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Abstract: Man-made communications signals are typically modelled as continuous-time (CT)
wide-sense cyclostationary (WSCS) processes. As modern processing is digital, it is applied to
discrete-time (DT) processes obtained by sampling the CT processes. When sampling is applied to a
CT WSCS process, the statistics of the resulting DT process depends on the relationship between the
sampling interval and the period of the statistics of the CT process: When these two parameters have
a common integer factor, then the DT process is WSCS. This situation is referred to as synchronous
sampling. When this is not the case, which is referred to as asynchronous sampling, the resulting DT
process is wide-sense almost cyclostationary (WSACS). The sampled CT processes are commonly
encoded using a source code to facilitate storage or transmission over wireless networks, e.g., using
compress-and-forward relaying. In this work, we study the fundamental tradeoff between rate
and distortion for source codes applied to sampled CT WSCS processes, characterized via the
rate-distortion function (RDF). We note that while RDF characterization for the case of synchronous
sampling directly follows from classic information-theoretic tools utilizing ergodicity and the law
of large numbers, when sampling is asynchronous, the resulting process is not information stable.
In such cases, the commonly used information-theoretic tools are inapplicable to RDF analysis,
which poses a major challenge. Using the information-spectrum framework, we show that the RDF
for asynchronous sampling in the low distortion regime can be expressed as the limit superior of
a sequence of RDFs in which each element corresponds to the RDF of a synchronously sampled
WSCS process (yet their limit is not guaranteed to exist). The resulting characterization allows us
to introduce novel insights on the relationship between sampling synchronization and the RDF. For
example, we demonstrate that, differently from stationary processes, small differences in the sampling
rate and the sampling time offset can notably affect the RDF of sampled CT WSCS processes.

Keywords: wide-sense cyclostationary; wide-sense almost cyclostationary; rate-distortion function;
information spectrum

1. Introduction

Man-made signals are typically generated using a repetitive procedure, which takes place at fixed
intervals. The resulting signals are thus commonly modeled as continuous-time (CT) random processes
exhibiting periodic statistical properties [1–3], which are referred to as wide-sense cyclostationary
(WSCS) processes. In digital communications, where the transmitted waveforms commonly obey
the WSCS model [3], the received CT signal is first sampled to obtain a discrete-time (DT) received
signal. In the event that the sampling interval is commensurate with the period of the statistics of
the CT WSCS signal, cyclostationarity is preserved in DT ([3] Section 3.9). In this work, we refer to
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this situation as synchronous sampling. However, it is practically common to encounter scenarios
in which the sampling rate at the receiver and the symbol rate of the received CT WSCS process are
incommensurate, which is referred to as asynchronous sampling. The resulting sampled process in
such cases is a DT wide-sense almost cyclostationary (WSACS) stochastic process ([3] Section 3.9).

This research aims at investigating lossy source coding for asynchronously sampled CT WSCS
processes. In the source coding problem, every sequence of information symbols from the source is
mapped into a sequence of code symbols, referred to as codewords, taken from a predefined codebook.
In lossy source coding, the source sequence is recovered up to a predefined distortion constraint, within
an arbitrary small tolerance of error. The figure-of-merit for lossy source coding is the rate-distortion
function (RDF) which characterizes the minimum number of bits per source symbol required to
compress the source sequence such that it can be reconstructed at the decoder within the specified
maximal distortion [4]. For an independent and identically distributed (IID) random source process,
the RDF can be expressed as the minimum mutual information between the source variable and the
reconstruction variable, such that with the corresponding conditional distribution of the reconstruction
symbol given the source symbol, the distortion constraint is satisfied ([5] Chapter 10). The source
coding problem has been further studied in multiple different scenarios, including the reconstruction
of a single source at multiple destinations [6] and the reconstruction of multiple correlated stationary
Gaussian sources at a single destination [7–9].

For sampled stationary source processes, ergodicity theory and the asymptotic equipartition
property (AEP) ([5] Chapter 3) were utilized for characterizing the RDF in different scenarios ([10]
Chapter 9), ([4] Section I), [11]. However, as in a broad range of applications, including digital
communications networks, the CT signals are WSCS processes, the sampling operation results in DT
source signals whose statistics depends on the relationship between the sampling rate and the period
of the statistics of the source signal. When sampling is synchronous, the resulting DT source signal is
WSCS ([3] Section 3.9). The RDF for lossy compression of DT WSCS Gaussian sources with memory
was studied in [12]. The work [12] used the fact that any WSCS signal can be transformed into a
set of stationary subprocess [2]; thereby facilitating the application of information-theoretic results
obtained for multivariate stationary sources to the derivation of the RDF; Nonetheless, in many digital
communications scenarios, the sampling rate and the symbol rate of the CT WSCS process are not
related in any way, and are possibly incommensurate, resulting in a sampled process which is a DT
WSACS stochastic process. Such situations can occur as a result of the a-priori determined values of
the sampling interval and the symbol duration of the WSCS source signal, as well as due to sampling
clock jitters resulting from hardware impairments. A comprehensive review of trends and applications
for almost cyclostationary signals can be found in [13]. Despite of their apparent frequent occurrences,
the RDF for lossy compression of WSACS sources has not been characterized, which is the motivation
for the current research. A major challenge associated with characterizing fundamental limits for
asynchronously sampled WSCS processes stems from the fact that the resulting processes are not
information stable, in the sense that their conditional distributions are not ergodic ([14] Page X), [15,16].
As a result, the standard information-theoretic tools cannot be employed, making the characterization
of the RDF a very challenging problem.

Our recent study in [17] on channel coding reveals that for the case of additive CT WSCS Gaussian
noise, capacity varies significantly with sampling rates, whether the Nyquist criterion is satisfied or
not. In particular, it was observed that the capacity can change dramatically with minor variations in
the sampling rate, causing it to switch from synchronous sampling to asynchronous sampling. This
is in direct contrast to the results obtained for wide-sense stationary noise for which the capacity
remains unchanged for any sampling rate above the Nyquist rate [18]. A natural fundamental question
that arises from this result is how the RDF of a sampled Gaussian source process varies with the
sampling rate. As a motivating example, one may consider compress-and-forward (CF) relaying, in
which the relay samples at a rate which can be incommensurate with the symbol rate of the incoming
communications signal.
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In this work, we employ the information-spectrum framework [14] for characterizing the RDF
of asynchronously sampled memoryless Gaussian WSCS processes, as this framework is applicable
to the information-theoretic analysis of non information-stable processes ([14] Page VII). We further
note that while rate characterizations obtained using information spectrum tools and its associated
quantities may be difficult to evaluate ([14] Remark 1.7.3), here we obtain a numerically computable
characterization of the RDF. In particular, we focus on the mean squared error (MSE) distortion
measure in the low distortion regime, namely, source codes for which the average square of the
difference between the source and the reproduction process is not larger than the minimal source
variance. The results of this research lead to accurate modelling of signal compression in current
and future digital communications systems. The derived RDF, which characterizes the fundamental
performance limits in encoding sampled CT WSCS Gaussian processes into a digital representation,
allows to evaluate source coding schemes associated with different levels of complexity in terms of
their gap from optimality, when applied to this important class of signals.

