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Capacity Theorems for the Fading Interference
Channel With a Relay and Feedback Links

Daniel Zahavi and Ron Dabora, Member, IEEE

Abstract—Handling interference is one of the main challenges
in the design of wireless networks. One of the key approaches to
interference management is node cooperation, which can be clas-
sified into two main types: relaying and feedback. In this paper, we
consider simultaneous application of both cooperation types in the
presence of interference. We obtain exact characterization of the
capacity regions for Rayleigh fading and phase fading interference
channels with a relay and with feedback links, in the strong and
very strong interference regimes. Four feedback configurations are
considered: 1) feedback from both receivers to the relay, 2) feed-
back from each receiver to the relay and to one of the transmitters
(either corresponding or opposite), 3) feedback from one of the re-
ceivers to the relay, and 4) feedback from one of the receivers to the
relay and to one of the transmitters. Our results show that there is
a strong motivation for incorporating relaying and feedback into
wireless networks.

Index Terms—Capactiy, decode-and-forward, feedback, inter-
ference channel, network information theory, relay.

I. INTRODUCTION

C OMMUNICATION in the presence of interference is one
of the main areas of research in information theory. The

most basic network in which there is interference is the interfer-
ence channel (IC), introduced by Shannon in [1]. The IC con-
sists of two transmitter–receiver pairs, ,
sharing the same physical channel. The very strong interference
(VSI) regime was first characterized for ICs by Carleial in [2].
When VSI occurs in ICs, each receiver can decode the interfer-
ence by treating its own signal as noise, without limiting the rate
of the other pair. Thus, each pair can communicate at a rate equal
to its point-to-point (PtP) interference-free capacity. A weaker
notion called strong interference (SI) was introduced by Sato
[3]. When SI occurs in ICs, each receiver can decode both mes-
sages without reducing the capacity region of the IC. In [3], Sato
showed that in such a scenario, the capacity region of the IC is
given by the intersection of the capacity regions of two mul-
tiple-access channels (MACs)—derived from the IC. The ca-
pacity region of the scenario where both messages are required
by both receivers was first derived by Ahlswede [4].
One of the key approaches to interference management in

wireless networks is relaying. The relay channel was first intro-
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duced by van der Meulen [5] and it consists of three nodes—a
transmitter, a receiver, and a relay—which assists the commu-
nication between the transmitter and the receiver. In [6], Cover
and El Gamal derived an achievable rate for the relay channel
by using a superposition block-Markov codebook and by de-
coding the source message at the relay. The relay then sends a
message that assists the decoder resolve the uncertainty about
the source message. This scheme is called decode-and-forward
(DF). Another fundamental scheme introduced in [6] is based
on compression at the relay. This scheme is commonly referred
to as compress-and-forward (CF). In addition, Cover and El
Gamal provided an outer bound on the capacity of a general
relay channel, but the exact capacity remains unknown. An im-
portant contribution to the study of relay networks is the work
of Kramer et al. [7]. Kramer et al. obtained capacity theorems as
well as achievable rate regions for different relay networks by
using the DF and CF strategies. In [7], capacity results were pre-
sented for several relay networks for phase fading and Rayleigh
fading channel models.
The classic relay channel of [6] can be extended by adding a

second source node, such that (s.t.) the relay assists the com-
munications from both sources to the (single) destination. This
model is called the multiple-access relay channel (MARC).
Some capacity results as well as inner and outer bounds for the
white Gaussian MARC were derived by Kramer and van Wi-
jngaarden [8]. The capacity region of the phase fading MARC
was characterized in [7]. Sankaranarayanan et al. presented
outer bounds on the capacity region as well as achievable rate
regions for the MARC in [9]. The sum-capacity of the degraded
Gaussian MARC1 was studied by Sankar et al. [10]. In [10],
it was shown that while in the relay channel, the degradedness
assumption simplified the cut-set bound to coincide with the
DF achievable rate region, in the MARC this is not the case.
The MARC model can be generalized by considering mul-

tiple relays. The relay nodes are said to be parallel if there is no
direct link between them, while all source–relay, relay–destina-
tion, and source–destination links exist. The parallel Gaussian
MARC, with the relay nodes using the amplify-and-forward2

strategy, was studied by del Coso and Ibars [11].
The MARC can be further extended by adding a second des-

tination node s.t. each transmitter communicates only with a
single destination. This gives rise to the interference channel
with a relay (ICR) which consists of five nodes. This channel
was first studied by Sahin and Erkip [12] and has gained con-
siderable interest in the past few years. Inner bounds as well as
outer bounds on the capacity region were derived for the ICR

1A K-user Gaussian MARC is said to be degraded if, given the transmitted
signal at the relay, the multiaccess signal received at the destination is a noisier
version of the multiaccess signal received at the relay.
2In amplify-and-forward, the relay simply transmits a scaled version of its

receives signal.
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(see [13]–[15] and [16] and the references therein). One of the
critical aspects in the study of ICRs is to determine what is the
best strategy for the relay, since when assisting one receiver, the
relay may degrade the performance of the other receiver. More-
over, in some situations, the optimal relay strategy would be to
forward interference rather than desired information [14]. Thus,
there might not be one scheme which increases the achievable
rates for both pairs simultaneously. In [52], it was shown that
when the relay is cognitive, it is able to assist both pairs simulta-
neously by simultaneously zero-forcing the interference at each
receiver. This assistance was shown to be optimal from the de-
grees-of-freedom (DoF) perspective for a large range of channel
coefficients. The capacity region of fading ICRs for a nonde-
graded scenario with a causal relay and finite signal-to-noise ra-
tios (SNR) on all links, was first characterized in [17] and [18].
In these works, it was shown that in some situations, the best
strategy for the relay is DF and that the relay can optimally assist
both receivers simultaneously, from the capacity perspective.
Finally, global, instantaneous channel state information (CSI)
was considered in [59]. In the work [59], fading ICRs with an
“on-and-off” relay were studied. Under the assumption of using
“asynchronous relaying” (i.e., the codebooks of the sources and
of the relay are mutually independent) and with the assump-
tion that the fading coefficient equals zero with a positive prob-
ability, [59] obtained an achievable rate region.
Another tool for handling interference in wireless networks

is feedback from receiving nodes to transmitting nodes. Feed-
back allows the nodes to coordinate their transmissions and
thereby sometimes helps in achieving higher rates compared to
those achieved without coordination. In [19], Shannon showed
that feedback does not increase the capacity of memoryless PtP
channels. However, in [20], Gaarder and Wolf showed that in a
memoryless MAC, if both transmitters have feedback from the
receiver, then they can cooperate to increase the capacity region.
This was the first time it was shown that feedback increases the
capacity region of a memoryless channel. In [6], Cover and El
Gamal showed that the cut-set bound for the relay channel is
achieved with DF when feedback is available at the relay. In
such a scenario, feedback to the transmitter does not provide fur-
ther improvement onto feedback to the relay. Additional results
on the achievable rates in the relay channel with receiver–trans-
mitter feedback were obtained in [21]. For the MARC with
feedback from the relay to the sources, Hou et al. derived an
outer bound on the capacity region as well as achievable rate
regions in [22]. In [22], feedback was used to allow each source
to decode the message of the other source, thereby the trans-
mitters could cooperate and resolve the uncertainty at the re-
ceiver. TheMARCwith generalized feedback (MARC-GF) was
studied by Ho et al. [23]. The MARC-GF models cellular net-
works in which all the mobile stations can listen to the ongoing
transmissions through the channel.
Feedback was also studied for ICs. In [24], it was shown that

for ICs at SI, the capacity region is enlarged if each transmitter
receives feedback from the receiver to which it is sending mes-
sages. The sum-capacity of symmetric deterministic ICs with
infinite-capacity feedback links from the receivers to the trans-
mitters, was studied by Sahai et al. [25]. In [25], it was shown
that having a single feedback link from one of the receivers to

its own transmitter results in the same sum-capacity as having a
total of four feedback links—from both receivers to both trans-
mitters. [25] also considered a practical feedback configuration
for a time-division-duplex based system, where the forward and
the feedback channels are symmetric and time-shared and it was
shown that in such a scenario, feedback does not increase the
sum capacity of the IC in the SI regime. In [51], Cadambe and
Jafar provided a tight characterization of the generalized de-
grees-of-freedom (GDoF) for ICs with feedback for values of

. It was observed in [51] that feedback leads
to an unbounded capacity gain in the VSI regime . In
[26], the capacity region of the Gaussian IC with feedback was
characterized to within 2 bits/symbol/Hz, and the exact GDoF
was characterized for all values of . In particular, it was shown
in [26] that feedback provides a capacity gain that increases
with the SNR to infinity also in the weak interference regime

, in addition to the case . In [27], an
achievable rate region for ICs with generalized feedback was
derived. In this scenario, each transmitter observes outputs from
the channel, thereby allowing the transmitters to cooperate and
achieve higher rates compared to the no-feedback scenario. The
effect of finite-capacity feedback links on the capacity region
of ICs was also studied in recent works. The work of Vahid et
al. [54] considered the effect of rate limited feedback on the
ICs. In [54], communication schemes, based on sending to the
transmitter partial information on the interfering signal, were
developed. The paper [54] presented a constant-gap result for
Gaussian ICs with rate-limited feedback and a tight character-
ization for linear deterministic ICs. In [55], the effect of noisy
feedback on the capacity region of Gaussian ICs was consid-
ered. For the situation in which both transmitters observe noisy
feedback from both receivers, it was shown that feedback looses
its value when the noise in the feedback signal is of the same
variance as the noise in the direct link. Finally, note that gen-
eralized feedback (or, equivalently source cooperation), studied
in [27], [56], and [57] can also be considered rate-limited feed-
back when the SNR is finite. In [56] and [57], outer bounds were
derived for ICs with generalized feedback.
The impact of both relaying and feedback on the DoF of

ICs was studied in [53]. The work [53] considered a net-
work with multiple sources, multiple relays, and multiple
destinations, in which the channel coefficients are random
time-varying/frequency-selective and all channel coefficients
are known a priori at all nodes. For such a scenario, Cadambe
and Jafar [53] showed that relays and feedback (and even noisy
cooperation between the destinations and the sources) do not
provide a higher total DoF than that obtained without such
techniques. However, the impact of the combination of relaying
and feedback on the capacity of ICs at finite SNRs has not
yet been characterized. In this paper, we study the capacity of
full-duplex fading IC with a relay and with different feedback
configurations. We consider the channel when it is subject to
phase fading and Rayleigh fading. The phase fading model is
mostly applicable to high-speed microwave communications,
in which phase noise is generated by the oscillators or due to the
lack of synchronization. The phase fading model also applies
to orthogonal frequency division multiplexing [28], as well
as to some applications of naval communications. Rayleigh
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fading models are commonly used in wireless communications
and apply to scenarios in which the multipath effect is not
negligible, e.g., dense urban environments [29].

