation error at the receiver, and transmit it at
the next channel symbol. Thus, at each channel use, only the
“missing information” is transmitted. The work [13] general-
ized this idea and presented the posterior matching principle
for optimal transmission over memoryless PtP channels with
FB: At each channel symbol the transmitter should send only
information that is independent of the past transmitted sym-
bols, and is relevant for the reconstruction of the transmitted
message.

Differently from the situation for PtP channels, in multi-
user channels FB may enlarge the capacity region. This was
first demonstrated in [14] which showed that FB enlarges
the capacity region of the memoryless multiple-access chan-
nel (MAC). Motivated by the optimality of the SK scheme
for PtP Gaussian channels, the works [8] and [15] extended
it to the two-user Gaussian MAC with FB (GMACF) and
to the two-user GBCF, respectively. While for the GMACF
this approach achieves the capacity region, for the GBCF
this extension is generally suboptimal even though it achieves
reliable communications at rate pairs which are outside the
capacity region of the non-degraded GBC.2 The OL scheme
of [8] and the scheme of [15] were later extended to GBCFs
and GMACFs with more than two users as well as to Gaussian
interference channels with FB (GICFs) in [7]. Recently,
in [17], we extended the OL scheme by using estimators
with memory at the receivers instead of the memoryless
estimators used in the original OL scheme of [8]. We note
that the extended decoder does not always improve upon the
memoryless decoder of [8], in fact, in some situations it may
perform worse than the memoryless decoder of [8]. Finally, the
work [18] used the scheme of [15] and the OL scheme of [8] to
stabilize (in the mean square sense) two linear, discrete-time,
scalar and time-invariant systems in closed-loop, via control
over GMACFs and GBCFs, respectively. This approach was
also used for stabilization over interference channels in [19].

An alternative approach to SK-type schemes is based on
control theory. For Gaussian PtP channels [20] showed that
solving an optimal LQG control problem leads to a capacity
achieving FB transmission scheme, and presented control-
oriented FB transmission schemes also for GBCFs, GMACFs
and GICFs. In particular, for the two-user GBCF with inde-
pendent noise components at the receivers, [20] presented a
class of coding schemes which achieve rate pairs outside the

2We note that feedback does not enlarge the capacity region of degraded
GBCFs [16].

achievable rate region of the OL scheme. Later, [9] used the
LQG control framework to develop a FB coding scheme for
the GBCF, referred herein as the LQG scheme, which does not
require the noise components to be independent. It was also
shown in [9] that when the noise components are independent
and have the same variance, then the LQG scheme achieves
rates higher than those achieved by the OL scheme and the
scheme of [7] (for the case of more than two users). In
fact, recently, [21] showed that for this scenario the LQG
scheme achieves the maximal sum-rate among all possible
linear-feedback schemes. GBCFs and GICFs were also studied
in [22] which presented a (non-linear with memory) transmis-
sion scheme whose sum-rate approaches the corresponding
full-cooperation bound,3 as the signal-to-noise ratio (SNR)
increases to infinity. Lastly, the recent work [23] showed that
the capacity region of the GBCF with independent noises and
only a common message cannot be achieved by linear feedback
schemes such as the OL or LQG schemes.

While all the works on GBCFs reviewed above focus on
the achievable rates, namely, bits per channel use that can
be transmitted reliably as the number of channel uses goes to
infinity, in the present work we study a JSCC problem. JSCC
in multiuser networks with FB has been considered in several
previous works. The work [24] presented sufficient conditions
for lossy transmission of discrete memoryless (DM) correlated
sources over a DM-MAC with FB which builds upon the
hybrid coding scheme of [25]. Lossy transmission of correlated
Gaussian sources over a two-user GMACF was studied in [26],
in which sufficient conditions and necessary conditions for
the achievability of an MSE pair were derived. In [26] it was
also shown that for the symmetric setting, if the channel SNR
is below a certain threshold, then an uncoded transmission
scheme is optimal. While the works [24]–[26] focused on
the scenario in which the source and channel bandwidths are
matched, the work [27] considered scenarios in which these
bandwidths are mismatched, and studied the transmission of
correlated Gaussian sources over a two-user GMACF. For the
symmetric setting, [27] presented upper and lower bounds on
the energy-distortion tradeoff, i.e., the minimum transmission
energy required to communicate a pair of sources over a noisy
channel, such that the sources can be reconstructed within
a specified target distortion. In [28] we study the energy-
distortion tradeoff for the symmetric two-user GBCF. Here we
remark that all the aforementioned works consider the infinite
horizon regime.

Finally, we note that several works considered the GBC
with noisy causal FB, see [29]–[32] and references therein.
Particularly relevant to the context of the current work are
the works [31] and [32] which studied channel coding for PtP
Gaussian channels with noisy FB and for GBCs with noisy FB
links, respectively. The transmission schemes studied in these
works are based on the SK and OL schemes, respectively,
while the noise in the feedback links was handled using
a modulo-lattice precoding in both the direct and feedback
links. Furthermore, [31] and [32] show that while adding

3In the full-cooperation bound each receiver knows the other receiver’s
channel output, see [22, eq. (1)].
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noise to the feedback links results in performance degradation
[31, Sec. V.D], many of the benefits of noiseless feedback can
be carried over to the more practical setup of noisy feedback.
This strengthens the motivation for the study presented in the
following sections.

B. Main Contributions

In this work we study the transmission of a pair of correlated
Gaussian sources over the two-user GBCF in the finite horizon
regime, where each source is to be reconstructed at its corre-
sponding receiver within a target MSE distortion. Our aim is
to characterize the minimal number of channel uses required
to achieve the target MSE distortion pair. In the following we
highlight our main contributions:

1) We adapt the OL scheme of [8] to the transmis-
sion of correlated Gaussian sources over GBCFs. This
new JSCC scheme is referred to in the following as
JSCC-OL. We first demonstrate that the initialization,
which takes advantage of the correlation between the
sources, is superior to the initialization suggested in
[8]. Then, for the proposed JSCC-OL scheme we derive
upper and lower bounds on the minimal number of chan-
nel uses needed to achieve a target pair of MSEs. We
show that, in contrast to the infinite horizon regime, in
the finite horizon regime there are many cases in which
JSCC-OL outperforms JSCC-LQG. Lastly, we consider
the symmetric setting, in which the sources have equal
variances, the noise variances at the receivers are equal,
and the target MSEs are equal. We show that for this set-
ting in the low SNR regime, when the sources are inde-
pendent, and the noises are independent, then JSCC-OL
achieves approximately the same source-channel band-
width ratio as the best known separation-based scheme
which applies source and channel coding with asymptot-
ically large blocklengths.4 Since JSCC-OL applies linear
encoding and decoding, this demonstrates the efficiency
and attractiveness of the JSCC-OL scheme, even in the
infinite horizon regime.

2) We adapt the LQG scheme of [9] to the transmission
of correlated Gaussian sources over GBCFs in the finite
horizon regime. This new JSCC scheme is referred to
in the following as JSCC-LQG. As the original LQG
scheme is optimized for the infinite horizon regime, it
sometimes performs poorly when the horizon is finite.
For this reason, our first contribution in the context of
JSCC-LQG is the derivation of a new decoder based
on the MMSE criterion, which outperforms the LQG
decoder presented in [9] in the finite horizon regime,
while achieving the same performance in the infinite
horizon regime. For the general setting we derive lower
and upper bounds on the minimal number of channel
uses needed to achieve a target pair of MSEs with
the JSCC-LQG scheme. For the symmetric setting, we
show that, by properly scaling the transmitted sources,

4Note that for the considered setting, when the sources are independent,
then separate source-channel coding is optimal.

it is possible to achieve a target MSE pair with sig-
nificantly fewer channel transmissions than with the
original initialization of [9]. We show that the proposed
scaling technique5: 1) Optimally exploits the available
transmission power, subject to a per-symbol average
power constraint, 2) Minimizes the distance between the
covariance matrices of the JSCC-LQG initial state and
the covariance matrix of its steady-state (subject to the
per-symbol average power constraint), and 3) Achieves
the same MSE exponents6 as in [9]. Thus, our proposed
JSCC-LQG scheme is a linear time-invariant transmis-
sion scheme with very good finite horizon performance
and with the best known infinite horizon performance.
Finally, for the symmetric setting, we explicitly charac-
terize the minimal number of channel uses required to
achieve a target MSE pair via the roots of a second order
polynomial, thus, providing a complete performance
characterization of the JSCC-LQG in the finite horizon
regime for the symmetric setting.

3) We present a new linear and memoryless transmission
scheme based on DP, called JSCC-DP. For a finite num-
ber of channel uses, we show that the JSCC-DP scheme
achieves lower MSE values than those achieved by the
JSCC-LQG and the JSCC-OL schemes. Since finding
the coefficients of this scheme becomes computationally
infeasible as the number of channel uses becomes large,
we also propose an approximate low-complexity version
of the JSCC-DP scheme. Simulation results indicate that
for moderate to high SNRs this approximate version has
a negligible or no performance loss compared to the
exact JSCC-DP scheme.

The rest of this paper is organized as follows: The problem
formulation is introduced in Section II. We introduce the
JSCC-OL and JSCC-LQG schemes in Sections III and IV,
respectively. The JSCC-DP scheme is introduced in Section V,
and a comparison of the three schemes along with numerical
examples are presented in Section VI. Finally, concluding
remarks are presented in Section VII.

II. PROBLEM DEFINITION

A. Notation

We use capital letters to denote random variables (RVs),
e.g., X , and boldface letters to denote random column vectors,
e.g., X; the k’th element of a vector X is denoted by Xk , and
we use X j

k where k < j , to denote (Xk, Xk+1, ..., X j−1, X j ).
We use sans-serif font to denote deterministic vectors and
matrices: boldface letters denote vectors, e.g., B, while regular
letters denote matrices, e.g., M. [M]m,n denotes the entry at
the m’th row and n’th column of a matrix M, and det(M)
denotes the determinant of a square matrix M. I denotes the
identity matrix. We use E {·}, (·)T , log(·) and R to denote
expectation, transpose, natural basis logarithm, and the set of

5Note that finding this scaling factor requires a substantial technical effort
as we must characterize the exact instantaneous transmission power of the
LQG scheme. This is explained in detail in Subsection IV-E.1.

6MSE exponents corresponds to the slope of decay of the logarithm of the
MSE for sufficiently large number of channel uses.



2740 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 5, MAY 2017

Fig. 1. Gaussian broadcast channel with correlated sources and feedback
links. Ŝ1,k and Ŝ2,k are the reconstructions of S1 and S2, respectively, after
the k’th channel use.

real numbers, respectively. We use N (μ, Q) to denote the
multivariate normal distribution with mean μ and covariance
matrix Q. Finally, we define [x]+ � max{x, 0}, sgn(x) as the
sign of x , where sgn(0) � 1, and denote the ceiling function
of x by �x�.

B. System Model

The two-user GBCF is depicted in Fig. 1. All the signals are
real. The encoder observes a realization of a pair of correlated
and jointly Gaussian sources, denoted by S = [S1, S2]T , and
is required to send the source Si , i = 1, 2, to the i ’th receiver,
denoted by Rxi . Let S ∼ N (0, Qs), where the covariance
matrix, Qs , is given by:

Qs =
[

σ 2
1 ρsσ1σ2

ρsσ1σ2 σ 2
2

]
,

and

σ 2
i = E

{
S2

i

}
, ρs = E {S1 S2}

σ1σ2
, |ρs | < 1.

Each pair of source symbols is transmitted using K channel
uses, indexed by k = 1, 2, . . . , K . The channel outputs at the
decoders are given by:

Yi,k = Xk + Zi,k , i = 1, 2, (1)

where Xk denotes the channel input at time k. The noise
components [Z1,k, Z2,k]T ∼ N (0, Qz), are independent and
identically distributed (i.i.d.) over k = 1, 2, . . . , K , with
covariance matrix Qz given by:

Qz =
[

σ 2
z,1 ρzσz,1σz,2

ρzσz,1σz,2 σ 2
z,2

]
,

where

ρz = E {Z1 Z2}
σz,1σz,2

, |ρz | < 1.

Let B � [1, 1]T , Yk � [Y1,k, Y2,k]T and Zk � [Z1,k, Z2,k]T .
The signal model (1) can now be written in the following
vector form:

Yk = BXk + Zk . (2)

At time k = 1, 2, . . . , K , Rxi , i = 1, 2, uses its received
channel outputs, Yi,1, Yi,2, . . . , Yi,k , to estimate Si :

Ŝi,k = gi,k(Yi,1, Yi,2, . . . , Yi,k ), gi,k : Rk → R, (3)

and the encoder maps the observed pair of sources and the
received FB into a channel input via:

Xk = fk(S1, S2, Y1, Y2, . . . , Yk−1), fk : R2k → R, (4)

subject to a per-symbol average power constraint defined as:

E
{

X2
k

}
≤ P, ∀k = 1, 2, . . . , K . (5)

For a specific set of parameters (σ 2
z,1, σ

2
z,2, ρz, σ

2
1 , σ 2

2 , ρs), we
define a (D1, D2, K ) code to be a collection of K encoding
functions each satisfying (5), and two decoding functions such
that:

E{(Si − Ŝi,K )2} ≤ Di , 0 < Di ≤ σ 2
i , i = 1, 2. (6)

For a given target MSE pair (D1, D2), our objective is to
characterize the minimal number of channel uses K such that
a (D1, D2, K ) code exists. In the sequel, we let KSCHEME
denote the minimal number of channel uses required to achieve
a pair of MSE distortion values, (D1, D2), by the scheme
“SCHEME”∈{OL, LQG, DP}.

Remark 1: Note that in (5) we use a per-symbol average
power constraint, similarly to [33, eq. (22)] and [34, Sec. VII].
The per-symbol average power constraint is motivated by
practical system implementation: Due to the finite dynamic
range of power amplifiers [35, Ch. 9], the transmitter is not
able to allocate power arbitrarily across time slots. This is
particularly relevant for simple energy-limited sensor nodes
which may benefit the most from the low-complexity linear
encoding schemes proposed in this paper.

C. Linear and Memoryless JSCC for GBCFs

In this work we focus on the class of linear and memoryless
transmission schemes, see, e.g., [7, Sec. III]: In this class
of schemes, the transmitted signal at any time index, k, is
restricted to be a linear function of the encoder state at time k,
which, in turn, evolves as a linear combination of the encoder
state at time k − 1 and the channel outputs at time k − 1.
Letting Uk = [U1,k, U2,k]T denote the encoder state vector
at time k (each state is associated with one Tx-Rx link), the
transmitted signal at time k, Xk , see (4), is generated as a
linear (possibly time-varying) combination of the elements of
Uk : Xk = TT

k Uk , where Tk = [t1,k, t2,k]T are the combination
weights. Furthermore, the encoder state vector is recursively
obtained by:

Ui,k = ϕi,k(Ui,k−1, Yi,k−1), i = 1, 2, k = 1, 2, . . . , K , (7)

where ϕi,k(·) is a linear mapping. In the following sections
we state the three studied schemes, JSCC-OL, JSCC-LQG,
and JSCC-DP, as instances of this class of transmission
schemes. Using this general definition, we can highlight
the fundamental differences between the schemes: In the
JSCC-LQG scheme Tk and ϕi,k do not depend on k and conse-
quently the JSCC-LQG scheme is time-invariant. On the other
hand, in the JSCC-OL and JSCC-DP schemes Tk and ϕi,k are
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time-varying. In the JSCC-OL scheme ϕi,k are based on linear
and memoryless MMSE estimators of Ui,k from Yi,k−1, while
in the JSCC-DP scheme ϕi,k are computed recursively via DP.
Clearly, while structure makes implementation and analysis
easier, it may result in an inferior performance. Indeed, we
show in Subsection VI-B that, even though the JSCC-LQG
scheme achieves the best known MSE exponent, the JSCC-OL
scheme can outperform the JSCC-LQG scheme in the finite
horizon regime. This is because the time-varying nature of
JSCC-OL allows for better exploiting the available power
and the correlation between the sources. As the JSCC-DP
scheme computes Tk and ϕi,k recursively using the statistics
of the signals, it can also adaptively change the transmission
coefficients similarly to the JSCC-OL scheme. However, as
these weights are obtained recursively, JSCC-DP achieves the
smallest MSE at any a-priori specified number of channel uses.

Next, we recall some results and definitions from [8], and
provide a finite horizon analysis of the JSCC-OL scheme.

III. JSCC VIA THE OL SCHEME

A. The OL Scheme for JSCC

In the JSCC-OL scheme, the transmitter generates the
channel symbol to be transmitted at time k based on the
previous channel outputs, available through the FB links.
The transmitter first calculates the source estimates at the
receivers, and obtains the estimation errors at each receiver.
The transmitter then sends a linear combination of these
estimation errors. Thus, at each time k, each receiver obtains
its estimation error corrupted by a correlated noise term,
consisting of the other receiver’s estimation error and the
additive channel noise. Each receiver then updates its estimate
accordingly, thereby, decreasing the variance of its estimation
error. The scheme is terminated after KOL channel uses, where
KOL is chosen such that the target MSE for each source is
achieved at the corresponding receiver.

Setup: Let Ŝi,k be the estimate of Si at Rxi after the
reception of the k’th channel output, Yi,k . Letting εi,k �
Ŝi,k − Si be the estimation error after k transmissions, and
defining ε̂i,k−1 � Ŝi,k−1 − Ŝi,k , we can write εi,k = εi,k−1 −
ε̂i,k−1. Lastly, define αi,k � E{ε2

i,k } as the MSE at Rxi

after k transmissions, and ρk � E{ε1,kε2,k}√
α1,kα2,k

as the correlation
coefficient between the estimation errors.

Encoding: Set Ŝi,0 = 0, which yields εi,0 = −Si , αi,0 =
E
{
ε2

i,0

}
= σ 2

i , and ρ0 = ρs . Next, for a given P , let g > 0 be
a constant which controls the tradeoff between the information
rate to Rx1 and Rx2, and define �k �

√
P

1+g2+2g|ρk | . At the
k’th iteration, 1 ≤ k ≤ K , the transmitter sends

Xk = �k−1 ·
(

ε1,k−1√
α1,k−1

+ ε2,k−1√
α2,k−1

· g · sgn(ρk−1)

)
, (8)

and the corresponding channel outputs are given in (1).

Remark 2: It follows from (8) that the average per-symbol
transmission power of the JSCC-OL scheme is constant.
Therefore, JSCC-OL inherently satisfies the average per-
symbol power constraint in (5).

Decoding: After the k’th channel use, the estimator that
minimizes the instantaneous MSE, E{(Si − Ŝi,k )

2}, is the
conditional expectation [36, eq. (11.10)], i.e.,

Ŝi,k = E

{
Si

∣∣∣∣[Yi,1, Yi,2, . . . , Yi,k ]T
}

.

However, as successive channel outputs are not independent,
the performance analysis of this estimator is highly compli-
cated. For this reason, a simpler and suboptimal approach is
considered in [8], in which Rxi estimates εi,k−1 based only
on Yi,k :

ε̂i,k−1 = E
{
εi,k−1Yi,k

}
E
{

Y 2
i,k

} Yi,k . (9)

Then, similarly to [37, eq. (7)], the estimate of Si is given by:

Ŝi,k = −
k∑

m=1

ε̂i,m−1. (10)

Remark 3: In [15] it is shown that for the 2-user GMACF
this approach is optimal in the MMSE sense. This follows as
in the MAC setup both sources are estimated from the same
channel output, thus, the estimation errors are orthogonal to
the previous channel output. On the other hand, in the GBCF
this approach is sub-optimal since [Y1,1, Y1,2, . . . , Y1,k−1]T is
not necessarily orthogonal to ε2,k−1. In [17] we extended the
estimator (9) to use [Yi,k , Yi,k−1]T instead of using only Yi,k .
This resulted in a transmission scheme which is linear but not
memoryless.

Define πi � P+σ 2
z,i ,	 � P+σ 2

z,1+σ 2
z,2−ρzσz,1σz,2, and

ξ2
i � σ 2

z,i − ρzσz,1σz,2. In [8] the MSEs of the (memoryless)
estimators in (9) are stated via the recursive expressions
[8, eqs. (5)–(6)]:

α1,k = α1,k−1
σ 2

z,1 +�2
k−1g2(1− ρ2

k−1)

π1
, (11a)

α2,k = α2,k−1
σ 2

z,2 + �2
k−1(1− ρ2

k−1)

π2
, (11b)

and ρk is given by [8, eqn. (7)], see (12) at the bottom of the
page. The JSCC-OL scheme described above can be readily
stated within the class of linear and memoryless schemes
defined in Subsection II-C: The encoder state update for
the JSCC-OL scheme can be expressed via (7) by setting
Uk = [ε1,k−1, ε2,k−1]T , the transmitted signal Xk is obtained
from the encoder states Uk via (8), and Ui,k+1 ≡ εi,k =
εi,k−1−ε̂i,k−1, ε̂i,k−1 = E{εi,k−1Yi,k }

E
{

Y 2
i,k

} Yi,k . Observe that the linear

estimation and transmission coefficients are time-varying.

ρk =
(ρzσz,1σz,2	+ ξ2

1 ξ2
2 )ρk−1 − �2

k−1	 · g(1− ρ2
k−1)sgn(ρk−1)

√
π1π2

√
σ 2

z,1 +�2
k−1g2(1− ρ2

k−1)
√

σ 2
z,2 + �2

k−1(1− ρ2
k−1)

. (12)
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B. Initialization of the JSCC-OL Scheme

In the above description of the JSCC-OL scheme the
initialization is different than the original initialization in [8].
In this subsection we begin by motivating the initialization
in Subsection III-A, i.e., εi,0 = −Si and ρ0 = ρs , and then
discuss alternative initialization approaches.

First, note that the instantaneous MSEs in (11) are monoton-
ically decreasing functions of |ρk |. Thus, at least in the first
transmission, there is a strong motivation to generate ε1,0 and
ε2,0 as correlated as possible. Numerical simulations indicate
that the benefits of highly correlated ε1,0 and ε2,0 carry beyond
the first transmission. In particular, in [28, Appendix C] we
analytically show that in the low SNR regime, |ρk | slowly
decreases towards zero, from its initial value, until it reaches
a very small steady state value. Consequently, in the low
SNR regime, initializing the scheme with correlated estimates
yields substantial benefits over initializing with the steady-state
correlation. We conclude that, when the sources are correlated,
initialization with εi,0 = −Si and ρ0 = ρs , takes advantage
of the correlation between the sources to rapidly decrease
the MSE.

Next, we address the relevance of the initialization proposed
in [8] to the problem studied in the current work. First,
note that the approach of [8] maximizes the achievable MSE
exponents, and not the finite horizon performance. In [8] it
was shown that there exists a ρ ∈ [0, 1] such that a steady
state is achieved in the sense that when |ρk−1| = ρ, then
ρk = −ρk−1. This ρ∗ can be obtained by setting ρk = ρ and
ρk−1 = −ρ in (12), as shown at the bottom of the previous
page, finding the roots of the resulting sixth-order polynomial,
and taking ρ∗ as the largest root of this polynomial in [0, 1].
In [8, p. 669] it was also shown how to initialize the
transmission to achieve a steady-state in (12), with ρk =
ρ∗, k ≥ 2. When an average per-symbol power constraint
is applied, then the initialization suggested in [8] is suit-
able only if the steady state correlation coefficient satis-

fies |ρ∗| ∈
[

0, P√
(P+σ 2

z,1)(P+σ 2
z,2)

)
. In the low SNR regime,

P√
(P+σ 2

z,1)(P+σ 2
z,2)

is very small, and this initialization may

result in a very slow decrease in the MSEs.
We now consider a general linear initialization which can

achieve any initial correlation value ρ0, such that |ρ0| ∈ [0, 1).
Let F be a deterministic matrix, W ∼ N (0, Qw) indepen-
dent of S, ε0 = [ε1,0, ε2,0]T , and consider the following
initialization:

ε0 = FS+W. (13)

Setting εi,0 = −Si is a special case of this general linear
framework obtained with W = 0 and F = −I. Since
minimizing KOL over all matrices F and over all covariance
matrices Qw is rather involved, in the following we aim at

setting ρε0 = E{ε1,0ε2,0}
E
{
ε2

1,0

}
E
{
ε2

2,0

} to be as large as possible. We

next discuss two special instances of (13). To simplify the
analytic treatment, we focus on the symmetric setting in which
σ 2

1 = σ 2
2 � σ 2

s , σ 2
z,1 = σ 2

z,2 � σ 2
z , D1 = D2 � D, and

we set g = 1 as no preference should be given to either of

Fig. 2. MSE vs. number of channel uses for different values of ρ0. ρs =
0.4, σ 2

s = 1, ρz = 0.3, σ 2
z = 1, and P = 0.1.

the sources. We begin by considering initialization using only
noise addition, i.e., F = I.