Furthermore, we utilize our characterization of the RDF to examine how the RDF for a sampled CT
WSCS Gaussian source varies with different sampling rates and sampling time offsets. We demonstrate
that, differently from stationary sources, when applying a lossy source code to a sampled WSCS
process, the achievable rate-distortion tradeoff can be significantly affected by minor variations in the
sampling time offset and the sampling rate. Our results thus allow identifying the sampling rate and
sampling time offsets which minimize the RDF in systems involving sampled WSCS processes.

The rest of this work is organised as follows: Section 2 provides a scientific background on
cyclostationary processes and on rate-distortion analysis of DT WSCS Gaussian sources. Section 3
presents the problem formulation and auxiliary results, and Section 4 details the main result of RDF
characterization for sampled WSCS Gaussian process. Numerical examples and discussions are
provided in Section 5, and Section 6 concludes the paper.

2. Preliminaries and Background

In the following we review the main tools and framework used in this work: In Section 2.1 we
detail the notations, and in Section 2.2 we review the basics of cyclostationary processes and the
statistical properties of a DT process resulting from sampling a CT WSCS process. In Section 2.3 we
recall some preliminaries of rate-distortion theory as well as the RDF for DT WSCS Gaussian source
processes. This background creates a premise for the statement of the main result provided in Section 4
of this paper.

2.1. Notations

In this paper, random vectors are denoted by boldface uppercase letters, e.g., X; boldface lowercase
letters denote deterministic column vectors, e.g., x. Scalar RVs and deterministic values are denoted
via standard uppercase and lowercase fonts respectively, e.g., X and x. Scalar random processes are
denoted with X(t), t ∈ R for CT and with X[n], n ∈ Z for DT. Uppercase Sans-Serif fonts represent
matrices, e.g., A, and the element at the ith row and the lth column of A is denoted with (A)i,l . We use
| · | to denote the absolute value, bdc, d ∈ R, to denote the floor function and d+, d ∈ R, to denote
the max{0, d}. δ[·] denotes the Kronecker delta function: δ[n] = 1 for n = 0 and δ[n] = 0 otherwise,
and E{·} denotes the stochastic expectation. The sets of positive integers, integers, rational numbers,
real numbers, positive numbers, and complex numbers are denoted by N ,Z , Q, R, R++, and C,
respectively. The cumulative distribution function (CDF) is denoted by FX(x) , Pr (X ≤ x) and the
probability density function (PDF) of a CT random variable (RV) is denoted by pX(x). We represent a
real Gaussian distribution with mean µ and variance σ2 by the notation N (µ, σ2). All logarithms are
taken to base-2, and j =

√
−1. Lastly, for any sequence y[i], i ∈ N , and positive integer k ∈ N , y(k)

denotes the column vector
(
y[1], . . . , y[k]

)T .
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2.2. Wide-Sense Cyclostationary Random Processes

Here, we review some preliminaries from the theory of cyclostationarity. We begin by recalling
the definition of wide-sense cyclostationary processes for CT and for DT:

Definition 1 (CT wide-sense cyclostationary processes ([3] Section 3.2.1)). A scalar stochastic process
{S(t)}t∈R is called WSCS if both its first-order and its second-order moments are periodic with respect to t ∈ R
with some period Tp ∈ R.

Definition 2 (DT wide-sense cyclostationary processes ([2] Section 17.2)). A scalar stochastic process
{S[n]}n∈Z is called WSCS if both its first-order and its second-order moments are periodic with respect to
n ∈ Z with some period Np ∈ Z .

WSCS signal are thus random processes whose first and second-order moments are periodic
functions with the same period. To define WSACS signals, we first recall the definition of
almost-periodic functions:

Definition 3 (Almost-periodic functions ([19] Definition 2.1)). A DT function x[n], n ∈ Z , is called an
almost-periodic function if for every ε > 0 there exists a number l(ε) ∈ N with the property that for any n ∈ Z
and any α ∈ Z , ∃∆ ∈

[
α, α + l(ε)

]
, such that∣∣∣x[∆]− x[n]

∣∣∣ < ε.

Definition 4 (DT wide-sense almost-cyclostationary processes ([2] Section 17.2)). A scalar stochastic
process {S[n])}n∈Z is called WSACS if its first and its second order moments are almost-periodic functions
with respect to n ∈ Z .

Remark 1. Note that when the mean and the autocorrelation function are each periodic with periods which
are incommensurate, the resulting processes is WSACS. We note that in many practical cases the mean is zero,
see e.g., ([2] Section 17.2), hence the classification of the process will be determined by the periodicity of the
autocorrelation function.

The DT WSCS model is commonly used in the communications literature, as it facilitates the
the analysis of many problems of interest, such as fundamental rate limits analysis [20–22], channel
identification [23], synchronization [24], and noise mitigation [25]. However, in many scenarios, the
considered signals are WSACS rather than WSCS. To see how the WSACS model is obtained in
the context of sampled signals, we briefly recall the discussion in [17] on sampled WSCS processes
(please refer to ([17] Section II.B) for more details): Consider a CT WSCS random process S(t), which
is sampled uniformly with a sampling interval of Ts and sampling time offset φ, resulting in a DT
random process S[i] = S(i · Ts + φ). It is well known that contrary to stationary processes, which
have a time-invariant statistical characteristics, the values of Ts and φ have a significant effect on
the statistics of sampled WSCS processes ([17] Section II.B). To demonstrate this point, consider a CT
WSCS process with variance σ2

s (t) =
1
2 · sin

(
2πt/Tsym

)
+ 2 for some Tsym > 0. The sampled process

for φ = 0 (no sampling time offset) and Ts =
Tsym

3 has a variance function whose period is Np = 3:
σ2

s (iTs) = {2, 2.433, 1.567, 2, 2.433, 1.567, . . .}, for i = 0, 1, 2, 3, 4, 5, . . .; while the DT process obtained
with the same sampling interval and with a sampling time offset of φ = Ts

2π has a periodic variance with
Np = 3 with values σ2

s (iTs + φ) = {2.155, 2.335, 1.510, 2.155, 2.335, 1.510, . . .}, for i = 0, 1, 2, 3, 4, 5, . . .,
which are different from the values of the DT variance for φ = 0. It follows that both variances are
periodic in discrete-time with the same period Np = 3, although with different values within the
period, which is a result of the sampling time offset, yet, both DT processes correspond to two instances



Entropy 2020, 22, 345 5 of 34

of synchronous sampling. Lastly, consider the sampled variance obtained by sampling without a time
offset (i.e., φ = 0) at a sampling interval of Ts = (1 + 1

2π )
Tsym

3 . For this case, Ts is not an integer divisor

of Tsym or of any of its integer multiples (i.e., Tsym
Ts

= 2 + 2π−2
2π+1 ≡ 2 + ε; where ε 6∈ Q and ε ∈ [0, 1) )

resulting in the variance values σ2
s (iTs) = {2, 2.335, 1.5027, 2.405, 1.896, 1.75, . . .}, for i = 0, 1, 2, 3, 4, 5 . . ..