A. Main Contributions

In this paper, we present the first investigation of the appli-
cation of both relaying and feedback to ICs. We provide ca-
pacity characterization for the fading IC with a relay and feed-
back links (ICRF), in the SI and VSI regimes. We assume only
receiver channel state information (Rx-CSI). All capacity re-
gions obtained in this study are derived under the assumptions
that the fading channel coefficients are mutually independent
and i.i.d. in time, and that the phase of each fading coefficient
is uniformly distributed over , and is independent of its
magnitude. Explicit capacity regions are given for two fading
models—phase fading and Rayleigh fading—which are special
cases of this general model.
1) We first characterize the capacity regions of ICRFs in
which both receivers send (noiseless) causal feedback
only to the relay, for VSI and SI regimes.

2) Next, we consider the case where feedback is also avail-
able at the transmitters to determine whether the transmit-
ters can exploit this additional information to cooperate
and enlarge the capacity region compared to the first con-
figuration. The answer to this question is not immediate
since the availability of feedback at the transmitters can
enlarge the capacity region of MACs and ICs, but for the
relay channel, it does not provide any improvement once
feedback is available at the relay.

3) We then study the performance when feedback is available
only from one of the receivers and examine whether the
performance degradation is the same for both pairs. Ca-
pacity results are provided for this scenario as well.

Identifying optimal strategies for ICRFs has a direct impact
on the design of future wireless networks in which interfer-
ence is a critical issue. These implications will be highlighted
throughout. Some important consequences of our results include
a proof that a single relay can be optimal simultaneously for two
separate Tx-Rx pairs as well as themaximum performance gains
that can be obtained in different feedback configurations. To the
best of our knowledge, these are the first capacity results for ICs
with relaying and feedback.
The rest of this paper is organized as follows: in Section II,

we define the system model. In Section III, several frequently
used lemmas and theorems are provided. In Sections IV and V,
we provide an exact characterization of the capacity regions of
ICRFs with feedback from both receivers to the relay, in the
VSI and SI regimes. We also provide explicit expressions for
the phase fading and Rayleigh fading models.3 In Section VI,
we analyze the scenario in which feedback is available both at
the relay and at the transmitters. In Section VII, we consider the
case in which partial feedback (only from one of the receivers)
is available at the relay. For this scenario, we characterize the
capacity regions in the VSI and SI regimes and provide explicit
expressions for the phase fading and Rayleigh fading models.
Finally, in Section VIII, we present concluding remarks.

3For the Rayleigh fading, the expressions include integrations which can be
evaluated numerically in a simple manner.

II. NOTATIONS AND CHANNEL MODEL

We denote random variables (RVs) with capital letters,
e.g., , and their realizations with lower case letters, e.g.,
, . We denote the probability density function (pdf) of a
continuous RV with . Capital double-stroke letters
are used for matrices, e.g., , with the exception that
denotes the stochastic expectation of . Vectors are denoted
with bold-face letters, e.g., and the ’th element of a vector
is denoted with . We use where to denote the

vector . denotes the conjugate of
and denotes the Hermitian transpose of . Given two
Hermitian matrices, , , we write if is

positive semidefinite (p.s.d.) and if is positive
definite (p.d.). denotes the set of weakly jointly
typical sequences with respect to , as defined in
[39, Sec. 8.2]. We denote with the empty set. Finally, we
denote the Normal distribution with mean and variance
with , and the circularly symmetric, complex Normal
distribution with mean and variance with .
In the ICR, there are two transmitters and two receivers.

wants to send a message to and wants to send a mes-
sage to . The received signals at , and the relay at
time are denoted by , , , respectively. The channel
inputs from , , and the relay at time are denoted by

, , and , respectively. The relationship between the
channel inputs and its outputs is given by

(1a)

(1b)

(1c)

, where , , and are mutually inde-
pendent, zero-mean, circularly symmetric complex Normal
RVs, , independent in time and independent of the
channel inputs and the channel coefficients. The channel input
signals are subject to per-symbol average power constraints:

. The channel coefficients
are mutually independent and i.i.d. in time. The magnitude and
phase of are independent RVs, and the phase is uniformly
distributed over .
Throughout this paper, CSI at the receivers is assumed. We

represent the CSI at receiver with
. As each element in is a complex scalar RV, then

. For consistency of notations, we use to de-
note the space of the random vector , thus . In
Sections IV and V, we assume noiseless feedback links from
both receivers to the relay, s.t. the channel outputs ,
and the corresponding Rx-CSIs, and , are available
at the relay at time prior to transmission. This model is de-
scribed in Fig. 1. Hence, the CSI at the relay is represented by

. We denote the space of with
.

Comment 1: Note that as feedback contains both channel
output and Rx-CSI, feedback from both receivers to the relay
leads to the relay having delayed Tx-CSI on its outgoing links.
In this study, we will show that as the channel is memoryless
and the coefficients are i.i.d. with uniformly distributed phases,
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Fig. 1. The interference channel with a relay and with feedback links from both
receivers to the relay. The “D” block represents a single-symbol delay. Additive
noises are not depicted.

independent of their magnitudes, such feedback does not result
in correlated channel inputs. Note that destinations–relay feed-
back which includes Rx-CSI leads to the conclusion that reli-
able decoding at the destinations guarantees reliable decoding
at the relay. This, in turn, leads to the optimality of DF in SI
and VSI. Without including Rx-CSI in the feedback signal, in
order to achieve such an implication, it is necessary to impose
restrictions on the channel coefficients. This decreases the set
of channel coefficients for which we can achieve the capacity
region of the ICRF by using DF at the relay. This will be elab-
orated upon in Comment 9.
Comment 2: We note that an important problem is the case of

global instantaneous CSI. In such a case, following the approach
in [59] and [60], the fading channel is decomposed into parallel
Gaussian ICRs. However, for such channels, it is not possible
to use the techniques of the current work to show that mutually
independent channel inputs maximize the cut-set bound. This is
because the channel coefficients and channel inputs at the same
time instant can be correlated, and therefore, the nodes can use
the CSI to achieve correlation between their signals. The case
of global instantaneous CSI will not be treated in this study.
We now define the code, probability of error, achievable rates,

and capacity region.

Definition 1: An code for the ICRF,
depicted in Fig. 1, consists of two message sets

, two encoders at
the sources, , , and two decoders at the destinations, ,
; , . At the

relay, there is a causal encoder. Since in Sections IV and V,
feedback from both receivers is available at the relay, then the
encoded signal at the relay is a causal function of the channel
outputs at the receivers, its own received symbols, and the
corresponding Rx-CSIs, i.e.,

(2)

.

Definition 2: The average probability of error is defined as

, where
and are selected independently and uniformly over their

message sets.

Definition 3: A rate pair is called achievable if for
any and , there exists some block length s.t.
for every integer , there exists an
code with .

Definition 4: The capacity region is defined as the convex
hull of all achievable rate pairs.
In Sections VI and VII, the definitions of Rx-CSI and the code
will be specialized according to the feedback configurations of
these sections.
In this paper, we also present explicit capacity expressions for

phase fading and Rayleigh fading models, which are two fading
models that satisfy the general fading model defined previously.
These models are defined as follows.
1) Phase fading channels: The channel coefficients are given
by where are non-nega-
tive constants corresponding to the attenuation of the signal
power from node to node , and are uniformly dis-
tributed over , independent in time and independent
of each other and of the additive noises .

2) Rayleigh fading channels: The channel coefficients are
given by where are non-neg-
ative constants corresponding to the attenuation of the
signal power from node to node , and are circu-
larly symmetric, complex Normal RVs, ,
independent in time and independent of each other and of
the additive noises .

III. PRELIMINARIES

In this section, we present some of the frequently used
lemmas.

A. Maximum Entropy for Complex Random Vectors

Lemma 1: Consider a complex random vector, .

Let . Then
.

Proof: The proof follows directly from the definition of the
differential entropy.

Lemma 2: Let be an arbitrary set of zero-
mean complex RVs with covariance matrix . Let be any
subset of elements from and be its comple-
ment. Then

with equality if and only if .
Proof: The proof follows along the lines of the proof of

[49, Lemma 1] and an application of [34, Ths. 1 and 2].

B. Positive Semidefinite Ordering

Lemma (see [46, Lemma 3.1]): Let and be
random vectors with zero mean and covariance ma-
trices . Define:

. Then there exists s.t.

where is the identity matrix with the appropriate dimensions.
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C. Joint Typicality

Lemma (see [6, Lemma 2]): Let
and

. Then, for s.t.
, it holds that

D. Capacity of Phase Fading and of Rayleigh Fading MIMO
Relay Channels

We now state a slight variation of [7, Th. 8] which will be
used in this paper:

Theorem (see [7, Th. 8]): For phase fading and for Rayleigh
fading relay channels with multiple antennas, and with Rx-CSI
available, the channel inputs and that maximize both the
cut-set bound

and the DF rate,
, are independent

complex Normal variables. The best covariance matrix for

transmitter is , , where is the
identity matrix. DF achieves capacity if its rate is

. The capacity is then given by

where .

IV. ICRFS IN THE VSI REGIME

In this section, we consider the ICRF with two noiseless feed-
back links from the receivers to the relay (see Fig. 1), and we
characterize the capacity region of ICRFs in the VSI regime.
This result is stated in the following theorem:

Theorem 1: Consider the fading ICRF with Rx-CSI. Assume
that the channel coefficients are independent in time and inde-
pendent of each other s.t. their phases are i.i.d. and distributed
uniformly over . Let the additive noises be i.i.d. circu-
larly symmetric complex Normal processes, , and let
the sources have power constraints

. Assume noiseless feedback links from both receivers
to the relay (see Fig. 1). If

(3a)

(3b)

where the mutual information expressions are evaluated with
, mutually independent, then

the capacity region is given by all the nonnegative rate pairs s.t.

(4a)

(4b)

and it is achieved with , mutu-
ally independent and with DF strategy at the relay.

A. Proof of Theorem 1

The proof consists of the following steps:
1) We obtain an outer bound on the capacity region using the
cut-set bound.

2) We show that the input distribution that maximizes the
outer bound is zero-mean, circularly symmetric complex
Normal with channel inputs independent of each other and
with maximum allowed power.

3) We derive an achievable rate region based on DF at the
relay and by using mutually independent codebooks gen-
erated according to the zero-mean, circularly symmetric
complex Normal input distribution:
a) We derive an achievable rate region for decoding at
the relay using steps similar to [7, Sec. 4.D].

b) We obtain an achievable rate region for decoding
at the destination by decoding the interference first,
while treating the relay signal and the desired signal
as additive i.i.d. noises, followed by using a backward
decoding scheme for decoding the desired message.

