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Broadcast Channels With Cooperating Decoders
Ron Dabora and Sergio D. Servetto, Member, IEEE

Abstract—We consider the problem of communicating over the
general discrete memoryless broadcast channel (DMBC) with par-
tially cooperating receivers. In our setup, receivers are able to ex-
change messages over noiseless conference links of finite capacities,
prior to decoding the messages sent from the transmitter. In this
paper, we formulate the general problem of broadcast with coop-
eration. We first find the capacity region for the case where the BC
is physically degraded. Then, we give achievability results for the
general broadcast channel, for both the two independent messages
case and the single common message case.

Index Terms—Broadcast channels, channel capacity, coopera-
tive broadcast, network information theory, relay channels.

I. INTRODUCTION

A. Motivation

I N the classic broadcast scenario the receivers decode their
messages independently of each other. However, the in-

creasing interest in networking motivates the consideration of
broadcast scenarios in which each node in the network, besides
decoding its own information, tries to help other nodes in
decoding. This problem comes up naturally in sensor networks,
where a transmitter external to the sensor network wants to
download data into the network, e.g., to configure the sensor
array. The concept of cooperation among receivers is also
relevant to general ad-hoc networks, since such cooperation
provides a method for increasing the rates without increasing
the spectrum allocation. Therefore, this motivates the study of
the effect of receiver cooperation on the rates for the broadcast
channel.

B. The Discrete Memoryless Broadcast Channel

The broadcast channel (BC) was introduced by Cover in [1].
Following this initial work, Bergmans proved an achievability
result for the degraded broadcast channel [2], and also a partial
converse that holds only for the Gaussian BC [3]; in [4], Gal-
lager established a converse that holds for any discrete memo-
ryless degraded BC. In [5], El-Gamal generalized the capacity
result for the degraded broadcast channel to the “more capable”
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Fig. 1. Broadcast channel with two private messages and cooperating receivers.

case, and in [6] and [7] he showed that feedback does not in-
crease the capacity region for the physically degraded case. Sev-
eral other classes of BCs were studied in the following years.
For example, the sum and product of two degraded BCs were
considered in [8], and in [9]–[11], the deterministic BC was an-
alyzed.

For the general BC, Cover derived an achievable rate region
for the case of two independent senders in [12]. In [13]. Körner
and Marton considered the capacity of general broadcast chan-
nels with degraded message sets. The best achievable region
and the best upper bound for the two independent senders case
were derived by Marton in [14], and a simple proof of Marton’s
achievable region appeared later in [15]. Another upper bound
for the general BC, the so-called degraded, same-marginals
(DSM) bound, was presented in [16]. This bound is weaker
than the upper bound in [14] but stronger than Sato’s upper
bound previously presented in [17]. We note, however, that
while Marton’s upper bound is the strongest, it is valid only
for the two-receiver case, while Sato’s bound and the DSM
bound can be extended to more than two receivers. The effect
of feedback on the capacity of the Gaussian broadcast channel
was studied in [18] and [19], and in [20] the case of correlated
sources was considered. A survey on the topic, with extensive
references to previous work, can be found in [21]. In recent
years the multiple-input multiple-output (MIMO) Gaussian BC
has attracted a lot of attention. Initially, the sum-rate capacity
was characterized in [22]–[25], and finally, in [26] the capacity
region was obtained.

None of the early work on the DMBC considered direct coop-
eration between the receivers. In the cooperative broadcast sce-
nario, a single transmitter sends two messages to two receivers
encoded in a single-channel codeword , where the super-
script denotes the length of a vector. Each of the receivers
gets a noisy version of the codeword, at and at .
After reception, the receivers exchange messages over noiseless
conference links of finite capacities and , as depicted in
Fig. 1. The conference messages are, in general, functions of
(at ), (at ), and the previous messages received from
the other decoder. After conferencing, each receiver decodes its
own message.

0018-9448/$20.00 © 2006 IEEE



DABORA AND SERVETTO: BROADCAST CHANNELS WITH COOPERATING DECODERS 5439

We note that in a recent work, [27], the authors consider the
problem of interactive decoding of a single broadcast message
over the independent broadcast channel by a group of cooper-
ating users. In our work, we extend this scenario to the general
channel and also consider the two independent senders case.

C. Cooperative Broadcast: A Combination of Broadcasting
and Relaying

The scenario in which one transceiver helps a second trans-
ceiver in decoding a message is clearly a relay scenario. Hence,
cooperative broadcast can be viewed as a generalization of
the broadcast and relay scenarios into a hybrid broadcast/relay
system, which better describes future communication networks.

Scenarios of this type have attracted considerable attention re-
cently both from the practical and the theoretical aspects. From
the practical aspect, new protocols are proposed for the col-
laborative broadcast scenario. For example, in [28] the authors
present a protocol for collaborative decision making involving
broadcasting and relaying. From the theoretical aspect, there
is a considerable effort invested in characterizing the capacity
of an entire network. This work started with [29] and recent
results appear in [30] and the following work [31]–[33]. This
work focuses on the Gaussian case. A complementing approach
for studying the performance of a network is to combine the
basic building blocks of a network, namely, multiple access, re-
laying, and broadcasting and study the capacity of these com-
binations. The recent work on relaying focuses on extending
the single-relay results derived in [34] to the MIMO case (see,
for example, [35]) and to the multiple-level case [36], [37].
Another recent result was introduced in [38], where joint de-
coding was applied to the combined decode-and-forward and
estimate-and-forward scheme of [34, Theorem 7]. A third ap-
proach for studying the performance of an entire network is the
network coding approach sparked by the work of [39], which
focuses on encoding at the nodes for maximizing the network
throughput, separately from the channel coding.