For this scenario, the DT variance is not periodic but is almost-periodic, corresponding to asynchronous
sampling and the resulting DT process is not WSCS but WSACS ([3] Section 3.2). The example above
demonstrates that the statistical properties of sampled WSCS processes depend on the sampling rate
and the sampling time offset, implying that the RDF of such processes should also depend on these
quantities, as we demonstrate in the sequel.

2.3. The Rate-Distortion Function for DT WSCS Processes

In this subsection we review the source coding problem and the existing results on the RDF of
WSCS processes. We begin by recalling the definition of a source coding scheme, see, e.g., ([26] Chapter
30), ([5] Chapter 10):

Definition 5 (Source coding scheme). A source coding scheme with blocklength l consists of (see Figure 1):

1. An encoder fS which maps a block of l source samples {S[i]}l
i=1 into an index from a set of M = 2lR

indexes, fS : {S[i]}l
i=1 7→ {1, 2, . . . , M}.

2. A decoder gS which maps the received index into a reconstructed sequence of length l,
{

Ŝ[i]
}l

i=1, gS :

{1, 2, . . . , M} 7→
{

Ŝ[i]
}l

i=1

The encoder-decoder pair is referred to as an (R, l) source code, where R is the rate of the code in bits per
source symbol, defined as:

R =
1
l

log2 M (1)

The RDF characterizes the minimal average number of bits per source symbol, denoted R(D), that
can be used to encode a source process such that it can be reconstructed from its encoded representation
with a recovery distortion not larger than D > 0 ([5] Section 10.2). In the current work, we use the
MSE distortion measure, which measures the distortion due to decoding a source symbol S into Ŝ via
d(S, Ŝ) =

(
S− Ŝ

)2. The distortion for a sequence of source samples S(l) decoded into a reproduction

sequence Ŝ(l) is given by d
(

S(l), Ŝ(l)
)
= 1

l

l
∑

i=1

(
S[i]− Ŝ[i]

)2 and the average distortion in decoding a

random source sequence S(l) into a random reproduction sequence Ŝ(l) is defined as:

d̄
(

S(l), Ŝ(l)
)
, E

{
d
(

S(l), Ŝ(l)
)}

=
1
l

l

∑
i=1
E
{(

S[i]− Ŝ[i]
)2
}

, (2)

where the expectation in Equation (2) is taken with respect to the joint probability distributions
on the source S[i] and its reproduction Ŝ[i]. Using Definition 5 we can now define the achievable
rate-distortion pair for a source S[i], as stated in the following definition ([10] Pg. 471):

Encoder fS Decoder gS
{1, 2, . . . , 2lR}{S[i]}l

i=1 {Ŝ[i]}l
i=1

Figure 1. Source coding block diagram.

Definition 6 (Achievable rate-distortion pair). A rate-distortion pair (R, D) is achievable for a process
{S[i]}i∈N if for any η > 0 and for all sufficiently large l it is possible to construct an (Rs, l) source code
such that

Rs ≤ R + η. (3)
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and
d̄
(

S(l), Ŝ(l)
)
≤ D + η. (4)

Definition 7. The rate-distortion function R(D) is defined as the infimum of all achievable rates R for a given
maximum allowed distortion D.

Definition 6 defines a rate-distortion pair to be achievable if the rate and the distortion constraints
are satisfied using source codes with any sufficiently large blocklength. In the following lemma, which
will be used to characterize the RDF of DT WSCS signals, we state that it is sufficient to consider only
source codes whose blocklength is an integer multiple of some fixed positive integer:

Lemma 1. Consider the process {S[i]}i∈N with a finite and bounded variance. For a given maximum allowed
distortion D, the optimal reproduction process {Ŝ[i]}i∈N is also the optimal reproduction process when restricted
to using source codes whose blocklengths are integer multiples of some fixed positive integer r.

Proof. The proof of the lemma is detailed in Appendix A.

This lemma facilitates switching between multivariate and scalar representations of the source
and the reproduction processes.

The RDF obviously depends on the distribution of the source {S[i]}i∈N . Thus, statistically
different sources have different RDFs. However, when a source is scaled by some positive constant,
the RDF of the scaled process with the MSE distortion can be inferred from that of the original source
process, as stated in the following theorem:

Theorem 1. Let {S[i]}i∈N be a source process for which the rate-distortion pair (R, D) is achievable under the
MSE distortion. Then, for every α ∈ R++, it holds that the rate-distortion pair (R, α2 · D) is achievable for the
scaled source {α · S[i]}i∈N .

Proof. The proof of the theorem is detailed in Appendix B.

Lastly, in the proof of our main result, we make use of the RDF for DT WSCS sources derived
in ([12] Theorem 1), repeated below for ease of reference. Prior to the statement of the theorem, we
recall that for blocklenghts which are integer multiples of Np, a WSCS process S[i] with period Np > 0
can be represented as an equivalent Np-dimensional process S(Np)[i] via the decimated component
decomposition (DCD) ([2] Section 17.2). The power spectral density (PSD) of the process S(Np) is
defined as ([12] Section II):(

ρS

(
ej2π f

))
u,v

= ∑
∆∈Z

(
RS[∆]

)
u,v

e−j2π f ∆ − 1
2
≤ f ≤ 1

2
, u, v ∈ {1, 2, . . . Np} (5)

where RS[∆] , E
{

S(Np)[i] · S(Np)[i + ∆]
}

([2] Section 17.2). We now proceed to the statement of ([12]
Theorem 1):

Theorem 2. ([12] Theorem 1) Consider a zero-mean real DT WSCS Gaussian source S[i], i ∈ N with memory,
and let Np ∈ N denote the period of its statistics. The RDF is expressed as:

R(D) =
1

2Np

Np

∑
m=1

∫ 0.5

f=−0.5

log

λm

(
ej2π f

)
θ

+

d f , (6a)
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where λm

(
ej2π f

)
, m = 1, 2, . . . , Np denote the eigenvalues of the PSD matrix of the process S(Np)[i], which is

obtained from S[i] by applying the Np-dimensional DCD, and θ is selected such that