4) We derive the VSI conditions which guarantee that de-
coding the interference first at each receiver does not con-
strain the rate of the other pair.

5) We conclude that when the VSI conditions hold, the
achievable rate region coincides with the cut-set bound.

These steps are elaborated in Sections IV-A1–IV-A3.
1) Outer Bound: The cut-set theorem [39, Th. 15.10.1] ap-

plied to the ICRF results in the following upper bounds:

(5a)

(5b)

(5c)

(5d)

(5e)

Next, we find the channel input distribution that maximizes the
cut-set bound. We follow the same approach as in [7, Propo-
sition 2] and [7, Th. 8]. Let denote the channel inputs with
the maximizing distribution. Note that Lemma 1 states that the

zero-mean complex random vector has the
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same entropy as . Hence, the most efficient strategy would
be to transmit rather than , since subtracting the average
reduces the power consumption. Using the steps detailed in
Appendix A, we conclude that each mutual information expres-
sion in (5) is maximized by (zero-mean) circularly symmetric
complex Normal channel inputs, independent of each other, and
with the sources transmitting at their maximum available power
even though the scenario consists of a combination of relaying
and feedback. Note that this conclusion is not immediate from
[7, Th. 8] since in the ICRF, there are two destinations, while
the cut-set bound in [7, Th. 8] considers only one destination
and transmitting relays. Hence, the conditional entropies in
the present case contain more complicated combinations of the
correlation coefficients between the channel inputs and thus
each expression needs to be examined individually.
Comment 3: Note that although the cut-set bound of the ICRF

scenario requires maximization over all input distributions of
the type , in Appendix A, it is shown
that is the maximizing distribution at the
relay, and that the input distribution is jointly Gaussian (as fol-
lows from [7, Proposition 2]). The intuition behind the mathe-
matical result is that as receivers have Rx-CSI, then the mutual
information expressions involve averaging over all channel co-
efficients. However, as the phases are all uniformly distributed
over , it follows that for any cross-correlation structure
between the channel inputs, the same rate bounds can be ob-
tained by the negative cross correlation. Thus, the maximum
rate is achieved when the cross correlations are equal to their
negatives and are, therefore, zero. As the maximizing distribu-
tion is uncorrelated Gaussians, they are also independent. This
also reflects the fact that due to the i.i.d. uniform phase of the
fading process, it is not possible to correlate the channel code-
words of the different transmitting nodes, leading, due to Gaus-
sianity, to independence.
2) Achievable Rate Region: Now, we obtain an achievable

rate region using the input distribution that maximizes the
cut-set bound in (5). The achievability is based on DF strategy
at the relay. Fix the blocklength and the input distribution

, where
. Consider the following

coding scheme, in which messages are transmitted using
channel symbols.
a) Code Construction: For each message
, select a codeword according to the pdf

. For each
, select a codeword according to the

pdf .
b) Encoding at Block : At block , transmits

using . Let denote the
decoded at block at the relay. At block
, the relay transmits . At block , the
relay transmits , and at block , and
transmit and , respectively.

c) Decoding at the Relay at Block : Decoding at the relay
is very similar to the MARC case studied in [7, Sec. 4.D], the
difference being that here feedback is available at the relay. In
the present case, the relay uses its knowledge of , ,

, and to decode by using a joint-typi-

cality decoder. The decoder looks for a unique pair,
that satisfies

(6)

Following the analysis in [7, Sec. 4.D], it is concluded that the
achievable rate region for decoding at the relay is given by

(7a)

d) Decoding at the Destinations at Block : The re-
ceivers use a backward block decoding method as in [7,
Appendix A]. Assume that each receiver has correctly decoded

. Recall that the codebooks are generated
independently, thus, in order to decode , each
receiver first decodes the interference, i.e., decodes
and decodes by treating the signal from the relay
and its own desired signal as i.i.d. additive noise, independent
of the interfering signal, which holds by construction of the
codebooks and by the i.i.d. channel assumption. Note that for
this decoding step, the channel is treated as a PtP channel,
the capacity of which is derived in [39, Ch. 7.1]. Thus, due to
Rx-CSI, can decode the interference if

(8a)

and can decode the interference if

(8b)

After decoding the interference, each receiver uses its CSI to
decode its desired message. We consider the decoding process
at ; the decoding process at follows the same steps.
1) generates the sets:

2) then decodes by finding a unique
.

Note that since the codewords are independent of each other,
is independent of . Thus, assuming , and

using standard joint-typicality arguments [39, Th. 7.6.1], it fol-
lows that the probability of decoding error can be made arbi-
trarily small by taking large enough as long as

(9a)
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and for decoding at , we obtain

(9b)

Combining with (8), we conclude that subject to reliable de-
coding at the relay, the achievable rate region for decoding at
the destinations is characterized by

(10a)

(10b)

Hence, an achievable rate region is obtained by

(11)

3) Capacity Region for the VSI Regime: Now, we obtain the
conditions on the channel coefficients which guarantee that the
interference is strong enough s.t. the receivers can decode the
interference without reducing the rate region. Combining (7)
and (10) with (8), we obtain the VSI conditions for the ICRF:

(12a)

(12b)

Thus, when (12) holds, the achievable region is given by (9) and
(7). Note that since the codebooks are independent of each other
and of the channel coefficients

(13a)

we also obtain

(13b)

Hence, the conditions in (12) reduce to

(14a)

(14b)

which give (3). Next, note that (13) and (14) imply that the
achievable region is characterized by (9) and (7a). However,
when (13) and (14) hold, then

Therefore, we see that in the VSI regime, the sum-rate condi-
tion, (7a), is always satisfied. We conclude that when (3) holds,
(4) defines the achievable region. Finally, note that the rate re-
gion characterized by (4) coincides with the cut-set bound in
Section IV-A1 (since (4) is only a subset of the constraints but
it is achievable); hence, it is the capacity region of the ICRF in
the VSI regime.

B. Ergodic Phase Fading

The capacity region of ICRFs under ergodic phase fading
in the VSI regime is characterized explicitly in the following
corollary:

Corollary 1: Consider the phase fading ICRF with Rx-CSI
and noiseless feedback links from both receivers to the relay,
s.t. , , and are available at the relay at time
. If the channel coefficients satisfy

(15a)

(15b)

then the capacity region is characterized by all the nonnegative
rate pairs s.t.

(16a)

(16b)

and it is achieved with , mutu-
ally independent and with DF strategy at the relay.

Proof: The proof follows from the expressions of The-
orem 1. In order to obtain the conditions on the channel
coefficients in (15), we evaluate and

using the right-hand side (r.h.s.) of
(A10) in Appendix A. Recall that the channel inputs that max-
imize these expressions are mutually independent, zero mean,
circularly symmetric complex Normal and with maximum
power. Thus, we obtain
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Note that for evaluating the r.h.s. of (3), and
are treated as additive Gaussian noises4 at

and and are treated as additive
Gaussian noises at . Hence, we obtain

Thus, (3) results in conditions (15) and (4) results in (16).

C. Ergodic Rayleigh Fading

In this section, the capacity region of ICRFs under ergodic
Rayleigh fading in the VSI regime is characterized. Define

and define as in [36, eq.
(5.1.1)]:

Corollary 2: Consider the Rayleigh fading ICRF with
Rx-CSI and noiseless feedback links from both receivers to the
relay, s.t. , , and are available at the relay
at time . If the channel coefficients satisfy

(17a)

(17b)

then the capacity region is characterized by all the nonnegative
rate pairs s.t.

(18a)

(18b)

and it is achieved with , mutu-
ally independent and with DF strategy at the relay.

Proof: The proof follows the same approach as in Corol-
lary 1. The detailed calculation of (17) can be found in [18]. Re-
call that for Rayleigh fading, the channel coefficients are com-
plex Normal RVs. Thus, for decoding the interference at the re-
ceivers, , , , and cannot be treated
as additive Gaussian noises. Hence, the mutual information ex-
pressions on the r.h.s. of (3) need to be bounded using the
function.

4Recalling , , and are i.i.d. circularly symmetric complex Normal
RVs with zero mean, their phases are distributed uniformly over i.i.d.
and independent of each other and of the magnitudes. Under the phase fading
model, the channel coefficients have fixed amplitudes and their phases are i.i.d.
and distributed uniformly over . Thus, , , , and

are mutually independent, zero mean, circularly symmetric complex
Normal RVs as well.

Fig. 2. Geographical position of the relay in the 2-D plane in which the VSI
conditions hold for the ICR subject to phase fading. The black region shows the
location of the relay for ICRswithout feedback in which DF at the relay achieves
capacity at VSI [17, Th.1]. The union of the black and gray regions shows the
location of the relay for ICRFs in which DF at the relay achieves capacity at
VSI (Corollary 1). The scenario parameters are detailed in Comment 5.

D. Comments

Comment 4: We now compare the capacity region of the
ICRF in VSI to the ICR without feedback in VSI. First, con-
sider the phase fading model, and define the set of coefficients

as follows:

(19a)

(19b)

(19c)

In [17, Th. 1], it is shown that when the channel coefficients
satisfy (15) and , then capacity of
the ICR is given by (16). Note that
implies that the links from the transmitters to the relay are good
in the sense that if a rate pair can be reliably decoded at the
destinations, then, it can also be reliably decoded at the relay.
Observe that feedback does not affect the rate constraints (16),
thus, when capacity is achieved without any feedback, then ad-
ditional feedback links from each receiver to the relay do not
enlarge the capacity region. Hence, the main benefit of feed-
back to the relay is that it allows to achieve capacity in VSI for
any quality of links from the transmitters to the relay. Therefore,
the set of channel coefficients for which capacity is achieved is
defined only by (15) without the additional restrictions of .
We also note that for the ICRF, when (15) holds, the cut-set

bound is given by (16). Consider next the ICR in which (15)
holds yet . Taking ,
we eventually obtain that the cut-set bound (see [18, eq. (C.1)])
is a subset of (16). For such scenarios, feedback enlarges the
capacity region compared to the no-feedback case. Similar con-
clusions hold also for Rayleigh fading.
Comment 5: Fig. 2 shows the position of the relay in a 2-D

plane in which the VSI conditions (3) are satisfied for the phase
fading scenario with , . For phase fading
(3) are evaluated to be (15). Each channel coefficient is



ZAHAVI AND DABORA: CAPACITY THEOREMS FOR THE FADING INTERFERENCE CHANNEL WITH A RELAY AND FEEDBACK LINKS 5193

related to the distance from node to node via ,

and hence, the path-loss exponent is 4, corresponding to the
two-ray propagation model. The locations of the transmitters
and the receivers are fixed, thus the corresponding channel
coefficients are fixed to be and