Initialization via Noise Addition: Let Qw = σ 2
w

[
1 ρw

ρw 1

]
,

and let ρ0 be the desired correlation coefficient. We are inter-
ested in finding Qw such that ρε0 = ρ0. Since the transmitted
signal in (8) is always scaled to satisfy the per-symbol average
power constraint P , there are many pairs (ρw, σ 2

w) which result
in ρε0 = ρ0. To maximize the component of S in ε0, we select
the (ρw, σ 2

w) pair with the minimal σ 2
w . This pair is given by:

σ 2
w =

σ 2
s (ρs − ρ0)

ρ0 + sgn(ρs − ρ0)
, ρw = sgn(ρ0 − ρs).

By letting the JSCC-OL scheme transmit ε0, the higher
correlation coefficient facilitates a rapid decrease in the MSE
at the receivers, at the cost of using some of the available
power to transmit the noise vector W. Thus, we have two
contradicting effects: The increased ρ0 decreases the MSE in
estimating ε0, but adding the noise W to ε0 increases the MSE
in estimating S. In Appendix A-A we derive a two-step MMSE
estimator which first applies the OL scheme with εi,0, and
then applies MMSE estimation of Si from the estimated εi,0.
The MSE of this estimator is lower bounded by the MSE
of estimating Si from εi,0. Extensive numerical simulations
indicate that the MSE achieved by this approach is higher
than the MSE achieved by the initialization εi,0 = −Si . We
illustrate this point in the following example.

Example 1: Let ρs = 0.4, σ 2
s = 1, ρz = 0.3, σ 2

z = 1, and
P = 0.1. Fig. 2 depicts the MSEs vs. K for this scenario. Note
that ρ0 = 0.4 corresponds to the initialization εi,0 = −Si as no
noise need to be added. It can be observed that any value of ρ0
other than ρs = 0.4 degrades the performance compared to the
initialization εi,0 = −Si . Furthermore, it can be observed that
the MSE floor increases with ρ0, as expected. This implies that
for the two-step estimator, increasing |ρ0| increases the MSE
due to the addition of the noise, rendering this initialization
useless.

Remark 4: When the encoder and the decoders share a
common source of randomness [38], then at least part of the
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added noise W can be eliminated at the receivers. In such a
case, the above two-step estimator can achieve lower MSE
than the MSE achieved with εi,0 = −Si . Furthermore, in
scenarios in which the noise W can be completely elim-
inated, the two-step estimator can achieve the MSE given
in (11), where |ρ0| can be initialized to any value in the
range [0, 1).

Remark 5: Note that if in the first step of the JSCC-OL
scheme the receivers estimate Si instead of εi,0, then
αi,1 and ρ1 are no longer given by (11) and (12), respectively.
On the other hand, as S is estimated directly from the channel
outputs, the estimate does not suffer from an MSE floor. This
observation motivates choosing (ρw, σ 2

w) to simultaneously
minimize the MSE in estimating S after the first channel
use, and maximize |ρ1|, the correlation coefficient between
the two estimation errors after the first channel use. Since
this is a non-linear optimization problem which is difficult to
solve analytically, we derived explicit expressions for the new
αi,1 and ρ1, then we used a numerical search to find the ρ0
which maximizes ρ1, and chose the pair (ρw, σ 2

w) to minimize
the new αi,1 while achieving the above maximizing ρ0. An
extensive numerical study indicates that for most combinations
of scenario parameters, the maximal achievable |ρ1| is very
close to |ρs |, thus, the gain from increasing the correlation ρ0
beyond |ρs | is minor. A non-negligible increase in ρ1 is
observed when |ρs | is small and P 
 σ 2

z . Yet, even in these
cases, the MSE obtained with this modified initialization was
higher than the MSE achieved by initializing εi,0 = −Si .

Next, we briefly discuss initialization via multiplication by
F while W = 0.

Initialization via (13) With W = 0: Let Qε0 =
σ 2

ε0

[
1 ρ0
ρ0 1

]
, |ρ0| < 1, denote the covariance matrix of ε0.

The desired initialization is applied only through the product
ε0 = FS. Since |ρs | < 1 and |ρ0| < 1, the matrix F
is unique and can be obtained by applying the Cholesky
decomposition [39, Subsection 19.2.1.2] to both Qs and Qε0 .
Let the Cholesky decompositions of Qs and Qε0 be Qs =
LsLT

s , and Qε0 = Lε0LT
ε0

, respectively. Using these decompo-
sitions we have F = Lε0L−1

s . Note that from the definition
of the Cholesky decomposition, the matrix Lε0L−1

s is lower
triangular. Therefore, ε1,0 is a scaled version of S1, while ε2,0
is a linear combination of both S1 and S2. Similarly to the
discussion for initialization via noise addition, one can either
estimate S in two steps, first estimating ε0 and then estimating
S from ε0, or estimate S directly from the channel outputs after
the first step. The first approach, of the two steps estimator,
results in an MSE floor at Rx2 (if Rx2 has access to S1, then
this MSE floor can be eliminated). The second approach, of
direct estimation, typically achieves only a small increase in
the correlation coefficient compared to ε0 = −S, and no gains
in the MSE for estimating S were observed.

In the next subsection we study the JSCC-OL scheme in
the finite horizon regime with the initialization εi,0 = −Si .

C. Finite Horizon Analysis of JSCC-OL

From (11) it follows that the MSEs at time instance k
depend on ρk−1. However, as ρk is defined via the non-linear

recursion (12), it follows that an explicit characterization of
KOL is highly complex. Thus, in the following theorem we
present upper and lower bounds on KOL.

Theorem 1: The JSCC-OL scheme with the decoder defined
in (9) terminates within K lb

OL ≤ KOL ≤ K ub
OL channel uses,

where:

K ub
OL =

⌈
(1+ g2)

P
max

{
π1 log

(
σ 2

1

D1

)
,
π2

g2 log

(
σ 2

2

D2

)}⌉
,

(14a)

K lb
OL =

⌈
max

{
σ 2

z,1

P
log

(
σ 2

1

D1

)
,
σ 2

z,2

P
log

(
σ 2

2

D2

)}⌉
. (14b)

Proof: The upper and lower bounds in (14a) and (14b),
respectively, are obtained via lower and upper bounding ρk

in (11). A detailed proof is provided in Appendix A-B. �

D. JSCC-OL vs. Separate Source-Channel Coding

Next, we focus on the symmetric setting in which
σ 2

1 = σ 2
2 = σ 2

s , σ 2
z,1 = σ 2

z,2 = σ 2
z and D1 = D2 = D. As

symmetry implies the same rate should be allocated for send-
ing both sources, we set g = 1. In the following, we compare
the source-channel bandwidth of the JSCC-OL scheme with
that of separate source-channel coding (SSCC) for the GBCF
when the sources and the noises are independent, i.e., ρs = 0
and ρz = 0. While the JSCC-OL scheme operates in the finite
horizon regime, the SSCC scheme applies coding over blocks
of source-pair samples, and uses asymptotically long channel
codes. Clearly, by coding over multiple samples of source pairs
one can obtain MSEs which are at least as low as the MSEs
achieved by linear transmission schemes.

Consider a coding scheme which requires (on average)
K channel uses to send m samples of source pairs in order
to achieve a target MSE D. We define the source-channel
bandwidth ratio of this scheme as κ � K/m.

As the JSCC-OL scheme applies uncoded transmission, then
m = 1, and its source-channel bandwidth ratio is given by
κOL = KOL. It was shown in [40, Th. 2] that for the symmetric
setting with ρs = 0, SSCC is optimal. Let κsep denote the
source-channel bandwidth ratio of the optimal SSCC, which
applies the optimal source compression followed by a capacity
achieving channel code. Since ρs = 0, the optimal source code
compresses each of the Gaussian sources separately via an
optimal rate-distortion code [41, Th. 13.3.2], resulting in two
independent messages. As the optimal channel code for the
GBCF is not known, in the following we consider upper and
lower bounds on κsep.

A lower bound on κsep is obtained by using the upper bound
on the symmetric achievable rate for the GBCF, stated in
[8, p. 671], i.e., by letting one of the receivers have access
to both channel outputs. Applying a simple manipulation to
the results in [8, p. 671] we obtain that if R is a symmetric
achievable rate for the GBCF, and ρz = 0, then:

R <
1

2
log

(√
9

4
+ 2P

σ 2
z
− 1

2

)
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(a)= 1

2
log

(√
9

4
+ 2SNR− 1

2

)
, (15)

where in (a) we set SNR � P
σ 2

z
. For completeness, this analysis

is provided in Appendix A-C. The lower bound on κsep is thus
given by:

κsep ≥
log
(

σ 2
s

D

)

log

(√
9
4 + 2SNR− 1

2

) � κ lb
sep.

An upper bound on κsep is obtained by using the LQG channel
code of [9], which is the best known channel code for the
GBCF:

κsep ≤
log
(

σ 2
s

D

)
2 log |a1| � κub

sep,

where a1 is defined in [9, eq. (14)]. A detailed description of
the LQG scheme is provided in the following Section IV-A.
Recall that for ρz = 0 the LQG code of [9] is the optimal
linear channel coding scheme in the sense of maximal sum-
rate [21], which motivates focusing on ρz = 0. In the fol-
lowing proposition we upper bound the terms KOL− κub

sep and
KOL − κ lb

sep:
Proposition 1: In the symmetric setting with ρs = ρz = 0,

KOL − κub
sep and KOL − κ lb

sep are upper bounded by:

KOL − κub
sep ≤

⌈
2 log

(
σ 2

s

D

)⌉
, (16a)

KOL − κ lb
sep ≤

⌈(
2 + 2

SNR
− 1√

2SNR

)
log

(
σ 2

s

D

)⌉
. (16b)

Proof: The proof of (16a) is detailed in Appendix A-D.
The proof of (16b) is detailed in Appendix A-E. �

We note that the right-hand side (RHS) of (16a) is inde-
pendent of the SNR, while both KOL and κub

sep increase when
SNR decreases. Therefore, (16a) implies that for low enough
SNR, KOL−κub

sep � KOL, which implies that the gap becomes
negligible compared to KOL and κub

sep for sufficiently low SNR.
For instance, letting σ 2

s = 1 and D = 10−2, we obtain⌈
2 log σ 2

s
D

⌉
= 10. For P = 0.001 and σ 2

z = 1, we have κub
sep =

9213 and therefore KOL ≤ 9223; thus, (KOL − κub
sep)/KOL ≈

10−3. An explicit calculation of KOL via (11)–(12) results
in KOL = 9213, thus, for this setting KOL = κub

sep, indeed
demonstrating that the gap in (16a) is negligible compared
to KOL and κub

sep. It should be noted that κub
sep is achieved by

applying source and channel coding with an asymptotically
large blocklength. In particular, in contrast to the JSCC-OL
scheme, coding takes place over multiple samples of source
pairs, and for κub

sep to be approached infinitely many channel
uses are required, which results in a large delay and a high
complexity. On the other hand, the JSCC-OL scheme uses
a finite number of channel symbols for the transmission of
a single source pair. In spite of this fundamental difference,
Prop. 1 shows that in the low SNR regime the performance
loss of the JSCC-OL scheme compared to the SSCC scheme
is negligible.

We also note that in the low SNR regime the RHS of (16b)

is approximately given by
⌈

log
(

σ 2
s

D

)
2

SNR

⌉
. While the RHS

of (16b) only constitutes an upper bound, simulation results
indicate that indeed, in the low SNR regime, KOL − κ lb

sep

increases proportionally to 1
SNR . Based on the simulation

results, we conjecture that this negative result is due to the
fact that the upper bound in (15) based on [8, p. 671] is not
tight.

Next, we discuss a control theoretic approach for the
problem of transmitting correlated Gaussian sources over the
GBCF.

IV. JSCC BASED ON THE LQG SCHEME

It was observed in [20] and [42] that there is a natural
duality between the problem of FB stabilization and com-
munications over PtP Gaussian channels with FB. Based on
this duality, results and tools from control theory were used
to design channel codes for PtP Gaussian channels with FB.
This duality was also exploited to construct channel codes
for multiuser Gaussian channels with FB: In [20] a duality
between communications over the GBCF with unit-variance
independent noise components, and a FB stabilization problem
was established; yet, [20] did not present an explicit FB
communications scheme. In [9], a scheme which belongs to
the class of schemes analyzed in [20] was presented. This
scheme, referred to as the LQG scheme, also supports the
communications for GBCFs with correlated noise components.

The LQG scheme achieves the best known information
rates over the GBCF. Furthermore, [9, Lemma 1] characterizes
a linear relationship between the achievable rates and the
achievable MSE exponents, which correspond to the slope
of decay of the logarithm of the MSE for sufficiently large
number of channel uses. Therefore, for sufficiently large
number of channel uses, higher achievable rates correspond to
higher rate of decay of the MSE. This implies that for large
enough number of channel uses (or low enough MSEs), the
LQG scheme is preferable compared to schemes which achieve
lower rates. This, together with the time-invariant property of
the LQG scheme, motivates studying the JSCC-LQG scheme
in the finite horizon regime.

We emphasize that the original LQG scheme in [9] is
designed to optimize the infinite horizon channel coding rate,
while in this work we focus on JSCC in the finite horizon
regime. These two differences give rise to two challenging
research problems: The first problem is the characterization of
the minimal number of transmissions required by the JSCC-
LQG scheme to achieve a target MSE pair given a specific
initialization, and the second is the optimization of the initial
transmission of the JSCC-LQG scheme. In this section we
address these two research problems. The main difficulty in
designing a time-varying finite horizon JSCC-LQG scheme
for GBCFs, follows since constraining the controller as in (5)
results in minimization problems which do not have explicit
solutions. Furthermore, typically, an LQG scheme is designed
for a specified LTI system [10, Ch. 4.1], and it is not clear
how to specify an LTI system to achieve a target finite horizon
performance. Therefore, our approach in this section is to
adapt the LQG scheme of [9] to the transmission of Gaussian
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sources over GBCFs and analyze the finite horizon behavior
of the adapted schemes. We investigate how to initialize the
new JSCC-LQG scheme in order to minimize the number of
channel symbols required to achieve a target MSE pair. For
the symmetric setting, we introduce a new initialization by
scaling the transmitted signals, which results in a significantly
better finite horizon performance without degrading the infinite
horizon performance. In particular, we show that the new
proposed scaling technique: 1) Optimally exploits the available
transmission power subject to the per-symbol average power
constraint in (5), 2) Minimizes the distance between the
covariance matrix of the JSCC-LQG initial state and the
covariance matrix of its steady-state (subject to the per-symbol
average power constraint in (5)), and 3) Achieves the same
MSE exponents as in [9]. Thus, the JSCC-LQG scheme derived
in this work is time-invariant, achieves the best known infinite
horizon performance, and achieves a very good performance
in the finite horizon regime.

A. The LQG Scheme for JSCC

In this section we investigate the application of the LQG
scheme of [9] to the transmission of a pair of Gaussian
sources over the GBCF. The JSCC-LQG scheme is derived
by mapping the FB control problem into a linear code for
the GBCF. The asymptotic performance of this scheme is
determined by the eigenvalues of the open-loop matrix of
a linear system with unit memory representing the encoder.
These eigenvalues are determined by the minimal power
required to stabilize the system using the FB. In the finite
horizon regime, the JSCC-LQG scheme is terminated after
K channel uses when the target MSE pair is met.

Consider a two-dimensional unstable dynamical system,
depicted in Fig. 3, which is stabilized by a controller observing
the entire system state vector, Uk = [U1,k, U2,k]T . At time k
the controller outputs a scalar signal Xk , which is received
after being corrupted by additive Gaussian noises. Recall that
Yk is the noisy received control signal at the output of the

channel at time k, stated in (2), and let A =
[

a1 0
0 a2

]
with

ai ∈ R, a1 �= a2, |ai | > 1.7 Recall (13) in which F is a
deterministic matrix, and W ∼ N (0, Qw) independent of S.
The source encoding is incorporated into the control problem
by generating the initial state as a function of the source
samples:

U1 = FS+W. (17)

The system state vector at time k, Uk , recursively evolves via:

Uk = AUk−1 + Yk−1, k = 2, 3, . . . , K . (18)

Encoding: In the communications problem that correspond
to the control problem, the encoder is the combination of
the system stated in (18) and the controller, see Fig. 3. At
each time index, the encoder recursively computes Uk , and
transmits Xk obtained from Uk using the linear controller
presented in [9, Lemma 4]: Xk = −CT Uk , where C =

7Note that if a1 = a2 then the pair (A, B) is not controllable,
see [10, Definition 4.1.1 and Proposition 4.4.1].

Fig. 3. Control system modeling of transmission over the GBCF. The states
of the system are denoted by Uk = [U1,k , U1,k ]T . The controller generates a
scalar signal Xk , and the noisy channel outputs Y1,k and Y2,k , represented as
the vector Yk = [Y1,k , Y1,k ]T , are fed back to the system with a unit delay.
(Ŝ1,k , Ŝ2,k) are the reconstructions of (S1, S2) after the k’th channel use.

[c1, c2]T . The vector C is given by C = (BT GB+1)−1AGT B,
where B is defined above (2), and G is the unique positive-
definite solution of the discrete algebraic Riccati equation
(DARE) [9, eq. (22)]:

G = AT GA− AT GB(BT GB+ 1)−1BT GA, (19)

such that the magnitudes of both eigenvalues of the matrix
A − BCT are smaller than 1. It follows from [9, Lemma 4]
that, as k →∞, the covariance matrix of Uk , Qu,k , converges
to the solution of the discrete algebraic Lyapunov equation
[9, eq. (23)]:

Qu = (A − BCT )Qu(A − BCT )T +Qz, (20)

where the solution of (20) is restricted to be a positive
semidefinite matrix. Finally, in [9, Lemma 4] the matrix A
is obtained from the minimum asymptotic average power via:
P(A, Qz) = CT QuC = trace(GQz), see [9, eq. (24)].

The JSCC-LQG scheme described above can be readily
stated within the class of linear and memoryless schemes
defined in Subsection II-C: The encoder state update for
the JSCC-LQG scheme stated in (18) exactly follows the
relationship in (7), while the transmitted signal is given by
Xk = TT

k Uk with TT
k = −CT .

Decoding: The work [9] considered U1 generated with
F = I and W = 0 in (17), and used the so-called “zero
trajectory” (ZT) detector. This detector recursively estimates
Ui,k via [9, eq. (18)]:

Ûi,1 = 0, Ûi,k = aiÛi,k−1 + Yi,k−1, (21)

for k = 2, 3, . . . , K +1. Then, it estimates Si from Ûi,k+1 via
[9, Sec. IV.A]:

Ŝi,k = −a−k
i Ûi,k+1, (22)

which results in the MSE proof of [9, Lemma 3]:

E{(Si − Ŝi,k )
2} = a−2k

i E{U2
i,k+1}. (23)

Remark 6: Note that in contrast to the JSCC-OL scheme,
in the JSCC-LQG scheme the encoder and the decoders
are decoupled. More precisely, in the JSCC-OL scheme the
transmitted signal at time k is a linear combination of the
estimation errors at time k − 1. On the other hand, in the
JSCC-LQG scheme the transmitted signal at time k, Xk ,
depends only on Uk , and is not a function of Ûi,k or Ŝi,k .
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B. Initialization of the JSCC-LQG Scheme

Similarly to Subsection III-B, optimizing over all determin-
istic matrices F and over all correlation matrices Qw in (17)
is computationally very intensive. An alternative approach is
to select F and W, such that Qu,1, the covariance matrix
of U1, will be equal to Qu , which is the solution of (20).
The motivation for this approach is two-fold:

1) The LQG has the best known infinite horizon perfor-
mance, i.e, MSE exponent, thus, it is preferable that the
system will achieve this MSE exponent for every k.

2) When Qu,1 = Qu then Pk = P,∀k. Therefore, this
initialization leads to optimal utilization of the available
transmission power.

To rigorously analyze the impact of JSCC-LQG initializa-
tion via (17) on the finite horizon performance, we define
a distance between two correlation matrices, e.g., Qu,1 and
Qu , by D(Qu, Qu,1) = ||Qu − Qu,1||F, where ||Q||F =√∑2

i=1
∑2

j=1([Q]i, j )2 is the Frobenius matrix norm, see, e.g.,
[7, Sec. IV.A].

Note that the initialization objectives in the finite horizon
regime for the JSCC-LQG and for the JSCC-OL schemes are
fundamentally different: The JSCC-OL initialization aims at
increasing |ρ0|, while the JSCC-LQG initialization aims at
minimizing D(Qu, Qu,1) via properly selecting F and W. In
fact, in some cases, e.g., when ρ∗ < |ρs |, increasing |ρ0|
increases the distance between the initial and steady states.

In the next two subsections we consider the special case
of initialization with F = I and W = 0: In Subsection IV-C
we present a new MMSE decoder which achieves MSE
pairs lower than the MSE pairs achieved by the ZT decoder
presented in [9], and in Subsection IV-D we analyze the
finite horizon performance of the JSCC-LQG scheme with
this initialization in the general setting. The JSCC-LQG
with the general initialization U1 = FS + W is studied in
Subsection IV-E, in which we focus on the symmetric setting.

C. An Improved JSCC-LQG Decoder

In this subsection we consider initialization with F = I and
W = 0. Note that the decoding rule (22) is not necessarily
optimal in the instantaneous MMSE sense. Let M � A −
BCT denote the closed-loop matrix, and let Qu,k � E

{
UkUT

k

}
denote the state covariance matrix at time k, with Qu,1 = Qs .
In (B.1) we show that the closed-loop dynamics of the system
is given by:

Uk = (A − BCT )Uk−1 + Zk−1,

while in (B.7) we show that Qu,k is given by:

E
{

UkUT
k

}
= Mk−1Qs(MT )k−1 +

k−2∑
l=0

MlQz(MT )l .

The MMSE estimator of Si , based on the observation Ûi,k+1
in (21) is stated in the following theorem:

Theorem 2: The MMSE estimator of Si , i = 1, 2, at time k,
based on the observation Ûi,k+1 computed via (21), is:

Ŝi,k = [MkQs]i,i − σ 2
i ak

i

[Qu,k+1]i,i − 2ak
i [MkQs]i,i + σ 2

i a2k
i

Ûi,k+1 . (24)

Furthermore, the MSE of Ŝi,k is given by:

E
{
(Si− Ŝi,k )

2
}
= σ 2

i [Qu,k+1]i,i −
([MkQs]i,i

)2
[Qu,k+1]i,i−2ak

i [MkQs]i,i+σ 2
i a2k

i

, (25)

and as k →∞ the MSE expression in (25) coincides with the
MSE of the decoder in (22).

Proof: The proof is provided in Appendix B-A. �
Remark 7: Since the estimator in (24) is the optimal esti-

mator of Si based on the observation Ûi,k+1, it clearly achieves
an MSE value smaller than or equal to that achieved by the
estimator in (22). In particular, (24) outperforms (22) in the
finite horizon regime, i.e., for large MSEs, see Fig. 6.