D =
1

Np

Np

∑
m=1

∫ 0.5

f=−0.5
min

{
λm

(
ej2π f

)
, θ
}

d f . (6b)

We note that S(Np)[i] corresponds to a vector of stationary processes whose elements are not
identically distributed; hence the variance function is different for each scalar stationary process.
Using ([12] Theorem 1), we can directly obtain the RDF for the special case of a DT memoryless WSCS
Gaussian process. This is stated in the following corollary:

Corollary 1. Let {S[i]}i∈N be a zero-mean DT memoryless real WSCS Gaussian source with period Np ∈ N ,
and set σ2

m = E{S2[m]} for m = 1, 2, . . . , NP. The RDF for compression of S[i] is expressed as:

R(D) =


1

2Np

Np

∑
m=1

log
(

σ2
m

Dm

)
D ≤ 1

Np

Np

∑
m=1

σ2
m

0 D > 1
Np

Np

∑
m=1

σ2
m,

(7a)

where Dm , min
{

σ2
m, θ
}

, and θ is defined such that

D =
1

Np

Np

∑
m=1

Dm. (7b)

Proof. Applying Equations (6a) and (6b) to our specific case of a memoryless WSCS source, we
obtain Equations (7a) and (7b) as follows: First, note that the corresponding DCD components for a
zero-mean memoryless WSCS process are also zero-mean and memoryless; hence the PSD matrix for
the multivariate process S(Np)[i] is a diagonal matrix, whose eigenvalues are the constant diagonal
elements such that the mth diagonal element is equal to the variance σ2

m: λm

(
ej2π f

)
= σ2

m. Now,
writing Equation (6a) for this case we obtain:

R(D) =
1

2Np

Np

∑
m=1

∫ 0.5

f=−0.5

log

λm

(
ej2π f

)
θ

+

d f

=
1

2Np

Np

∑
m=1

(
log
(

σ2
m
θ

))+

. (8)

Since
(

log
(

σ2
m
θ

))+
= max

{
0, log

(
σ2

m
θ

)}
≡ log

(
σ2

m
Dm

)
it follows that (8) coincides with (7a). Next,

expressing Equation (6b) for the memoryless source process, we obtain:

D =
1

Np

Np

∑
m=1

∫ 0.5

f=−0.5
min

{
λm

(
ej2π f

)
, θ
}

d f =
1

Np

Np

∑
m=1

min
{

σ2
m, θ
}

, (9)

proving Equation (7b).

Now, from Lemma 1, we conclude that the RDF for compression of source sequences whose
blocklength is an integer multiple of Np is the same as the RDF for compressing source sequences
whose blocklength is arbitrary. We recall that from ([5] Chapter 10.3.3) it follows that for the
zero-mean memoryless Gaussian DCD vector source process S(Np)[i] the optimal reproduction process
which achieves the RDF is an Np × 1 memoryless process whose covariance matrix is diagonal with
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non-identically distributed elements. From [2], we can apply the inverse DCD to obtain a WSCS
process. Hence, from Lemma 1 we can conclude that the optimal reproduction process for the DT
WSCS Gaussian source is a DT WSCS Gaussian process.

3. Problem Formulation and Auxiliary Results

Our objective is to characterize the RDF for compression of asynchronously sampled CT WSCS
Gaussian sources when the sampling interval is larger than the memory of the source. In particular, we
focus on the minimal rate required to achieve a high fidelity reproduction, representing the RDF curve
for distortion values not larger than the variance of the source. Such characterization of the RDF for
asynchronous sampling is essential for comprehending the relationship between the minimal required
number of bits and the sampling rate at a given distortion. Our analysis constitutes an important step
towards constructing joint source-channel coding schemes for scenarios in which the symbol rate of
the transmitter is not necessarily synchronized with the sampling rate of the source to be transmitted.
Such scenarios arise, for example, when recording a communications signal for storage or processing,
or in compress-and-forward relaying (([26] Chapter 16.7), [27]) in which the relay compresses the
sampled received signal, which is then forwarded to the assisted receiver. As the relay operates with
its own sampling clock, which need not necessarily be synchronized with the symbol rate of the
assisted transmitter, sampling at the relay may result in a DT WSACS source signal. In the following
we first characterize the sampled source model in Section 3.1. Then, as a preliminary step towards
our characterization the RDF for asynchronously sampled CT WSCS Gaussian processes stated in
Section 4, we recall in Section 3.2 the definitions of some information-spectrum quantities used in this
study. Finally, in Section 3.3, we recall an auxiliary result relating the information-spectrum quantities
of a collection of sequences of RVs to the information-spectrum quantities of its limit sequence of RVs.
This result will be applied in the derivation of the RDF with asynchronous sampling.

3.1. Source Model

Consider a real CT, zero-mean WSCS Gaussian random process Sc(t) with period Tps. Let the
variance function of Sc(t) be defined as σ2

Sc
(t) , E

{
S2

c(t)
}

, and assume it is both upper bounded and
lower bounded away from zero, and that it is continuous in t ∈ R. Let τm > 0 denote the maximal
correlation length of Sc(t), i.e., rSc(t, τ) , E

{
Sc(t)Sc(t− τ)

}
= 0, ∀|τ| > τm. By the cyclostationarity

of Sc(t), we have that σ2
Sc
(t) = σ2

Sc
(t + Tps), ∀t ∈ R. Let Sc(t) be sampled uniformly with the sampling

interval Ts > 0 such that Tps = (p + ε) · Ts for p ∈ N and ε ∈ [0, 1) yielding Sε[i] , Sc(i · Ts), where

i ∈ Z . The variance of Sε[i] is given by σ2
Sε
[i] , rSε

[i, 0] = σ2
Sc

(
i·Tps
p+ε

)
.