. Note that indeed the cross links are stronger than the
direct links.
From the figure, we observe that with feedback, the VSI con-

ditions (15) hold (hence, the capacity region is known) in both
the black and the gray areas, while without feedback, the condi-
tions [17, eqs. (8) and (9)] hold only in the black area, thus ca-
pacity is achieved with DF only in that area. This clearly shows
the benefits of feedback. Note that without feedback, the relay
has to be close to the transmitters and far enough from the des-
tinations, to satisfy the conditions [17, eqs. (8) and (9)]. This is
because the signal received from the relay should not increase
too much the noise level when decoding the interference first,
and it also should not increase too much the rate of the desired
information. This is needed in order to make sure that the un-
intended receiver can decode its interference based only on the
cross-link signal component, while the desired message and the
relay signal are treated as noises.
Comment 6: Note from (4) that in the VSI regime, the ICRF

behaves like two parallel relay channels.
Comment 7: Although in practice there is only one relay

node, it is simultaneously optimal for both “parallel relay chan-
nels” s.t. capacity is achieved in both simultaneously. From a
practical aspect, this observation gives a strong motivation to
employ a combination of relaying and feedback in wireless net-
works since a relatively small number of relay stations can op-
timally assist several nodes simultaneously.
Comment 8: Note that since the capacity-achieving channel

inputs are mutually independent, adding relay nodes to the ex-
isting wireless networks does not require any modifications in
the transmitters codebooks. Hence, these techniques (relaying
with feedback) can be incorporated into current designs in a rel-
atively simple manner.
Comment 9: We now discuss the implication of having feed-

back of only channel outputs without CSI. Recall that in Com-
ment 4 it is noted that, since feedback includes Rx-CSI as well
as channel outputs, then, when feedback from both destinations
to the relay is available, we can employ the DF scheme to ob-
tain a characterization of the capacity region for any quality of
links from the transmitters to the relay. When feedback does not
include CSI from the receivers, then decoding the sources’ mes-
sages at the relay leads to additional restrictions on the channel
coefficients, which are needed in order to arrive to a capacity
characterization using DF. These restrictions decrease the set of
channel coefficients for which the capacity region of the ICRF is
achieved by the DF scheme. It should be emphasized that when
the channel coefficients satisfy the additional restrictions, the
SI/VSI conditions are the same as those obtained with feedback
that includes both Rx-CSI as well as channel output, and so are
the rate constraints.
Comment 10: Note that the capacity result in Theorem 1

holds also when there is no independent receiver at the relay,
i.e., when , in the VSI regime. This observation holds
only in scenarios where there are two noiseless feedback links,

one from each receiver to the relay and not with partial feed-
back at the relay which will be studied in Section VII. This is
because the feedback turns each component relay channel into
a degraded channel in the sense of [6]. In Sections VI and VII,
where we consider feedback to the transmitters and partial feed-
back, degradedness does not occur.

V. ICRFS IN THE STRONG INTERFERENCE REGIME

In this section, we characterize the capacity region of ICRFs
in the SI regime. We consider two noiseless feedback links, one
from each receiver to the relay. This capacity region is charac-
terized in the following theorem:

Theorem 2: Consider the fading ICRF with Rx-CSI. Assume
that the channel coefficients are independent in time and inde-
pendent of each other s.t. their phases are i.i.d. and distributed
uniformly over . Let the additive noises be i.i.d. circu-
larly symmetric complex Normal processes, , and let
the sources have power constraints ,

. Assume noiseless feedback links from both receivers
to the relay. If

(20a)

(20b)

where the mutual information expressions are evaluated with
, mutually independent, then

the capacity region is given by all the nonnegative rate pairs
s.t.

(21a)

(21b)

(21c)

and it is achieved with , mutu-
ally independent and with DF strategy at the relay.

A. Proof of Theorem 2

The proof consists of the following steps:
1) From the ICRF, we obtain the enhanced MARC (EMARC)
as a MARC whose message destination is one of the desti-
nations of the ICRF, but the relay receives feedback from
both receivers. Therefore, is defined by (1) and
its receiver is and is defined by (1) and its
receiver is .5

2) We derive the capacity region of and
.

3) We show that the same coding strategy at the sources and
at the relay achieves capacity for both EMARCs simulta-
neously.

5Note that this definition is different from the usual definition ofMARC, since
in the present scenario feedback comes from both receivers but only one re-
ceiver is decoding. Thus, for each EMARC denotes
the available feedback at the relay at time prior to the transmission of the th
symbol.
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a) We, therefore, obtain an achievable rate region for
the ICRF as the intersection of capacity regions of

and .
4) We show that in the SI regime, the intersection of the ca-
pacity regions of and contains the
capacity region of the ICRF.

5) We characterize the SI conditions for the ICRF.
6) We conclude the capacity region of ICRF in the SI regime
is equal to the intersection of the capacity regions of

and .
The first three steps are detailed in Section V-A1 and the last
three steps are detailed in Section V-A2.

1) Achievable Rate Region: Define
. Let , , ,

denote the available feedback at the relay at time
in and and let and

denote their capacity region, respectively. Let
denote the coding strategy (codebooks, encoders and

decoders) for that achieves the rate pair . The
capacity regions of the EMARCs are shown in Appendix B to be

(22a)

(22b)

(22c)

(23a)

(23b)

(23c)

where are mutually indepen-
dent and DF is used at the relay.
Next, we have the following proposition:

Proposition 1: The same coding strategy at the sources and at
the relay achieves capacity for both EMARCs simultaneously,
i.e.,

(24)

Proof: In Appendix B, it is shown that the capacity
region of each EMARC is achieved with DF strategy at
the relay and codebooks generated according to indepen-
dent circularly symmetric complex Normal distribution at

the sources and at the relay (the same distributions are used
in both EMARCs). In both EMARCs, for all rate pairs

, the relay codebook has codewords
generated i.i.d. according to , independent of
the codewords at the sources. For all rate pairs ,
the same scheme is used at the relay in both EMARCs: at
block , the relay decodes the messages via a
joint-typicality decoder using , and
transmits . Thus, all rate pairs s.t.

are achieved at both
EMARCs simultaneously with

, where is the coding strategy de-
tailed in Appendix B, for achieving the rate pair .

From Proposition 1, it follows that an achievable rate region
for the ICRF, (here, should be understood
as the DF strategy appropriate for each rate pair in the achiev-
able region; see Appendix B), can be obtained by

(25)

and it is achieved with , inde-
pendent of each other and with DF strategy at the relay.
Converse: By definition of the SI regime, in this regime,

both receivers can decode both messages without re-
ducing the capacity region, i.e., any achievable rate pair

is also achievable in and
; hence, .

Combined with (25), we conclude that in the SI regime
. Hence, the only

problem left open is to determine the SI conditions for the ICRF.
Note that from proposition 1, we obtain that and

are achieved with ; thus, for the rest of the
proof, we only consider mutually independent, circularly sym-
metric complex Normal channel inputs with zero mean. The
rest of the proof consists of the following steps:
a) We assume an achievable rate pair in the ICRF.
b) We characterize the maximal rate at which each receiver
can decode its desired message. We conclude that this
rate is achieved with independent channel inputs gener-
ated i.i.d. according to the circularly symmetric complex
Normal distribution (see Theorem B.1 in Appendix B).

c) We characterize the worst case conditions for each re-
ceiver to decode the interfering message.

d) We derive the conditions for which decoding both mes-
sages at each receiver does not reduce the capacity region.

For the first two steps, note that the maximal rates for de-
coding at the destinations are given by the cut-set bounds in (5),
i.e.,

(26a)

(26b)
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and they are achieved with mutually independent, circularly
symmetric complex Normal channel inputs with zero mean and
with DF at the relay (see Appendix B for a detailed proof).
The worst case scenario for decoding at the destinations, how-
ever, is when the signal from the relay degrades the perfor-
mance of the receivers. Given two vectors, and , define the
notation . Assume the rate pair

. If can decode from the signal

then it can create the signal

from which it can decode by treating as additive
noise6 if

Similarly, can decode if

Next, we should guarantee that decoding both messages at each
receiver does not reduce the capacity region of the ICRF. This
is achieved if and , i.e.,

where (a) follows from the fact that the capacity region of the
ICRF in the SI regime, as well as the supremum on the left-
hand side (l.h.s.) of the inequality, are achieved with

, independent of each other and of
of the channel coefficients; thus, all mutual information expres-
sions are evaluated with the same distribution. Note that from
arguments similar to those used in Section IV-A3, we also ob-
tain that

Thus, to guarantee that and , it is
enough to require

(27a)

(27b)

6Note that for this step, we use the fact that the codebooks are generated in-
dependently; hence, the relay signal can be treated as additive noise.

which give (20). Hence, when (27) holds,
.

Comment 11: Note that the argument presented here uses
only local Rx-CSI, as opposed to the argument of Sato [3].
Simplification of the Capacity Region: Consider the con-

straints on in (22a) and (23a). Note that if (27) holds, since
the channel inputs are independent of each other and of the
channel coefficients, we get

Thus, the constraints on in (22a) and (23a) can be reduced to

(28a)

Following the same steps, the constraints on in (22b) and
(23b) can be reduced to

(28b)

Finally, note that since the channel inputs are independent of
each other and of the channel coefficients, then

Hence, when (27) is satisfied

and

implying that in the SI regime, the sum-rate conditions for de-
coding at the relay is always satisfied. This shows that when (20)
holds, the capacity region is characterized in (21).

B. Ergodic Phase Fading

When the channel is subject to ergodic phase fading, we ob-
tain the following explicit result:

Corollary 3: Consider the phase fading ICRF with Rx-CSI
and noiseless feedback links from both receivers to the relay,
s.t. , , and are available at the relay at time
. If the channel coefficients satisfy

(29a)

(29b)
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then the capacity region is characterized by all the nonnegative
rate pairs s.t.

(30a)

(30b)

(30c)

and it is achieved with , mutu-
ally independent and with DF strategy at the relay.

Proof: The result follows from the expressions of The-
orem 2. In order to obtain the conditions on the channel co-
efficients in (29), we first evaluate and

as in Corollary 1, by using the r.h.s. of
(A10). Also note that can be considered as ad-
ditive Gaussian noise7 at and can be con-
sidered as additive Gaussian noise at . Therefore, from the
independence of the channel inputs, we obtain

Thus, by evaluating (20), we obtain the conditions in
(29). Finally, we evaluate and

by using the r.h.s. of (B3):

C. Ergodic Rayleigh Fading

Define and

. When the channel is
subject to ergodic Rayleigh fading, we obtain the following
explicit result:

Corollary 4: Consider the Rayleigh fading ICRF with
Rx-CSI and noiseless feedback links from both receivers to the
relay, s.t. , , , and are available at the relay
at time . If the channel coefficients satisfy

(31a)

(31b)

7Here, we follow the same arguments as in Corollary 1.

then the capacity region is characterized by all the nonnegative
rate pairs s.t.