In this paper, we focus on the combination of broadcast and
relay. A relevant work in this context is [40], in which the ca-
pacity of a class of independent relay channels with noiseless
relay is derived. Note that the case of noiseless relay is also re-
lated to the Wyner–Ziv problem [41]. This relationship will be
highlighted in the sequel. Finally, we note that a recent work,
[42], presented an achievability result for the general DMBC
with a single wireless cooperation channel from one receiver to
the second receiver. This achievable rate region is shown to be
the capacity region for the physically degraded broadcast/relay
channel.

D. Main Contributions and Organization

In the following we summarize the main contributions of this
work.

• We initially study a special case of the general setup for-
mulated in Section I-B: the case of the physically degraded
BC. Although the physically degraded BC is of little prac-
tical interest, it is useful in developing the coding concept
for the general BC with cooperation. For the physically de-
graded BC, we present both an achievability result and a

converse. Together, these two results give the capacity re-
gion for this setup. Furthermore, this new region is shown
to be a strict enlargement of the classical region without
cooperation [21].

• Next, we give an achievability result for the general BC
with cooperating receivers. This region is also greater, in
general, than the classic achievable region given in [14] for
the BC.

• We also consider the case where a single common message
is transmitted to both receivers. We consider two different
cooperation strategies and derive the achievable rates for
each of them. We also derive an upper bound on the achiev-
able rates for this scenario. Here we provide results that
explicitly link the available cooperation capacity to the in-
crease in the rate of information. Finally, we show that for a
special case of the general BC, namely when one channel is
distinctly better than the other, the upper and lower bounds
coincide, resulting in the capacity for that case.

The rest of this paper is structured as follows: in Section II, we
define the mathematical framework. In Section III, we analyze
the physically degraded BC, and derive the capacity region for
that case, and in Section IV, we present an achievability result
for the general BC with cooperating receivers. Next, Section V
presents achievability results and an upper bound on the rates for
the case where only a single common message is transmitted.
Concluding remarks are provided in Section VI.

II. DEFINITIONS AND NOTATIONS

First, a word about notation: in the following we use
to denote the entropy of a discrete random variable (RV), and

to denote the mutual information between two discrete
RVs, as defined in [43, Ch. 2]. We denote RVs with capital let-
ters— , etc., and vectors with boldface letters, e.g., .
We denote by the weakly typical set for the (possibly
vector) random variable , see [43, Ch. 3] for the definition of

. When referring to a typical set we may omit the RVs
from the notation, when these variables are clear from the con-
text. We denote the cardinality of the finite set with . We
use to denote the (discrete and finite) range of . Finally,
we denote the probability distribution of the RV over with

and the conditional distribution of given with .

Definition 1: A discrete broadcast channel is a channel with
discrete input alphabet , two discrete output alphabets and

, and a probability transition function, . We de-
note this channel by the triplet .

Definition 2: A memoryless broadcast channel is a broad-
cast channel for which the probability transition function of a
sequence of symbols is given by

where , and
.

We shall assume the channel to be discrete and memoryless.
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Definition 3: The physically degraded broadcast channel is
a broadcast channel in which the probability transition func-
tion can be decomposed as .
Hence, for the physically degraded BC we have that
form a Markov chain.

Definition 4: An -conference between and
is defined by two conference message sets

and two mapping functions, and , which map the re-
ceived sequence of symbols and the conference messages at
one receiver into a message transmitted to the other receiver

We note that this is not the most general definition of a con-
ference, see, for example, [44], [45] for a more general form.
In this paper, we consider only conferences in which each re-
ceiver sends at most one message to the other receiver. Note that
there are cases where a single conference message is enough to
achieve capacity: for example, in Section III, a single conference
step achieves capacity for the physically degraded broadcast
channel, and in [45], a single conference step achieves capacity
for the discrete memoryless multiple access channel counterpart
of the setup discussed here.

Definition 5: A -admissible conference is a con-
ference for which and .

Definition 6: A code for the
broadcast channel with cooperating receivers having conference
links of capacities and between them, consists of two
sets of integers

called message sets, an encoding function

a -admissible conference

and two decoding functions

(1)

(2)

Definition 7: The average probability of error is defined as
the probability that the decoded message pair is different from
the transmitted message pair

or

We also define the average probability of error for each receiver
as

(3)

(4)

where we assume transmission of symbols for each codeword.
By the union bound we have that

Hence, implies that both and
, and when both individual error probabilities go to zero then

goes to zero as well.
In the analysis that follows, we assume that user 1 and user 2

select their respective messages and independently and
uniformly over their respective message sets.

Definition 8: A rate pair is said to be achievable, if
there exists a sequence of codes
with as . Obviously, this is satisfied if both

and as increases.

Definition 9: The capacity region for the discrete memoryless
BC with cooperating receivers is the convex hull of all achiev-
able rates.