D. Finite Horizon Analysis of JSCC-LQG

Next, we study the JSCC-LQG scheme with the decoder
(24) in the finite horizon regime. We begin with the average
instantaneous transmission power which we denote by Pk . In
contrast to the JSCC-OL scheme in which Pk = P,∀k, in the
JSCC-LQG scheme Pk varies with k. While the LQG theory
implies that Pk → P asymptotically as k → ∞, it does not
constrain Pk for any finite k, hence Pk may be larger than
P , thus, violating the per-symbol average power constraint in
(5). This implies that for specific P, σ 2

1 and σ 2
2 , there are pairs

of sources which cannot be transmitted using the JSCC-LQG
scheme with the initialization U1 = S, i.e., setting F = I
and W = 0 in (17). In the following subsection, we present
a sufficient condition under which the JSCC-LQG scheme,
initialized with U1 = S, satisfies (5). For the symmetric setting
we use the same approach to find a necessary and sufficient
condition, see Subsection IV-E.

1) A Sufficient Condition for Satisfying the Average per-
Symbol Power Constraint: Let [λ1, λ2]T denote the eigenval-

ues of the closed-loop matrix M, and let V =
[
v1 v2
v3 v4

]
be

a matrix whose columns are the corresponding eigenvectors
of M. Recall that C = [c1, c2]T and for ς1, ς2 ≥ 0 and
ρ ∈ (−1, 1), define:

ω1(ς1, ς2, ρ)

� c1(ς1v1v4 − ρς2v1v2)+ c2(ς1v3v4 − ρς2v2v3)

det(V)
(26a)

ω2(ς1, ς2, ρ)

� c1(ρς2v1v2 − ς1v2v3)+ c2(ρς2v1v4 − ς1v3v4)

det(V)
(26b)

ω3(ς1, ς2, ρ)

� −ς2
√

1− ρ2(c1v1v2 + c2v2v3)

det(V)
(26c)

ω4(ς1, ς2, ρ)

� ς2
√

1− ρ2(c1v1v2 + c2v1v4)

det(V)
. (26d)

Further define:

α1(ς1, ς2, ρ) � ω2
1(ς1, ς2, ρ)+ ω2

3(ς1, ς2, ρ) (27a)

α2(ς1, ς2, ρ) � ω2
2(ς1, ς2, ρ)+ ω2

4(ς1, ς2, ρ) (27b)

α3(ς1, ς2, ρ) � 2ω1(ς1, ς2, ρ)ω2(ς1, ς2, ρ)

+ 2ω3(ς1, ς2, ρ)ω4(ς1, ς2, ρ), (27c)
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K ub
LQG =

⎡
⎢⎢⎢⎢

max

⎧⎪⎨
⎪⎩

[
log
(

ϑ1
D1

)]+
2 log |a1| ,

[
log
(

ϑ2
D2

)]+
2 log |a2|

⎫⎪⎬
⎪⎭

⎤
⎥⎥⎥⎥

(30a)

K lb
LQG =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢

max

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
log

([
σ 2

1 σ 2
z,1−β2

1−D1σ
2
z,1

]+
(2β1+σ 2

1 )D1

)]+

2 log |a1| ,

[
log

([
σ 2

2 σ 2
z,2−β2

2−D2σ
2
z,2

]+
(2β2+σ 2

2 )D2

)]+

2 log |a2|

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎥⎥⎥

. (30b)

and finally define:

η1(ς1, ς2, ρ) � α1(ς1, ς2, ρ)

1− λ2
1

(28a)

η2(ς1, ς2, ρ) � α2(ς1, ς2, ρ)

1− λ2
2

(28b)

η3(ς1, ς2, ρ) � α3(ς1, ς2, ρ)

1− λ1λ2
. (28c)

The following proposition characterizes source pairs for which
the per-symbol average power constraint in (5) is satisfied
when the JSCC-LQG scheme is used:

Proposition 2: If the following condition holds for every
k = 1, 2, 3, . . .:

λ
2(k−1)
1

(
α1(σ1, σ2, ρs)− η1(σz,1, σz,2, ρz)

)
+ λ

2(k−1)
2

(
α2(σ1, σ2, ρs)− η2(σz,1, σz,2, ρz)

)
+ (λ1λ2)

k−1(α3(σ1, σ2, ρs)− η3(σz,1, σz,2, ρz)
) ≤ 0, (29)

then the JSCC-LQG scheme satisfies the per-symbol average
power constraint in (5).

Proof: The proof is provided in Appendix B-B. �
Remark 8: Note that the sufficient condition in Prop. 2 is

implicit. Yet, Prop. 2 can be used to formulate explicit suffi-
cient conditions (on the sources) for the JSCC-LQG scheme
to satisfy the per-symbol average power constraint in (5). For
example, if α j (σ1, σ2, ρs) < η j (σz,1, σz,2, ρz), j = 1, 2, 3,
and sgn(λ1λ2) = 1, then Pk ≤ P,∀k.

2) Analysis of the Termination Time: Let KLQG denote
the minimal number of channel uses required to achieve an
average MSE pair (D1, D2) with the JSCC-LQG scheme
using the decoder (24). In this subsection we present upper
and lower bounds on KLQG. An explicit characterization
of KLQG for the symmetric setting is provided in Thm. 5,
see Subsection IV-E.3.8

We begin with the following definitions:

τ1 � σ1 (|v1v4λ1| + |v2v3λ2|)+ |ρsσ2v1v2|(|λ2| + |λ1|)
| det(V)|

τ2 � σ2
√

1− ρ2
s (|v1v2|(|λ2| + |λ1|))
| det(V)|

τ3 � |σ1v3v4|(|λ1| + |λ2|)+ |ρsσ2| (|v1v4λ2| + |v2v3λ1|)
| det(V)|

8Note that using the approach of Thm. 5 for the general setting results only
in an implicit characterization of KLQG.

τ4 � σ2
√

1− ρ2
s (|v1v4λ2| + |v2v3λ1|)
| det(V)|

ϑ1 � τ 2
1 + τ 2

2 + [Qu]1,1

ϑ2 � τ 2
3 + τ 2

4 + [Qu]2,2

β1 � σ 2
1 (|v1v4λ1| + |v2v3λ2|)+ |ρsσ1σ2v1v2|(|λ2| + |λ1|)

| det(V)|
β2 �

σ 2
2 (|v1v2λ2| + |v2v3λ1|)+ |ρsσ1σ2v3v4|(|λ2| + |λ1|)

| det(V)| ,

where Qu is the unique positive semidefinite solution of
(20). The following theorem states upper and lower bounds
on KLQG:

Theorem 3: The JSCC-LQG scheme with the MMSE
decoder in (24) and target MSE values D1 and D2 terminates
within time K lb

LQG ≤ KLQG ≤ K ub
LQG, where K ub

LQG and K lb
LQG

are given in (30) at the top of the page.
Proof: The proof is provided in Appendix B-C. �

E. Finite Horizon Analysis of JSCC-LQG
for the Symmetric GBCF

In this subsection we study the JSCC-LQG scheme in the
symmetric setting, for different combinations of initialization
parameters F and W, in (17). We first consider initialization
based on the assignment F = √γ · I, γ > 0, and W = 0,
for which we explicitly derive the value of γ , that min-
imizes the MSE subject to the per-symbol average power
constraint (5) for all time indices k. We show that this
optimal γ also minimizes the distance D(Qu, Qu,1) among
all scaling coefficients that satisfy (5).

Next, we consider the general initialization framework
of (17). We show that when W �= 0, or when the off-diagonal
elements of F are non-zero, then JSCC-LQG has an MSE floor.
A numerical comparison of the different initialization methods
indicates that the lowest MSEs are achieved when the optimal
scaling U1 = √γ S is applied.

Lastly, for U1 = √γ S, we present an explicit characteriza-
tion of KLQG in terms of the roots of a quadratic polynomial.
Note that since a1 �= a2 (see Subsection IV-A), in the
symmetric setting we have a1 = −a2, and the components of
the eigenvectors of the matrix M satisfy v1 = v4, and v2 = v3.

1) Initialization to Satisfy the per-Symbol Average Power
Constraint: In this subsection we study initialization based
on the parameters F = √γ · I and W = 0. To find the scaling
value γ which minimizes the MSE subject to the per symbol
average power constraint (5), we first derive necessary and
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sufficient conditions for (5) to be satisfied for the JSCC-LQG
scheme when γ = 1. Then, from these conditions, we find
the maximal γ for which (5) is satisfied for all time indices k.
Finally, we show that this maximal γ simultaneously
minimizes the MSE and the distance D(Qu, Qu,1), for U1 =√

γ S, subject to (5). We first define the following quantities:

μ0 = 2c2
1σ

2
s (1− ρs) (31a)

μ1 = 2c2
1σ

2
z (1− ρz + (1+ ρz)a2

1)

1− λ4
1

(31b)

μ2 = 2c2
1σ

2
s (1+ ρs)a

4
1 (31c)

μ3 = 2c2
1σ

2
z ((1− ρz)λ

2
1 + (1+ ρz)a4

1)

1− λ4
1

. (31d)

Necessary and sufficient conditions for the power constraint to
be satisfied for the JSCC-LQG scheme, with the initialization
in (18), are stated in the following theorem.

Theorem 4: In the symmetric GBCF, the JSCC-LQG
scheme satisfies the per-symbol average power constraint (5)
if and only if μ0 ≤ μ1 and μ2 ≤ μ3.

Proof Outline: In Appendix C-A we show that:

Pk =
{

P + (μ0 − μ1)λ
2(k−1)
1 , k is odd,

P + (μ2 − μ3)λ
2(k−1)
1 , k is even.

(32)

Since |λ1| < 1, it follows that (5) is satisfied if and only if
μ0 ≤ μ1 and μ2 ≤ μ3. �

From eq. (32) and from the fact that |λ1| < 1, it follows
that if (5) is satisfied for some odd k, then it is satisfied for
every odd k. The same observation holds for even values of k.
Thus, using (32) we can characterize the range of γ for which
(5) is satisfied. We further note that scaling the sources at the
transmitter can be beneficial even if (5) is satisfied for the
initialization U1 = S. As we show next, by scaling the sources
we obtain that Pk is equal to P in at least (approximately) half
of the time indices. Consequently, the available transmission
power is used more efficiently. In the following proposition we
characterize the scaling factor which minimizes the MSE, for
the decoder (24), while satisfying the constraint (5). Before
stating the proposition we define ν to be:

ν = min

{
σ 2

z (1− ρz + (1+ ρz)a2
1)

(1− λ4
1)(1− ρs)

,

σ 2
z ((1− ρz)λ

2
1 + (1+ ρz)a4

1)

(1− λ4
1)(1+ ρs)a4

1

}
, (33)

and let Uk(γ ) denote the system state vector at time index k,
when U1 = √γ · S, for some γ > 0. In a similar manner we
also define Ûi,k(γ ) and Qu,k(γ ).

Proposition 3: The optimal scaling factor, in the MMSE
sense, is

√
γ =

√
ν
σ 2

s
. Furthermore, when U1 = √γ · S, the

MMSE estimator of Si , i = 1, 2, at time k, based on the
observation Ûi,k+1(γ ) is:

Ŝi,k =
√

γ
([MkQs]i,i − σ 2

s ak
i

)
[Qu,k+1(γ )]i,i− 2γ ak

i [MkQs ]i,i+ γ σ 2
s a2k

i

Ûi,k+1(γ ),

(34)

and the MSE of Ŝi,k is given by:

E
{
(Si − Ŝi,k )

2
}

= σ 2
s [Qu,k+1(γ )]i,i − γ

([MkQs]i,i
)2

[Qu,k+1(γ )]i,i − 2γ ak
i [MkQs]i,i + γ σ 2

s a2k
i

. (35)

Proof Outline: First, we show that (33) constitutes an upper
bound on the variance of the sources transmitted via a JSCC-
LQG scheme with the initialization U1 = S, which also
satisfies (5). Explicitly writing the conditions of Thm. 4, i.e.,
μ0 ≤ μ1 and μ2 ≤ μ3, we obtain:

σ 2
s (1− ρs) ≤ σ 2

z (1− ρz + (1+ ρz)a2
1)

1− λ4
1

,

σ 2
s (1+ ρs)a

4
1 ≤

σ 2
z ((1− ρz)λ

2
1 + (1+ ρz)a4

1)

1− λ4
1

.

This implies that:

σ 2
s ≤ min

{
σ 2

z (1− ρz + (1+ ρz)a2
1)

(1− λ4
1)(1− ρs)

,

σ 2
z ((1− ρz)λ

2
1 + (1+ ρz)a4

1)

(1− λ4
1)(1+ ρs)a4

1

}
.

Therefore, the maximal possible scaling factor which satis-
fies (5) is

√
ν
σ 2

s
. In Appendix C-B we also derive the MMSE

estimator for the scaled transmission, stated in (34), and obtain
its MSE, given by (35). Furthermore, we show that scaling
by
√

ν
σ 2

s
minimizes the MSE. The detailed proof is provided

in Appendix C-B. �
Remark 9: As shown in the proof of Prop. 3, the MSE

decreases when the scaling factor increases. Therefore, the
optimal scaling factor is determined by the per-symbol average
power constraint. This implies that when the optimal scaling
factor is used, at least one of the following statements hold:
1) Pk = P for every odd k, and Pk ≤ P for every even k;
2) Pk = P for every even k, and Pk ≤ P for every odd k.

Next, we demonstrate the results of Thm. 4 and Prop. 3.
Example 2: Consider the transmission of a pair of Gaussian

sources with variance σ 2
s and correlation coefficient ρs = 0.4,

over a GBCF with σ 2
z = 1.5 and ρz = 0.3. We further set

P = 1. Fig. (4a) depicts Pk vs. k for the JSCC-LQG scheme
without scaling for σ 2

s = 1 and σ 2
s = 5, and for the JSCC-LQG

scheme with optimal scaling factor specified by Prop. 3. As
ρs = 0.4, it follows that the optimal scaling factor for σ 2

s = 1
is
√

γ = 2.0227, while the optimal scaling factor for σ 2
s = 5

is
√

γ = 0.9046. In both cases Pk is the same, illustrated
by the blue solid line in Fig. (4a). It can be observed that
both the non-scaled JSCC-LQG scheme with σ 2

s = 1 and the
scaled JSCC-LQG scheme satisfy (5); yet, the scaled scheme
uses the available power more efficiently. On the other hand,
when σ 2

s = 5, then the non-scaled JSCC-LQG scheme violates
the per-symbol average power constraint (5). It can further be
observed that in the scaled scheme, Pk = P for all even values
of k, as stated in Remark 9. Finally, Fig. 4b illustrates ν,
computed using (33), as a function of ρs . Following the
result of Prop. 3, in order to maximize the MSE, one should
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Fig. 4. Satisfying the per-symbol average power constraint for σ2
s = 1, ρs = 0.4, ρz = 0.3, σ 2

z = 1.5 and P = 1. (a) Pk vs. k for scaled and non-scaled
JSCC-LQG schemes. (b) ν as a function of ρs , see (33).

use ν values that lie on the boundary of the shaded area
in Fig. 4b.

The following proposition states that the scaling presented
in Prop. 3 also minimizes the distance D(Qu, Qu,1) among all
scaling coefficients which satisfy (5).

Proposition 4: Let γ > 0 and write the solution of (20),

Qu , as Qu = σ 2
u

[
1 ρu

ρu 1

]
. Under the average per-symbol

power constraint (5), the γ which minimizes the distance
D(Qu, γ Qs) is given by γ = ν

σ 2
s

, where ν is given in (33).
Moreover, the scaling which minimizes D(Qu, γ Qs), regard-
less of (5), is given by:

γ ∗ = σ 2
u (1+ ρuρs)

σ 2
s (1+ ρ2

s )
.

Proof: The proof is provided in Appendix C-C. �
Clearly, if ρs �= ρu , then D(Qu, γ Qs) > 0,∀γ . Therefore,

in order to achieve a distance smaller than D(Qu,
ν
σ 2

s
Qs), it

is necessary to either add noise or rotate the sources, which
is facilitated in the general initialization (17). In the next
subsection we discuss two special instances of the general
initialization.

2) Investigation of the General Initialization via (17):
We first consider initialization via scaling and noise
addition:

Scaling and noise addition: Let F �
√

ξ0

[
1 0
0 1

]
,

ξ0 > 0, and Qw � σ 2
w

[
1 ρw

ρw 1

]
. Recall that the objective

of the initialization in the JSCC-LQG scheme is to minimize
D(Qu, Qu,1). Since S and W are independent, Qu,1 = Qu is
achieved by setting:

Qw =
[

σ 2
u − ξ0σ

2
s ρuσ 2

u − ξ0ρsσ
2
s

ρuσ 2
u − ξ0ρsσ

2
s σ 2

u − ξ0σ
2
s

]
. (36)

As Qw is a covariance matrix, its eigenvalues must be non-
negative. Thus, by explicitly expressing the eigenvalues using
σ 2

u , ρu , σ 2
s , and ρs , we obtain that ξ0 must lie in the following

range:

0 < ξ0 ≤ σ 2
u

σ 2
s

min

{
1+ ρu

1+ ρs
,

1− ρu

1− ρs

}
.

From (36) it directly follows that increasing ξ0
increases the component of the sources, i.e., FS,
in U1, and decreases the noise component W.
As our objective is to convey S, we set ξ0 =
σ 2

u
σ 2

s
min{ 1+ρu

1+ρs
, 1−ρu

1−ρs
}. Letting ξ1 � min

{
1+ρu
1+ρs

, 1−ρu
1−ρs

}
≤ 1,

the expression for Qw in (36) can be written as:

Qw = σ 2
u

[
1− ξ1 ρu − ξ1ρs

ρu − ξ1ρs 1− ξ1

]
.

The MMSE estimator and its associated MSE, for the
initialization U1 = √ξ0 · S +W, can be found by following
similar steps to those leading to (34)–(35). In particular, we let
Uk(U1) denote the system state vector at time index k, for a
given initial state U1, and let Ûk(U1) be the estimate of U1 at
time k. The MMSE estimator for Si at time k can be expressed
as:

Ŝi,k =
√

ξ0
([MkQs]i,i − σ 2

s ak
i

)
[Qu,k+1(U1)]i,i − 2ξ0ak

i [MkQs]i,i + σ 2
u a2k

i

Ûi,k+1(U1),

and the achievable MSE is given by:

E
{
(Si − Ŝi,k )

2
}

= σ 2
s [Qu,k+1(U1)]i,i − ξ0

([MkQs]i,i
)2 + σ 2

s σ 2
wa2k

i

[Qu,k+1(U1)]i,i − 2ξ0ak
i [MkQs]i,i + σ 2

u a2k
i

.

Therefore, the MSE in the infinite horizon is given by:

lim
k→∞E

{
(Si − Ŝi,k )

2
}
= σ 2

s σ 2
w

σ 2
u
= σ 2

s (1− ξ1).

Comparing the asymptotic MSE obtained with the
initialization U1 = √ξ0S + W to the asymptotic MSE
obtained with the initialization of Prop. 3 (for which
limk→∞ E{(Si − Ŝi,k )

2} = 0), we observe that adding the
noise W results in an MSE floor. Note that while 1 − ξ1
reflects the difference between the initial state and the
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Fig. 5. MSE vs. number of channel uses for different values of ρs .
σ 2

s = 1, ρz = 0.3, σ 2
z = 1, and P = 0.5.

JSCC-LQG steady state, it is independent of σ 2
s and σ 2

u , and
therefore it does not reflect the finite horizon performance of
JSCC-LQG with the initialization U1 = √ξ0S +W . Thus,
1− ξ1 can be interpreted only as a measure of the MSE floor
due to the addition of the noise W in U1.

Extensive numerical study indicates that using noise addi-
tion to generate U1 results in higher MSEs than those achieved
with the optimal scaling presented in Prop. 3. On the other
hand, this initialization can achieve a lower MSE compared to
setting U1 = S.

Example 3: Fig. 5 depicts MSE vs. K for three different
values of ρs , ρs ∈ {−0.1, 0.4, 0.9}, for three different initial-
ization approaches: U1 = √ξ0S+W, U1 = S, and U1 = √γ S,
where γ is the optimal scaling value specified in Prop. 3. Here,
σ 2

s = 1, ρz = 0.3, σ 2
z = 1, P = 0.5, and Qu is computed to

be:

Qu ≈ 8.77299

[
1 −0.1377

−0.1377 1

]
.

It can be observed that as ρs is closer to ρu , the MSE floor
becomes smaller. It can further be observed that for high target
MSEs, the initialization U1 = √ξ0S+W is superior compared
to U1 = S. On the other hand, for all three values of ρs ,
initialization via U1 = √γ S achieves the lowest MSEs for all
values of K . These performance gaps are also reflected in the
distances D(Qu, Qu,1) for the different initializations: First,
note that for all considered values of ρs , D(Qu, Qs) ≈ 11.25,
and, indeed, the respective MSE curves are indistinguishable.
For ρs = −0.1, D(Qu, γ Qs) = 0.735, while for ρs = 0.9,
D(Qu, γ Qs) = 9.582, which explains the gap in performance
in favor of the lower ρs . Finally, we note that while the
distance in the case of U1 = √ξ0S+W is zero by construction,
the addition of noise increases the MSE which results in an
inferior performance compared to initializing via U1 = √γ S.

Remark 10: When the encoder and the decoders share a
common source of randomness [38], then the noise W can
be removed, thus, eliminating the MSE floor observed in
Example 3.

Next, we briefly discuss generating U1 from S via multipli-
cation by a non-diagonal F.

Generating U1 via Multiplying S by F: Fixing W = 0, the
matrix F with which we achieve Qu,1 = Qu can be found by
applying the Cholesky decomposition to Qs and Qu : Qs =
LsLT

s , Qu = LuLT
u . The matrix F is given by F = LuL−1

s .
Since in this case F is lower triangular, U1,1 is a scaled version
of S1, while U2,1 is a linear combination of both S1 and S2.
Now, recall that in the LQG scheme the state is first estimated
via (21), and then, the sources are estimated from the estimated
states via, for example, (34). With this decoding sequence, as
U1,1 is a scaled version of S1, Rx1 first estimates U1,1, and
then estimates S1 from U1,k . In fact, in this case S1 enjoys the
optimal rate of decrease of the MSE as the covariance matrix
of the initial state is identical to the steady state covariance
matrix. However, at Rx2, since U2,1 is a linear combination
of S1 and S2 and since S1 is not known and not required at
Rx2, the MSE for estimating S2 from U2,k is generally higher
than the MSE achieved in estimating S2 out of U2,k generated
when U2,1 does not depend in S1. Thus, setting Qu,1 = Qu

via multiplying by F improves the performance at one receiver
while degrading the performance at the other receiver.

Additionally, note that letting Rx2 track (estimate) U1,1, and
then use it to estimate S1 at Rx2, results in a sub-optimal
estimate of U1,1 at Rx2 since U1,k is updated based only on
Y1,k−1 and U1,k−1. Therefore, as Rx2 does not observe Y1,k−1,
it cannot efficiently track it.

3) An Explicit Characterization of the Termination Time
KLQG: Lastly, we explicitly characterize KLQG for the scaled
JSCC-LQG, i.e., with U1 = √γ · S. We first define the
following quantities:

�(ς, ρ) �
ς2
((

v2
1 + v2

2 − 2ρv1v2
)2 + 4(1− ρ2)v2

1v2
2

)
det2(V)

(37a)

�0 �
σ 2

z + λ2
1�(σz , ρz)

1− λ4
1

, (37b)

�1 �
�(σz , ρz)+ σ 2

z λ2
1

1− λ4
1

. (37c)

�s � σ 2
s (v2

1 + v2
2 − 2ρsv1v2)

v2
1 − v2

2

(37d)

ϒ0 � �0(D − σ 2
s )− Dγ σ 2

s (37e)
ϒ1 � �0(σ

2
s − D)+ 2Dγ σ 2

s (37f)
ϒ2 � (γ�(σs , ρs)−�1)(σ

2
s − D)− γ�2

s (37g)
ϒ3 � �0(σ

2
s − D)+ 2Dγ�s , (37h)

Furthermore, let y be a positive integer, and define the func-
tions f (e)(y) � 2 · ⌈ y

2

⌉
, and f (o)(y) � 2 ·

⌈
y−1

2

⌉
+ 1.9 KLQG

is explicitly characterized in the following theorem:
Theorem 5: Let

(
x (e)

1 , x (e)
2

)
and

(
x (o)

1 , x (o)
2

)
denote the

roots of the polynomials P(e)(x) � ϒ0x2+ϒ1x − Dγ σ 2
s , and

P(o)(x) � ϒ2x2 + ϒ3x − Dγ σ 2
s , respectively. Furthermore,

define:

x (e)
0 �

⎧⎨
⎩

min{x (e)
1 , x (e)

2 }, −ϒ2
1

4Dγ σ 2
s
≤ ϒ0 < 0

a−4, otherwise.