(32a)

(32b)

(32c)

and it is achieved with , mutu-
ally independent and with DF strategy at the relay.

Proof: The result follows from the expressions of Theorem
2 and follows the same approach as in the proof of Corollary 3.
Here, (31) follows from [18, Proposition 1].

D. Comments

Comment 12: In order to compare the feedback capacity re-
gion of Corollary 3 to that obtained without feedback, let be
the set of channel coefficients

that satisfy

(33a)

(33b)

(33c)

. Let
and let be a short-form notation to denote that
and satisfy . [17,
Th. 2] states that when the channel coefficients satisfy (29) and
also , then the capacity region is given by (30). Sim-
ilar to VSI (see Comment 4), observe that the rate constraints are
the same for both the feedback and the no-feedback cases, thus
when capacity is achieved without feedback, then feedback does
not enlarge the capacity region. Using similar arguments as in
the discussion in Comment 4, it is possible to show that when
(29) hold, then there are situations in which feedback enlarges
the capacity region. The same conclusion applies to Rayleigh
fading as well.
Comment 13: Since the optimal codewords are generated

independent of each other and of the channel coefficients, we
obtain

Thus, it is easy to see that the SI conditions in (20) are weaker
than the VSI conditions in (3), as depicted in Fig. 3(a). The
capacity region are compared in Fig. 3(b).
Comment 14: Although in the SI regime the resulting model

can be thought of as a “compound EMARC,” it is important to
note that both EMARCs share the same relay and thus they are
not separate, contrary to ICs without relay. Note that the strategy
at the relay is optimal for both EMARCs s.t. capacity is achieved
for both simultaneously.
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Fig. 3. SI and VSI for , , ,
, and . (a) Range of and which satisfy the

conditions for the VSI regime obtained from (15) in Corollary 1 (gray area only)
and for the SI regime obtained from (29) in Corollary 3 (both black and gray
areas) when DF achieves capacity in the phase fading scenario. (b) Capacity
region of the ICRF for the phase fading scenario in the VSI regime obtained
from Corollary 1 (both black and gray areas, ) and the SI
regime obtained from Corollary 3 (black area only, , ).

VI. ICRSWITH FEEDBACK TO THE RELAY AND TRANSMITTERS

In this section, we study the scenarios in which feedback is
available both at the relay and at the transmitters. We consider
two configurations: 1) feedback from each receiver to the relay
and to its opposite transmitter, and 2) feedback from each re-
ceiver to the relay and to its corresponding transmitter.

A. Feedback to the Opposite Transmitters

First, we study how the capacity region is affected if there
are two noiseless feedback links from each receiver, both to the
relay and to its opposite transmitter, s.t. , are available
at , , are available at , and , , ,

are available at the relay at time , prior to the transmission
at each node. For this scenario, the definitions of the encoders
at the transmitters in Definition 1 are modified as follows:

(34a)

(34b)

The rest of the definitions remain unchanged and they are the
same as in Section II. This model can represent scenarios where
each transmitter is close to its opposite receiver, e.g., when VSI
occurs in the ICRF. This configuration is depicted in Fig. 4.

Proposition 2: Consider the ICRF in which there is a noise-
less feedback link from each receiver to the relay. Then, addi-
tional feedback links from each receiver to its opposite trans-
mitter (see Fig. 4) do not provide any further enlargement to the
capacity region in the VSI regime.

Proof: Let , denote the messages
that and send to and , respectively. Let the
encoders at and map their messages and the informa-
tion received from their feedback links into the channel input
symbols and , respectively. Thus, the encoders at the
transmitters are given in (34). The encoder at the relay remains
unchanged, i.e., it is the causal function given in (2). Consider
the cut-set bound expressions in (5). Observe that in the cut-set
bounds on , and belong to , while and
belong to . Hence, by inspection of the proof of the cut-set
bound [39, Th. 15.10.1], it is evident that the encoders at
and used for the cut-set expressions are exactly those in
(34), and therefore, the cut-set expressions for rates and
in (5) remain unchanged when feedback is also sent from each
receiver to its opposite transmitter.
Finally, note that Theorem 1 proves that in the VSI regime,

if feedback from both receivers is available at the relay then the
cut-set bounds (5b) and (5d) are achievable and there is no con-
straint on the sum-rate. Hence, we conclude that when feedback
from both receivers is available at the relay then additional feed-
back links from each receiver to its opposite transmitter do not
enlarge the capacity region of the ICRF in the VSI regime.

Comments:
Comment 15: In [20], it was shown that feedback can in-

crease the capacity region of the discrete memoryless MAC
by allowing the sources to coordinate their transmissions. In
the ICRF with additional feedback links from each receiver to
its opposite transmitter, since the cut-set bound expressions are
maximizedwithmutually independent channel inputs, then such
coordination is not beneficial and in fact it is not possible.
Comment 16: We conclude that if, due network limitations,

each receiver may send feedback either to the relay or to its op-
posite transmitter [when in the VSI regime (3)], then its prefer-
able to send feedback to the relay, since the relay can exploit
the additional information to achieve the capacity in the VSI
regime.

B. Feedback to the Corresponding Transmitters

In this section, we study how the capacity region is affected if
there are two noiseless feedback links from each receiver, both
to the relay and to its corresponding transmitter, s.t. ,
are available at , , are available at , and ,

, , are available at the relay, at time , prior to the
transmission at each node. For this scenario, the encoders at the
transmitters in Definition 1 are changed to

(35a)

(35b)
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Fig. 4. The interference channel with a relay and with feedback from both receivers to the relay and to their opposite transmitters. The “D” block represents a
single-symbol delay. Additive noises are not depicted.

Fig. 5. The interference channel with a relay and with feedback links from both
receivers to the relay and to their corresponding transmitters. The “D” block
represents a single-symbol delay. Additive noises are not depicted.

the rest of the definitions are the same as in Section II. This
configuration is depicted in Fig. 5.
Let and be defined as

(36a)

(36b)

(36c)

(37a)

(37b)

(37c)

where all mutual information expressions in (36) and (37) are
evaluated with , mutually inde-
pendent. Next, define the region as follows:

where all mutual information expression are evaluated with
, mutually independent. We now

state the inner and outer bound in the following proposition:

Proposition 3: The capacity region of the ICRF with noise-
less feedback links from each receiver to the relay and to its
corresponding transmitter, denoted , is outer bounded by
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. Furthermore, if the VSI conditions
(3) hold and also

(38)

holds for mutually independent Gaussian inputs,
., then the corresponding capacity

region of the ICRF in the VSI regime, denoted , satisfies
.

Proof: See Appendix C.

As a direct consequence of Proposition 3, we have the fol-
lowing corollary:

Corollary 5: Consider the ICRF with two noiseless feedback
links from the receivers to the relay. Then, additional feedback
links from each receiver to its corresponding transmitter (see
Fig. 5), enlarge the capacity region in the SI and VSI regimes.
Comments:
Comment 17: Note that feedback to the corresponding trans-

mitters also increases the capacity region of the ICRF in the
SI regime. The proof is identical to the one used in Proposi-
tion 3 subject to (38) and conditions (20). In particular, the
outer bound is identical to that in the proof of Proposition 3,
and the achievable rate region is obtained by time sharing be-
tween and the rate points of the SI
region (21).
Comment 18: Note that in the coding scheme described in

Proposition 3, behaves like a second relay node for ,
i.e., the ICRF is transformed into a multiple-relay channel. It
should also be noted that when cooperates with and
with the relay in sending , this decreases the maximal rate
of information that could be sent from to . However,
as this cooperation increases the maximal achievable rate from

to , compared to the case where feedback is available
only at the relay, the capacity region is increased.
Comment 19: Recall that in the classic relay channel Rx-Tx

feedback does not enlarge the capacity once feedback from the
receiver is available at the relay node. In ICRF, in contrary to the
classic relay channel, Rx-Tx feedback can enlarge the capacity
region beyond what is achieved with Rx-relay feedback. Thus,
not all of the insights from the study of the classic relay channel
hold for the ICRF.
Comment 20: The boundaries of and
, together with the capacity region of the ICRF in

the VSI regime are depicted in Fig. 6. Observe that
adding feedback to corresponding transmitters increases
the capacity region of the ICRF in the SI and the VSI
regimes. Also observe from the figure that the rate point

is outside the
outer bound. This shows that the outer bound is not trivial.
Since and , then both
regions are needed in the outer bound.
Next, we note that when (38) holds for mutually in-

dependent Gaussian inputs, then the achievable rate pair
is clearly on

the boundary of the capacity region of the ICRF with addi-
tional feedback links from each receiver to its corresponding
transmitter. Therefore, for this rate pair, our achievability

Fig. 6. Capacity region of the ICRF in the VSI regime with Rx-relay feedback
and without Rx-Tx feedback (the gray area) and the achievable region of Propo-
sition 3 (gray and black area), when the channel is subject to phase fading and

, , , , ,
, , , and . Point C corresponds to

the rate pair .
Observe that this rate pair is outside the outer bound. is
and cut-set is

scheme is tight. We note that in all expressions in the outer
bound, both signals appear together. Therefore,
we do not expect the outer bound to be tight. However,
the outer bound is not trivial as it excludes the rate point

.
Comment 21: We note that it is not possible to apply di-

rectly the cut-set bound [39, Th. 15.10.1] to the present case.
To demonstrate this, consider the rate from to . To
obtain the corresponding bound using the cut-set theorem one
should assign and to and and to . Now,
to generate we need both and (see, e.g., [39, Th.
15.10.1]). But as , then this is not a valid assignment.
In order to handle feedback to corresponding transmitters, we
treat as a single MIMO receiver when deriving .
Comment 22: In [30] and [31], Xie and Kumar derived

achievable rates for relay channels with different relay nodes
where messages are sent in transmission blocks.
Xie and Kumar proposed a scheme where the th relay node
transmits only after the transmission of the source and the first

relays are finished. Note that in general the coding scheme
proposed in [30] and [31] achieves higher rates for the relay
channels, however, in the SI and VSI regimes as defined in
Theorems 1 and 2, there is no such improvement.
Comment 23: Recall that in [51], it was shown that feedback

can provide an unbounded gain as the SNR and interfer-
ence-to-noise ratio (INR) increase to infinity. In [26], it was
shown that an unbounded capacity gain can be obtained also
for the weak interference regime. We note that these results
deal with the degrees of freedom of the channel; thus, the
conclusion holds only when the SNR and INR increase to in-
finity. As to the present case, we show in Proposition 3 that the
rate pair is achievable
when holds.
In the following, we show that this implies an unbounded
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capacity gain over the no-feedback case for Rayleigh fading
on the VSI regime. Let , Let , ,
, , , be constants, and let ,

. Note that under these definitions

Now consider the condition
. Using the above definitions, we obtain

Taking and restricting and , we arrive
to the equivalent relationship

which requires . When this holds, the asymptotic sum-rate
(we consider only the maximal when ) is given by

where means that for some large enough, the term
is bounded by a constant (see, e.g., [58]). Next, we consider the
sum-rate with feedback only to the relay, starting with the VSI
regime. Recall that the same sum-rate is achieved without feed-
back when relay reception is good in the sense that the channel
coefficients satisfy [17, eq. (8)]. Consider first the VSI condi-
tion (3b): . Writing this
explicitly, we obtain

which, as , becomes

This inequality holds asymptotically when . Similarly, we
can show that holds for

when .
Recall that at asymptotically high SNR and INR, the VSI

regime is defined as and (see [26] and [51]).