III. CAPACITY REGION OF THE PHYSICALLY DEGRADED

BROADCAST CHANNEL WITH COOPERATING RECEIVERS

We consider the physically degraded BC with three inde-
pendent messages: a private message to each receiver and a
common message to both. We note that for the physically
degraded channel, following the argument in [43, Theorem
14.6.4], we can incorporate a common rate to both receivers by
replacing , the private rate to the bad receiver, obtained for
the two private messages case with , where denotes
the rate of the common information. Without cooperation, the
capacity region for the physically degraded BC
given in [43, Theorem 14.6.4], is the convex hull of all the rate
triplets that satisfy

(5)

(6)

for some joint distribution ,
where

(7)

Next, consider cooperation between receivers over the phys-
ically degraded BC. First note that for this case, the link from

to does not contribute to increasing the rates due to co-
operation, and that only the link from to does. This is
due to the data processing inequality (see [43, Theorem 2.8.1]):
since form a Markov chain, any information about

contained in will also be contained in , and thus con-
ferencing cannot help:
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For the rest of this section then, we shall consider only a com-
munication link from the good receiver , to the bad receiver

(i.e., we set ). This implies that is a constant
and we can thus omit it from the analysis. We begin with a state-
ment of the theorem.

Theorem 1: The capacity region for sending independent in-
formation over the discrete memoryless physically degraded BC

, with cooperating receivers having a noiseless
conference link of capacity , as defined in Section II, is the
convex hull of all rate triplets that satisfy

(8)

(9)

for some joint distribution , where the
auxiliary random variable has cardinality bounded by

.

We note that this result presented in [46] was simultaneously
derived in [42] for the case of a wireless relay.

A. Achievability Proof

In this subsection, we show that the rate triplets of Theorem
1 are indeed achievable. We will show that the region defined
by (8) and (9) with is achievable. Incorporating
easily follows as explained earlier.

1) Overview of Coding Strategy: The coding strategy is a
combination of a broadcast code as an “outer” code used to split
the rate between and , and an “inner” code for ,
using the code construction for the physically degraded relay
channel, described in [34, Theorem 1]. We first generate code-
words for , according to the relay channel code con-
struction. Then, the codewords for are used as “cloud cen-
ters” for the codewords transmitted to (which are also the
output to the channel). Upon reception, decodes both its
own message and the message for , and then uses the relay
code selection to select the message relayed to . uses
its received signal to generate a list of possible candi-
dates, and then uses the information from to resolve for the
correct codeword.

2) Details of Coding Strategy:
a) Code generation:

1) Consider first the set of relay messages.
These are the messages that the relay transmits to
through the noiseless finite capacity conference link be-
tween the two receivers. Index these messages by , where

.
Next, fix and .

2) For each index , generate conditionally
independent codewords , where

.
3) For each codeword generate conditionally

independent codewords

where .

4) Randomly partition the message set for
, into sets , by

independently and uniformly assigning to each message
an index in .
b) Encoding procedure: Consider transmission of

blocks, each block transmitted using channel symbols. Here
we use symbol transmissions to transmit message
pairs

As , we have that the rate .
Hence, any rate pair achievable without blocking can be ap-
proached arbitrarily close with blocking as well. Let and

be the messages intended for and , respectively,
at the th block, and also assume that . has
an estimate of the message sent to at block .
Let . At the th block, the transmitter outputs the
codeword , and sends the index to
through the noiseless conference link.

c) Decoding procedure: Assume first that up to the
end of the th block there was no decoding error.
Hence, at the end of the th block, knows

, and
and knows ,

and . The decoding at block proceeds as
follows:

1) knows from . Hence, determines
uniquely s.t.

If there is none or there is more than one, an error is de-
clared.

2) receives from . From knowledge of and
forms a list of possible messages

Now, uses to find a unique . If
there is none or there is more than one, an error is declared.

3) Analysis of the Probability of Error: The achievable rate
to can be proved using the same technique as in [34, The-
orem 1]. For the ease of description, assume that is con-
nected via an orthogonal channel to and let denote
the channel input from and the corresponding channel
output to . Thus, has combined input . The
overall transition matrix is given by

(10)

Additionally, we select the transition matrix and the
input and output alphabets such that the capacity of the
orthogonal channel is . An example for such a
selection is letting , where

is denotes the ceil function. Letting denotes the integer
part of the real number , we set the channel transition function
to be
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with selected such that . The ca-
pacity of this channel is and is achieved by letting

. This setup is equivalent to the original setup
described in Section I-B, when .

Now consider the rate to . The Markov chain
combined with the condition in (10) implies the fol-

lowing probability distribution function (pdf)

Now, applying [34, Theorem 1], with , we
have that (see also [32])

Next, consider the rate to . From the proof of [34, Theorem
1] we have that decodes . Therefore, can now use
successive decoding similar to the decoding at in [43, Ch.
14.6.2], which imply that the achievable rate to is given
by . Combining both bounds we get the rate
constraints of Theorem 1.

B. Converse Proof

In this subsection, we prove that for , the rates must
satisfy the constraints in Theorem 1. First, note that for the case
of the physically degraded BC with cooperating receivers we
have the following Markov chain

(11)

Considering the definition of the decoders in (1) and (2), and
the definition of the probability of error for each of the receivers
in (3) and (4), we have from Fano’s inequality ([43, Ch. 2.11])
that

(12)

(13)

where is the entropy of a Bernoulli RV with parameter
. Note that when then and when

then .
Now, for we have that

Applying inequality (12), and then proceeding as in [4] we get
the bound on as

where .