In this work, as in [17], we assume that the duration of temporal correlation of the CT signal is
shorter than the sampling interval Ts, namely, τm < Ts. Consequently, the DT Gaussian process Sε[i] is
a memoryless zero-mean Gaussian process and its autocorrelation function is given by:

rSε
[i, ∆] = E

{
Sε[i]Sε[i + ∆]

}
= E

{
Sc

(
i · Tps

p + ε

)
· Sc

(
(i + ∆) · Tps

p + ε

)}
= σ2

Sc

(
i · Tps

p + ε

)
· δ[∆] = σ2

Sε
[i] · δ[∆]. (10)

While we do not explicitly account for sampling time offsets in our definition of the sampled
process Sε[i], it can be incorporated by replacing σ2

Sc
(t) with a time-shifted version, i.e., σ2

Sc
(t− φ), see

also ([17] Section II.C).
It can be noted from (10) that if ε is a rational number, i.e., ∃u, v ∈ N , u and v are relatively

prime, such that ε = u
v , then {Sε[i]}i∈Z is a DT memoryless WSCS process with the period pu,v =

p · v+ u ∈ N ([17] Section II.C). For this class of processes, the RDF can be obtained from ([12] Theorem
1) as stated in Corollary 1. On the other hand, if ε is an irrational number, then sampling becomes
asynchronous and leads to a WSACS process whose RDF has not been characterized to date.
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3.2. Definitions of Relevant Information-Spectrum Quantities

Conventional information theoretic tools for characterizing RDFs are based on an underlying
ergodicity of the source. Consequently, these techniques cannot be applied to characterize the RDF of
asynchronously sampled WSCS processes. To tackle this challenge, we use the information-spectrum
framework, as this framework [14] can be utilized to obtain general formulas for rate limits for any
arbitrary class of processes. The resulting expressions are not restricted to specific statistical models of
the considered processes, and in particular, do not require information stability or stationarity. In the
following, we recall the definitions of several information-spectrum quantities used in this study, see
also ([14] Definitions 1.3.1 and 1.3.2):

Definition 8. The limit-inferior in probability of a sequence of real RVs {Zk}k∈N is defined as

p− lim inf
k→∞

Zk , sup
{

α ∈ R
∣∣ lim

k→∞
Pr (Zk < α) = 0

}
, α0. (11)

Hence, α0 is the largest real number satisfying that ∀α̃ < α0 and ∀µ > 0 there exists k0(µ, α̃) ∈ N
such that Pr(Zk < α̃) < µ, ∀k > k0(µ, α̃).

Definition 9. The limit-superior in probability of a sequence of real RVs {Zk}k∈N is defined as

p− lim sup
k→∞

Zk , inf
{

β ∈ R
∣∣ lim

k→∞
Pr (Zk > β) = 0

}
, β0. (12)

Hence, β0 is the smallest real number satisfying that ∀β̃ > β0 and ∀µ > 0, there exists k0(µ, β̃) ∈
N , such that Pr(Zk > β̃) < µ, ∀k > k0(µ, β̃).

The notion of uniform integrability of a sequence of RVs is a basic property in probability ([28]
Chapter 12), which is not directly related to information spectrum methods. However, since it plays an
important role in the information spectrum characterization of RDFs, we include its statement in the
following definition:

Definition 10 (Uniform integrability ([28] Definition 12.1), ([14] Equation (5.3.2))). The sequence of
real-valued random variables {Zk}∞

k=1, is said to satisfy uniform integrability if

lim
u→∞

sup
k≥1

∫
z:|z|≥u

pZk (z) |z|dz = 0 (13)

The aforementioned quantities facilitate characterizing the RDF of arbitrary sources. Consider
a general source process {S[i]}∞

i=1 (stationary or non-stationary) taking values from the source
alphabet S[i] ∈ S and a reproduction process {Ŝ[i]}∞

i=1 with values from the reproduction alphabet
Ŝ[i] ∈ Ŝ . It follows from ([14] Section 5.5) that for a distortion measure which satisfies the uniform
integrability criterion, i.e., that there exists a deterministic sequence {r[i]}∞

i=1 such that the sequence
of RVs {d

(
S(k), r(k)

)
}∞

k=1 satisfies Definition 10 ([14] Page 336), then the RDF is expressed as ([14]
Equation (5.4.2)):

R(D) = inf
FS,Ŝ :d̄S(S(k),Ŝ(k))≤D

Ī
(

S(k); Ŝ(k)
)

, (14)
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where d̄S(S(k), Ŝ(k)) = lim sup
k→∞

E
{

d
(

S(k), Ŝ(k)
)}

, FS,Ŝ denotes the joint CDF of {S[i]}∞
i=1 and {Ŝ[i]}∞

i=1,

and Ī
(

S(k) : Ŝ(k)
)

represents the limit superior in probability of the mutual information rate of S(k)

and Ŝ(k), given by:

Ī
(

S(k); Ŝ(k)
)
, p− lim sup

k→∞

1
k

log
pS(k) |Ŝ(k)

(
S(k)|Ŝ(k)

)
pS(k)

(
S(k)

) (15)

In order to use the RDF characterization in (14), the distortion measure must satisfy the uniform
integrability criterion. For the considered class of sources detailed in Section 3.1, the MSE distortion
satisfies this criterion, as stated in the following lemma:

Lemma 2. For any real memoryless zero-mean Gaussian source {S[i]}∞
i=1 with bounded variance, i.e., ∃σ2

max <

∞ such that E{S2[i]} ≤ σ2
max for all i ∈ N , the MSE distortion satisfies the uniform integrability criterion.

Proof. Set the deterministic sequence {r[i]}∞
i=1 to be the all-zero sequence. Under this setting and

the MSE distortion, it holds that d
(
S(k), r(k)

)
= 1

k ∑k
i=1 S2[i]. To prove the lemma, we show that the

sequence of RVs
{

d
(
S(k), r(k)

)}∞
k=1 has a bounded `2 norm, which implies that it is uniformly integrable

by ([28] Corollary 12.8). The `2 norm of d
(
S(k), r(k)

)
satisfies

E
{

d
(
S(k), r(k)

)2}
=

1
k2E

{
k

∑
i=1

S2[i]
k

∑
j=1

S2[j]

}

=
1
k2

k

∑
i=1

k

∑
j=1
E
{

S2[i]S2[j]
} (a)
≤ 1

k2

k

∑
i=1

k

∑
j=1

3σ4
max = 3σ4

max, (16)

where (a) follows since E{S2[i]S2[j]} = E{S2[i]}E{S2[j]} = σ4
max for i 6= j while E{S4[i]} = 3σ4

max
([29] Chapter 5.4). Equation (16) proves that d

(
S(k), r(k)

)
is `2-bounded by 3σ4

max < ∞ for all k ∈ N ,
which in turn implies that the MSE distortion is uniformly integrable for the source {S[i]}∞

i=1.

Since, as detailed in Section 3.1, we focus in the following on memoryless zero-mean Gaussian
sources, Lemma 2 implies that the RDF of the source can be characterized using (14). However, (14) is
in general difficult to evaluate, and thus does not lead to a meaningful understanding of how the RDF
of sampled WSCS sources behaves, motivating our analysis in Section 4.

3.3. Information Spectrum Limits

The following theorem originally stated in ([17] Theorem 1) presents a fundamental result which
is directly useful for the derivation of the RDF:

Theorem 3. ([17] Theorem 1) Let
{

Z̃k,n
}

n,k∈N be a set of sequences of real scalar RVs satisfying
two assumptions:

AS1 For every fixed n ∈ N , every convergent subsequence of
{

Z̃k,n
}

k∈N converges in distribution, as
k→ ∞, to a finite deterministic scalar. Each subsequence may converge to a different scalar.