Fig. 7. The interference channel with a relay and feedback only from to
the relay. The “D” block represents a single-symbol delay. Additive noises are
not depicted.

We thus conclude that with feedback only at the relay, the max-
imal achievable sum-rate at asymptotically high SNR in the VSI
regime is

Comparing the sum-capacity with and without feedback to the
transmitters, we observe that in VSI

We conclude that adding feedback links from each receiver
to the its corresponding transmitter allows an unbounded rate
gain in the VSI regime. This follows directly from our capacity
results.

VII. ICRS WITH PARTIAL FEEDBACK AT THE RELAY

In this section, we study the scenarios in which only partial
feedback is available at the relay. We consider the case where
feedback is available only from , the case where feedback
is available only from is symmetric. This scenario is de-
scribed in Fig. 7.

A. Partial Feedback in the VSI Regime

First, we characterize the capacity region of the ICRF in the
VSI regime for the case where the relay receives feedback only
from , i.e., and are available at the relay at time
prior to transmission. In this scenario, the CSI at the relay

is represented by . Thus, the
encoder at the relay in (2) in Definition 1 is replaced by

(39)
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. The other definitions remain unchanged, as
described in Section II. Next, we have the following theorem:

Theorem 3: Consider the fading ICRF with Rx-CSI. As-
sume that the channel coefficients are independent in time
and independent of each other s.t. their phases are i.i.d.
and distributed uniformly over . Let the additive
noises be i.i.d. circularly symmetric complex Normal pro-
cesses, , and let the sources have power constraints

. Assume that there is only one
noiseless feedback link—from to the relay (see Fig. 7). If

(40a)

(40b)

where the mutual information expressions are evaluated with
, mutually independent, then

the capacity region is given by all the nonnegative rate pairs
s.t.

(41a)

(41b)

and it is achieved with , mutu-
ally independent and with DF strategy at the relay.
1) Proof of Theorem 3: The proof consists of the following

steps:
1) We obtain an outer bound on the capacity region using the
cut-set bound.

2) We show that the input distribution that maximizes the
outer bound is zero-mean, circularly symmetric complex
Normal with channel inputs independent of each other and
with maximum allowed power.

3) We derive an achievable rate region based on DF with
partial feedback at the relay, using codebooks generated
according to mutually independent, zero-mean circularly
symmetric complex Normal input distributions.
a) We derive an achievable rate region for decoding at
the relay using steps similar to [7, Sec. 4.D].

b) We obtain an achievable rate region for decoding at
the destinations by decoding the interference first,
while treating the relay signal and the desired signal
as additive i.i.d. noises, followed by using a backward
decoding scheme for decoding the desired message.

4) We derive the VSI conditions which guarantee that de-
coding the interference first at each receiver, does not con-
strain the rate of the other pair.

5) We obtain conditions on the channel coefficients that guar-
antee that the achievable rate region coincides with the
cut-set bound and thus it is the capacity region of the ICR
with partial feedback in the VSI regime.

We follow steps similar to the case in which full feedback is
available at the relay, so we only provide a sketch of the proof.

a) Outer Bound: An outer bound on the capacity region
is given by the cut-set bound in (5). Following similar steps as
in Section IV-A1 and Appendix A, we conclude that the outer

bound is maximized by mutually independent, zero-mean, cir-
cularly symmetric complex Normal channel inputs with max-
imum allowed power.

b) Achievable Rate Region: The code construction
and encoding process are similar to Section IV-A2a and
Section IV-A2b. Hence, following similar steps as in [7, Sec.
4.D], we conclude that an achievable rate region for decoding
at the relay is given by

(42a)

(42b)

(42c)

At the destinations, can decode the interference if

(43a)

and can decode the interference if

(43b)

Thus, decoding the interference first, we obtain an achievable
rate region for decoding at the destinations:

(44a)

(44b)

Hence, an achievable rate region for the ICR with partial feed-
back is given by

(45)

c) Capacity Region: Next, we should guarantee that de-
coding the interference does not constrain the rates at the desti-
nations, this is satisfied if

(46a)

(46b)

Note that as the channel inputs are mutually independent, we
obtain that . Hence,
the conditions in (46) can be reduced to

(47a)

(47b)
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Finally, in order to achieve capacity, we should guarantee
that, whenever the destinations can reliably decode their mes-
sages, the relay can decode both messages reliably. This can be
done if

(48a)

(48b)

(48c)

Recall that the channel inputs are independent; hence, when
(47b) holds, (48b) is always satisfied since

Similar arguments show that when (47b) and (48a) hold, (48c)
is always satisfied:

Therefore, if (47b) holds, (48a) is enough to guarantee reliable
decoding at the relay (i.e., (42) is satisfied).
Finally, note that by combining (47) with (48a), we obtain

conditions which coincide with (40) and under these conditions
(45) specialize to (41). Comparing with the cut-set bound in (5),
we conclude that if (40) holds, the achievable rate region (41),
coincides with the cut-set bounds and hence it is the capacity
region.

2) Ergodic Phase Fading: When the channel is subject to
ergodic phase fading, we obtain the following explicit result:

Corollary 6: Consider the phase fading ICRwith Rx-CSI and
partial feedback s.t. and are available at the relay at
time . If the channel coefficients satisfy

(49a)

(49b)

then the capacity region is characterized by all the nonnegative
rate pairs s.t.

(50a)

(50b)

and it is achieved with , mutu-
ally independent and with DF strategy at the relay.

Proof: The result follows from the expressions of Theorem
3. In order to obtain the conditions on the channel coefficients
in (49), we evaluate using mutually
independent, zero-mean circularly symmetric complex Normal
channel inputs. This leads to

(51)

Next, note that under the phase fading model, and
; thus, (51) can be rewritten as

The rest of the expressions in Theorem 3 have been already
evaluated for the phase fading model in Corollary 1.

3) Ergodic Rayleigh Fading: Define

.
If the channel is subject to ergodic Rayleigh fading, we obtain
the following explicit result:

Corollary 7: Consider the Rayleigh fading ICR with Rx-CSI
and partial feedback s.t. and are available at the relay
at time . If the channel coefficients satisfy

(52a)

(52b)

(52c)

then the capacity region is characterized by all the nonnegative
rate pairs s.t.

(53a)

(53b)

and it is achieved with , mutu-
ally independent and with DF strategy at the relay.

Proof: The proof follows similar arguments to those used
in the proof of Corollary 6.
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Fig. 8. Demonstration of the effect of Rx-corresponding Tx feedback when the
channel is subject to phase fading and , ,

, , , , , and . The
gray area is the capacity region of the ICRF in the VSI regime with -relay
feedback obtained from Corollary 6, and the union of the gray and black areas
is the achievable rate region wtih -relay and feedback. Point
A is the rate pair and Point B is the corner point when (50) hold with
equality.

Comments:
Comment 24: Comparing to Theorem 1, we observe that in

Theorem 3, there is an additional condition in (40). This is due to
the fact that with partial feedback at the relay, the cut-set bound
cannot be achieved at the destination without guaranteeing reli-
able decoding at the relay.
Comment 25: For the configuration described in Theorem 3,

then from Proposition 2, it is clear that adding a noiseless feed-
back link, from to (partial Rx-opposite Tx feedback)
does not enlarge the capacity region in the VSI regime.
Comment 26: Consider the configuration described in The-

orem 3 with an additional noiseless feedback link from to
(partial Rx-corresponding Tx feedback). Then, following

the same arguments as in Proposition 3, we conclude that if

(54a)

(54b)

hold, then is achiev-
able. Note that (54) guarantees (40). Hence, when partial feed-
back (only from ) is available at the relay, then an additional
feedback link from to increases the capacity region in
the VSI regime. Fig. 8 demonstrates the corresponding capacity
region.

B. Partial Feedback in the Strong Interference Regime

In this section, we characterize the capacity region of the ICR
with partial feedback in the strong interference regime. We con-
sider the case in which feedback is available only from .

Theorem 4: For the scenario of Theorem 3, if the channel
coefficients satisfy

(55a)

(55b)

(55c)

(55d)

(55e)

where the mutual information expressions are evaluated with
, mutually independent, then

the capacity region is given by all the nonnegative rate pairs s.t.

(56a)

(56b)

(56c)

and it is achieved with , mutu-
ally independent and with DF strategy at the relay.
1) Proof of Theorem 4: The proof consists of the following

steps:
1) From the ICRF, we obtain two component channels: the
first is the MARC with feedback (MARCF) which is a
MARCwhose message destination is and the relay re-
ceives feedback only from . TheMARCF is defined by
(1a) and (1c). The second is the partially enhanced MARC
(PEMARC) defined as a MARC whose message destina-
tion is , while the relay receives feedback from .
The PEMARC is defined by (1) and denotes
the available feedback at the relay at time in both compo-
nents. Note that contrary to Theorem 2, in the present case,
the component channels are not symmetric.

2) We obtain the conditions on the channel coefficients s.t.
the capacity of the MARCF and the PEMARC is achieved
with DF at the relay. We show that for each component,
capacity is achieved with zero-mean, circularly symmetric
complex Normal channel inputs.

3) We show that the same coding strategy at the sources and
at the relay achieves capacity for both the MARCF and the
PEMARC simultaneously.

4) We, therefore, provide an achievable rate region for the
ICR with partial feedback as the intersection of the ca-
pacity regions of the MARCF and the PEMARC.

5) We show that when the conditions for SI are satisfied, the
intersection of the capacity regions of the MARCF and the
PEMARC contains the capacity region of the ICR with
partial feedback.

6) We conclude the capacity region of the ICR with partial
feedback in the SI regime, to be the intersection of the
capacity regions of the MARCF and the PEMARC.