For , we can write

(14)

where the inequality in is due to (13). Proceeding as in [4],
we bound . Next, we bound

as follows:

(15)

where the first inequality follows from the definition of mutual
information, the second is due to removing the conditioning,
and the third is due to the admissibility of the conference. Com-
bining both bounds we get that

(16)

The bound on can be developed in an alternative way. Begin
with (14):

(17)

where follows from the fact that
is a Markov relation and from the data processing

inequality. Next, we can write

(18)

where the equality in is due to the physical degradedness
and memorylessness of the channel, is due to removing the
conditioning, and is because the Markov chain makes
independent of given . Plugging this into (17), we
get a second bound on :
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Fig. 2. The physically degraded BSBC. p ; p ; and p are the transition prob-
abilities at the left, middle, and right segments, respectively.

Collecting the three bounds we have

(19)

(20)

(21)

Using the standard time-sharing argument as in [43, Ch. 14.3],
we can write the averages in (19)–(21) by introducing an appro-
priate time-sharing variable, with cardinality upper-bounded by

. Therefore, if and as , the convex
hull of this region can be shown to be equivalent to the convex
hull of the region defined by

(22)

(23)

(24)

Finally, the bound on the cardinality of follows from the
same arguments as in the converse for the noncooperative case
in [4]. Note, however, that is absent from the minimiza-
tion on the cardinality (cf. (7) for the noncooperative case). The
reason is that even when , information to (repre-
sented by the random variable ), can be sent through the con-
ference link between the two receivers.

C. Discussion

To illustrate the implications of Theorem 1, consider the
physically degraded binary symmetric broadcast channel
(BSBC) depicted in Fig. 2. For this channel, Theorem 1 im-
plies that . Due to the symmetry of the channel, the
probability distribution of which maximizes the rates, is a
symmetric binary distribution .
The resulting capacity region for this case is depicted in Fig. 3
for the case where . In the figure, the bottom line
(dashed) is the noncooperative capacity region, and the top
line (dash-dotted) is the maximum possible sum rate, which
requires that , where

This maximum sum-rate of is obtained by summing
the rate to given by (22) and the maximum possible rate
for given by (24), and using the Markov chain relation

. The middle line (solid) is the capacity region for the
partial cooperation case where .

As can be seen from this example, the capacity region de-
rived in this section is strictly larger than the capacity region for

Fig. 3. The capacity region for the physically degraded BSBC. Top, middle,
and bottom lines correspond to maximum possible cooperation, partial cooper-
ation, and no-cooperation scenarios, respectively.

the noncooperation case. Indeed, summing the constraints on
and without cooperation ((5), (6)), results in a max-

imum achievable sum-rate of

(25)

where the second term is always positive due to the Markov
chain (assuming the degrading channel is
noninvertible).1 In this setup, the maximum possible sum-rate

is achieved only when is a constant, and thus no
information is sent to . When , because of
the relationship , we cannot
achieve the maximum sum-rate of to . However,
summing (23) or (24) with (22), results in a maximum achiev-
able sum-rate with cooperating receivers of

(26)

Comparing this to noncooperative sum-rate given by (25), it is
clear that cooperation allows a net increase in the sum-rate, by
at most .

IV. ACHIEVABLE RATES FOR THE GENERAL BROADCAST

CHANNEL WITH COOPERATING RECEIVERS

For the classic general BC scenario, the best achievability
result was derived by Marton in [14]. This result states that for
the general BC, any rate pair satisfying

(27)

(28)

(29)

for some joint distribution
, is achievable.

We note that Marton’s largest region contains three auxiliary
RVs, , where represents information decoded by
both receivers. Here we use a simplified version, where is
set to a constant.

1It can be shown that I(U ;Y ) � I(U ; Y ) = 0 for the degraded channel
setup implies that if R +R > 0 then H(Y jY ) = 0, i.e., the channel from
R to R is invertible. Under these circumstances, this setup can be replaced
by an equivalent setup in which both receivers get Y , but such a degenerate
setup is not interesting.
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We now consider cooperation between the receivers. We
begin with a statement of the theorem.

Theorem 2: Let be any discrete
memoryless BC, with cooperating receivers having noiseless
conference links of finite capacities and , as defined in
Section II. Then, for sending independent information, any rate
pair satisfying

subject to
(30)

(31)

where
(32)

(33)

for some joint distribution

is achievable, with
and .

In the following subsections, we provide the proof of this the-
orem.

A. Overview of Coding Strategy

As in the achievability part of Theorem 1, the proposed code
is a hybrid broadcast–relay code. Here, we combine the relay
code construction of [34, Theorem 6] and the broadcast code
construction of [15]. The fact that in these two theorems the
channel encoding and the relay operation are performed inde-
pendently, allows to easily combine them into a hybrid coding
scheme. The encoder generates broadcast codewords, each se-
lected from a codebook constructed similarly to the construc-
tion of [15]. This codebook splits the rate between the two users.
Next, each relay ( acts as a relay for and vice versa) gen-
erates its codebook according to the construction of [34, The-
orem 6]. In the decoding step, using the received signal ( at

and at ), each receiver generates a list of the pos-
sible transmitted relay messages and uses the conference mes-
sage from the next time interval to resolve for the relay massage.
Then, each receiver uses the decoded relay message and its re-
ceived channel output to decode its own message.

B. Encoding at the Transmitter

1) Let and be given. Fix
and , and let be a positive number, whose
selection is described in the next item. Let de-
note the set of strongly typical independent and identically
distributed (i.i.d.) sequences of length , as de-
fined in [43, Ch. 13.6]. Let denote the set of
strongly typical i.i.d. sequences of length . Let

denote the set of all sequences , such

that is nonempty as defined in [47, Corol-
lary 5.11], and similarly define for the sequences

.
2) Select strongly typical sequences in an i.i.d.

manner, according to the probability

otherwise.