AS2 For every fixed k ∈ N , the sequence
{

Z̃k,n
}

n∈N converges uniformly in distribution, as n→ ∞, to a
scalar real-valued RV Zk. Specifically, letting F̃k,n(α) and Fk(α), α ∈ R, denote the CDFs of Z̃k,n and
of Zk, respectively, then by AS2 it follows that ∀η > 0, there exists n0(η) such that for every n > n0(η)∣∣F̃k,n(α)− Fk(α)

∣∣ < η,

for each α ∈ R, k ∈ N .
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Then, for
{

Z̃k,n
}

n,k∈N it holds that

p− lim inf
k→∞

Zk = lim
n→∞

(
p− lim inf

k→∞
Z̃k,n

)
, (17a)

p− lim sup
k→∞

Zk = lim
n→∞

(
p− lim sup

k→∞
Z̃k,n

)
. (17b)

Proof. In Appendix C we explicitly prove Equation (17b). This complements the proof in ([17]
Appendix A) which explicitly considers only (17a).

4. Rate-Distortion Characterization for Sampled CT WSCS Gaussian Sources

4.1. Main Result

Using the information-spectrum based characterization of the RDF (14) combined with the
characterization of the limit of a sequence of information spectrum quantities in Theorem 3, we now
analyze the RDF of asynchronously sampled WSCS processes. Our analysis is based on constructing
a sequence of synchronously sampled WSCS processes, whose RDF is given in Corollary 1. Then,
we show that the RDF of the asynchronously sampled process can be obtained as the limit superior
of the computable RDFs of the sequence of synchronously sampled processes. We begin by letting
εn , bn·εc

n for n ∈ N and defining a Gaussian source process Sn[i] = Sc

(
i·Tps
p+εn

)
. From the discussion

in Section 3.1 (see also ([17] Section II.C)), it follows that since εn is rational, Sn[i] is a WSCS process
and its period is given by pn = p · n + bn · εc. Accordingly, the periodic correlation function of Sn[i]
can be obtained similarly to (10) as:

rSn [i, ∆] = E

{
Sn[i]Sn[i + ∆]

}
= σ2

Sc

(
i · Tps

p + εn

)
· δ[∆]. (18)

Due to cyclostationarity of Sn[i], we have that rSn [i, ∆] = rSn [i + pn, ∆], ∀i, ∆ ∈ Z , and we let
σ2

Sn
[i] , rSn [i, 0] denote its periodic variance.

We next restate Corollary 1 in terms of εn as follows:

Proposition 1. Consider a DT, memoryless, zero-mean, WSCS Gaussian random process Sn[i] with a variance
σ2

Sn
[i], obtained from Sc(t) by sampling with a sampling interval of Ts(n) =

Tps
p+εn

. Let S(pn)
n [i] denote the

memoryless stationary multivariate random process obtained by applying the DCD to Sn[i] and let σ2
Sn
[m],

m = 1, 2, . . . , pn, denote the variance of the mth component of S(pn)
n [i]. The rate-distortion function is given by:

Rn(D) =


1

2pn

pn

∑
m=1

(
log
(

σ2
Sn [m]

Dn [m]

))
D ≤ 1

pn

pn

∑
m=1

σ2
Sn
[m]

0 D > 1
pn

pn

∑
m=1

σ2
Sn
[m]

, (19a)

where for D ≤ 1
pn

pn

∑
m=1

σ2
Sn
[m] we let Dn[m] , min

{
σ2

Sn
[m], θn

}
, and θn is selected such that

D =
1
pn

pn

∑
m=1

Dn[m]. (19b)

We recall that the RDF of Sn[i] is characterized in Proposition 1 via the RDF of the multivariate
stationary process S(pn)

n [i] obtained via a pn-dimensional DCD applied to Sn[i]. Next, we recall that
the relationship between the source process S(pn)

n [i] and the optimal reconstruction process, denoted
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by Ŝ(pn)
n [i], is characterized in ([5] Chapter 10.3.3) via a linear, multivariate, time-invariant backward

channel with a pn × 1 additive vector noise process W (pn)
n [i], and is given by:

S(pn)
n [i] = Ŝ(pn)

n [i] + W (pn)
n [i], i ∈ N . (20)

It also follows from ([5] Section 10.3.3) that for the IID Gaussian multivariate process whose
entries are independent and distributed via

(
S(pn)

n [i]
)

m ∼ N (0, σ2
Sn
[m]), m ∈ {1, 2, . . . , pn}, the optimal

reconstruction vector process Ŝ(pn)
n [i] and the corresponding noise vector process W (pn)

n [i] each follow
a multivariate Gaussian distribution:

Ŝ(pn)
n [i] ∼ N

0,


σ2

Ŝn
[1] · · · 0

...
. . .

...
0 · · · σ2

Ŝn
[pn]


 and W (pn)

n [i] ∼ N

0,

Dn[1] · · · 0
...

. . .
...

0 · · · Dn[pn]


 ,

where Dn[m] , min
{

σ2
Sn
[m], θn

}
; θn denotes the reverse waterfilling threshold defined in Prop. 1 for

the index n, and is selected such that D = 1
pn

pn

∑
m=1

Dn[m]. The optimal reconstruction process, Ŝ(pn)
n [i]

and the noise process W (pn)
n [i] are mutually independent, and for each m ∈ {1, 2, . . . , pn} it holds that

E

{(
S(pn)

n [i]− Ŝ(pn)
n [i]

)2

m

}
= Dn[m], see ([5] Chapters 10.3.2 and 10.3.3). The multivariate relationship

between stationary processes in (20) can be transformed into an equivalent linear relationship between
cyclostationary Gaussian memoryless processes via the inverse DCD transformation ([2] Sec 17.2)
applied to each of the processes, resulting in:

Sn[i] = Ŝn[i] + Wn[i], i ∈ N . (21)

We are now ready to state our main result, which is the RDF of asynchronously sampled DT
sources Sε[i], ε 6∈ Q, in the low MSE regime, i.e., when the distortion D is not larger than the source
variance. The RDF is stated in the following theorem, which applies to both synchronous sampling as
well as to asynchronous sampling:

Theorem 4. Consider a DT source {Sε[i]}∞
i=1 obtained by sampling a CT WSCS source, whose period of

statistics is Tps, at intervals Ts. Then, for any distortion constraint D such that D < min
0≤t≤Tps

σ2
Sc
(t) and any

ε ∈ [0, 1), the RDF Rε(D) for compressing {Sε[i]}∞
i=1 can be obtained as the limit:

Rε(D) = lim sup
n→∞

Rn(D), (22)

where Rn(D) is defined Prop. 1.