7) We explicitly characterize the SI conditions for the ICR
with partial feedback.

a) Achievable Rate Region: Recall the achievable rate re-
gion for decoding at the destination as in Theorem 2. Define
as in Section V-A1 and let and de-
note the capacity regions of the MARCF and the PEMARC,
respectively. Moreover, let and denote
the coding strategy for the MARCF and the PEMARC, respec-
tively. From the derivation in Appendix B, it follows that when
only partial feedback is available at the relay, achievable rate
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regions for the MARCF and the PEMARC obtained with DF at
the relay are given by

(57a)

(57b)

(57c)

where for theMARCF and for the PEMARC, and
decoding at the relay at block is done using rule (6) without
considering , and , mutu-
ally independent.
Let denote the coding scheme with mutually

independent complex Normal inputs, achieving rates and
in each component channel. Following steps similar to

Appendix A, we can show that in order for to
achieve the capacity of each component channel, we should
guarantee that the relay decodes both messages reliably, i.e.,
we should guarantee that

(58a)

(58b)

(58c)

Note that if (58) holds then the capacity regions of the compo-
nent channels are given by

(59a)

(59b)

(59c)

where for the MARCF and for the PEMARC,
and they are achieved with ,
mutually independent and with DF strategy at the relay.
Note that when the conditions in (58) hold, by following

similar steps as in the proof of Proposition 1, we conclude that
the same coding strategy achieves capacity for both compo-
nent channels simultaneously. Let
and denote the achievable rate

regions of the MARCF and the PEMARC, respectively.
Hence, when (58) holds and by choosing , any
achievable rate pair

is also achievable in the ICR
with partial feedback. Thus, if (58) holds, then an achievable
rate region for the ICR with partial feedback is given by

(60)

b) Converse: The proof of the converse follows similar
arguments to those used in Section V-A2. Note that in the
SI regime, both receivers can decode both messages without
reducing the capacity region. Thus, any achievable rate pair

is also achievable in the component
channels, i.e., . Thus,
combined with (60), we conclude that in the SI regime

(61)

Recall that when decoding at the relay does not constrain the
rates, then and are given in (59).
Next, we determine the SI conditions in the ICR with partial
feedback. Note that since and in
(59) are achieved with , for the rest of the proof
we only consider mutually independent, circularly symmetric
complex Normal channel inputs with zero mean. Recall the
converse proof in Section V-A2 and consider any rate pair

. If can decode from the signal

then it can create the signal

from which it can decode by treating as additive
i.i.d. noise8 if

and similarly can decode if

In order to guarantee that decoding both messages at each re-
ceiver does not reduce the capacity region, we should require:

and . This is satisfied if

(62a)

(62b)

8Note that for this step, we use the fact that the capacity-achieving codebooks
are generated independently.
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Note that all the aforementioned mutual information expres-
sions are evaluated using the same channel input distribution.
Here, (a) follows from the fact that the l.h.s. of (62) is maxi-
mized by , mutually indepen-
dent and independent of the channel coefficients. Thus, when
(58) holds, the conditions for the strong interference are given
by

(63a)

(63b)

We conclude that if the conditions for reliable decoding at the
relay (58) and the conditions for SI (63) are satisfied, then the
capacity region is given in (61) where the rate expressions for
the component channels are given in (59).

c) Simplification of the Capacity Region: Next, note that
when (63) is satisfied, we obtain

Hence, (61) can be reduced to

(64a)

(64b)

(64c)

and (58) can be reduced to

(65a)

(65b)

(65c)

Next, note that when (63a) and (65a) hold, we obtain

Therefore, if (63) holds, (65c) reduces to

(66)

Observe that in the SI regime with partial feedback, reli-
able decoding at the relay does not constrain the sum-rate in
the MARCF. In the PEMARC, however, (66) constrains the

sum-rate to guarantee reliable decoding at the relay. Hence,
decoding at the relay imposes an additional condition on the
channel coefficients in the PEMARC onto those required in the
MARCF. Note that (64) gives (56) and by combining (63) with
(65a), (65b), and (66), we obtain the conditions in (55). This
completes the proof.

2) Ergodic Phase Fading: Define .
When the channel is subject to ergodic phase fading, we obtain
the following explicit result:

Corollary 8: Consider the phase fading ICRwith Rx-CSI and
partial feedback s.t. and are available at the relay at
time . If the channel coefficients satisfy

(67a)

(67b)

(67c)

(67d)

(67e)

then the capacity region is characterized by all the nonnegative
rate pairs s.t.

(68a)

(68b)

(68c)

and it is achieved with , mutu-
ally independent and with DF strategy at the relay.

Proof: The result follows from the expressions of The-
orem 4.

3) Ergodic Rayleigh Fading: Define

, and ,

, , ,

. If the channel is subject to
ergodic Rayleigh fading, then we obtain the following explicit
result:

Corollary 9: Consider the Rayleigh fading ICR with Rx-CSI
and partial feedback s.t. and are available at the relay
at time . If the channel coefficients satisfy

(69a)
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(69b)

(69c)

and

(69d)

(69e)

then the capacity region is characterized by all the nonnegative
rate pairs s.t.

(70a)

(70b)

(70c)

and it is achieved with , mutu-
ally independent and with DF strategy at the relay.

Proof: The proof follows similar arguments to those used
in the proof of Corollary 8.

C. Comments

Comment 27: Comparing partial feedback (Corollary 8) with
no-feedback [17, Th. 2], we note that the rate constraints at the
destinations are the same. Also note that guar-
antees (67a)–(67c); hence, as in Comment 4, feedback allows
obtaining capacity characterization for a larger set of channel
coefficients, and there are scenarios in which feedback strictly
enlarges the capacity region (e.g., when is very small).
Fig. 9 was created using the same parameters as those

used for generating Fig. 2 (see Comment 5 for details). The
figure demonstrates most clearly the benefits of combining
feedback with relaying for interference management. Observe
that without feedback, achieving capacity in the VSI regime

Fig. 9. Geographical position of the relay in the 2-D plane in which the VSI
conditions hold for the ICR subject to phase fading. The black region shows the
location of the relay for ICRswithout feedback in which DF at the relay achieves
capacity at VSI [17, Th.1]. The union of the black and dark gray regions shows
the location of the relay for ICRFs with partial feedback, only from to the
relay, in which DF at the relay achieves capacity at VSI (Corollary 6). The union
of the black, dark gray and light gray corresponds to ICRF with feedback from
both receivers to the relay (Corollary 1). The scenario parameters are detailed
in Comment 5.

requires the relay to be close to the transmitters, while partial
feedback and moreover full feedback allow achieving capacity
for a significantly larger geographical region.
Comment 28: Note that if we assume a unidirectional noise-

less cooperation link from one of the receivers to the other one,
then the conditions of the SI and the VSI regime can not be satis-
fied. Without loss of generality, assume a noiseless cooperation
link from to ; then, the achievable rate at will al-
ways exceed the achievable rate at . Hence, decoding the in-
terference at will always decrease the capacity region. The
same conclusion also holds for decoding both messages at .
Thus, if there is a unidirectional noiseless cooperation link from
one of the receivers to the other one, then the SI and the VSI
conditions cannot be satisfied. Note that this conclusion does
not hold for the scenarios where the link between the receivers
is noisy or if the receiver first compresses its channel observa-
tions prior to forwarding them to the other receiver (see [32] and
[33]).

VIII. CONCLUSION

In this paper, we characterized the capacity region of the
fading ICR for different feedback configurations. The capacity
region was characterized explicitly for the phase fading and
Rayleigh fading scenarios in both SI and VSI regimes. We
showed that the capacity is achieved with zero-mean, circularly
symmetric complex Normal channel inputs, independent of
each other with all transmitters using their maximum available
power. It was also shown that when feedback is available at the
relay, then the best strategy for the relay in these regimes is to
decode both messages and forward them to both receivers and
thus assist both receivers simultaneously. We showed that with
such a strategy at the relay, when VSI occurs the ICRF behaves
like two parallel relay channels. We also showed that when
SI occurs, the ICRF behaves like two EMARCs and the same
coding strategy achieves capacity for both simultaneously. We
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next showed that if feedback from both receivers is available
at the relay, then additional feedback from each receiver to
its opposite transmitter provides no further improvement to
the capacity region. However, additional feedback links from
each receiver to its corresponding transmitter can enlarge the
capacity region. By comparing the scenario where there is par-
tial feedback (from one of the receivers only) or full feedback
(from both receivers) at the relay, versus the scenario with no
feedback at all, we showed that partial feedback and moreover
full feedback increase the range of the channel coefficients
which allow achieving capacity in both VSI and SI regimes
significantly. With no feedback, however, the relay reception
must be good in order to achieve capacity (Recall [7, Th. 6]:
in the relay channel under the phase fading assumption, DF
achieves capacity when the relay is closer to the source than to
the destination).
The fact that the capacity-achieving channel inputs are mu-

tually independent allows a relatively simple integration of re-
laying into existing wireless networks. Also note that since the
relay can be optimal for both communicating pairs simultane-
ously, a relatively small number of relay stations can optimally
assist several nodes simultaneously. These observations support
the deployment of relay nodes to assist in managing interfer-
ence in practical wireless systems such as cellular andWiFi net-
works. We note however, that additional research, especially on
nonfading scenarios, is still required to obtain a complete as-
sessment of cost-benefit tradeoff.

APPENDIX A
MAXIMIZING DISTRIBUTION FOR THE CUT-SET BOUND

A) Upper Bound on : Starting with the upper bound on
, we first consider . Note that by

fixing the side information , we obtain

(A1)

Define . Following

these definitions we define . For

, zero-mean, define . Letting

, we get

(A2)

(A3)

where and is 2 2 and p.d. Next, we obtain

(A4)

Thus, by using [38, Fact 3.7.19],9 we get the following in-
equality:

(A5)

In the above transitions,
• (a) follows from (A1).
• (b) follows from Lemma 2 which show that

is maximized by jointly cir-
cularly symmetric complex Normal RVs with zero mean
and same covariance matrix as .

• (c) follows from the definition of , , , , and .

9Given , define . Then, .
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• (d) follows from the fact that is independent of
.

• (e) follows from [35, Sec. VI] which shows that the condi-
tional covariance matrix of jointly complex normal RVs is
given by the Schur complement of in the covariance
matrix .

• (f) follows from [38, Proposition 8.1.2 and Lemma 8.2.1].
10

• (g) follows from the definition .
• (h) follows from [46, Lemma 3.1] and from [37, Ths. 7.7.2
and 7.7.4].11

• (i) follows from the range of , as given in [46, Lemma
3.1]: and from [37, Ths. 7.7.2 and 7.7.4] which
state that since then

.
Next, note that (A5) does not depend on , , or and

it can be achieved with equality from (A4) by setting
, irrespective of the value of , which can also be set

to zero. We also note that since monotonically increases
with respect to , then is maxi-
mized when transmits at its maximum available power. Fi-
nally, (b) is achieved with equality if are jointly
Normal. As these variables are uncorrelated, they are also in-
dependent. In conclusion, is max-
imized by mutually independent, circularly symmetric complex
Normal channel inputs with zero mean.
Next, we consider . Following the

same arguments as the previous rate bound, note that

(A6)

Define
(A7a)

(A7b)

Hence, we bound as follows:

(A8)

10Given a p.d. matrix , is also a p.d. matrix and can be written as
, where is also a p.d. matrix.