Label these sequences by . Select
strongly typical sequences in an i.i.d. manner,

according to the probability

otherwise.

Label these sequences by . Note
that from [47, Corollary 5.11] we have that

where as and , so for any we
can always find such that for large enough we
obtain

and

3) Define the cells

This is a partition of the sequences into sets. Define
the cells

which form a partition of the sequences into sets.
4) For every pair of integers ,

define the set
. Here,

denotes the strongly typical set for the random variables
and as defined in [43, Ch. 13.6]. In the following,

we may omit the random variables when referring to the
strongly typical set, when these variables are clear from
the context. We now have the following (slightly modified)
lemma from [15].

Lemma 1: For any two–dimensional (2-D) cell
, and large enough, we have that , pro-

vided that

(34)

where as and .
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Proof: The proof of this lemma is obtained by direct ap-
plication of the technique used to prove [15, Lemma on p. 121],
and therefore will not be repeated here.

5) For each message pair , select one pair
. For each of the selected

pairs (one pair for each message pair), generate a codeword
according to

6) To transmit the message pair the transmitter out-
puts .

C. Encoding the Relay Messages

Consider first the relay encoding at , which acts as a relay
for .

1) -relay has a set of relay messages indexed by
. For each index , generate i.i.d. se-

quences , each with probability

and

Label these codewords
.

2) Randomly and uniformly partition the message set
into sets .

3) Encoding: Assume that after receiving we have
at that , and that

( is known from the previous transmission
of ). Then, at the th transmission interval the relay
transmits the index to .

Relay encoding at is performed in a symmetric manner
to the relay encoding at . The corresponding variables for

are and .

D. Decoding the Relay Messages at the Relays

Consider decoding the relay message at . The relay de-
coder at uses its channel input , and its previously
decoded to generate the relay message as follows: upon
receiving , the relay decides that the message was
received at time if . Following the
argument in [34, Theorem 6] (see also the proof in [43, Ch.
13.6]), there exists such with probability that is arbitrarily
close to one as long as

(35)

and is sufficiently large. Relay decoding at is done in a
symmetric manner to the relay decoding at .

E. Decoding at the Receivers

We first find the rate constraint for decoding at . de-
codes its message based on its channel input
and the relay indices and .

1) From knowledge of and , calculates the
set such that

2) At the time interval of the th codeword, receives the
relayed . Since is selected from a set of possible
messages, it can be transmitted over the noiseless confer-
ence link without error.

3) now chooses as the relay message at time if
and only if there exists a unique .
Again, following the reasoning in [34, Theorem 6], this
can be done with an arbitrarily small probability of error
as long as

(36)

and is large enough. Combining this with inequality (35)
we get the constraint on the relay information rate

(37)

This expression is similar to the Wyner–Ziv expression for
the rate required to transmit to receiver up to a given
distortion, determined by and a decoder. Here the
performance of the decoder is implied in the mutual infor-
mation . The compressed is then used by

to assist in decoding .
4) Finally, decodes (or, equivalently

) by choosing such that

From the point-to-point channel coding theorem (see [15])
we have that with probability that is arbi-
trarily close to one, as long as was correctly decoded
at and

(38)

for sufficiently large . Combining this with (37) yields the
rate constraint on

(39)

as long as (40)

Using symmetric arguments to those presented for decoding
at we find the rate constraint for to be

(41)

as long as (42)
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Combining (34), (39), (40), (41), and (42), gives the condi-
tions in Theorem 2.

F. Error Events

In the scheme described above we have to account for the
following error events for decoding .

1) Encoding at the transmitter fails:

2) Joint typicality decoding fails:

3) Decoding at the relays fails:

s.t.

s.t.

4) Decoding the relay message at the receivers fails:
, where and

s.t.

s.t.

5) Final decoding at the receivers fails:

where

s.t.

s.t.

We now bound the probability of the error events at time .
Note that at time both and share the same and

irrespective whether the decoding at the relays was correct
at time . Hence, a decoding error at time does not affect
the decoding at time . Now, from Lemma 1 it follows that by

taking large enough the probability of can be made arbi-
trarily small, as long as (34) is satisfied. Additionally, by taking

large enough, the probability can be made
arbitrarily small by the properties of strongly typical sequences,
see [43, Lemma 13.6.2]. The probability can be made
arbitrarily small as long as (40) and (42) are satisfied, as ex-
plained is Section IV-D. Next, the Markov lemma [50, Lemma
4.2] and the Markov chains and , imply
that and can
be made arbitrarily small by taking large enough, and

and can be made arbitrarily
small by taking large enough as long as (40) and (42) are
satisfied. Finally, and

can be made arbitrarily
small by taking large enough by the Markov lemma and the
chains and , and as long as (39)
and (41) are satisfied.

This concludes the proof of Theorem 2.

G. An Upper Bound

Proposition 1: Assume the broadcast channel setup of The-
orem 2. Then, for sending independent information, any achiev-
able rate pair must satisfy

for some distribution on .
Proof: The proof uses the cut-set bound [43, Theorem

14.10.1]. First, we define an equivalent system by introducing
two orthogonal channels from to and
from to . The joint probability distribution function
then becomes

where the signal received at is and the signal re-
ceived at is . As in the proof in Section III-A.3, we
select , and
such that the capacities of the channels and are

and , respectively. Additionally, the codewords for the
conference transmissions are determined independently from
the source codebook so we set .
Now, from the cut-set bound, letting the transmitter and
form one group and the second group, we have

where follows
from direct application of the distribution function. Similarly,
we obtain the rate constraint on . Finally, for the sum-rate
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consider the transmitter in one group and the receivers in the
second. Then, the cut-set bound results in

yielding the last constraint in the proposition.