9 f (e)(y) is “round up to the nearest even integer”, while f (o)(y) is “round
up to the nearest odd integer”.
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and

x (o)
0 �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a−2
1 , ϒ2 <

−ϒ2
3

4D1γ σ 2
s
,

min
{

x (o)
1 , x (o)

2

}
,

−ϒ2
3

4D1γ σ 2
s
≤ ϒ2 < 0,

Dγ σ 2
s

ϒ3
, ϒ2 = 0,

max
{

x (o)
1 , x (o)

2

}
, otherwise.

Then, KLQG is given by:

KLQG = min

{
f (e)

(⌈
− log x (e)

0

2 log |a1|

⌉)
,

f (o)

(⌈
− log x (o)

0

2 log |a1|

⌉)}
. (38)

Proof Outline: The detailed proof is provided in
Appendix C-D. We first note that the result of Thm. 5 holds if
γ is replaced by any arbitrary constant, regardless of whether
(5) is satisfied or not. The proof consists of the following steps:

1) From (35) we conclude that the decoder terminates
when:

σ 2
s [Qu,k+1(γ )]i,i − γ

([MkQs]i,i
)2

[Qu,k+1(γ )]i,i − 2γ ak
i [MkQs]i,i + γ σ 2

s a2k
i

≤ D.

(39)

Expressing [Qu,k+1(γ )]i,i and [MkQs]i,i in terms of
v1, v2, λ1, γ , and k, we observe that since λ1 = −λ2,
then a different analysis needs to be applied for even
and for odd values of k.

2) We let x = a−2k
1 , and recall that λ1 = 1

a1
(see

[42, Lemma 2.4]).
3) Using the definitions in step 2 we write (39) as a

quadratic polynomial in x . As even values and odd
values of k are analyzed separately, we use P(e)(x) to
denote the quadratic polynomial for even values of k,
and P(o)(x) to denote the quadratic polynomial for odd
values of k.

4) For even values of k, we find the minimal k for which
P(e)(x) ≤ 0 (for odd values of k we find the minimal k
for which P(o)(x) ≤ 0). KLQG is therefore a function of
the roots of the polynomials P(e)(x) or P(o)(x).

5) Explicitly computing the roots of the polynomials
P(e)(x) and P(o)(x) we obtain (38). �

Remark 11: Consider the expression for x (o)
0 . It can be

observed that if ϒ2 ≥ −ϒ2
3

4Dγ σ 2
s

and ϒ2 �= 0, then x (o)
0 is

one of the two real roots of P(o)(x), selected as follows: If
−ϒ2

3
4Dγ σ 2

s
≤ ϒ2 < 0 then it is shown in Appendix C-D that

P(o)(x) is concave with two positive roots: one smaller than 1
and one larger than 1. For this case, we choose the minimal
root. On the other hand, if 0 < ϒ2 then it is shown in
Appendix C-D that P(o)(x) is convex with one negative root
and one positive root smaller than 1. For this case, we choose

the maximal root. Note that when ϒ2 <
−ϒ2

3
4Dγ σ 2

s
then P(o)(x)

is concave and does not have any real roots. This implies that
the condition P(o)(x) ≤ 0 always holds, and the target MSE is
obtained for every k. Therefore, in this case we set x (o)

0 = a−2,

which results in KLQG = 1. Finally, when ϒ2 = 0, then x (o)
0

is a solution of a simple linear equation. For x (e)
0 we follow

similar steps while noting that ϒ0 < 0. Hence, for even values
of k we only need to analyze the case of a concave polynomial.

Recall that both the JSCC-OL scheme considered in
Section III and the JSCC-LQG scheme studied in this section
are linear and memoryless JSCC transmission schemes, see
Subsection II-C. In the next section, we use DP to formulate
a linear and memoryless JSCC transmission scheme which
outperforms both JSCC-OL and JSCC-LQG in the symmetric
setting.

V. LINEAR AND MEMORYLESS JSCC TRANSMISSION

SCHEME VIA DYNAMIC PROGRAMMING

A fundamental difference between the JSCC-OL and
the JSCC-LQG schemes discussed in Sections III and IV,
receptively, is the fact that the first is time-varying while the
second is time-invariant. Therefore, as stated in Subsection
II-C, the JSCC-OL scheme can better exploit the available
power and the correlation between the sources to achieve
MSEs lower than JSCC-LQG in the finite horizon regime
for some GBCF scenarios. On the other hand, the MSE
exponent of the JSCC-LQG scheme is larger than the MSE
exponent of the JSCC-OL scheme. Thus, for large enough
number of channel uses, the JSCC-LQG scheme achieves
MSE lower than JSCC-OL. As none of the two schemes,
JSCC-OL and JSCC-LQG, dominates the other in the finite
horizon regime, we utilize the the DP approach for solving
finite horizon control problems [10, Sec. 4.1] to derive the
JSCC-DP scheme which achieves MSE at least as low as the
smallest MSE among the JSCC-OL and JSCC-LQG schemes,
for any a-priori fixed finite number of channel uses.

A. Problem Formulation - Revisited

In this section we consider a complimentary problem to
the one formulated in Section II: Let DK denote the MSE
after K channel uses. Our objective in this section is to find
a linear and memoryless transmission scheme which, for a
given K , achieves the minimal MSE at each receiver, denoted
by DK ,min.

In the following we adopt (most of) the notations used in
Sections II and III, and denote the estimation error at Rxi after
k transmissions by εi,k−1 = Ŝi,k−1 − Si , i = 1, 2. As we focus
on linear and memoryless schemes, we let ε̂i,k−1 = bi,k Yi,k be
the estimator of εi,k−1, and write εi,k as:

εi,k =
(
εi,k−1 − bi,kYi,k

)
, bi,k ∈ R, (40)

Similarly to (10): Ŝi,k = −∑K
m=1 ε̂i,m−1. To simplify

the analysis, we limit our focus to the symmetric setting,
set |b1,k| = |b2,k|, and let bk � b1,k . Furthermore, follow-
ing [7] we let mk ∈ {1,−1} be a modulation coefficient. We
now have the following structure of Xk , the transmitted signal:

Xk
(a)= dk−1

(
ε1,k−1 + mk−1ε2,k−1

)
(b)= dk−1

((
ε1,k−2 − bk−1Y1,k−1

)
+mk−1

(
ε2,k−2 − mk−2bk−1Y2,k−1

))
, (41)
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where in (a) dk > 0 is a gain factor chosen to minimize DK

under the constraint Pk ≤ P; in (b) we used b2,k = mk−1bk .
Next, similarly to Section III, we let αi,k � E{ε2

i,k }, and
note that since b2,k = mk−1bk , then α1,k = α2,k � αk,∀k.
With this formulation, similarly to Section III, αk is the MSE
after k channel uses. Furthermore, we define rk � E{ε1,kε2,k}.
In Appendix D-B we show that the optimal choice of dk for
the proposed JSCC-DP scheme is such that the instantaneous
average transmission power obeys Pk = P . This results in the
following expression for dk :

dk =
√

P

2 (αk + mkrk)
. (42)

Finally, similarly to Section III, we initialize the scheme by
setting Ŝi,0 = 0, εi,0 = −Si , α0 = σ 2

s and r0 = ρsσ
2
s .

Similarly to the JSCC-OL scheme, the JSCC-DP scheme
described above can be stated within the class of linear and
memoryless schemes defined in Subsection II-C: The encoder
state update for the JSCC-DP scheme can be written in the
from of (7) by setting Uk = [ε1,k−1, ε2,k−1]T , the transmitted
signal Xk is a linear function of the encoder states as given
in (41), and the state evolves via Ui,k+1 ≡ εi,k = εi,k−1 −
ε̂i,k−1, ε̂i,k−1 = bi,k Yi,k .

Our objective is to minimize the MSE after K chan-
nel uses, over all possible vectors of estimation coefficients
b = [b1, b2, . . . , bK ] ∈ RK , and over all possible vec-
tors of modulation coefficients m = [m0, m1, . . . , mK−1] ∈
{1,−1}K . We denote this minimal MSE by DK ,min:

DK ,min = min
b∈RK ,m∈{1,−1}K

αK (m, b). (43)

As the joint minimization in (43) is computationally very
intensive, we define αK ,min(m) to be the minimal achievable
MSE after K channel uses, given a specific modulation
vector m:

αK ,min(m) = min
b∈RK

αK (m, b). (44)

We use DP to calculate αK ,min(m), thereby arriving at the
optimization problem:

DK ,min = min
m∈{1,−1}K

αK ,min(m), (45)

which can be solved by searching over the possible 2K

modulation vectors. In Remark 13 we comment on the
practical implementation of this search. In the sequel we
refer to the transmission scheme (40)–(41) which uses the
optimal b and m as the DP scheme. Next, we present the
algorithm for finding the minimizing b and the minimal
αK ,min(m) for a given m.

B. The Minimizing b and the Minimal αK ,min(m)

Let m be a given modulation vector. Then, from (1) and
(40)–(42) we obtain the following recursive expressions for
αk and rk (see Appendix D-A for the details):

αk = αk−1 + b2
k · (P + σ 2

z )

− bk
√

2P (αk−1 + mk−1rk−1) (46a)

rk = rk−1 + b2
kmk−1 · (P + ρzσ

2
z )

− bkmk−1
√

2P (αk−1 + mk−1rk−1). (46b)

Observe that (αk−1, rk−1) can be treated as a state variable,
which, given bk and m, evolves deterministically at time k.
Thus, finding αK ,min(m) can be cast as a DP with state
(αk−1, rk−1), actions bk , and cost function αK (m). Note that
with this formulation, given m, bk is a function of the constants
P, σ 2

z , ρz , and of (αk−1, rk−1). Hence, the last action bK is
the linear MMSE estimation coefficient for estimating ε1,K−1
from Y1,K .10 Finally, the DP solution [10, Ch. 1.3] implies that
αk can be written as αk = ηk−1αk−1 + θk−1mk−1rk−1, where
the sequences ηk and θk, k = 1, 2, . . . , K − 1, are obtained
using backwards recursion (in time). The minimizing b and
the sequences ηk and θk are given in the following theorem:

Theorem 6: For a fixed m, the sequences ηk and θk,
k = 1, 2, . . . , K − 1, are defined through the backwards
recursions (in time):

ηk−1 = ηk − P (ηk + θkmkmk−1)
2

2(ηk(P + σ 2
z )+ θkmkmk−1(P + ρzσ 2

z ))

(47a)

θk−1 = θkmkmk−1

− P (ηk + θkmkmk−1)
2

2(ηk(P + σ 2
z )+ θkmkmk−1(P + ρzσ 2

z ))
, (47b)

where ηK−1 =
(

1− P
2(P+σ 2

z )

)
and θK−1 = − P

2(P+σ 2
z )

.

Furthermore, the coefficients bk, k = 1, 2, . . . , K , are given
by (48) at the bottom of the page. The corresponding MSE at
time K is the minimal MSE given m.

Proof: The proof is provided in Appendix D-A. �
Thm. 6 can be used for calculating the optimal b for a

given m. The procedure is summarized in Alg. 1.
Remark 12: As we aim at minimizing αK (m, b) for a given

m, then bK is the MMSE estimation coefficient for estimating
ε1,K−1 from Y1,K , given m. It should be noted that for k < K ,
setting the bk’s to be the MMSE estimation coefficients is not
necessarily optimal as the bk’s affect the future time indices.
With this observation, it is clear why the JSCC-OL scheme,
which applies the MMSE estimator for all k’s, is not optimal,
even among the memoryless linear transmission schemes.

10Note that since ε1,k−1 and Y1,k are jointly Gaussian, then in this case
the linear MMSE is the full MMSE.

bk =

⎧⎪⎨
⎪⎩

√
P(αk−1+mk−1rk−1)

2
ηk+θkmk mk−1

ηk(P+σ 2
z )+θkmkmk−1(P+ρzσ 2

z )
, k = 1, 2, . . . , K − 1√

P(αK−1+mK−1rK−1)
2(P+σ 2

z )2 , k = K .
(48)
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Algorithm 1 Calculating the Minimizing b and αK ,min(m)

1: Initialization: ηK−1 ←
(

1− P
2(P+σ 2

z )

)
, θK−1 ←− P

2(P+σ 2
z )

2: Compute the sequences ηk and θk using the backwards
recursions (47)

3: α0 ← σ 2
s , r0 ← ρs

4: for k = 1, 2, . . . , K do
5: Calculate bk as in (48)
6: Calculate αk and rk as in (46)
7: end for
8: Output: b, αK ,min(m)

Remark 13: Note that any choice of m will result in an
upper bound on DK ,min. While finding DK ,min requires search-
ing over all 2K possible m sequences, in practice, the search
can be shortened at the expense of possibly achieving a larger
MSE. One approach for reducing the search space is motivated
by the alternating sign of ρk in the JSCC-OL and JSCC-LQG
schemes, for asymptotic large values of k, (see [9, eqs. (23),
(36)–(37)]): We can enforce such a behavior on m by setting
m to be a sequence with alternating signs after some L � K
channel uses, thereby searching only over the first possible 2L

sequences. Numerical simulations show that when the SNR is
not too low, then this approach performs well, as shown in the
next section.

Remark 14: The results of [10, Ch. 1.3] imply that for the
symmetric setting in which the MSEs at both receivers are
restricted to be the same for every k, the JSCC-DP scheme,
described in Alg. 1, is optimal. Hence, for this scenario,
the MSE of the JSCC-DP scheme constitutes a lower bound
and a benchmark on the MSE of any linear and memoryless
scheme for the GBCF in the finite horizon regime. For the
general setting, e.g., if the MSEs are not required to be the
same at every k, the optimal transmission coefficients can be
obtained via a numerical search. Moreover, a simple (and non-
tight) lower bound on the MSE achieved by any linear and
memoryless scheme is obtained by treating each transmitter-
receiver pair as a Gaussian PtP channel with FB and using the
expression for the optimal MSE given in [37, eq. (9)]. Using
this bounding technique, the MSE at Rxi , i = 1, 2, after k

channel uses is lower bounded by
σ 2

i

(P+σ 2
z,i )

k .

VI. COMPARATIVE DISCUSSION AND

NUMERICAL EXAMPLES

In this section we compare the different JSCC transmis-
sion schemes, i.e., JSCC-OL, JSCC-LQG and JSCC-DP, and
demonstrate our results via numerical examples.

A. JSCC-DP Outperforms JSCC-OL and JSCC-LQG

The following proposition formally states that the JSCC-DP
scheme outperforms both the JSCC-OL and the JSCC-LQG
schemes:

Proposition 5: For any fixed number of channel uses K , the
JSCC-DP scheme achieves MSE at least as low as the MSEs
achieved by the JSCC-OL and JSCC-LQG schemes.

Proof Outline: As stated in Remark 12, JSCC-DP outper-
forms JSCC-OL. Now, recall that in Appendix D-B it is shown
that choosing Pk = P in the JSCC-DP scheme is optimal.
Thus, the JSCC-DP scheme is the optimal scheme (in the
sense of minimizing the MSE after K channel uses) among
the class of linear JSCC schemes which can be formulated
via (40)–(41), and satisfy the constraint Pk ≤ P . In
Appendix E we explicitly show that the JSCC-LQG scheme
can be written in the form of (40)–(41). Furthermore, we
show that all three JSCC-LQG decoders considered in this
work, (22), (24), and (35), have the same structure as the
decoder applied by the JSCC-DP scheme. We conclude that
any JSCC-LQG scheme which satisfies the per-symbol aver-
age power constraint (5) is within the search range of the
JSCC-DP scheme, and therefore JSCC-DP achieves MSE at
least as low as JSCC-LQG. �

B. Numerical Examples

We first consider the low SNR regime as it facilitates
demonstrating different characteristics of the JSCC schemes
studied in the paper. Consider the transmission of a pair
of Gaussian sources with σ 2

s = 1 and ρs = 0.4, over a
GBCF, with noise parameters σ 2

z = 1.5, ρz = 0.3, and
power constraint P = 0.03. Fig. 6 depicts the MSE values
corresponding to (11), (23), (35), and the approximation
of (45) described in Remark 13 for L = 15 and L = 25.
The JSCC-OL scheme is initialized via εi,0 = −Si , while for
the JSCC-LQG scheme we consider two initializations: either
U1 = S or U1 = √γ S with the optimal γ . The line marked by
ZT LQG refers to the original LQG scheme applied as in [9],
namely using a zero trajectory (ZT) decoder at the receivers
and using the initialization U1 = S. It can be observed that for
low values of K the new decoder (24) significantly improves
upon the ZT decoder, while for large values of K the two
decoders achieve approximately the same MSE. It can be
further observed from the figure that scaling can significantly
improve the performance in the low SNR regime.

Fig. 6 also shows the importance of the parameter L
in the approximated DP solution: When L = 15, JSCC-
OL outperforms JSCC-DP, while when L = 25, JSCC-DP
outperforms JSCC-OL. Our simulations indicate that for the
current scenario parameters the optimal m sequence starts
alternating for L ≥ 25, and setting L = 25 does not result
in any difference in the MSE compared to the exact solution
of (45).11 The numerical results also support the conclusion
of the discussion on lower bounding the MSE in Subsection
V-B as JSCC-DP with a proper value of L outperforms both
JSCC-OL and JSCC-LQG. Note that, while the gap between
JSCC-DP and JSCC-OL in Fig. 6 is very small for the scenario
parameters specified above, this gap becomes larger as the
total number of steps K increases. Fig. 6 also shows that
there is a relatively large gap between JSCC-LQG and JSCC-
OL, in particular when scaling is not applied for JSCC-LQG.
This gap follows from the fact that the distance between the
covariance matrix of the sources and the covariance matrix of
the JSCC-LQG steady state is large (using the terminology

11This was verified for 25 ≤ K ≤ 30.
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Fig. 6. MSE vs. time for σ 2
s = 1, ρs = 0.4, ρz = 0.3, σ 2

z = 1.5
and P = 0.03. mk is set to an alternating sequence starting from
L = 25 (solid line), and from L = 15 (dashed line).

of Subsection IV-B). Explicitly calculating this distance we
have D(Qu, Qs) ≈ 213.515, while the distance D(Qu, γ Qs) ≈
88.77 is much smaller, and indeed, a significant performance
improvement is observed.

We next focus on the setting in which the sources and
the channel are almost matched. For this setting, following
the discussion in Subsection IV-B, it is expected that the
JSCC-LQG scheme will have a fast convergence. Furthermore,
for this scenario, due to this fast convergence, all the
JSCC-LQG versions should perform roughly the same.
These expectations are indeed confirmed in Fig. 7. The
scenario parameters in Fig. 7 are σ 2

z = 1, ρz = 0.5 and
P = 0.2, which leads to σ 2

u ≈ 11.85 and ρu ≈ −0.067.
We set σ 2

s = 11.8 and ρs = −0.066, which results in
D(Qu, Qs) ≈ 0.0722. The scaled JSCC-LQG decreases
this distance to D(Qu, γ Qs) ≈ 0.015. It can be observed
that the plots corresponding to the different schemes are
almost indistinguishable. This follows as for small values
of K JSCC-OL is close to JSCC-DP, while the JSCC-LQG
versions are very close to their steady state, thus, no slow-start
is observed. Furthermore, the correlation between the sources
is very low which eliminates the most significant advantage
of JSCC-OL over JSCC-LQG. A closer look in the “zoom-in”
plots in Fig. 7 shows that for very small K ’s JSCC-OL
achieves MSEs smaller than the JSCC-LQG schemes,
yet, this relationship changes when K increases. This is a
consequence of JSCC-LQG achieving a higher MSE exponent.
It can also be observed that, as expected, the performance
improvement of the JSCC-LQG scaling when Qs is close to
Qu is minor, and that JSCC-DP outperforms both JSCC-OL
and JSCC-LQG and has the same slope as the LQG schemes
(the best known MSE exponent).12 Finally, Figs. 6 and 7
indicate that while the JSCC-LQG schemes have the best
known MSE exponent, their finite horizon performance can
sometimes be hindered by the issue of initialization.

The last numerical example shows the impact of having
a source of common randomness at the transmitter and the
receivers. Using this common randomness, the transmitter
can generate the initial state by transforming the pair of
sources without causing an MSE floor. However, as stated

12In this setting we used L = 15.

Fig. 7. MSE vs. time for σ 2
s = 11.8, ρs = −0.066, σ 2

z = 1, ρz = 0.5 and
P = 0.2. For this setting Qs ≈ Qu .

in Subsection IV-B, the initializations of the JSCC-OL and
the JSCC-LQG schemes aim at achieving different objectives.
While in the JSCC-OL scheme it is desirable to have |ρ0| as
high as possible, the JSCC-LQG scheme aims at matching the
sources and the channel. To demonstrate this idea we consider
a setting in which the sources and the channel are perfectly
matched, and a common source of randomness is available.
For such a source, the JSCC-LQG scheme simply initializes
U1 = S, without using the common randomness. On the other
hand, the OL scheme uses the common randomness to set |ρ0|
to some value close to 1.

To highlight the difference between the JSCC-OL and
JSCC-LQG, we consider a low SNR scenario, by setting
σz = 1, ρz = 0 and P = 0.1. Consequently, the achievable
MSE exponents are low. The stationary covariance matrix of
the JSCC-LQG scheme for this setting is given by:

Qu ≈
[

21.0606721498435 −1.00118909550747
−1.00118909550747 21.0606721498435

]
,

which implies that ρu ≈ −0.04754. Let the sources to be trans-
mitted be distributed according to S ∼ N (0, Qu). Thus, in this
scenario, the JSCC-LQG scheme minimizes D(Qu, QU,1) by
setting U1 = S, regardless if common source of randomness is
available or not. On the other hand, if the transmitter and the
receivers share a common source of randomness, the JSCC-
OL scheme can use it to set ρ0 = 0.95.13 Figure 8 depicts
the MSE achieved by the two schemes. It can be observed
that, for the considered values of K , the JSCC-OL scheme
strictly outperforms the JSCC-LQG scheme even though the
sources and channel are matched. This gain is achieved by
the JSCC-OL as it takes advantage of the common source
of randomness to increase |ρ0|, while the common source
of randomness is not used by the JSCC-LQG scheme as
the sources and the channel are already matched. It should
be noted that if a common source of randomness is not
available, then the JSCC-LQG scheme indeed outperforms the
JSCC-OL scheme in this scenario, and in fact, for this set-
ting, the JSCC-LQG scheme achieves the same MSE as the
JSCC-DP scheme.14

13Note that this example can be adapted to any |ρ0| < 1.
14In this setting we used L = 15.
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Fig. 8. Matched sources and channel. σz = 1, ρz = 0 and P = 0.1. The
LQG scheme sets U1 = S while the OL scheme sends S̄.

C. When Does JSCC-OL Outperform JSCC-LQG?

Recall that for channel coding in the infinite horizon
regime JSCC-LQG outperforms JSCC-OL. Yet, in the finite
horizon regime, Figs. 6 and 7 demonstrate that JSCC-OL
can outperform JSCC-LQG. This leads to the question:
When does JSCC-OL outperform JSCC-LQG? To answer this
question we focus on the symmetric setting, and note that
Figs. 6 and 7 imply that the answer changes for different
target MSEs. More precisely, using Thm. 1 and Thm. 5
one can answer the question which scheme (JSCC-OL or
JSCC-LQG) achieves the target MSE with the least number of
channel uses. For instance, consider the scenario illustrated in
Fig. 6, i.e., σ 2

s = 1, ρs = 0.4, σ 2
z = 1.5, ρz = 0.3, P = 0.03

and let D = 10−2. Here, KLQG = 498 and K ub
OL = 470.