Proof. The detailed proof is provided in Appendix D. Here, we give a brief outline: The derivation
of the RDF with asynchronous sampling follows three steps: First, we note that sampling at a rate
of Ts(n) =

Tps
p+εn

results in a sequence of DT WSCS sources {Sn[i]}i∈N ,n∈N whose sampling interval

Ts(n) asymptotically approaches, as n→ ∞, the sampling interval for irrational ε given by Ts =
Tps
p+ε .

We define a sequence of rational numbers εn s.t. εn → ε as n → ∞; Building upon this insight, we
prove that the RDF with Ts can be stated as a double limit where the outer limit is with respect to the
blocklength and the inner limit is with respect to εn. Lastly, we use Theorem 3 to show that the order
of the limits can be exchanged, obtaining a limit of expressions which are computable.
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Remark 2. Theorem 4 focuses on the low distortion regime, defined as the values of D satisfying D <

min
0≤t≤Tps

σ2
Sc
(t). This implies that θn has to be smaller than min

0≤t≤Tps
σ2

Sc
(t); hence, from Prop. 1 it follows

that for the corresponding stationary noise vector W (pn)
n [i] in (20), Dn[m] = min

{
σ2

Sn
[m], θn

}
= θn and

D = 1
pn

pn

∑
m=1

Dn[m] = θn = Dn[m]. We note that since every element of the vector
(

W (pn)
n [i]

)
m

has the same

variance Dn[m] = D for all n ∈ N and m = 1, 2, . . . , pn then by applying the inverse DCD to W (pn)
n [i], the

resulting scalar DT process Wn[i] is wide sense stationary; and in fact IID with E
{(

Wn[i]
)2
}
= D.

4.2. Discussion and Relationship with Capacity Derivation in Reference 17

Theorem 4 provides a meaningful and computable characterization for the RDF of sampled WSCS
signals. We note that the proof of the main theorem uses some of the steps used in our recent study
on the capacity of memoryless channels with sampled CT WSCS Gaussian noise [17]. It should be
emphasized, however, that there are several fundamental differences between the two studies, which
require the introduction of new treatments and derivations original to the current work. First, it is
important to note that in the study on capacity, a physical channel model exists, and therefore the
conditional PDF of the output signal given the input signal can be characterized explicitly for both
synchronous sampling and asynchronous sampling for every input distribution. For the current study
of the RDF we note that the relationship (21), commonly referred to as the backward channel [30], ([5]
Chapter 10.3.2), characterizes the relationship between the source process and the optimal reproduction
process, and hence is valid only for synchronous sampling and for the optimal reproduction process.
Consequently, in the RDF analysis the limiting relationship (21) as n → ∞ is not even known to
exist and, in fact, we can show it exists under a rather strict condition on the distortion (namely, the
condition D < min

0≤t≤Tps
σ2

Sc
(t) stated in Theorem 4). In particular, to prove the statement in Theorem 4,

we had to show that from the backward channel (21), we can define an asymptotic relationship, as
n → ∞, which corresponds to the asynchronously sampled source process, denoted by Sε[i], and
relates Sε[i] with its optimal reconstruction process Ŝε[i]. This is done by showing that the PDFs for
the reproduction process Ŝn[i] and noise process Wn[i] from (21), each converge uniformly as n→ ∞
to a respective limiting PDF, which has to be defined as well. This enabled us to relate the RDFs for
the synchronous sampling and for the asynchronous sampling cases using Theorem 3, eventually
leading to (22). Accordingly, in our detailed proof of Theorem 4 given in Appendix D, Lemmas D.4
and D.6 as well as a significant part of Lemma D.2 are largely new, addressing the special aspects of
the proof arising from the fundamental differences between current setup and the setup in [17], while
the derivations of Lemmas D.1 and D.5 follow similarly to ([17] Lemma B.1) and ([17] Lemma B.5),
respectively, and parts of Lemma D.2 coincide with ([17] Lemma B.2).

5. Numerical Examples

In this section we demonstrate the insights arising from our RDF characterization via numerical
examples. Recalling that Theorem 4 states the RDF for asynchronously sampled CT WSCS Gaussian
process, Rε(D), as the limit supremum of a sequence of RDFs corresponding to DT memoryless
WSCS Gaussian source processes {Rn(D)}n∈N , we first consider the convergence of {Rn(D)}n∈N in
Section 5.1. Next, in Section 5.2 we study the variation of the RDF of the sampled CT process due to
changes in the sampling rate and in the sampling time offset.
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Similarly to ([17] Section IV), define a periodic continuous pulse function, denoted by Πtdc,trf(t),
with equal rise/fall time trf = 0.01, duty cycle tdc ∈ [0, 0.98], and period of 1, i.e., Πtdc,trf(t + 1) =

Πtdc,trf(t) for all t ∈ R. Specifically, for t ∈ [0, 1) the function Πtdc,trf(t) is given by

Πtdc,trf(t) =



t
trf

t ∈ [0, trf]

1 t ∈ (trf, tdc + trf)

1− t−tdc−trf
trf

t ∈ [tdc + trf, tdc + 2 · trf]

0 t ∈ (tdc + 2 · trf, 1).

(23)

In the following, we model the time varying variance of the WSCS source σ2
Sc
(t) to be a linear

periodic function of Πtdc,trf(t). To that aim, we define a time offset between the first sample and
the rise start time of the periodic continuous pulse function; we denote the time offset by φ ∈ [0, 1).
This corresponds to the sampling time offset normalized to the period Tps. The variance of Sc(t) is a
periodic function with period Tps which is defined as

σ2
Sc
(t) = 0.2 + 4.8 ·Πtdc,trf

(
t

Tps
− φ

)
, t ∈ [0, Tps), (24)

with a period of Tps = 5 µsecs.