H. Remarks

Comment 4.1: We note that although we present a single-
letter characterization of the rates, we are not able to apply
standard cardinality bounding techniques such as those used in
[48] or [49] for bounding and . The method of [48]
cannot be applied since it relies on the fact that the auxiliary
random variables are independent, which is not the case here.
The method of [49] cannot be applied as explained in the com-
ment for Theorem 2 in [20]. The cardinality bounds on and

are trivial since they are transmitted over noiseless links.

Comment 4.2: The relay strategies can be divided into two
general classes. The first class is referred to as decode-and-for-
ward (DAF). In this strategy, the relay first decodes the message
intended for the destination and then generates a relay message
based on the decoded information. The second class is referred
to as estimate-and-forward (EAF). In this class, the relay does
not decode the message intended for the destination but trans-
mits an estimate of its channel input to the destination. For the
physically degraded BC we used DAF, based on [34, Theorem
1], to derive Theorem 1, and for the general BC we used the EAF
scheme of [34, Theorem 6], to derive Theorem 2. Of course, one
can also combine both strategies and perform partial decoding
at each receiver of the other receiver’s message before confer-
encing, following [34, Theorem 7]. This combination will, in
general, result in an increased achievable rate region.

I. Special Cases

1) No Cooperation: : Consider first cooper-
ation from to . Setting in Theorem 2 implies
that

(43)

From (32), the constraint on can be written in the form

Now we find

(44)

where is due to (43), and is due to the Markov chain
, which implies that

given is independent of and . Now, since mutual

information is nonnegative, we conclude that .
Hence, the rate constraint on becomes

Similarly, the maximum rate is given by , and in
conclusion when we resort back to the rate
region without cooperation derived in [14] (with a constant ).

2) Full Cooperation: :
When , we get from (31) that

which is satisfied when . Plugging this into (33), we get
that when full cooperation from to is available, the rate
constraint for becomes

Using the same reasoning, we conclude that when full cooper-
ation from to is available, the rate constraint for
becomes .

3) Partial Cooperation: When and
, we get that

(45)

Hence, the achievable rate to is upper-bounded by

(46)

where is due to (45) and follow from the same rea-
soning leading to (44). Similarly,

.
Note that there exist negative terms and

in the achievable rate upper bounds. This can
be explained as follows: the mutual information
can be considered as a type of “ancillary” information that
contains, since this information is contained in while and

are already known—therefore, this information is a “noise”
part of which does not include any helpful information for
decoding at . Thus, for cooperating in the optimal way,

has to be a type of “sufficient and complete” cooperation in-
formation.

V. THE GENERAL BROADCAST CHANNEL

WITH A SINGLE COMMON MESSAGE

We now consider the case where only a single message, rather
than two independent messages, is transmitted to both receivers.
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Fig. 4. The single-message BC with cooperating receivers. ^W and ^

^W are the
estimates ofW at R and R , respectively.

The main motivation for considering this case is that in the two
independent messages case it is difficult to specify an explicit
cooperation scheme, and we therefore have to represent coop-
eration through auxiliary random variables. Hence, we cannot
identify directly the gain from cooperation, except in the case
of full cooperation, and we also cannot evaluate the achievable
region. For the single common message case, we are able to de-
rive results for partial cooperation without auxiliary variables,
which make this region explicitly computable. This scenario is
depicted in Fig. 4.

For this scenario, we need to specialize the definitions of a
code and the average probability of error as follows:

• A code for sending a common mes-
sage over the BC with cooperating receivers having con-
ference links of capacities and between them, is
defined in a similar manner to Definition 6 with
and all replaced with .

• The average probability of error is defined similarly to
Definition 7 with and replaced with .

The capacity for the noncooperative single-message scenario
is given in [5] by

(47)

In the following, we consider two cooperation schemes, re-
ferred to as a single-step scheme and a two-step scheme. These
schemes are described in Fig. 5. In the single-step scheme, after
reception each receiver generates a single cooperation message
based on its channel input. In the two-step scheme, after recep-
tion one receiver generates a cooperation message based only
on its channel input, as in the previous case, but the second
receiver generates its cooperation message only after decoding
(which is done with the help of the conference message from
the first receiver). In both cases, each receiver generates a single
conference message, however, in the single-step conference the
emphasis is on low delay, while in the two-step conference we
sacrifice delay in order to gain rate.

A. Decoding With a Single-Step Cooperation

In this subsection, we constrain both decoders to output their
decoded messages after a conference that consists of a single
message from each receiver, based only on its received channel
input. For this case, we can specialize the derivation of Theorem
2 and get the following achievable rate for the BC with partially
cooperating receivers:

Theorem 3: Let be any discrete
memoryless broadcast channel, with cooperating receivers

Fig. 5. Schematic description of the single-step and the two-step conference
schemes.

having noiseless conference links of finite capacities and
, as defined in Section II. Then, for sending a common

message to both receivers, any rate satisfying

subject to

for some joint distribution

is achievable, with and .

The proof of Theorem 3 follows the same lines of the proof of
Theorem 2 and will not be repeated here. We next show how we
can increase the rates by introducing the two-step conference.