Thus, JSCC-OL outperforms JSCC-LQG. In fact, using the
upper bound presented in Thm. 1, it can be shown that
for D = 10−2, JSCC-OL outperforms JSCC-LQG for all
P < 0.1978.

VII. CONCLUSION

In this work we studied the transmission of a pair of
correlated Gaussian sources over the two-user GBCF focusing
on linear and memoryless transmission schemes in the finite
horizon regime. We characterized the minimal number of
channel uses required to achieve a non-zero pair of MSEs
for three finite horizon JSCC schemes: An adaptation of the
OL scheme of [8], an adaptation of the LQG scheme of [9],
and a novel scheme derived in this work designed using the
DP approach.

For the JSCC-OL scheme, we first demonstrated that the
initialization which takes advantage of the correlation between
the sources is superior to the one suggested in [8]. Then,
for the proposed JSCC-OL scheme we derived upper and
lower bounds on the number of channel uses required to
achieve a target pair of MSEs. For the symmetric setting with
independent sources and independent noise components, we
showed that, even though JSCC-OL does not encode over
blocks of source symbols, in the low SNR regime, it achieves
approximately the same source-channel bandwidth ratio as
the best known SSCC scheme, which applies a source code
and a channel code with an asymptotically large blocklength.

More precisely, the gap between the source-channel bandwidth
ratios achieved by the JSCC-OL and the SSCC schemes is
bounded by a quantity independent of the SNR.

For the JSCC-LQG scheme, we first introduced a new
decoder based on the MMSE criterion, which achieves MSE
values smaller than or equal to those achieved by the original
decoder proposed in [9]. For the general setting, we presented
lower and upper bounds on the number of channel uses
required to achieve a target pair of MSEs, while for the
symmetric setting we explicitly characterized this number of
channel uses. For the symmetric setting we also showed that,
by properly scaling the transmitted sources, it is possible to
arrive at the target MSE much faster than with the original
initialization of [9]. This optimal scaling leads to a linear
and memoryless transmission scheme with very good finite
horizon performance and with the best known infinite horizon
performance.

Lastly, we used DP to derive the optimal linear and
memoryless JSCC scheme in the symmetric setting. This
scheme requires finding a vector of modulation coefficients
and a vector of estimation coefficients which minimize the
MSE after K channel uses. We showed that this minimization
problem can be simplified into the problem of searching
only over the possible modulation vectors, while the optimal
vector of estimation coefficients, per modulation vector, was
formulated as a DP problem whose solution is obtained using
a recursive deterministic relationship. For a finite number
of channel uses, the JSCC-DP scheme achieves MSE values
lower than both JSCC-OL and JSCC-LQG. Since finding
the optimal modulation vector becomes computationally
infeasible as the number of channel uses increases, we
proposed a computationally feasible approximate solution,
which performs well for moderate to high SNR values.

The comparison of the three JSCC schemes indicate their
differences: JSCC-OL is time-varying, and reaches steady
state relatively quickly, but it is suboptimal in the infinite
horizon regime. JSCC-LQG is time-invariant, reaches steady
state relatively slowly, but has the best known performance
in the infinite horizon regime. JSCC-DP is time-varying,
and outperforms both JSCC-OL and JSCC-LQG in the finite
horizon regime. As JSCC-DP applies backwards recursion,
it can be applied only in the finite horizon regime. While
JSCC-LQG reaches steady state relatively slowly, by apply-
ing the proposed scaling, and using the improved MMSE
decoder, its finite horizon performance can be significantly
improved. However, even with these improvements JSCC-OL
can outperform JSCC-LQG in the finite horizon regime.
Finally, the initialization objectives in the finite horizon regime
for JSCC-LQG and for JSCC-OL are fundamentally different:
The JSCC-OL scheme aims at increasing the correlation
between the transmitted signals, while the JSCC-LQG scheme
aims at matching the covariance matrices of the the initial and
steady states.

We remark that the results presented in this work are impor-
tant in identifying simple yet efficient coding schemes for
the transmission of correlated Gaussian sources over multiuser
channels with FB when strict delay constraints are imposed.
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APPENDIX A
JSCC-OL IN THE FINITE HORIZON REGIME - PROOFS

A. Deriving the MSE for the Case ε0 = S+W in eq. (13)

Recall that we focus here on the symmetric setting, and
define S̄ � S +W. Rxi estimates Si in two steps: First Rxi

estimates S̄i via (10). Let ˆ̄Si,k denote this estimation. Then,

Rxi computes the MMSE estimate of Si from ˆ̄Si,k . The scheme

is initialized via ˆ̄Si,0 = 0 and εi,0 = −S̄i , i = 1, 2.
From the theory of MMSE estimation [36, Ch. 11.4], the

MSE in estimating Si from ˆ̄Si,k is given by:

E
{
(Si − ˆ̄Si,k )

2
}
= σ 2

s −
(
E
{

Si
ˆ̄Si,k

})2

E
{ ˆ̄S2

i,k

} . (A.1)

From OL decoding (10) we write ˆ̄Si,k = −∑k
m=1 ε̂i,m−1,

where the terms ε̂i,m−1 denote the estimates of εi,m−1 during
the transmission of S̄i . Since εi,k = εi,k−1 − ε̂i,k−1, it follows

that ˆ̄Si,k = εi,k − εi,0. Therefore, the MSE can be written
as:

E
{
(Si − ˆ̄Si,k )

2
}

= σ 2
s −

(E{Siεi,k } + σ 2
s )2

αi,k + σ 2
s + σ 2

w + 2E{(Si + Wi )εi,k } . (A.2)

Next, to explicitly evaluate the MSE (A.2) we derive recursive
expressions for E{Siεi,k } and E{(Si +Wi )εi,k }. First, plugging
the relationship εi,k = εi,k−1 − ε̂i,k−1 into the expectation
E{Siεi,k } we obtain:

E{Siεi,k } = E{Siεi,k−1} −E{Si ε̂i,k−1}. (A.3)

Using (9), letting αi,k � αk , and considering i = 1, we write:

E{S1ε̂1,k−1}
= E

{
ε1,k−1Y1,k

}
E
{

Y 2
1,k

} E{S1Y1,k}

= �k−1
√

αk−1(1+ |ρk−1|)
P + σ 2

z
E{S1Y1,k}

= �2
k−1(1+ |ρk−1|)

P + σ 2
z

E{S1(ε1,k−1 + ε2,k−1sgn(ρk−1))}.
(A.4)

Let λ � P
2(P+σ 2

z )
. Combining (A.3) and (A.4), and noting that

�2
k = P

2(1+|ρk |) , we have:

E{S1ε1,k} = E{S1ε1,k−1}
− P

2(P + σ 2
z )

E{S1(ε1,k−1 + ε2,k−1sgn(ρk−1))}

=
(

1− P

2(P + σ 2
z )

)
E{S1ε1,k−1}

− P · sgn(ρk−1)

2(P + σ 2
z )

E{S1ε2,k−1}
= (1− λ)E{S1ε1,k−1}
− λ · sgn(ρk−1)E{S1ε2,k−1}, (A.5)

Following similar steps, we write E{S1ε2,k} as:

E{S1ε2,k} = (1− λ)E{S1ε2,k−1}
− λ · sgn(ρk−1) · E{S1ε1,k−1}. (A.6)

Finally, since E{S1ε1,0} = −σ 2
s , and E{S1ε2,0} = −ρsσ

2
s , we

can recursively calculate E{S1ε1,k}.
To evaluate E{(Si + Wi )εi,k }, we recall that S̄i = Si +Wi ,

and follow the steps leading to (A.5)–(A.6) to obtain:

E{S̄1ε1,k} = (1− λ)E{S̄1ε1,k−1}
− λ · sgn(ρk−1)E{S̄1ε2,k−1}, (A.7)

E{S̄1ε2,k} = (1− λ)E{S̄1ε2,k−1}
− λ · sgn(ρk−1) ·E{S̄1ε1,k−1}, (A.8)

with the initial conditions E{S̄1ε1,0} = −σ 2
s − σ 2

w , and
E{S̄1ε2,0} = −ρsσ

2
s − ρwσ 2

w . Therefore, using (A.2) and the
recursive relationships (A.5)–(A.8) we recursively obtain the
MSEs of the two-step estimator.

B. Proof of Theorem 1

Recall that αi,0 = σ 2
i , i = 1, 2, and that αi,k is the MSE at

Rxi after the k’th transmission. From (11) we have:

log

(
α1,K

σ 2
1

)
=

K∑
k=1

log

(
σ 2

z,1 + �2
k−1g2(1− ρ2

k−1)

π1

)
.

As |ρk | ∈ [0, 1], it follows that:

�2
k−1g2(1− ρ2

k−1) =
Pg2(1− ρ2

k−1)

1+ g2 + 2g|ρk − 1| ≤
Pg2

1+ g2 .

Thus, we obtain the upper bound
σ 2

z,1+�2
k−1 g2(1−ρ2

k−1)

π1
≤

σ 2
z,1+π1g2

π1+π1g2 . Next, we use the fact that log(x) ≤ x−1 and write:

log

(
σ 2

z,1 + π1g2

π1 + π1g2

)
≤ σ 2

z,1 + π1g2

π1 + π1g2 − 1 = − P

π1 + π1g2 .

Thus, it follows that log

(
α1,K

σ 2
1

)
= log

(
D1
σ 2

1

)
≤ − K P

π1+π1g2 ,

which implies that:

K ub
OL =

⌈
(1+ g2)

P
max

{
π1 log

(
σ 2

1

D1

)
,
π2

g2 log

(
σ 2

2

D2

)}⌉
.

To obtain K lb
OL we note that 0 ≤ �2

k−1g2(1 − ρ2
k−1) where

equality is obtained by setting ρk−1 = 1. Then, we use the
inequality 1− 1

x ≤ log x to obtain:

log

(
σ 2

z,1

σ 2
z,1 + P

)
≥ 1− σ 2

z,1 + P

σ 2
z,1

= − P

σ 2
z,1

.

Thus, we have log

(
D1
σ 2

1

)
≥ − K P

σ 2
z,1

, which results in the

following lower bound:

K lb
OL =

⌈
max

{
σ 2

z,1

P
log

(
σ 2

1

D1

)
,
σ 2

z,2

P
log

(
σ 2

2

D2

)}⌉
.
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C. Proof of (15)

From [8, p. 671] it follows that if R is an achiev-
able symmetric rate for the GBCF, and ρz = 0, then
R < 1

2 log
(

1+ 2χ0 P
σ 2

z

)
, where χ0 is the unique positive root of

the polynomial (in χ): χ2+ 3σ 2
z

2P χ − σ 2
z

2P = χ2+ 3
2SNR − 1

2SNR.
The roots of this polynomial are given by:

χ1,2 = 1

2

(
− 3

2SNR
±
√

9

4SNR2 +
2

SNR

)
.

Hence, χ0 is given by χ0 = 1
2

(
− 3

2SNR +
√

9
4SNR2 + 2

SNR

)
.

Plugging χ0 into the upper bound on R we write:

R <
1

2
log (1+ 2χ0SNR)

= 1

2
log

(
1+ SNR

(
− 3

2SNR
+
√

9

4SNR2 +
2

SNR

))

= 1

2
log

(√
9

4
+ 2SNR− 1

2

)
.

D. Proof of (16a)

First, we obtain an upper bound on 2 log |a1|. Following
steps similar to those described in [9, Sec. IV.C] for the
symmetric GBCF with independent noises, we conclude that
a2

1 = x0, where x0 is the unique real positive root15 of the
equation:

σ 2
z x3 + σ 2

z x2 − (σ 2
z + 2P)x − σ 2

z = 0.

Rewriting this equation equivalently as:

x3 + x2 −
(

1+ 2P

σ 2
z

)
x − 1 = 0, (A.9)

we upper bound x0 using Budan’s theorem [43]:
Theorem (Budan’s theorem): Let p(x) = a0 + a1x + . . .+

anxn be a polynomial of degree n, and let p( j )(x) be its j ’th
derivative. Define the function V (α) as the number of sign
variations in the sequence p(α), p(1)(α), . . . , p(n)(α). Then,
the number of roots of the polynomial p(x) in the open
interval (a, b) is either equal to V (a) − V (b), or less by an
even number.

Let p(x) be the polynomial in (A.9). Then we have:

p(0)(x) = x3 + x2 −
(

1+ 2P

σ 2
z

)
x − 1, (A.10a)

p(1)(x) = 3x2 + 2x −
(

1+ 2P

σ 2
z

)
, (A.10b)

p(2)(x) = 6x + 2, (A.10c)

p(3)(x) = 6. (A.10d)

For x = 1 we have V (1) = 1. Note that sgn(p(1)(1)) depends
on the term 2P

σ 2
z

, however, since sgn(p(0)(1)) = −1 and

15The uniqueness of a real positive root follows from Descartes’ rule
[39, Sec. 1.6.3.2].

sgn(p(2)(1)) = 1, in both cases we have V (1) = 1. Next,
we let χ = P

2σ 2
z

, and set x = 1+ χ to obtain:

p(0)(1+ χ) = χ3 > 0,

p(1)(1+ χ) = 3χ2 + 4χ + 4 > 0,

p(2)(1+ χ) = 6χ + 8 > 0,

p(3)(1+ χ) = 6 > 0.

all larger than zero. Therefore, V (1+ χ) = 0. Thus, Budan’s
theorem implies that the number of roots of (A.9) in the
interval (1, 1 + χ) is 1. From Descartes’ rule we know that
there is a unique positive root, therefore 1 + χ is an upper
bound on x0: x0 < 1+ P

2σ 2
z

.

Next, recall that a2
1 = x0, which implies that 2 log(|a1|) =

log(x0) ≤ log
(

1+ P
2σ 2

z

)
. Using the fact that log(x) ≤ x − 1

we have the following bound on 2 log(|a1|):

2 log(|a1|) ≤ P

2σ 2
z

. (A.11)

Next, we explicitly upper bound KOL− κub
sep in the symmetric

setting (we set g = 1 in (14a)):

KOL − κub
sep ≤ K ub

OL − κub
sep

(a)= 2(P + σ 2
z )

P
log

(
σ 2

s

D

)
− 1

2 log |a1| log

(
σ 2

s

D

)

(b)≤ log

(
σ 2

s

D

)(
2(P + σ 2

z )

P
− 2σ 2

z

P

)

≤
⌈

2 log

(
σ 2

s

D

)⌉
, (A.12)

where (a) follows from specializing Thm. 1 to the symmetric
setting, and (b) follows from the bound 2 log(|a1|) ≤ P

2σ 2
z

.

E. Proof of (16b)

Recall that κ lb
sep �

log

(
σ2

s
D

)

log

(√
9
4+2SNR− 1

2

) . Thus, we write:

KOL − κ lb
sep

≤ K ub
OL − κ lb

sep

= 2(P + σ 2
z )

P
log

(
σ 2

s

D

)

− 1

log

(√
9
4 + 2SNR− 1

2

) log

(
σ 2

s

D

)

= log

(
σ 2

s

D

)
⎛
⎜⎜⎝2+ 2

SNR
− 1

log

(√
9
4 + 2SNR− 1

2

)
⎞
⎟⎟⎠

(a)≤ log

(
σ 2

s

D

)(
2 + 2

SNR
− 1√

2SNR

)

≤
⌈(

2 + 2

SNR
− 1√

2SNR

)
log

(
σ 2

s

D

)⌉
,
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where (a) follows from the fact that log

(√
9
4 + 2SNR− 1

2

)
≤√

9
4 + 2SNR− 3

2 ≤
√

2SNR.

APPENDIX B
JSCC-LQG IN THE FINITE HORIZON REGIME - PROOFS

A. Proof of Theorem 2

The MMSE estimator of Si based on Ûi,k is the conditional
expectation E{Si |Ûi,k }, [36, eq. (11.10)]. Now, from (18) we
can write:

Uk = AUk−1 + Yk−1

= AUk−1 − BCT Uk−1 + Zk−1

= (A − BCT )Uk−1 + Zk−1, (B.1)

and from (21) we have:

Ûk = AÛk−1 + Yk−1

= Ak−1Û1 +
k−1∑
m=1

Ak−m−1Ym

=
k−1∑
m=1

Ak−m−1(−BCT Uk−1 + Zk−1). (B.2)

From the fact that Zk is a zero-mean Gaussian vector, from the
linear relationship in (B.2), and from the fact that U1 = S, it
follows that for i = 1, 2, Ûi,k+1 and Si are jointly Gaussian,
both with zero mean. From [36, eq. (10.16)] it follows that

E
{

Si
∣∣Ûi,k+1

}
= E

{
Si Ûi,k+1

}

E
{

Û 2
i,k+1

} Ûi,k+1. Next, we expand (18) as:

Uk = AUk−1 + Yk−1

= Ak−1S+
k−1∑
m=1

Ak−m−1Ym . (B.3)

Therefore, combining (B.3) and (B.2) we have Uk+1−Ûk+1 =
AkS⇒ Ûk+1 = Uk+1−AkS, and since A is a diagonal matrix
it follow that Ûi,k+1 = Ui,k+1−ak

i Si . At time k+1, the MMSE
estimate of Si based on Ûi,k+1 is given by:

Ŝi,k = E
{

Si (Ui,k+1 − ak
i Si )

}
E
{
(Ui,k+1 − ak

i Si )2
} Ûi,k+1

= E
{

Si Ui,k+1
}− ak

i σ 2
i

E{U2
i,k+1} − 2ak

i E
{

SiUi,k+1
}+ a2k

i σ 2
i

Ûi,k+1. (B.4)

From the independence of S and Zk we have E
{
Uk+1ST

} =
(A − BCT )E

{
UkST

}
, and since U1 = S it follows that

E
{
Uk+1ST

} = (A − BCT )kQs . Recalling the definition M �
A − BCT we conclude that:

E
{

SiUi,k+1
} = [MkQs]i,i . (B.5)

Using the definition of Qu,k in Subsection IV-C and plugging
(B.5) into (B.4) we obtain (24). Next, we use (24) to obtain a

recursive expression for the MSE. By plugging the expression
for Ŝi,k in (B.4) into E{(Si − Ŝi,k )

2} we obtain that:

E{(Si − Ŝi,k )
2} = σ 2

i −
([MkQs]i,i − σ 2

i ak
i

)2
[Qu,k+1]i,i − 2ak

i [MkQs]i,i + σ 2
i a2k

i

= σ 2
i [Qu,k+1]i,i −

([MkQs]i,i
)2

[Qu,k+1]i,i − 2ak
i [MkQs]i,i + σ 2

i a2k
i

,

(B.6)

which is eq. (25). Finally, we consider (B.6) for k →∞. As
the magnitudes of eigenvalues of the matrix M are smaller
than unity it follows that limk→∞

([MkQs]i,i
)2 = 0 and

limk→∞[MkQs]i,i = 0. Furthermore, since |ai | > 1 and since
limk→∞Qu,k = Qu it follows that:

lim
k→∞ a2k

i

(
[Qu,k+1]i,i

a2k
i

− 2
[MkQs]i,i

ak
i

+ σ 2
i

)
= σ 2

i a2k
i .

Therefore, for k large enough we have:

σ 2
i [Qu,k+1]i,i −

([MkQs]i,i
)2

[Qu,k+1]i,i − 2ak
i [MkQs]i,i + σ 2

i a2k
i

≈ a−2k
i [Qu,k+1]i,i

= a−2k
i E

{
U2

i,k+1

}
.

B. Proof of Proposition 2

We begin with explicitly writing Pk using Uk :

Pk = E
{

X2
k

}
(a)= E

{
CT UkUT

k C
}
= CTE

{
UkUT

k

}
C,

where (a) follows from the structure of the controller. Now,
recalling that M = (A−BCT ), we use (B.1) and the fact that
Uk and Zk are independent and write:

E
{

UkUT
k

}
= ME

{
Uk−1UT

k−1

}
MT +Qz

= M
(
ME

{
Uk−2UT

k−2

}
MT
)

MT

+MQzMT +Qz

= Mk−1Qs(MT )k−1 +
k−2∑
l=0

MlQz(MT )l . (B.7)

Therefore, we have:

Pk = CTE
{

UkUT
k

}
C

= CT Mk−1Qs(MT )k−1C+
k−2∑
l=0

CT MlQz(MT )lC. (B.8)

Next, we focus on the term CT Mk−1Qs(MT )k−1C. Since
|ρs | < 1 we can apply Cholesky decomposition [39, Sec.
19.2.1.2] on Qs and obtain:

MkQs(Mk)T = MkLLT (Mk)T , L =
[

σ1 0
ρsσ2 σ2

√
1− ρ2

s

]
.

We now write Mk in terms of the eigenvalues and eigenvectors
of M, see [39, Sec. 4.5.2.2]. Let D = diag(λ1, λ2) be the diag-

onal matrix of the eigenvalues of M, while V =
[
v1 v2
v3 v4

]
is
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the matrix whose columns are the corresponding eigenvectors
of M. Thus, we have:

M = VDV−1 ⇒ Mk = VDkV−1. (B.9)

Next, we define R � VDkV−1L =
[

r1 r2
r3 r4

]
. Note that R is

a function of k, yet, to reduce clutter we omit this notation.
This implies that:

CT MkQs(MT )kC = CT RRT C

= (c1r1 + c2r3)
2 + (c1r2 + c2r4)

2. (B.10)

Writing VDkV−1 explicitly we have:

VDkV−1 =
[
v1 v2
v3 v4

] [
λk

1 0
0 λk

2

] [
v1 v2
v3 v4

]−1

= 1

det(V)

[
v1v4λ

k
1 − v2v3λ

k
2 v1v2(λ

k
2 − λk

1)

v3v4(λ
k
1 − λk

2) v1v4λ
k
2 − v2v3λ

k
1

]
.