11[37, Th. 7.7.2]: Given two Hermitian matrices, , , if then
. Thus, .[37, Th. 7.7.4]: Given

two matrices, , , if , then .

Thus, we get

(A9)

Here, (a) follows from the definition of in (A7a), from (A6)
and from Lemma 2, and (b) follows from the fact that

. Next, note that

Hence, if we replace with , the result of the inte-
gral remains unchanged. This follows as ’s are independent
complex RVs with uniform phases on , independent of
their magnitudes, and therefore the value of the integration is
the same for all initial phases. Hence, following the same tech-
nique as in [7, Th. 8] and from concavity of the logarithm func-
tion, we can apply Jensen’s inequality and rewrite the bound in
(A9) as

(A10)

As the bound in (A10) does not depend on , or , then
(A10) is achieved with equality from (A8) by setting

.
We conclude that the upper bound on in cut-set bound

is maximized by mutually independent, zero-mean, circularly
symmetric complex Normal channel inputs, and with all sources
transmitting at their maximum available power.

B) Upper Bound on : Following steps similar to those
in Appendix A-A, we conclude that the mutual expressions

and are
both maximized by mutually independent, zero mean, circu-
larly symmetric complex Normal channel inputs.

C) Upper Bound on : First, note that

(A11)

Define and rewrite from (A2) as

(A12a)

(A12b)

(A12c)

(A12d)
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where is 2 2 and p.d. and . Using the aforemen-
tioned definitions, we obtain

(A13)

(A14)

Thus, we bound as follows:

(A15)

where

(A16a)

(A16b)

(A16c)

The transitions used in the above derivation are similar to those
used in Appendix A-A. Here, (a) follows from [46, Lemma
3.1] and from [37, Th. 7.7.2]. Following the same technique as
in [7, Th. 8], we obtain that replacing with

, respectively, does not change the ex-
pected value in (A15). This is equivalent to replacing and

with and . The aforementioned observation can
be used to express (A15) as

(A17)

where (a) follows from the concavity of the logarithm function.
Next, we have the following proposition:

Proposition A.1: The expression in (A17) is maximized
when and when and transmit at their max-
imum available power, i.e.,

(A18)

where are defined in (A16).
Proof: Consider and

as defined in (A16). Without loss of generality, we
can write

. Using the aforesaid definitions, we get
. Also note that:

for all . Thus

Repeating this argument for and , we conclude that the
multiplier of in (A17) is non-negative and
omitting from (A17) does not reduce the expected value.
This leads to (A18). Also note that since monotonically
increases with respect to , then (A18) is maximized when
and transmit at their maximum available power.

Hence, (A18) can be obtained with equality from (A13) by
setting . We conclude that the mu-
tual information expressions in the cut-set bound are maximized
by zero-mean, complex Normal channel inputs independent of
each other, and with all sources transmitting at their maximum
available power.

APPENDIX B
CAPACITY REGION OF THE EMARC

The capacity of the EMARC is stated in the following the-
orem:

Theorem B.1: Consider the fading EMARC with Rx-CSI
derived from the ICRF, given by (1) where its message destina-
tion is but the relay receives feedback from both receivers
s.t. , , , and are available at the relay at time
, prior to transmission. Assume that the channel coefficients
are independent in time and independent of each other s.t. their
phases are i.i.d. and distributed uniformly over . Let the
additive noises be i.i.d. circularly symmetric complex Normal
processes, , and let the sources have power constraints
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. The capacity region is then
given by all nonnegative rate pairs s.t.

(B1a)

(B1b)

(B1c)

and it is achieved with , mutu-
ally independent and with DF strategy at the relay.

Proof: The proof consists of the following steps:
1) We provide an outer bound on the capacity region using
the cut-set bound.

2) We show that the input distribution that maximizes the
outer bound is zero-mean, circularly symmetric complex
Normal with channel inputs independent of each other and
with maximum allowed power.

3) Assuming codebooks generated according to the maxi-
mizing distribution, we present an achievable rate region
using the DF strategy at the relay.
a) For decoding at the relay, we follow steps similar to
[7, Sec 4.D].

b) We provide an achievable rate region for decoding at
the destination by considering a backward decoding
scheme.

4) We conclude that the intersection of the achievable rate re-
gions for decoding at the relay and at the destination coin-
cides with the cut-set bound.
A) Outer Bound: The following bounds are the cut-set

bounds of the EMARC rate region:

(B2a)

(B2b)

(B2c)

(B2d)

(B2e)

(B2f)

Following the same arguments as in Appendixes A-A, A-B,
and A-C, we conclude that the outer bounds on and
are maximized by mutually independent, zero-mean, circularly
symmetric complex Normal channel inputs and with all sources

transmitting at their maximum available power. Moreover, we
obtain an upper bound on :

(B3)

and we conclude that it is achieved by mutually independent,
zero mean, circularly symmetric complex Normal channel in-
puts.

B) Achievable Rate Region: The achievability is based
on DF strategy at the relay. Fix the block length and
the input distributions: where

. The following encoding
and decoding methods are considered.
1) Code Construction: The code construction is similar to
Section IV-A2a.

2) Encoding at Block B: The encoding process is similar to
Section IV-A2b.

3) Decoding at the Relay at Block B: The decoding process at
the relay is similar to Section IV-A2c, leading to the rate
constraints (7).

4) Decoding at the Destination: The receiver uses a backward
block decoding method. Assume that the receiver has suc-
cessfully decoded and . Then

1) In the first step, the receiver generates the sets

2) The receiver then decodes by finding a unique
pair .

Let the decoded pair be . A decoding error happens
if one of the following error events, associatedwith the decoding
rule at the destination occurs:
• , where

From joint-typicality, the probability of the above event
can be arbitrarily small if is large enough.

• From
[6, Lemma 2]:
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Note that since the codebooks are constructed independent
of each other then is independent of and the prob-
ability of can be arbitrarily small if is large enough
and

(B4a)

• . From [6,
Lemma 2], the probability of this event can be arbitrarily
small if is large enough and

(B4b)

• . From
[6, Lemma 2]:

the probability of this event can be arbitrarily small if is
large enough and

(B4c)

Combining (7) and (B4), we obtain the achievable rate region
of the EMARC

(B5a)

(B5b)

(B5c)

Finally, note that (B5) coincides with the cut-set bound in (B2),
and thus, it is the capacity region of the EMARC.

APPENDIX C
PROOF OF PROPOSITION 3

Inner Bound: Note that the region can be obtained
by time-sharing between two rate points: point is the rate pair

,
and point is the rate pair

. Theorem 1
shows that in the VSI regime is achievable. We
next show that is achievable. This is done using
the DF-based achievability scheme described in the following:

Fix the blocklength and the input distribution
where

. Note that as , then
acts as a second relay for sending from to . We
use channel symbols for sending messages.

a) Codebook Construction: For each and
, select a codeword according to the pdf

.
b) Encoding at Block : At block , transmits

using . Let , denote the decoded
at the end of block , at the relay and at , respectively.
At block , transmits and the relay transmits

. At block , transmits , and the relay
transmits , and at block , transmits .

c) Decoding at the Relay and at at Block : The relay
and each use a joint-typicality decoder. We now find con-
ditions for bounding the average probability of error averaged
over all codebooks. The decoder at the relay looks for a unique

which satisfies

We conclude that the relay can decode with an arbitrarily
small probability of error if is large enough and

(C1a)

Following the same approach, we can show that can decode
reliably if is large enough and

(C1b)

Note that as
, then reliable decoding at

guarantees reliable decoding at the relay.
d) Decoding at the Destination: uses a backward de-

coding scheme based on a joint-typicality rule. Assume that
correctly decoded . Then
1) generates the sets:

2) then decodes by finding a unique
.

Note that since the codewords are independent of each other,
is independent of and the probability of decoding error

can be made arbitrarily small by taking large enough as long
as

(C2)

Note that since (38) holds then (C2) guarantees (C1b).
Therefore reliable decoding at implies reliable decoding at

, and thus reliable decoding at the relay. Hence, when (38)
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holds, the rate pair
is achievable.
By time sharing between point A and point B, we conclude

that the inner bound is achievable.
Outer Bound: Consider the following three modifications

to the ICR scenario defined in the proposition: M1) We let
each receiver observe the instantaneous channel output and
Rx-CSI at the relay, , and at the other receiver;
M2) We also let each receiver send a feedback signal which
consists of its channel output and Rx-CSI, to the opposite
transmitter (in addition to the corresponding transmitter); and
M3) We let the relay send causal feedback of its channel output
and Rx-CSI to both transmitters. Under these three assump-
tions, each receiver observes the same channel output at time ,

, and each transmitter observes at time the
feedback . Due to M1, and the
data processing inequality, the relay does not need to send any
channel input, and we can set . Equivalently, we may
assume that the relay channel input is available noncausally
at the receivers and therefore they can subtract it from their
received signal prior to decoding and to sending feedback (as
the receivers know at time and the CSI at the relay, and as
they know the encoding function at the relay, they can generate

at time ). The resulting scenario is, therefore, equivalent
to the fading vector MAC with an MIMO receiver and causal
feedback, of both the channel outputs and the Rx-CSI, to
both transmitters. Clearly, the capacity region of this channel
constitutes an outer bound on . In the following we show
that this capacity region is given by defined in (36).
To show this, we first derive an outer bound on the capacity

region of the fading vector Gaussian MAC with feedback and
Rx-CSI, denoted . This outer bound can be obtained
from the cut-set bound [39, Th. 15.10.1] (see also [50]), and is
given by

where

(C3a)

(C3b)

(C3c)

where all mutual information expressions are evaluated with the
specified input distribution . Repeating the arguments
in Appendix A we conclude that the mutual information expres-
sions in (C3) are simultaneously maximized by mutually inde-
pendent channel inputs . Denote
the corresponding input distributions . Thus,

.
It is straightforward to conclude that when

, mutually independent, then any rate pair
in is achievable. Thus,

. Combined with the outer bound
we conclude that .
Finally, we note that letting indepen-
dent of , does not change the rate expressions, thus

.
Next, consider . The derivation of the rate constraints

in uses similar steps as in the derivation of the constraints
in the cut-set bound, with the exception that the individual
rate constraints are derived while letting both and be
available at each receiver for decoding. This is necessary in
order to accommodate the feedback, see Comment 21. Similar
to Appendix A, it can be shown that mutually independent
complex Normal inputs simultaneously maximize the mutual
information expressions on the r.h.s. of all constraints in (37).
Note that the sum-rate is maximized by mutually independent
complex Normal inputs as a consequence of [7, Th. 8].
This completes the proof of the outer bound on .
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