B. Decoding With a Two-Step Cooperation

We consider a two-step conference: at the first step, only one
receiver decodes the message. The second receiver decodes after
the second step. Therefore, after the first receiver decodes the
message, relaying to the second receiver reduces to the DAF
relay situation of [34, Theorem 1]. The rates achievable with a
two-step conference are given in the following theorem.

Theorem 4: Assume the broadcast channel setup of The-
orem 3. Then, for sending a common message to both receivers,
any rate satisfying

for some joint distribution
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is achievable, with and ,
and with the appropriate or

(the one used for the first cooperation step).
Proof:

1) Overview of Coding Strategy: The scheme described in
Theorem 3 uses a single-step conference for both decoders.
However, if we let one receiver use a two-step conference, then
that receiver, instead of using conference information derived
from the raw input of the other receiver, can use information
generated by the second receiver after it already decoded the
message. This conference information is less noisy, and thus
the rate to the first receiver can be increased.

To put this in more concrete terms, assume that at time
sends to the index of the partition into which its

relay message at time , denoted , belongs. In Appendix B,
we show that can decode the message with an arbi-
trarily small probability of error as long as is large enough
and

(48)

and

(49)

We now introduce the following modifications to the scheme
used in Theorem 3.

2) Relay Sets Generation at partitions the message
set into subsets in a uniform and independent manner.
Denote these subsets with .

3) Relay Encoding at has an estimate of the
message . Now, looks for the partition into which
belongs and sends the index of this partition, denoted , to

at time .
4) Decoding at : Upon reception of generates

the set .
At time , upon reception of looks for an index

such that . If a unique such exists then
sets , otherwise an error is declared.

5) Bounding the Probability of Error: Using the proof tech-
nique in [34, Theorem 1], it can be easily shown that assuming
correct decoding at , then any rate is
achievable to .

Combining the bounds derived above, we conclude that with
a two-step conference at , any rate satisfying

ia achievable. Repeating the same derivation when uses
a two-step conference, and combining with the previous case
proves Theorem 4.

Setting in Theorem 4 we obtain the fol-
lowing achievable region.

Fig. 6. Achievable rate versus C , for the two independent, identical, BSBCs
with a single common message, resulting from Corollary 1.

Corollary 1: Assume the broadcast channel setup of The-
orem 3. Then, for sending a common message to both receivers,
any rate satisfying

with the appropriate or
(the one used for the first cooperation step),

is achievable.

This gives a partial cooperation result without auxiliary
random variables.

C. An Example for Corollary 1

Consider two independent, identical, BSBCs with transition
probability , and cooperation links of capacities

. For this case, Corollary 1 gives the following maximum
achievable rate:

for , where ,
and

Solving for the supremum for each value of , we get the
achievable rates depicted in Fig. 6. Note the linear increase in
the achievable rate for .

D. An Upper Bound

The upper bound for the single common message case can be
obtained from the bound for the two independent messages case
in Proposition 1.
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Corollary 2: Let be any discrete
memoryless BC, with cooperating receivers having noiseless
conference links of finite capacities and , as defined in
Section II. Then, for sending a common message to both re-
ceivers, any rate must satisfy

Proof: Follows directly from Proposition 1 by noting that
the common rate has to satisfy all three constraints: the indi-
vidual rates and the sum rate.

E. Remarks

Comment 5.1: Note that there are special cases where the
lower bound of Corollary 1 coincides with the upper bound
of Corollary 2, yielding the capacity for these cases. For ex-
ample, assume a strong version of the “more capable” condition
of [5]: 2 for all input distributions
on . Assume also that
and . Under these con-
ditions, we have that

. Thus, if is helping first, the achiev-
able rate is . If is helping

first, then the achievable rate is . Since
, this cooperation scheme achieves

the upper bound .2

Comment 5.2: Note that the capacity region for the determin-
istic BC with cooperating receivers follows from Corollaries 1
and 2. This region was derived in [51]. For this case, we have that

hence
. The achievable rate (from Corollary 1) is given by

and the same from Corollary 2.

Comment 5.3: We note that although the expressions in
(48) and (49) seem different from the EAF expression of
[34, Theorem 6], given in Theorem 3 (cf.
subject to ), this does not improve
on the achievable rate of the standard EAF. The reason is
that every rate achievable according to (48)–(49) can also be
achieved with the standard EAF using the same mapping of the
auxiliary RV and an appropriate time sharing.3 However, when
considering a specific, fixed assignment of the auxiliary random
variable (such as in Corollary 1) then the rate achievable with
(48)–(49) is indeed greater than the classic EAF with the same
assignment.

VI. CONCLUSION

In this paper, we investigated the effect of cooperation be-
tween receivers on the rates for the BC. As communication net-
works evolve, it can be expected that in future networks, nodes
that are close enough to be able to communicate directly, will
use this ability to help each other in reception. Accommodating

2The precise condition requires that I(X;Y ) > I(X;Y ) +C �C +
H(Y jY ;X) for all input distributions p(x).