(B.11)

Therefore, it follows that:

R = VDkV−1L

= 1

det(V)

[
v1v4λ

k
1 − v2v3λ

k
2 v1v2(λ

k
2 − λk

1)

v3v4(λ
k
1 − λk

2) v1v4λ
k
2 − v2v3λ

k
1

]

×
[

σ1 0
ρsσ2 σ2

√
1− ρ2

s

]
,

which implies that:

r1 = σ1(v1v4λ
k
1 − v2v3λ

k
2)+ ρsσ2v1v2(λ

k
2 − λk

1)

det(V)
(B.12a)

r2 = σ2
√

1− ρ2
s · v1v2 · (λk

2 − λk
1)

det(V)
(B.12b)

r3 = σ1v3v4(λ
k
1 − λk

2)+ ρsσ2
(
v1v4λ

k
2 − v2v3λ

k
1

)
det(V)

(B.12c)

r4 = σ2
√

1− ρ2
s

(
v1v4λ

k
2 − v2v3λ

k
1

)
det(V)

. (B.12d)

Next, we explicitly write c1r1 + c2r3:

c1r1 + c2r3

= c1

det(V)

(
σ1(v1v4λ

k
1 − v2v3λ

k
2)+ ρsσ2v1v2(λ

k
2 − λk

1)
)

+ c2

det(V)

(
σ1v3v4(λ

k
1 − λk

2)+ ρsσ2

(
v1v4λ

k
2 − v2v3λ

k
1

))

= λk
1

c1(σ1v1v4 − ρsσ2v1v2)+ c2(σ1v3v4 − ρsσ2v2v3)

det(V)

+ λk
2

c1(ρsσ2v1v2 − σ1v2v3)+ c2(ρsσ2v1v4 − σ1v3v4)

det(V)

= λk
1ω1(σ1, σ2, ρs)+ λk

2ω2(σ1, σ2, ρs). (B.13a)

Similarly, we explicitly write c1r2 + c2r4:

c1r2 + c2r4 = λk
1
−σ2

√
1− ρ2

s (c1v1v2 + c2v2v3)

det(V)

+ λk
2
σ2
√

1− ρ2
s (c1v1v2 + c2v1v4)

det(V)

= λk
1ω3(σ1, σ2, ρs)+ λk

2ω4(σ1, σ2, ρs), (B.13b)

where ω j (ς1, ς2, ρ), j = 1, 2, 3, 4, are defined in (26). Hence,
squaring (B.13a) and (B.13b), summing and using the expres-
sions α j , j = 1, 2, 3, defined in (27) we obtain:

(c1r1 + c2r3)
2 + (c1r2 + c2r4)

2

= (λk
1ω1(σ1, σ2, ρs)+ λk

2ω2(σ1, σ2, ρs))
2

+ (λk
1ω3(σ1, σ2, ρs)+ λk

2ω4(σ1, σ2, ρs))
2

= λ2k
1 ω2

1(σ1, σ2, ρs)+ λ2k
2 ω2

2(σ1, σ2, ρs)

+ 2λk
1λ

k
2ω1(σ1, σ2, ρs)ω2(σ1, σ2, ρs)+ λ2k

1 ω2
3(σ1, σ2, ρs)

+ λ2k
2 ω2

4(σ1, σ2, ρs)+ 2λk
1λ

k
2ω3(σ1, σ2, ρs)ω4(σ1, σ2, ρs)

= λ2k
1

(
ω2

1(σ1, σ2, ρs)+ ω2
3(σ1, σ2, ρs)

)

+ λ2k
2

(
ω2

2(σ1, σ2, ρs)+ ω2
4(σ1, σ2, ρs)

)
+ λk

1λ
k
2 (2ω1(σ1, σ2, ρs)ω2(σ1, σ2, ρs)

+ 2ω3(σ1, σ2, ρs)ω4(σ1, σ2, ρs))

= λ2k
1 α1(σ1, σ2, ρs)

+ λ2k
2 α2(σ1, σ2, ρs)+ λk

1λ
k
2α3(σ1, σ2, ρs), (B.14)

We conclude that:

CT MkQs(MT )kC

= λ2k
1 α1(σ1, σ2, ρs)

+ λ2k
2 α2(σ1, σ2, ρs )+ λk

1λ
k
2α3(σ1, σ2, ρs). (B.15)

Next, we focus on the second term in (B.8):∑k−2
l=0 CT MlQz(MT )lC. Following identical steps to those

leading to (B.15), and recalling that |ρz | < 1, we write:

CT MlQz(MT )lC

= λ2l
1 α1(σz,1, σz,2, ρz)

+ λ2l
2 α2(σz,1, σz,2, ρz)+ λl

1λ
l
2α3(σz,1, σz,2, ρz).

Therefore, summing over l we obtain:

k−2∑
l=0

CT MlQz(MT )lC

=
k−2∑
l=0

λ2l
1 α1(σz,1, σz,2, ρz)

+ λ2l
2 α2(σz,1, σz,2, ρz)+ λl

1λ
l
2α3(σz,1, σz,2, ρz)

= 1− λ
2(k−1)
1

1− λ2
1

α1(σz,1, σz,2, ρz)

+ 1− λ
2(k−1)
2

1− λ2
2

α2(σz,1, σz,2, ρz)

+ 1− λk−1
1 λk−1

2

1− λ1λ2
α3(σz,1, σz,2, ρz). (B.16)

Combining (B.15) and (B.16) and using the expressions
η j (ς1, ς2, ρ), j = 1, 2, 3, defined in (28), results in:

Pk = CT Mk−1Qs(MT )k−1C+
k−2∑
l=0

CT MlQz(MT )lC

= λ
2(k−1)
1 α1(σ1, σ2, ρs)+ λ

2(k−1)
2 α2(σ1, σ2, ρs)

+ (λ1λ2)
k−1α3(σ1, σ2, ρs )
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+ 1− λ
2(k−1)
1

1− λ2
1

α1(σz,1, σz,2, ρz)

+ 1− λ
2(k−1)
2

1− λ2
2

α2(σz,1, σz,2, ρz)

+ 1− (λ1λ2)
k−1

1− λ1λ2
α3(σz,1, σz,2, ρz)

= η1(σz,1, σz,2, ρz)+η2(σz,1, σz,2, ρz)+η3(σz,1, σz,2, ρz)

+ λ
2(k−1)
1

(
α1(σ1, σ2, ρs)− η1(σz,1, σz,2, ρz)

)
+ λ

2(k−1)
2

(
α2(σ1, σ2, ρs)− η2(σz,1, σz,2, ρz)

)
+ (λ1λ2)

k−1(α3(σ1, σ2, ρs)− η3(σz,1, σz,2, ρz)
)
,

(B.17)

From [42, Lemma 2.4] we have |λi | < 1, i = 1, 2,16 which
implies that:

lim
k→∞CT Mk−1Qs(MT )k−1C+

k−2∑
l=0

CT MlQz(MT )lC

= η1(σz,1, σz,2, ρz)

+ η2(σz,1, σz,2, ρz)+ η3(σz,1, σz,2, ρz). (B.18)

Recall that the JSCC-LQG scheme is designed such that
the asymptotic average transmit power is P . This implies
that:

η1(σz,1, σz,2, ρz)+ η2(σz,1, σz,2, ρz)+ η3(σz,1, σz,2, ρz) = P.

For the power constraint in (5) to be satisfied for every
k = 1, 2, 3, . . ., we should have Pk ≤ P . From (B.17) we
conclude that this condition can be equivalently stated as
follows:

λ
2(k−1)
1

(
α1(σ1, σ2, ρs)− η1(σz,1, σz,2, ρz)

)
+ λ

2(k−1)
2

(
α2(σ1, σ2, ρs)− η2(σz,1, σz,2, ρz)

)
+ (λ1λ2)

k−1(α3(σ1, σ2, ρs)− η3(σz,1, σz,2, ρz)
) ≤ 0.

C. Proof of Theorem 3

We begin with K ub
LQG. Since (24) is the optimal esti-

mator based on the observation Ûi,k+1, it follows that we
can upper bound KLQG by upper bounding the number of
channel uses required to achieve a target MSE pair using
the decoder in (22). Recall that the MSE of the decoder

in (22) is given by (23): E

{(
Si − Ŝi,k

)2
}
= a−2k

i E
{

U2
i,k+1

}
.

Let E

{(
Si − Ŝi,k

)2} � Di,k be the MSE after k channel uses,

i.e., at time instance k + 1. We upper bound Di,k via upper

bounding E
{

U2
i,k+1

}
.

Since the eigenvalues of M are inside the unit circle, it
follows that

[
MkQs(MT )k

]
i,i → 0 as k →∞, and therefore,

16Recall that C = (BT GB + 1)−1AGT B where G is the unique positive-
definite solution of the DARE (19). Now, from [42, Lemma 2.4, item (iv)] it
follows that the eigenvalues of the closed-loop matrix M = A−BCT are given
by λi = 1

ai
. Note that [42, Lemma 2.4] assumes a DARE of the form (19) and

studies the properties of the matrix A−BCT , for C = (BT GB+1)−1AGT B,
see [42, Equation below (11)]. Therefore, it follows that λ1 = 1

a1
.

limk→∞
[∑k−1

l=0 MlQz(MT )l
]

i,i
= [Qu]i,i .17 Since Qs is a

covariance matrix then the diagonal elements of MkQs(MT )k

are non-negative and we can write:

E
{

U2
i,k+1

}
≤
[
MkQs(MT )k

]
i,i
+ [Qu]i,i .

Next, we derive an upper bound on
[
MkQs(MT )k

]
i,i .

Following the arguments leading to (B.10) we can write
MkQs(Mk)T = RRT , again omitting the dependence in k from
the matrix R, we write:[

MkQs(MT )k
]

1,1
= r2

1 + r2
2 ,

where r1 and r2 are given in (B.12). For ease of reference we
repeat the expressions for r1 and r2:

r1 = 1

det(V)

(
σ1(v1v4λ

k
1 − v2v3λ

k
2)+ ρsσ2v1v2(λ

k
2 − λk

1)
)

r2 = 1

det(V)
σ2

√
1− ρ2

s · v1v2 · (λk
2 − λk

1).

Next, we upper bound
[
MkQs(MT )k

]
1,1 via upper bounding

r2
1 and r2

2 :

|r1| ≤ 1

| det(V)|
(
σ1

(
|v1v4||λ1|k + |v2v3||λ2|k

)

+ |ρs | · σ2 · |v1v2|(|λ2|k + |λ1|k)
)

(a)≤ σ1 (|v1v4λ1| + |v2v3λ2|)+ |ρsσ2v1v2|(|λ2| + |λ1|)
| det(V)|

� τ1

where (a) follows from the fact that |λi | < 1, i = 1, 2. Using
similar arguments we bound |r2| as follows:

|r2| ≤ σ2
√

1− ρ2
s |v1v2|(|λ2| + |λ1|)
| det(V)| � τ2.

Hence, we have
[
MkQs(MT )k

]
1,1 ≤ τ 2

1 + τ 2
2 , and this implies

that:

E
{

U2
1,k

}
≤ τ 2

1 + τ 2
2 + [Qu]1,1 � ϑ1.

Following similar arguments we have
[
MkQs(MT )k

]
2,2 ≤

τ 2
3 + τ 2

4 , where:

τ3 � |σ1v3v4|(|λ1| + |λ2|)+ |ρsσ2| (|v1v4λ2| + |v2v3λ1|)
| det(V)|

τ4 � σ2
√

1− ρ2
s (|v1v4λ2| + |v2v3λ1|)
| det(V)| ,

and therefore:

E
{

U2
2,k

}
≤ τ 2

3 + τ 2
4 + [Qu]2,2 � ϑ2.

To conclude, we have:

KLQG ≤
log
(

ϑi
Di

)
2 log |ai | , i = 1, 2.

17Note that
[∑k−1

l=0 Ml Qz(MT )l
]

i,i
≥ 0, k = 1, 2, . . . , i = 1, 2, since the

diagonal elements are sum of the variances of the noise.
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To lower bound KLQG we first lower bound the MSE in (25)
as follows:

E
{
(Si − Ŝi,k )

2
}
= σ 2

i

[Qu,k+1]i,i − 1
σ 2

i

([MkQs]i,i
)2

[Qu,k+1]i,i − 2ak
i [MkQs ]i,i + σ 2

i a2k
i

(a)≥ σ 2
i

[Qz]i,i − 1
σ 2

i

([MkQs]i,i
)2

[Qz]i,i − 2ak
i [MkQs]i,i + σ 2

i a2k
i

.

(B.19)

To see why step (a) holds we note that:

0 ≤
[Qu,k+1]i,i − 1

σ 2
i

([MkQs]i,i
)2

[Qu,k+1]i,i − 2ak
i [MkQs]i,i + σ 2

i a2k
i

≤ 1.

This follows as E
{
(Si − Ŝi,k )

2
}
= σ 2

i − E
{

Ŝ2
i,k

}
, and

therefore we have:

σ 2
i

⎛
⎜⎝1−

[Qu,k+1]i,i − 1
σ 2

i

([MkQs]i,i
)2

[Qu,k+1]i,i − 2ak
i [MkQs]i,i + σ 2

i a2k
i

⎞
⎟⎠ = E

{
Ŝ2

i,k

}

≥ 0,

which implies that
[Qu,k+1]i,i− 1

σ2
i

([MkQs ]i,i
)2

[Qu,k+1]i,i−2ak
i [MkQs ]i,i+σ 2

i a2k
i
≤ 1. Next,

consider the function f (x) = x+a
x+b , x > 0, a, b ∈ R. We

now show that if 0 ≤ f (x) ≤ 1, then f (x) is an increasing
function. The derivative of f (x) is given by: f ′(x) = b−a

(x+b)2 .
Consider the following cases:
• a, b ≥ 0: From the fact that f (x) ≤ 1, it follows that

b ≥ a, and therefore f ′(x) ≥ 0.
• b ≥ 0, a ≤ 0: For this case, it is clear that f ′(x) ≥ 0.
• a, b ≤ 0: From the fact that f (x) ≤ 1, it follows that

a ≤ b, and therefore f ′(x) ≥ 0.
• b < 0, a > 0: This assignment is not valid since

f (x) ≤ 1.
We conclude that for all valid cases f ′(x) ≥ 0 which implies
that f (x) is an increasing function. With this in mind we
note that [Qu,k+1]i,i ≥ [Qz]i,i ,18 which concludes the proof
of step (a) in (B.19).

Next, we lower bound the numerator of (B.19) and
upper bound the denominator of (B.19). Recall that
Mk = (A − BCT )k and consider upper bounding [MkQs]1,1.
Similarly to Section VII-B we write Mk in terms of the
eigenvalues matrix D and the eigenvectors matrix V of M as
in (B.9): Mk = VDkV−1. From (B.11) we have:

VDkV−1Qs

= 1

det(V)

[
v1v4λ

k
1 − v2v3λ

k
2 v1v2(λ

k
2 − λk

1)

v3v4(λ
k
1 − λk

2) v1v4λ
k
2 − v2v3λ

k
1

]

×
[

σ 2
1 ρsσ1σ2

ρsσ1σ2 σ 2
2

]
,

from which we compute:

[MkQs]1,1 = σ 2
1

(
v1v4λ

k
1 − v2v3λ

k
2

)+ρsσ1σ2v1v2(λ
k
2 − λk

1)

det(V)
.

(B.20)

18From (B.7) it follows that E{U2
i,k } ≥ [Qz ]i,i .

Using the fact that |λi | < 1, i = 1, 2, we obtain the following
upper bound on [MkQs]1,1, k ≥ 1:∣∣∣[MkQs]1,1

∣∣∣
≤ σ 2

1 (|v1v4λ1| + |v2v3λ2|)+ |ρsσ1σ2v1v2|(|λ2| + |λ1|)
| det(V)|

� β1.

Similarly, we also bound:∣∣∣[MkQs]2,2

∣∣∣
≤ σ 2

2 (|v1v4λ2| + |v2v3λ1|)+ |ρsσ1σ2v2v4|(|λ2| + |λ1|)
| det(V)|

� β2.

Now, for i = 1, 2, plugging βi into (B.19) and setting Di,k =
Di we write:

Di ≥ σ 2
i [Qz]i,i − β2

i

[Qz]i,i + 2|ai |kβi + σ 2
i |ai |2k

,

which can also be written as:

Di [Qz]i,i − σ 2
i [Qz]i,i + β2

i ≥ −Di

(
2|ai |kβi + σ 2

i |ai |2k
)

,

⇒ σ 2
i [Qz]i,i − β2

i − Di [Qz]i,i
Di

≤ 2|ai |kβi + σ 2
i |ai |2k .

Next, we recall that |ai | > 1 and write:

σ 2
i [Qz]i,i − β2

i − Di [Qz]i,i
Di

≤ (2βi + σ 2
i )|ai |2k .

Applying the log to both sides we have:

log

(
σ 2

i [Qz]i,i − β2
i − Di [Qz]i,i

Di

)

≤ log
(
(2βi + σ 2

i )|ai |2k
)

,

which can be written as:

log

(
σ 2

i [Qz]i,i − β2
i − Di [Qz]i,i

(2βi + σ 2
i )Di

)
≤ 2k log |ai |.

Thus, we write:

log

(
σ 2

i [Qz ]i,i−β2
i −Di [Qz ]i,i

(2βi+σ 2
i )Di

)

2 log |ai | ≤ KLQG,

which is stated in (30b).

APPENDIX C
PROOFS FOR THE JSCC-LQG SCHEME

FOR THE SYMMETRIC SETTING

A. Proof of Theorem 4

We begin with the following lemma:
Lemma 1: For symmetric GBCFs c2 = −c1.

Proof: We explicitly express c1 in terms of a1. Recall the
definition of the vector C in Section IV-A:

C = (BT GB+ 1)−1AGT B (C.1)
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where G is the unique positive-definite solution of the DARE
G = AT GA − AT GB(BT GB+ 1)−1BT GA, such that all the
eigenvalues of the matrix A − BCT have magnitudes smaller

than 1. Let G =
[

g1 g2
g3 g4

]
. From [44, Proposition 1] we

have that for the symmetric case and for A =
[

a1 0
0 −a1

]

the elements of G are given by:

g1 = g4 = (a2
1 − 1)(1+ a2

1)2

4a2
1

,

g2 = g3 = (1− a2
1)2(1+ a2

1)

4a2
1

,

and it follows that G = GT . Writing AGT B = AGB explicitly:

AGB =
[

a1 0
0 −a1

] [
g1 g2
g2 g1

] [
1
1

]

=
[

a1(g1 + g2)
−a1(g1 + g2)

]
.

Using the explicit expressions for g1 and g2 we can write

g1+g2 = (1+a2
1)(a2

1−1)
2 . Next, writing BT GB+1 explicitly we

obtain:

BT GB+ 1 = 2(g1 + g2)+ 1 = (1+ a2
1)(a2

1 − 1)+ 1.

We now can explicitly compute c1, the first element of C
in (C.1):

c1 = a1(g1 + g2)

2(g1 + g2)+ 1

= a1(1+ a2
1)(a2

1 − 1)

2((1+ a2
1)(a2

1 − 1)+ 1)

= a4
1 − 1

2a3
1

(C.2)

Computing c2 via similar arguments we find c2 = −c1. �
Next, we recall (B.8):

Pk = CT Mk−1Qs(MT )k−1C+
k−2∑
l=0

CT MlQz(MT )lC,

and note that with c2 = −c1 (B.10) is specialized to:

CT MkQs(MT )kC = c2
1

(
(r1 − r3)

2 + (r2 − r4)
2
)

. (C.3)

In the symmetric setting we also have σ1 = σ2 = σs and
σz,1 = σz,2 = σz . From the expression for the matrix M and
from the expression for c1 it follows that v1 = v4, v2 = v3,
and −λ2 = λ1. Therefore, (B.12) is specialized to:

r1 = λk
1σs

det(V)

(
v2

1 − v2
2(−1)k + ρsv1v2((−1)k − 1)

)
(C.4a)

r2 = λk
1σs
√

1− ρ2
s

det(V)

(
v1v2((−1)k − 1)

)
(C.4b)

r3 = λk
1σs

det(V)

(
v1v2(1− (−1)k)+ ρs

(
v2

1(−1)k − v2
2

))
(C.4c)

r4 = λk
1σs
√

1− ρ2
s

det(V)

(
v2

1(−1)k − v2
2

)
. (C.4d)

Next, we explicitly write r1 − r3:

r1 − r3 = λk
1σs

det(V)

(
v2

1 − v2
2(−1)k + ρsv1v2((−1)k − 1)

− v1v2(1− (−1)k)− ρs

(
v2

1(−1)k − v2
2

))

= λk
1σs

det(V)

(
v2

1(1− ρs(−1)k)+ v2
2(ρs − (−1)k)

+ v1v2(ρs + 1)((−1)k − 1)
)

,

and by squaring we obtain:

(r1 − r3)
2 = λ2k

1 σ 2
s

det2(V)

(
v2

1(1− ρs(−1)k)+ v2
2(ρs − (−1)k)

+ v1v2(ρs + 1)((−1)k − 1)
)2

= λ2k
1 σ 2

s

det2(V)

(
v4

1(1− ρs(−1)k)2 + v4
2(ρs − (−1)k)2

+ v2
1v2

2(1+ ρs)
2((−1)k − 1)2

+ 2v2
1v2

2(1− ρs(−1)k)(ρs − (−1)k)

+ 2v3
1v2(1− ρs(−1)k)(ρs + 1)((−1)k − 1)

+ 2v1v
3
2(ρs − (−1)k)(ρs + 1)((−1)k − 1)

)
.

Now, for even values of k we have:

(r1 − r3)
2 = λ2k

1 σ 2
s

det2(V)

(
v4

1(1− ρs(−1)k)2 + v4
2(ρs − (−1)k)2

−2v2
1v2

2(1− ρs)
2
)

= λ2k
1 σ 2

s

det2(V)

(
(1− ρs)

2(v2
1 − v2

2)2
)

= λ2k
1 σ 2

s (1− ρs)
2, (C.5)

while for odd values of k we have:

(r1 − r3)
2

= λ2k
1 σ 2

s

det2(V)

(
v4

1(1+ ρs)
2 + v4

2(1+ ρs)
2

+ 4v2
1v2

2(1+ ρs)
2 + 2v2

1v2
2(1+ ρs)

2

− 4v3
1v2(1+ ρs)

2 − 4v1v
3
2(1+ ρs)

2
)

= λ2k
1 σ 2

s (1+ ρs)
2 v4

1 + v4
2 + 6v2

1v2
2 − 4v1v2(v

2
1 + v2

2)

det2(V)
(a)= λ2k

1 σ 2
s (1+ ρs)

2a4
1, (C.6)

where (a) follows from the following lemma.
Lemma 2: The following equality holds:

v4
1 + v4

2 + 6v2
1v2

2 − 4v1v2(v
2
1 + v2

2)

det2(V)
= a4

1 .

Proof: We begin with expressing λ1, v1, and v2. From
[42, Lemma 2.4] it follows that λ1 = 1

a1
, see Footnote 16

for a detailed explanation. Next, we explicitly write M =[
a1 − c1 c1
−c1 −(a1 − c1)

]
, and note that an eiegenvector V0 of

M, corresponding to the eigenvalue λ1, obeys MV0 = λ1V0.
This equation can also be written using a matrix form:

(M− λ1I)V0 =
[

a1 − c1 − λ1 c1
−c1 −(a1 − c1)− λ1

] [
v1
v2

]
= 0.



MURIN et al.: FINITE-LENGTH LINEAR SCHEMES FOR JSCC OVER GAUSSIAN BROADCAST CHANNELS 2763

Recalling that eigenvectors have unit norm, we obtain an
explicit expression for V0:

[
v1
v2

]
=
⎡
⎢⎣

c1√
c2

1+(a1−c1−λ1)2

− a1−c1−λ1√
c2

1+(a1−c1−λ1)2

⎤
⎥⎦.

Substituting λ1 = 1
a1

we obtain:

v1 = c1√
c2

1 + (a1 − c1 − 1
a1

)2

= a1c1√
a2

1c2
1 + ((a1 − c1)a1 − 1)2

(C.7a)

v2 = −
a1 − c1 − 1

a1√
c2

1 + (a1 − c1 − 1
a1

)2

= 1− (a1 − c1)a1√
a2

1c2
1 + ((a1 − c1)a1 − 1)2

. (C.7b)

Note that (C.2) implies that 0 ≤ c1 ≤ a1. Using the expression
for c1 we now write a1(a1 − c1)− 1 in terms of a1:

a1(a1 − c1)− 1 = a1

(
a1 − (a4

1 − 1)

2a3
1

)
− 1

= a5
1 + a1

2a3
1

− 1

= (a2
1 − 1)2

2a2
1

. (C.8)

Thus, the numerator of (C.7a) equals a1c1 = a4
1−1

2a2
1

, while the

numerator of (C.7b) equals 1− (a1 − c1)a1 = − (a2
1−1)2

2a2
1

. We

further note that the denominators of (C.7a) and (C.7b) are
the same. Therefore, we write (C.9) at the bottom of the page.
The denominator of (C.9) can be written as:

((a4
1 − 1)2 − (a2

1 − 1)4)2

= ((a2
1 − 1)2(a2

1 + 1)2 − (a2
1 − 1)4)2

= 16a4
1(a

2
1 − 1)4. (C.10a)

The numerator of (C.9) can be written as:

(a4
1 − 1)4 + (a2

1 − 1)8 + 6(a4
1 − 1)2(a2

1 − 1)4

+ 4(a4
1 − 1)(a2

1 − 1)2((a4
1 − 1)2 + (a2

1 − 1)4)

= (a2
1 − 1)4

(
8a8

1 + 8+ 8(a8
1 − 1)

)
= 16a8

1(a
2
1 − 1)4. (C.10b)

Thus, by combining (C.10a) and (C.10b) we obtain:

v4
1 + v4

2 + 6v2
1v2

2 − 4v1v2(v
2
1 + v2

2)

det2(V)
= 16a8

1(a
2 − 1)4

16a4
1(a

2 − 1)4

= a4
1 . (C.11)

This concludes the proof of the lemma. �
Similarly to (C.6), we write:

(r2 − r4)
2

= λ2k
1 σ 2

s (1− ρ2
s )

det2(V)

(
v1v2((−1)k − 1)− v2

1(−1)k + v2
2

)2

= λ2k
1 σ 2

s (1− ρ2
s )

det2(V)

(
v2

1v2
2((−1)k − 1)2 + v4

1 + v4
2

− 2v3
1v2(−1)k((−1)k − 1)

+ 2v1v
3
2((−1)k − 1)− 2v2

1v2
2(−1)k

)

=
{

λ2k
1 σ 2

s (1− ρ2
s ), k is even,

λ2k
1 σ 2

s (1− ρ2
s )a4

1, k is odd.
(C.12)

Hence, combining (C.3) and (C.5)–(C.12) we obtain:

CT Mk−1Qs(MT )k−1C

=
{

2c2
1λ

2(k−1)
1 σ 2

s (1− ρs), k − 1 is even,

2c2
1λ

2(k−1)
1 σ 2

s (1+ ρs)a4
1, k − 1 is odd.

(C.13)

Next, we focus on
∑k−2

l=0 CT MlQz(MT )lC. Following the steps
leading to (C.13) we write:

CT MlQz(MT )lC =
{

2c2
1λ

2l
1 σ 2

z (1− ρz), l is even,

2c2
1λ

2l
1 σ 2

z (1+ ρz)a4
1, l is odd.

For even values of k − 1 we have:

k−2∑
l=0

CT MlQz(MT )lC

=
k−1

2 −1∑
m=0

2c2
1σ

2
z (1− ρz)λ

4m
1 +

k−1
2 −1∑
m=0

2c2
1σ

2
z (1+ ρz)a

4
1λ4m+2

1

= 2c2
1σ

2
z ((1− ρz)+ (1+ ρz)a

4
1λ2

1)

k−1
2 −1∑
m=0

λ4m
1

(a)= 2c2
1σ

2
z ((1− ρz)+ (1+ ρz)a2

1)

1− λ4
1

(1− λ
2(k−1)
1 )

= μ1 · (1− λ
2(k−1)
1 ), (C.14)

where (a) follows from the fact that a1 = 1
λ1

. For odd values
of k − 1 we have:

k−2∑
l=0

CT MlQz(MT )lC

=
k−2

2∑
m=0

2c2
1σ

2
z (1− ρz)λ

4m
1 +

k−2
2 −1∑
m=0

2c2
1σ

2
z (1+ ρz)a

4
1λ4m+2

1

= 2c2
1σ

2
z (1− ρz)λ

2(k−2)
1 + 2c2

1σ
2
z ((1− ρz)

v4
1+ v4

2+ 6v2
1v2

2− 4v1v2(v
2
1+ v2

2)

det2(V)
= (a4

1− 1)4+ (a2
1− 1)8+ 6(a4

1− 1)2(a2
1− 1)4+ 4(a4

1− 1)(a2
1− 1)2((a4

1− 1)2+ (a2
1− 1)4)

((a4
1− 1)2 − (a2

1− 1)4)2
.

(C.9)
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+ (1+ ρz)a
4
1λ2

1)

k−2
2 −1∑
m=0

λ4m
1

= (1− λ4
1)2c2

1σ
2
z (1− ρz)λ

2(k−2)
1 + 2c2

1σ
2
z ((1− ρz)

1− λ4
1

+ (1+ ρz)a4
1λ2

1)(1− λ
2(k−2)
1 )

1− λ4
1

= 2c2
1σ

2
z (1− ρz)λ

2(k−2)
1

1− λ4
1

− 2c2
1σ

2
z (1− ρz)λ

2k
1

1− λ4
1

+ 2c2
1σ

2
z ((1− ρz)+ (1+ ρz)a4

1λ2
1)

1− λ4
1

− 2c2
1σ

2
z ((1− ρz)+ (1+ ρz)a4

1λ2
1)λ

2(k−2)
1

1− λ4
1

= 2c2
1σ

2
z ((1− ρz)+ (1+ ρz)a2

1)

1− λ4
1

− 2c2
1σ

2
z ((1− ρz)λ

2
1 + (1+ ρz)a4

1)

1− λ4
1

λ
2(k−1)
1

= μ1 − μ3 · λ2(k−1)
1 . (C.15)

Recalling that μ0 = 2c2
1σ

2
s (1−ρs) and μ2 = 2c2

1σ
2
s (1+ρs)a4

1,
we combine (C.13)–(C.15) to obtain (32). Similarly to (B.18)
we have that limk→∞ Pk = P , and since |λ1| < 1 it follows
that μ1 = P . Therefore, the power constraint (5) is satisfied
if and only if μ0 ≤ μ1 and μ2 ≤ μ3.

B. Proof of Proposition 3

First, we show that the maximal possible scaling which
satisfies (5) is:

√
ν
σ 2

s
. Then, we prove that the optimal estimator

and the obtained MSE are given in (34) and (35), respectively.
Finally, we show that setting γ = ν

σ 2
s

indeed minimizes the
MSE.

1) Maximal Scaling: Recall that (33) constitutes an upper
bound on the variance of the sources transmitted via a JSCC-
LQG scheme initialized with U1 = S, which satisfy (5).
Explicitly writing the conditions of Thm. 4, i.e., μ0 ≤ μ1
and μ2 ≤ μ3, where μ j , j = 0, . . . , 3 are defined in (31), we
obtain:

σ 2
s (1− ρs) ≤ σ 2

z (1− ρz + (1+ ρz)a2
1)

1− λ4
1

,

σ 2
s (1+ ρs)a

4
1 ≤

σ 2
z ((1− ρz)λ

2
1 + (1+ ρz)a4

1)

1− λ4
1

.

This implies that:

σ 2
s ≤ min

{
σ 2

z (1− ρz + (1+ ρz)a2
1)

(1− λ4
1)(1− ρs)

,

σ 2
z ((1− ρz)λ

2
1 + (1+ ρz)a4

1)

(1− λ4
1)(1+ ρs)a4

1

}
, (C.16)

and therefore, the maximal possible scaling which satisfies (5)
is
√

ν
σ 2

s
.

2) Optimal Estimator and Resulting MSE: Following the
same arguments as those applied in Appendix B-A the optimal
estimator of Si based on the observation Ûi,k+1(γ ) is given

by E
{

Si |Ûi,k(γ )
}
= E

{
SiÛi,k (γ )

}

E
{

Û 2
i,k (γ )

} Ûi,k . Letting S̃ = √γ · S we

can write:

E
{

Si
∣∣Ûi,k (γ )

}
= 1√

γ
E
{

S̃i
∣∣Ûi,k (γ )

}
.

Note that E
{

S̃i
∣∣Ûi,k (γ )

}
can be obtained from (24) by setting

σ 2
i = γ · σ 2

s . Let Qs̃ � E{S̃S̃T }. Following the arguments
leading to (B.4) we write:

E
{

Si
∣∣Ûi,k (γ )

}

= 1√
γ
· [MkQs̃]i,i − σ 2

s̃ ak
i

[Qu,k+1(γ )]i,i − 2ak
i [MkQs̃]i,i + σ 2

s̃ a2k
i

Ûi,k+1(γ )

=
√

γ
([MkQs]i,i − σ 2

s ak
i

)
[Qu,k+1(γ )]i,i − 2γ ak

i [MkQs]i,i + γ σ 2
s a2k

i

Ûi,k+1(γ ).

Moreover, by following the arguments leading to (B.6) we
obtain (35):

E
{
(Si − Ŝi,k )

2
}

= σ 2
s [Qu,k+1(γ )]i,i − γ

([MkQs ]i,i
)2

[Qu,k+1(γ )]i,i − 2γ ak
i [MkQs]i,i + γ σ 2

s a2k
i

. (C.17)

3) Explicit Expression of the MSE: We now derive an
explicit expression for the MSE. From (C.17) it follows that
we need to characterize [Qu,k+1(γ )]1,1 and [MkQs]1,1. Next,
we explicitly characterize [Qu,k+1(γ )]1,1 as a function of k.

a) Analysis of [Qu,k+1(γ )]1,1: From (B.7) we have:

[Qu,k+1(γ )]1,1

= γ ·
[
MkQs(MT )k

]
1,1
+
[

k−1∑
l=0

MlQz(MT )l

]

1,1

. (C.18)

We now separately analyze the two terms on the RHS
of (C.18).

Analysis of γ · [MkQs(MT )k
]

1,1: Following arguments sim-
ilar to those leading to (B.10) we have

[
MkQs(MT )k

]
1 =

r2
1 +r2

2 , where r1 and r2, specialized to the symmetric setting,
are given in (C.4). Further simplifying the expressions we
obtain:

r1 =
{

λk
1σs , k is even,
σsλ

k
1

det(V)

(
v2

1 + v2
2 − 2ρsv1v2

)
k is odd.

r2 =
{

0, k is even,

−2λk
1σs
√

1−ρ2
s v1v2

det(V) k is odd.

Thus, as �(ς, ρ) �
ς2
((

v2
1+v2

2−2ρv1v2
)2+4(1−ρ2)v2

1v2
2

)
det2(V)

, see (37a),
we obtain:

γ ·
[
MkQs(MT )k

]
1,1
=
{

λ2k
1 γ σ 2

s , k is even,

λ2k
1 γ�(σs , ρs) k is odd,

(C.19)
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where we note that �(σs , ρs) ≥ 0. Next, we analyze the
second term on the RHS of (C.18).

Analysis of
[∑k−1

l=0 MlQz(MT )l
]

1,1
: Following the same

arguments used for deriving (C.19), we write:

[
MlQz(MT )l

]
1,1
=
{

λ2l
1 σ 2

z , l is even,

λ2l
1 �(σz , ρz), l is odd.

Now, for even k, following similar arguments that led to
to (C.14), we obtain:
[

k−1∑
l=0

MlQz(MT )l

]

1,1

=
(
σ 2

z +�(σz, ρz)λ
2
1

) k
2−1∑
m=0

λ4m
1

= σ 2
z + λ2

1�(σz, ρz)

1− λ4
1

(1− λ2k
1 )

= �0(1− λ2k
1 ),

where �0 � σ 2
z +λ2

1�(σz,ρz)

1−λ4
1

is defined in (37b). Since

�(σ1, ρs) ≥ 0 and 0 < λ1 < 1, it follows that �0 > 0.
For odd k, we follow steps similar to those leading to (C.15)
to obtain:[

k−1∑
l=0

MlQz(MT )l

]

1,1

=
(
σ 2

z +�(σz , ρz)λ
2
1

)⎛⎜⎝
k−1

2 −1∑
m=0

λ4m
1

⎞
⎟⎠+ σ 2

z λ
2(k−1)
1

=
(
σ 2

z +�(σz , ρz)λ
2
1

) (
1− λ

2(k−1)
1

)
+ (1− λ4

1

)
σ 2

z λ
2(k−1)
1

1− λ4
1

= σ 2
z + λ2

1�(σz , ρz)

1− λ4
1

− λ2k
1

�(σz, ρz)+ λ2
1σ

2
z

1− λ4
1

= �0 − λ2k
1 �1.

Hence, we have:[
k−1∑
l=0

MlQz(MT )l

]

1,1

=
{

�0(1− λ2k
1 ), k is even,

�0 − λ2k
1 �1, k is odd.

(C.20)

Next, we combine (C.19) and (C.20) to obtain:

[Qu,k+1(γ )]1,1 =
{

λ2k
1 (γ σ 2

s − �0)+�0, k is even,

λ2k
1 (γ�(σs , ρs)−�1)+�0, k is odd.

(C.21)

b) Analysis of [MkQs]1,1: Recall the definition of �s �
σ 2

s (v2
1+v2

2−2ρsv1v2)

v2
1−v2

2
in (37d). For the symmetric setting, we

rewrite [MkQs]1,1, given in (B.20), as follows:

[MkQs]1,1 = σ 2
s λk

1

(
v2

1 − v2
2(−1)k + ρsv1v2((−1)k − 1)

)
v2

1 − v2
2

=
⎧⎨
⎩

λk
1σ

2
s , k is even,

λk
1

σ 2
s
(
v2

1+v2
2−2ρsv1v2

)
v2

1−v2
2

, k is odd.

=
{

λk
1σ

2
s , k is even,

λk
1�s , k is odd.

(C.22)

c) An explicit expression: By plugging (C.21) and (C.22)
into (C.17) we obtain an explicit expression for the MSE given
in (C.23) at the bottom of the page. Next, we show that (C.23)
decreases when γ increases.

4) The MSE Decrease With γ : We begin with the case of
even values of k:

a) Even values of k: Note that �0 > 0. Thus, as λ2k
1 < 1,

we have that if λ2k
1 − 2 + λ−2k

1 > 0 then the MSE decreases
when γ increases:

λ2k
1 − 2+ λ−2k

1 = λ4k
1 − 2λ2k

1 + 1

λ2k
1

= (λ2k
1 − 1)2

λ2k
1

> 0, k > 0.

Thus, for even values of k, the MSE decreases with γ .
b) Odd values of k: Recalling the definitions of �(σs , ρs)

and �S in (37a) and (37d), respectively, we write:

C0 �
(
v2

1 + v2
2 − 2ρsv1v2

)2 + 4(1− ρ2
s )v2

1v2
2

det2(V)
,

C1 � v2
1 + v2

2 − 2ρsv1v2

det(V)
.

which implies that �(σs , ρs) = σ 2
s · C0 and �s = σ 2

s · C1.
Thus, for odd values of k, we write the MSE as follows:

E
{
(S1 − Ŝ1,k)

2
}

= γ σ 4
s λ2k

1 (C0 − C2
1 )+ σ 2

s (�0 − λ2k
1 �1)

γ σ 2
s (λ2k

1 C0 − 2C1 + λ−2k
1 )+ �0 − λ2k

1 �1
.

Defining θ1 � σ 4
s λ2k

1 (C0 − C2
1 ), θ2 � σ 2

s (�0 − λ2k
1 �1),

θ3 � σ 2
s (λ2k

1 C0 − 2C1 + λ−2k
1 ) and θ4 � �0 − λ2k

1 �1,
the MSE is of the form: MSE(γ ) = γ ·θ1+θ2

γ ·θ3+θ4
. Clearly, if

E
{
(S1 − Ŝ1,k)

2
}
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ 2
s (λ2k

1 (γ σ 2
s − �0)+�0)− γ

(
λk

1σ
2
s

)2
λ2k

1 (γ σ 2
s −�0)+�0 − 2γ σ 2

s + γ σ 2
s λ−2k

1

, k is even,

σ 2
s (λ2k

1 (γ�(σs , ρs)− �1)+ �0)− γ λ2k
1 �2

s

λ2k
1 (γ�(σs , ρs)−�1)+�0 − 2γ�s + γ σ 2

s λ−2k
1

, k is odd.

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ 2
s �0(1− λ2k

1 )

γ σ 2
s (λ2k

1 − 2+ λ−2k
1 )+ �0(1− λ2k

1 )
, k is even,

γ (λ2k
1 σ 2

s �(σs , ρs)− λ2k
1 �2

s )+ σ 2
s (�0 − λ2k

1 �1)

γ (λ2k
1 �(σs , ρs)− 2�s + σ 2

s λ−2k
1 )+�0 − λ2k

1 �1
, k is odd.

(C.23)
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θ j > 0, j = 1, 2, 3, 4, and θ3 > θ1, then MSE(γ ) decreases
with γ . Thus, we now show that these conditions hold.

Positivity of θ1: The positivity of θ1 follows directly from
the definitions of C0 and C1.

Positivity of θ2 and θ4: Note that both �0 and �1 are
positive. Furthermore, since λ2

1 < 1, it is enough to show
that �0 − λ2

1�1 > 0. We have:

�0 − λ2
1�1 = σ 2

z + λ2
1�(σz, ρz)

1− λ4
1

− λ2
1
�(σz , ρz)+ σ 2

z λ2
1

1− λ4
1

= σ 2
z > 0.

Positivity of θ3: Let χ = λ2k
1 , and write θ3 = σ 2

s (χC0 −
2C1 + χ−1) = σ 2

s
χ (χ2C0 − 2C1χ + 1). Therefore, as χ > 0

and C0 > 0, θ3 > 0 if the discriminant of χ2C0 − 2C1χ + 1
is negative:

� = 4C2
1 − 4C0 = −16(1− ρ2

s )v2
1v2

2

det2(V)
< 0. (C.24)

Thus, we conclude that θ3 > 0.
Proving that θ1 > θ3: We have:

θ3 − θ1 = σ 2
s (λ2k

1 C0 − 2C1 + λ−2k
1 )− σ 2

s λ2k
1 (C0 − C2

1 )

= σ 2
s λ2k

1 (λ−4k
1 − 2λ−2k

1 C1 + C2
1 )

= σ 2
s λ2k

1 (λ−2k
1 − C1)

2 > 0.

Thus, for odd values of k, the MSE decreases with γ . We
conclude that the MSE decreases with γ , for all values of k.
Hence, the optimal γ is determined by the per-symbol average
power constraint, and is given by

√
ν
σ 2

s
, where ν is specified

in (33).

C. Proof of Proposition 4

We first show that the global minimizer (regardless of the
per-symbol average power constraint) of the distance between
the initial and steady state covariance matrices D(Qu, Qu,1) is
given by γ ∗. Recalling that U1 = √γ S, we write D(Qu, Qu,1)
as:

D(Qu, Qu,1) =
√

2(σ 2
u − γ σ 2

s )2+ 2(ρuσ 2
u − γρsσ 2

s ). (C.25)

Therefore, to find the minimizing γ we minimize following
polynomial in γ :

q(γ ) = γ 2σ 4
s (1+ ρ2

s )− 2γ σ 2
u σ 2

s (1+ ρuρs)+ σ 4
u (1+ ρ2

u ).

Differentiating q(γ ) and equating the result to zero we obtain
the minimizing γ as:

γ ∗ = σ 2
u (1+ ρuρs)

σ 2
s (1+ ρ2

s )
. (C.26)

Now, to show that γ = ν
σ 2

s
minimizes (C.25) under (5), we

first recall that in the proof of Prop. 3 we showed that the
MSE monotonically decreases when the scaling coefficient
increases, and also showed that γ = ν

σ 2
s

is the maximal
scaling such that (5) is satisfied. In the following we show that
ν
σ 2

s
≤ γ ∗, and therefore, since q(γ ) is convex, γ = ν

σ 2
s

minimizes D(Qu, Qu,1) under (5).

To prove that ν
σ 2

s
≤ γ ∗ we first derive explicit expressions

for σ 2
u and ρu . Recall that σ 2

u = [Qu]1,1, and that ρuσ 2
u =

[Qu]1,2, where Qu is the solution of (20). The following
lemma provides explicit expressions for σ 2

u and ρu :
Lemma 3: σ 2

u and ρu are given by:

σ 2
u =

σ 2
z (1− a2

1 + a4
1 + a6

1 + ρz(−1+ a2
1 − a4

1 + a6
1))

2a2
1(a2

1 − 1)
,

(C.27a)

ρu = 1− a8
1 − ρz(1− 2a6

1 + a8
1)

1+ 2a6
1 + a8

1 + ρz(a8
1 − 1)

. (C.27b)

Proof: The matrix Qu is the solution of the discrete
algebraic Lyapunov equation:

Qu = MQuMT +Qz, M = A − BCT . (C.28)

To prove the lemma we show that σ 2
u and ρu satisfy the

following equations:

M0

[
σ 2

u
ρuσ 2

u

]
=
[

σ 2
z

ρzσ
2
z

]
⇒
[

σ 2
u

ρuσ 2
u

]
= M−1

0

[
σ 2

z
ρzσ

2
z

]
,

where the matrix M0 is a full rank matrix derived as follows:
First, recall the proof of Lemma 2 which states that M =[

a1 − c1 c1
−c1 −(a1 − c1)

]
. Using the relationship between c1 and

a1 in (C.2): c1 = a4
1−1

2a3
1

, the matrix M can be written as:

M =
⎡
⎢⎣

a4
1+1

2a3
1

a4
1−1

2a3
1

− a4
1−1

2a3
1
− a4

1+1

2a3
1

⎤
⎥⎦. (C.29)

Writing Qu =
[

σ 2
u ρuσ 2

u
ρuσ 2

u σ 2
u

]
=
[

q1 q2
q2 q1

]
and plugging the

expression for M from (C.29) into (C.28) we have:

[
q1 q2
q2 q1

]
=
⎡
⎢⎣

q1+a8
1 q1−(1−a8

1)q2

2a6
1

q1−a8
1 q1−(1+a8

1)q2

2a6
1

q1−a8
1 q1−(1+a8

1)q2

2a6
1

q1+a8
1 q1−(1−a8

1)q2

2a6
1

⎤
⎥⎦

+
[

σ 2
z ρzσ

2
z

ρzσ
2
z σ 2

z

]
,

which can also be written as:⎡
⎢⎣−

(1−2a6
1+a8

1)q1+(−1+a8
1)q2

2a6
1

(−1+a8
1)q1+(1+2a6

1+a8
1 )q2

2a6
1

(−1+a8
1)q1+(1+2a6

1+a8
1)q2

2a6
1

− (1−2a6
1+a8

1 )q1+(−1+a8
1)q2

2a6
1

⎤
⎥⎦

=
[

σ 2
z ρzσ

2
z

ρzσ
2
z σ 2

z

]
. (C.30)

Note that the two rows of (C.30) are in fact the same equa-
tion. Therefore, we obtain the following system of equations
for [q1, q2]T :⎡
⎢⎣−

1−2a6
1+a8

1
2a6

1

a8
1−1

2a6
1

a8
1−1

2a6
1

1+2a6
1+a8

1
2a6

1

⎤
⎥⎦
[

q1
q2

]
=
[

σ 2
z

ρzσ
2
z

]

⇒ M0 =
⎡
⎢⎣
− 1−2a6

1+a8
1

2a6
1

a8
1−1

2a6
1

a8
1−1

2a6
1

1+2a6
1+a8

1
2a6

1

⎤
⎥⎦.
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�γ,1 = σ 2
z (1+ ρs)

2a2
1(a4

1 − 1)(1+ ρ2
s )
· −1+ ρs + 2a6

1ρs + a8
1(1+ ρs)+ ρz(1− 2a6

1 − ρs + a8
1(1+ ρs))

ρs − 1
, (C.31a)

�γ,2 = σ 2
z (1− ρs)

2a2
1(a4

1 − 1)(1+ ρ2
s )
· −1+ ρs + 2a6

1ρs + a8
1(1+ ρs)+ ρz(1− 2a6

1 − ρs + a8
1(1+ ρs))

ρs + 1
. (C.31b)

Lastly, we note that since a1 > 1, the matrix M0 is invertible.
Thus, we obtain:

q1 = σ 2
z (1− a2

1 + a4
1 + a6

1 + ρz(−1+ a2
1 − a4

1 + a6
1))

2a2
1(a2

1 − 1)
,

q2 = σ 2
z (−(1− a2

1 + a4
1 + a6

1)+ ρz(1+ a2
1 + a4

1 − a6
1))

2a2
1(a2

1 + 1)
.

Finally, recalling that ρu = q2
q1

we conclude the proof of the
lemma. �

Next, we use the explicit expressions for σ 2
u and ρu to show

that ν
σ 2

s
≤ γ ∗, or equivalently ν ≤ σ 2

u (1+ρuρs )

1+ρ2
s

. Recall the

definition of ν in (33), repeated here for ease of reference:

ν = min

{
σ 2

z (1− ρz + (1+ ρz)a2
1)

(1− λ4
1)(1− ρs)

,

σ 2
z ((1− ρz)λ

2
1 + (1+ ρz)a4

1)

(1− λ4
1)(1+ ρs)a4

1

}
.

Using the relationship λ1 = 1
a1

, we write ν = min{ν1, ν2},
where:

ν1 �
σ 2

z a4
1(1+ a2

1 + ρz(a2
1 − 1))

(a4
1 − 1)(1− ρs)

ν2 �
σ 2

z (1+ a6
1 + ρz(a6

1 − 1))

a2
1(a4

1 − 1)(1+ ρs)
.