3This observation is due to Shlomo Shamai and Gerhard Kramer.

this characteristic, we extended the traditional broadcast sce-
nario, in which each decoder is assumed to operate indepen-
dently, into a scenario where the receivers have finite capacity
links used for cooperation. We analyzed three related scenarios:
the physically degraded BC—for which we derived the capacity
region; the general BC—for which we presented an achiev-
ability result; and the single common message case. For the
last case, we identified a special case where capacity can be
achieved. We note that it is not trivial to extend these results to
more than two steps, since the intermediate steps need to extract
information from partial relay information. Although this can be
done by introducing additional auxiliary variables, obtaining a
computable region is not a simple task. This study is an initial
step in this investigation and future work includes several ex-
tensions: a natural first extension is to consider a fully wireless
system, and extend the analysis to the Gaussian case. Another
extension is to consider the interaction between the Wyner–Ziv
compression and the achievable rates for the general channel.

APPENDIX A
BACKGROUND RESULTS

Consider the construction in Section III-A. Let

We bound . Let

otherwise.
Hence, as in [34, Theorem 1], we can write the random variable

as a sum of random variables

and therefore

When , we get from the properties of independent
sequence ([43, Theorem 8.6.1]) that

thus

(A1)

Note that this result holds also when considering the strongly
typical set rather than the weakly typical set.

APPENDIX B
PROOF OF THE ACHIEVABLE RATE TO THE FIRST DECODER IN

THEOREM 4 ((48) AND (49))

A. Overview of Coding Strategy

The encoder generates a single codebook in a random and in-
dependent manner. Next, the first relay partitions its collection
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of relay codewords ( for ) into disjoint sets. When a
channel input is received, the first relay finds the index of the
partition set which contains a relay codeword jointly typical
with its channel input, and transmits it over the noiseless con-
ference link to the second receiver. Then, the second receiver
looks for a unique source codeword that is jointly typical with
its channel input, and with at least one of the relay codewords
in the set of possible codewords received from the first relay.

In the following analysis, we assume that is the first relay
and decodes first.

B. Codebook Generation and Encoding at the Transmitter

Fix and generate i.i.d. codewords , with

For transmitting the message at time , the transmitter out-
puts to the channel.

C. Relay Sets Generation

Fix .
• Consider the pdf

on .
• generates sequences in an i.i.d. manner ac-

cording to

• partitions the message set into sets, by
assigning an index between to each ,
in a random, independent and uniform manner over

. Denote these sets by .

D. Decoding and Encoding at the Relay

• Upon reception of , the relay decides that
was received if .

Now, finds the index of the set s.t.

. Then, at time transmits to
through the finite capacity noiseless conference link. If
there is no such that is jointly typical
with , an error is declared.

E. Decoding the Source Message at

At the th transmission interval generates the set

At the th transmission interval, receives from
through the noiseless conference link. then looks for a

unique s.t. and , for which

If such unique exists, then is the decoded message at time
. If there is none, or there is more than one, an error is declared.

F. Analysis of the Probability of Error

1) Error Events: The error events for the scheme described
above, for decoding the message are as follows.

1) Relay decoding fails:

s.t.

2) Joint typicality decoding fails: Let ,
where

3) Decoding at fails:

for which

Next, applying the union bound we get that

2) Bounding the Probabilities of the Error Events: Following
the same argument as in Section IV-D, im-
plies that taking large enough, we can make .
Next, from the properties of strongly typical sequences (see
[43, Lemma 13.6.1]), by taking large enough, we can make

. Additionally, the Markov lemma, [50, Lem-
ma 4.2] implies that we can make
for any arbitrary by taking large enough. Therefore,
by the union bound, . We also have that

because under we have
that and are jointly typical, and by con-
struction, . Hence, we need to show that the prob-

ability can be made arbitrarily small.
Note that due to the symmetry of the construction, the prob-
ability of error does not depend on the specific message
transmitted.
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3) Bounding : The probability of
can be written as

where is because the elements of are selected in an
independent manner.

We first bound as follows:

where is because is a deterministic function of
and we also applied the union bound and is because
is independent of for . The bounds in on the
size of the conditionally typical set and the maximum condi-
tional probability follow from [47, Theorem 5.2] with as

, assuming that is large enough. Finally, we note that
here

received transmitted

Next, applying the same technique to bound the expectation of
as in [34, Theorem 1] (see also derivation of (A1)), we

get that for large enough

(B1)

Plugging this back into the bound on we get that

(B2)

which can be made less than any arbitrary by taking
large enough, as long as4

(B3)

For bounding , we begin essentially in the same
manner and get that

4We assume that I(X; V̂ jY ) > 0, otherwise the relay message does not
help decoding the source message at R .
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where is because we dropped the intersection with
, is due to the union bound, is because

is independent of and when , and
is because

where is because the average size of does not depend
on when is given, and is because the average
size of does not depend of . The bounds on and

in follow from [47, Ch. 5]. The bound on
in follows from (B1). We note that here

received transmitted

We conclude that can be made smaller than any
by taking large enough, as long as

(B4)

(B5)

(B6)

(B7)

where (B7) follows from Appendix B-F.2.
Now note that making arbitrarily

small requires making both and arbi-
trarily small. Thus, we also need to satisfy (B3). Combining
with (B6) we see that (B3) guarantees (B6) and we are left with
(B3), (B4), (B5), and (B7).

The maximum rate is achieved for the minimal , therefore,
we plug in (B4) and combining with (B3) we
obtain the following achievable rate:

(B8)

From the combination of (B5) and (B7), we conclude that this
is achievable as long as

(B9)

Equations (B8) and (B9) give the conditions for the message
to be decoded at with an arbitrarily small probability

of error by taking large enough. Note that the requirement in
(B9) implies that when cannot use
this cooperation scheme, and the rate to is simply .
Combining this with (B8) yields the rate expression in (48) and
(49).
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