We now show that either �γ,1 � σ 2
u (1+ρuρs)

1+ρ2
s
− ν1 ≥ 0

or �γ,2 � σ 2
u (1+ρuρs )

1+ρ2
s
− ν2 ≥ 0, which implies that

ν ≤ σ 2
u (1+ρuρs )

1+ρ2
s

. Plugging the expressions for σ 2
u and ρu in

(C.27) into (C.26) we write σ 2
u (1+ρuρs )

1+ρ2
s

as:

σ 2
u (1+ ρuρs)

1+ ρ2
s

= σ 2
z (1+ 2a6

1 − a8
1(ρs − 1)+ ρs)

2a2
1(a4

1 − 1)(1+ ρ2
s )

+ σ 2
z (−ρz(1+ a8

1(ρs − 1)+ ρs − 2a6
1ρs))

2a2
1(a4

1 − 1)(1+ ρ2
s )

.

Thus, �γ,1 and �γ,2 are given in (C.31) at the top of the
page. Note that since |ρs | < 1, the first terms on the RHSs
of (C.31a) and (C.31b) have the same sign. Therefore, since
|ρs | < 1, we conclude that sgn(�γ,1) = −sgn(�γ,2). This
implies that either �γ,1 ≥ 0 or �γ,2 ≥ 0. Finally, since ν =
min{ν1, ν2} we conclude that ν

σ 2
s
≤ γ ∗.

D. Proof of Theorem 5

To explicitly characterize KLQG we solve the inequality
E{(S1− Ŝ1,k)

2} ≤ D, where E{(S1− Ŝ1,k)
2} is given in (C.23).

We begin with even values of k.

1) Analysis for Even Values of k: For even values of k we
are interested in the minimal even k such that:

σ 2
s �0(1− λ2k

1 )

γ σ 2
s (λ2k

1 − 2 + λ−2k
1 )+�0(1− λ2k

1 )
≤ D, (C.32)

where
√

γ is a scaling factor of the transmitted sources, i.e.,
U1 = √γ · S. This inequality can also be written as19:

σ 2
s �0(1− λ2k

1 ) ≤ D
(
γ σ 2

s (λ2k
1 − 2 + λ−2k

1 )+�0(1− λ2k
1 )
)

.

Next, we multiply both sides of the inequality by λ2k
1 , and

collect common terms to obtain the inequality:

λ4k
1

(
�0(D − σ 2

s )− Dγ σ 2
s

)

+ λ2k
1

(
�0(σ

2
s − D)+ 2Dγ σ 2

s

)
− Dγ σ 2

s ≤ 0,

which, by using the definitions of ϒ0 and ϒ1, can also be
written as λ4k

1 ϒ0+λ2k
1 ϒ1− Dγ σ 2

s ≤ 0. Next, we set x = λ2k
1

and note that ϒ0 < 0.20 Thus, we obtain the following monic
polynomial inequalities:

x2 + x
ϒ1

ϒ0
− Dγ σ 2

s

ϒ0
≥ 0 (C.33)

The discriminant of x2 + x ϒ1
ϒ0
− Dγ σ 2

s
ϒ0

is equal to 1
ϒ2

0
(ϒ2

1 +
4Dγ σ 2

s ϒ0). Therefore, if ϒ0 <
−ϒ2

1
4Dγ σ 2

s
then P(e)(x) has no

real roots. Since x2 + x ϒ1
ϒ0
− Dγ σ 2

s
ϒ0

is convex, if it has no
real roots then it is strictly positive. Hence, in this case the
required distortion is achieved for every even k. Therefore, we
set k = 2 and obtain x (e)

0 = a−4
1 .

On the other hand, if ϒ0 >
−ϒ2

1
4Dγ σ 2

s
then P(e)(x) has two

real roots. We write x2 + x ϒ1
ϒ0
− Dγ σ 2

s
ϒ0

as:

x2 + px + q, p = ϒ1

ϒ0
, q = −Dγ σ 2

s

ϒ0
.

The roots of this polynomial are given by − p
2 ±

√
p2

4 − q.
Now, since ϒ1 > 0 and ϒ0 < 0 we have − p

2 > 0. As ϒ0 < 0,
then q > 0. Therefore, P(e)(x) has two positive roots; one is
smaller than − p

2 , and the other is larger. In fact, it is easy
to see that P(e)(1) = 0, thus, the larger root equals 1. Let
(x (e)

1 , x (e)
2 ) denote the real roots of P(e)(x). Since x = λ2k

1 ,
and since k ≥ 1, then the root we seek is min{x (e)

1 , x (e)
2 }. Let

x (e)
0 denote the required root. Then we have:

x (e)
0 �

⎧⎨
⎩

min
{

x (e)
1 , x (e)

2

}
,
−ϒ2

1
4Dγ σ 2

s
≤ ϒ0 < 0

a−4
1 , otherwise.

19Note that γ σ 2
s (λ2k

1 − 2+ λ−2k
1 )+�0(1− λ2k

1 ) > 0.
20From the fact that �(σz , ρz) ≥ 0 it follows that �0 ≥ 0. Furthermore

from (6) we have that D1 ≤ σ 2
s . Therefore, as D1, γ, σ 2

s > 0 it follows that
ϒ0 = �0(D1 − σ 2

s )− D1γ σ 2
s < 0.
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2) Analysis of Odd k’s: For odd k’s we use (C.23) to write:

γ (λ2k
1 σ 2

s �(σs , ρs)− λ2k
1 �2

s )+ σ 2
s (�0 − λ2k

1 �1)

γ (λ2k
1 �(σs , ρs)− 2�s + σ 2

s λ−2k
1 )+�0 − λ2k

1 �1
≤ D.

(C.34)

Based on Appendix C.B.3.c, this inequality can also be written
as:

λ4k
1

(
(γ�(σs , ρs)−�1)(σ

2
s − D)− γ�2

s

)

+ λ2k
1

(
�0(σ

2
s − D)+ 2Dγ�s

)
− Dγ σ 2

s ≤ 0,

which, by using the definitions of ϒ2 and ϒ3, can also be
written as λ4k

1 ϒ2 + λ2k
1 ϒ3 − Dγ σ 2

s ≤ 0. Now, similarly
to (C.33), we set x = λ2k

1 to obtain the following monic
polynomial inequalities:

⎧⎪⎪⎨
⎪⎪⎩

x2 + x ϒ3
ϒ2
− Dγ σ 2

s
ϒ2
≤ 0, ϒ2 > 0,

x2 + x ϒ3
ϒ2
− Dγ σ 2

s
ϒ2
≥ 0, ϒ2 < 0,

xϒ3 − Dγ σ 2
s ≤ 0, ϒ2 = 0.

(C.35)

The discriminant of P(o)(x) = x2 + x ϒ3
ϒ2
− D1γ σ 2

s
ϒ2

is given
by 1

ϒ2
2
(ϒ2

3 + 4D1γ σ 2
s ϒ2). Therefore, by applying arguments

similar to those applied in Appendix C.D.1 we have:

x (o)
0 �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a−2
1 , ϒ2 <

−ϒ2
3

4D1γ σ 2
s
,

min
{

x (o)
1 , x (o)

2

}
,

−ϒ2
3

4D1γ σ 2
s
≤ ϒ2 < 0,

Dγ σ 2
s

ϒ3
, ϒ2 = 0,

max
{

x (o)
1 , x (o)

2

}
, otherwise.

Note that if ϒ2 > 0, then one of the roots is negative while the
other is positive and smaller than 1. In such case we choose
the positive root. Furthermore, if P(o)(x) has no real roots,
then we set x (o)

0 = a−2
1 which results in the minimal possible

odd k, i.e., k = 1.
Next, we focus on the case of ϒ2 = 0 and note that for

ϒ2 = 0 equation (C.35) can be written as: x ≤ Dγ σ 2
s

ϒ3
. This

follows from the fact that ϒ3 = �0(σ
2
s − D) + 2Dγ�s > 0.

To see this note that �0 ≥ 0, σ 2
s ≥ D and D, γ > 0.

Furthermore, the numerator of �s in (37d) is positive, while
the positivity of the denominator of �s follows from (C.11)
which implies that v2

1 − v2
2 > 0. Next, we show that

0 <
Dγ σ 2

s
ϒ3

< 1. The first inequality follows from the fact
that ϒ3, D, γ , σ 2

s > 0. The second inequality follows from

the fact that �s = σ 2
s (v2

1+v2
2−2ρsv1v2)

v2
1−v2

2
> σ 2

s . We conclude that

when ϒ2 = 0 we can set x (o)
0 = Dγ σ 2

s
ϒ3

.

Lastly, as x = λ2k
1 = a−2k

1 then k = − log(x)
2 log |a1| . This implies

that we have two candidates for the required K : K (e) obtained
from x (e)

0 and K (o) obtained from x (o)
0 . Since K is an integer,

we use �·�, and the functions f (e)(·) and f (o)(·) to round up
to the nearest even and odd integers, respectively.

APPENDIX D
PROOFS FOR THE DYNAMIC PROGRAMMING SCHEME

A. Proof of Theorem 6

Let Wk = {αk, rk} be a “state” variable, and let
m = [m0, m1, . . . , mK−1] be a given modulation vector. In
the following we show that there exists a deterministic func-
tion fDP such that Wk = fDP(Wk−1, bk, m), k = 1, 2, . . . , K .
Namely, given the action bk and the modulation vector m, the
state evolves deterministically as in (46). In appendix D-B we
show that Pk = P is the optimal assignment for the JSCC-DP
scheme which implies that the JSCC-DP scheme exploits all
the available instantaneous average transmission power. For
αk we write:

αk = E
{(

ε1,k−1 − bkY1,k
)2}

(a)= αk−1 + b2
k(P + σ 2

z )− 2bkE{ε1,k−1Y1,k}
(b)= αk−1 + b2

k(P + σ 2
z )

− 2bkdk−1E{ε1,k−1(ε1,k−1 + mk−1ε2,k−1)} (D.1a)

= αk−1 + b2
k(P + σ 2

z )− bk

√
2P(αk−1 + mk−1rk−1),

(D.1b)

where (a) follows from the fact that since the transmitted signal
and the noises are independent, then when Pk = P we have
E{Y 2

1,k} = P+σ 2
z ; (b) follows by noting that E{ε1,k−1Y1,k} =

E{ε1,k−1 Xk} = dkE{ε1,k−1(ε1,k−1 + mk−1ε2,k−1)}. For rk we
write:

rk = E
{(

ε1,k−1 − bkY1,k
) (

ε2,k−1 − bkmk−1Y2,k
)}

= rk−1 + b2
kmk−1(P + ρzσ

2
z )

− bkdk−1mk−1(αk−1 + mk−1rk−1)

− bkdk−1(mk−1αk−1 + rk−1) (D.2a)

= rk−1 + b2
kmk−1(P + ρzσ

2
z )

− bkmk−1
√

2P(αk−1 + mk−1rk−1). (D.2b)

Therefore, the optimization problem in (45) can be cast as
a dynamic program with state Wk , actions {bk}Kk=1 and cost
function αK ,min(m), namely, a cost function that takes into
account only the MSE at time K and ignores all the MSEs at
times k < K .

As we aim at minimizing αK ,min(m), the last action, bK ,
should be the MMSE estimator of εK−1 based on Y1,K , which
is given by bK = E{ε1,K−1Y1,K }

E{Y 2
1,K }

:

bK
(a)= dK−1(αK−1 + mK−1rK−1)

P + σ 2
z

(D.3a)

(b)=
√

P

2(αK−1 + mK−1rK−1)

(αK−1 + mK−1rK−1)

P + σ 2
z

=
√

P(αK−1 + mK−1rK−1)

2(P + σ 2
z )2 , (D.3b)

where (a) is obtained by assuming that Pk = P in evaluating
E{Y 2

1,K }; and (b) is obtained by plugging the expression for
dK−1 which is given in (42). In order to find the optimal
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bK−1 = dK−2 (ηK−1 + θK−1mK−1mK−2) (αK−2 + mK−2rK−2)

ηK−1(P + σ 2
z )+ θK−1mK−1mK−2(P + ρzσ 2

z )
(D.6a)

=
√

P

2 (αK−2 + mK−2rK−2)

(ηK−1 + θK−1mK−1mK−2) (αK−2 + mK−2rK−2)

ηK−1(P + σ 2
z )+ θK−1mK−1mK−2(P + ρzσ 2

z )

=
√

P (αK−2 + mK−2rK−2)

2

ηK−1 + θK−1mK−1mK−2

ηK−1(P + σ 2
z )+ θK−1mK−1mK−2(P + ρzσ 2

z )
. (D.6b)

αK = −
d2

K−2 (ηK−1 + θK−1mK−1mK−2)
2 (αK−2 + mK−2rK−2)

2

ηK−1(P + σ 2
z )+ θK−1mK−1mK−2(P + ρzσ 2

z )

+ ηK−1αK−2 + θK−1mK−1rK−2

= − P (ηK−1 + θK−1mK−1mK−2)
2 (αK−2 + mK−2rK−2)

2(ηK−1(P + σ 2
z )+ θK−1mK−1mK−2(P + ρzσ 2

z ))

+ ηK−1αK−2 + θK−1mK−1rK−2

= αK−2

(
ηK−1 − P (ηK−1 + θK−1mK−1mK−2)

2

2(ηK−1(P + σ 2
z )+ θK−1mK−1mK−2(P + ρzσ 2

z ))

)

+mK−2rK−2

(
θK−1mK−1mK−2 − P (ηK−1 + θK−1mK−1mK−2)

2

2(ηK−1(P + σ 2
z )+ θK−1mK−1mK−2(P + ρzσ 2

z ))

)

� ηK−2αK−2 + θK−2mK−2rK−2. (D.7)

{bk}Kk=1, we first plug (D.3b) into (46a) and write:

αK = αK−1 + b2
K (P + σ 2

z )− bK
√

2P(αK−1 + mK−1rK−1)

= αK−1 + P(αK−1 + mK−1rK−1)

2(P + σ 2
z )

− P(αK−1 + mK−1rK−1)

P + σ 2
z

= αK−1

(
1− P

2(P + σ 2
z )

)
− P

2(P + σ 2
z )

mK−1rK−1

(a)= ηK−1αK−1 + θK−1mK−1rK−1, (D.4)

where (a) follows by defining ηK−1 � 1 − P
2(P+σ 2

z )
and

θK−1 � − P
2(P+σ 2

z )
. Next, plugging (D.1a) and (D.2a) into

(D.4) we write:

αK = ηK−1αK−1 + θK−1mK−1rK−1

= ηK−1

(
αK−2 + b2

K−1(P + σ 2
z )

− 2bK−1dK−2(αK−2 + mK−2rK−2)
)

+ θK−1mK−1

(
rK−2 + b2

K−1mK−2(P + ρzσ
2
z )

− 2bK−1dK−2mK−2(αK−2 + mK−2rK−2)
)

= b2
K−1

(
ηK−1(P+ σ 2

z )+ θK−1mK−1mK−2(P+ ρzσ
2
z )
)

− 2bK−1dK−2 (ηK−1 + θK−1mK−1mK−2)

× (αK−2 + mK−2rK−2)

+ ηK−1αK−2 + θK−1mK−1rK−2. (D.5)

Hence, given WK−2, m, ηK−1 and θK−1, αK is a quadratic
function of bK−1. This implies that the optimizing bK−1 is
given in (D.6b) at the top of the page. We note that (D.6b)
holds with K−1 replaced by k, k ≤ K−1, and K−2 replaced

by k−1. In the following we derive the backwards calculation
of ηk and θk . Hence, (D.6b) along with (D.3b) constitute (48).
Note that given WK−2 and m, bK−1 is a function of ηK−1 and
θK−1. Next, we plug (D.6b) back into (D.5) to obtain (D.7) at
the top of the page. Hence, (D.7) implies that the sequences
ηk and θk , for k = K − 1, K − 2, . . . , 1 obey the backwards
recursive formulation given in (47), where ηK−1 and θK−1
are provided just below (D.4). We conclude that given the
sequences ηk and θk , and given m and Wk−1, the optimal
coefficient bk can be calculated via (D.6b), and then, the
computed bk can be used in the forward calculation (46).
The optimal αK for the given modulation vector m is given
by (D.4).

B. Optimality of Pk = P in the JSCC-DP Scheme

In this subsection we prove that the optimal scaling dk ,
in the MMSE sense, results in Pk = P,∀k. We begin our
analysis with dK−1, and recall that E{Y 2

1,K } = 2d2
K−1(αK−1+

mK−1rK−1) + σ 2
z . Thus, rewriting (D.1b) for k = K we

obtain:

αK = αK−1 + b2
K (2d2

K−1(αK−1 + mK−1rK−1)+ σ 2
z )

− 2bK dK−1(αK−1 + mK−1rK−1). (D.8)

Similarly, (D.3a) becomes:

bK = dK−1(αK−1 + mK−1rK−1)

2d2
K−1(αK−1 + mK−1rK−1)+ σ 2

z

(D.9)

Next, we plug (D.9) into (D.8) to obtain:

αK = αK−1 −
d2

K−1(αK−1 + mK−1rK−1)
2

2d2
K−1(αK−1 + mK−1rK−1)+ σ 2

z

. (D.10)
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bK−1 = dK−2 (ηK−1 + θK−1mK−1mK−2) ζK−2

2d2
K−2ζK−2(ηK−1 + θK−1mK−1mK−2)+ σ 2

z (ηK−1 + θK−1mK−1mK−2ρz)
. (D.12)

αK = −
d2

K−2 (ηK−1 + θK−1mK−1mK−2)
2 ζ 2

K−2

2d2
K−2ζK−2(ηK−1+ θK−1mK−1mK−2)+ σ 2

z (ηK−1+ θK−1mK−1mK−2ρz)
+ ηK−1αK−2 + θK−1mK−1rK−2.

(D.13)

− d2
K−2 (ηK−1 + θK−1mK−1mK−2)

2 ζ 2
K−2

2d2
K−2ζK−2(ηK−1 + θK−1mK−1mK−2)+ σ 2

z (ηK−1 + θK−1mK−1mK−2ρz)
= ζ 2

K−2γ
2
K−1 · x

2ζK−2γK−1 · x + ξK−1σ 2
z
= f1(x).

(D.14)

Now, fix αK−1 and let rK−1 = ρK−1αK−1, |ρK−1| ≤ 1,
1 which implies that αK−1 + mK−1rK−1 = αK−1(1 +
mK−1ρK−1) ≥ 0. Let ζk � αk + mkrk and define x � d2

K−1.
We write:

d2
K−1(αK−1 + mK−1rK−1)

2

2d2
K−1(αK−1+ mK−1rK−1)+σ 2

z

= ζ 2
K−1 · x

2ζK−1 · x + σ 2
z
= f0(x),

where x, ζK−1 ≥ 0. It can be easily shown that d f0(x)
dx =

ζ 2
K−1σ

2
z

(2ζK−1·x+σ 2
z )2 ≥ 0, which implies that f0(x) is a monotonic

non-decreasing function for x ≥ 0. We conclude that for any
given αK−1 (D.10) is minimized when d2

K−1 is maximized,

i.e., dK−1 =
√

P
2(αK−1+mK−1rK−1) and therefore PK = P ,

thus, satisfying the average per-symbol power constraint with
equality.

Next, we consider the case of k = K − 1, and since
setting PK = P is optimal we can use ηK−1 and θK−1
given below (D.4). Recall that E{X2

k } = d2
k−1(2αk−1 +

2mk−1rk−1) = 2d2
k−1ζk−1. Hence, we rewrite (D.5) with P

replaced by 2d2
K−2ζK−2 to obtain:

αK = b2
K−1

(
ηK−1(2d2

K−2ζK−2 + σ 2
z )

+ θK−1mK−1mK−2(2d2
K−2ζK−2 + ρzσ

2
z )
)

− 2bK−1dK−2 (ηK−1 + θK−1mK−1mK−2) ζK−2

+ ηK−1αK−2 + θK−1mK−1rK−2, (D.11)

where the optimal bK−1, in terms of dK−2, is given in (D.12)
at the top of the page, see (D.6a). Plugging (D.12) into
(D.11) we write (D.13) at the top of the page. Again,
ηK−1, αK−2, θK−1, mK−1, and rK−2 can be viewed as con-
stants. Let γk � ηk + θkmkmk−1, ξk � ηk + θkmkmk−1ρz . We
now write the first term on the RHS of (D.13) as (D.14) at the

top of the page. Since d f1(x)
dx =

ζ 2
K−2γ 2

K−1ξK−1σ
2
z

(2ζK−2γK−1·x+ξK−1σ 2
z )2 , we con-

clude that the sign of d f1(x)
dx does not depend on x , and there-

fore f1(x) is monotonic. Now, if ξK−1 > 0 then αK is mini-
mized when d2

K−2 is maximized, i.e., PK−1 = P . On the other
hand, if ξK−1 < 0 then αK is minimized when d2

K−2 = 0.
Clearly, the case of dK−2 = 0 implies that PK−1 = 0, which
cannot be optimal as it implies that αK = αK−1. Finally, if
ξK−1 = 0 we have that αK is independent of dK−2 which
clearly cannot hold. We conclude that the optimal choice of
dK−2 is the one which results in PK−1 = P . Furthermore, we
note that similarly to Appendix D-A, the analysis for k = K−1

holds for any k < K , which implies that Pk = P is optimal
for all values of K .

APPENDIX E
PROOF OF PROPOSITION 5

From Remark 12 it is clear that JSCC-DP outperforms
JSCC-OL. Next, to compare JSCC-DP with JSCC-LQG we
show that both schemes have the same structure of state
evolution, transmitted signal, and decoders. Therefore, the
JSCC-LQG scheme is in the search space of JSCC-DP.

The JSCC-DP scheme: In the JSCC-DP scheme the
transmitted signal is given by (41):

Xk+1 = dk
(
ε1,k + mkε2,k

)
, (E.1)

where εi,k evolves as:

ε1,k = ε1,k−1 − b1,kY1,k, ε2,k = ε2,k−1 − b2,kY2,k . (E.2)

Here, b1,k = bk and b2,k = mk−1bk . From (10), and
similarly to [37, eq. (7)], it follows that the JSCC-DP scheme
estimates the source Si via Ŝi = ∑K

m=1 bi,mYi,m . Note that
in the JSCC-DP scheme we optimize over the sequences
{dk}Kk=1, {bk}Kk=1 and {mk}K−1

k=0 .

The JSCC-LQG scheme: We can write the transmitted signal
in the JSCC-LQG scheme as follows, see Subsection IV-A:

Xk = c̃
(
U1,k −U2,k

)
, (E.3)

where c̃ = −c1/a. Together with (E.3), the states Ui,k evolve
as (18):

U1,k = U1,k−1 + 1

a
Y1,k, U2,k = −U2,k−1 + 1

a
Y2,k . (E.4)

Next, recall that the decoding in the JSCC-LQG scheme is
applied in two stages. First the state Ui,k is estimated as
in (21), and then Si is estimated from the estimated state.
From (B.2) we have that the estimated state Ûi,k+1 obeys:

Ûi,k+1 =
K∑

m=1

ak−m−1
i Yi,m . (E.5)

Now, for any decoder which estimates Si from Ûi,k+1 via:
τi,kÛi,k−1, where {τi,k}Kk=1 is a sequence which depends on
the decoder in use,21 Ŝi,k has the following form:

Ŝi,k =
K∑

m=1

τi,k ak−m−1
i Yi,m =

K∑
m=1

τ̃i,m Yi,m (E.6)

21We emphasize that the sequences {τi,k }Kk=1 are given and we do not
optimize over their values.
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for a known sequence {τ̃i,k}Kk=1. In particular, this holds for
the three decoders (22), (24), and (35). Therefore, as the
transmitted signals, the state evolution, and the decoders have
the same linear (recursive) structure, and as in the JSCC-DP
scheme we optimize over the sequences {dk}Kk=1, {bk}Kk=1 and
{mk}K−1

k=0 , we conclude that JSCC-DP outperforms JSCC-LQG
with each one of the decoders, as long as (5) is satisfied.
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