5.1. Convergence of Rn(D) in n

From Theorem 4 it follows that if the distortion satisfies D < min
0≤t≤Tps

σ2
Sc
(t), the RDF of the

asynchronously sampled CT WSCS Gaussian process is given by the limit superior of the sequence
{Rn(D)}n∈N ; where Rn(D) is defined in Proposition 1. In this subsection, we study the sequence
of RDFs {Rn(D)}n∈N as n increases. For this evaluation setup, we fixed the distortion constraint at
D = 0.18 and set ε = π

7 and p = 2. Let the variance of the CT WSCS Gaussian source process σ2
Sc
(t)

be modelled by Equation (24) for two sampling time offsets φ = {0, 1
16}. For each offset φ, four duty

cycle values were considered: tdc = [20, 45, 75, 98]%. For each n we obtain the synchronous sampling
mismatch εn , bn·εc

n , which approaches ε as n → ∞, where n ∈ N . Since εn is a rational number,

corresponding to a sampling period of Ts(n) =
Tps

p+εn
, then for each n, the resulting DT process is WSCS

with the period pn = p · n + bn · εc and its RDF follows from Proposition 1.
Figures 2 and 3 depict Rn(D) for n ∈ [1, 500] with the specified duty cycles and sampling time

offsets, where in Figure 2 there is no sampling time offset, i.e., φ = 0, and in Figure 3 the sampling time
offset is set to φ = 1

16 . We observe that in both figures the RDF values are higher for higher tdc. This
can be explained by noting that for higher tdc values, the resulting time-averaged variance of the DT
source process increases, hence, a higher number of bits per source sample is required to encode the
source process maintaining the same distortion value. Moreover, in all configurations, Rn(D) varies
significantly for smaller values of n. Comparing Figures 2 and 3, we see that the pattern of these
variations depends on the sampling time offset φ. For example, when tdc = 45% at n ∈ [4, 15], then for
φ = 0 the RDF varies in the range [1.032, 1.143] bits per source sample, while for φ = 1

16 the RDF varies
in the range [1.071, 1.237] bits per source sample. However, as n increases above 230, the variations in
Rn(D) become smaller and are less dependent on the sampling time offset, and the resulting values
of Rn(D) are approximately in the same range for each tdc in both Figures 2 and 3 for n ≥ 230. This
behaviour can be explained by noting that as n varies, the period pn also varies and hence the statistics
of the DT variance differs over its respective period. This consequently affects the resulting RDF
(especially for small periods). As n increases εn approaches the asynchronous sampling mismatch ε

and the period pn takes a sufficiently large value such that the samples of the DT variance over the
period are identically distributed irrespective of the value of φ; leading to a negligible variation in the
RDF as seen in the above figures.
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Figure 2. Rn(D) versus n; offset φ = 0.
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Figure 3. Rn(D) versus n; offset φ = 1
16 .

5.2. The Variation of the RDF with the Sampling Rate

Next, we observe the dependence of the RDF for the sampled memoryless WSCS Gaussian process
on the value of the sampling interval Ts. For this setup, we fix the distortion constraint to D = 0.18
and set the duty cycle in the source process (24) to tdc = [45, 75]%. Figures 4 and 5 demonstrate the
numerically evaluated values for Rn(D) at sampling intervals in the range 2 <

Tps
Ts

< 4 with the
sampling time offsets φ = 0 and φ = 1

16 , respectively. We note that while the discussion which follows
focuses on this range, as it corresponds to relatively low sampling rates—which are typically preferable
in practice, the statements and observations regarding the relationship between the denominator of
Tps
Ts

and the value of Rn(D), and regarding the continuity the RDF in the parameter Tps
Ts

, are directly

applicable to any range of values of Tps
Ts

, e.g., when higher sampling rates are preferable. A very
important insight which arises from the figures is that the sequence of RDFs Rn(D) is not convergent;
hence, for example, one cannot approach the RDF for Tps

Ts
= 2.5 by simply taking rational values of

Tps
Ts

which approach 2.5. This verifies that the RDF for asynchronous sampling cannot be obtained
by straightforward application of previous results, and indeed, the entire analysis carried out in the
manuscript is necessary for the desired characterization.
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Figure 4. Rn(D) versus Tps
Ts

; offset φ = 0.
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Figure 5. Rn(D) versus Tps
Ts

; offset φ = 1
16 .

We observe in Figures 4 and 5 that when Tps
Ts

has a fractional part with a relatively small integer
denominator, the variations in the RDF are significant and depend on the sampling time offset. These
variations can either degrade the ability to accurately represent the source, which are the observed
peaks in Figures 4 and 5, or alternatively, allow to encode the signal to within the same distortion with
smaller code rates, corresponding to the deeps in these figures. However, when Tps

Ts
approaches an

irrational number, the period of the sampled variance function becomes very long, and consequently,
the RDF is approximately constant and independent of the sampling time offset. As an example,
consider Tps

Ts
= 2.5 and tdc = 75%: For sampling time offset φ = 0 the RDF takes a value of 1.469 bits

per source sample, as shown in Figure 4 while for the offset of φ = 1
16 the RDF peaks to 1.934 bits

per source sample as can be seen in Figure 5. On the other hand, when approaching asynchronous
sampling, the RDF takes a nearly constant value of 1.85 bits per source sample for all the considered
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values of Tps
Ts

and this value is invariant to the offset φ. This follows since when the denominator of

the fractional part of Tps
Ts

increases, then the DT period of the resulting sampled variance, pn, increases
and practically captures the entire set of values of the CT variance regardless of the sampling time
offset. In a similar manner as with the study on capacity in [17], we conjecture that since asynchronous
sampling captures the entire set of values of the CT variance, the respective RDF represents the RDF
of the analog source, which does not depend on the specific sampling rate and offset. Figures 4
and 5 demonstrate how slight variations in the sampling rate can result in significant changes in
the RDF. For instance, at φ = 0 we observe in Figure 4 that when the sampling rate switches from
Ts = 2.25 · Tps to Ts = 2.26 · Tps, i.e., the sampling rate switches from being synchronous to being
nearly asynchronous, then the RDF changes from 1.624 bits per source sample to 1.859 bits per source
sample for tdc = 75%; also, we observe in Figure 5 for tdc = 45%, that when the sampling rate switches
from Ts = 2.5 · Tps to Ts = 2.51 · Tps, i.e., the sampling rate also switches from being synchronous to
being nearly asynchronous, then the RDF changes from 1.005 bits per source sample to 1.154 bits per
source sample.

Lastly, Figures 6 and 7 numerically evaluate the RDF versus the distortion constraint D ∈
[0.05, 0.19] for sampling time offsets of 0 and 1

16 respectively. At each φ, the result is evaluated at
three different values of synchronization mismatch ε. For this setup, we fix tdc = 75%, p = 2 and
ε ∈ {0.5, 5π

32 , 0.6}. The only mismatch value that refers to the asynchronous sampling case is ε = 5π
32

and its corresponding sampling interval is approximately 2.007 µsecs, which is a negligible variation
from the sampling intervals corresponding to ε ∈ {0.5, 0.6}, which are 2.000 µsecs and 1.923 µsecs,
respectively. Observing both figures, we see that the RDF may vary significantly for very slight
variation in the sampling rate. For instance, as shown in Figure 6 for φ = 0, at D = 0.18, a slight change
in the synchronization mismatch from ε = 5π

32 (i.e., Ts ≈ 2.007µsecs) to ε = 0.5 (i.e., Ts = 2.000 µsecs)
results to approximately 20% decrease in the RDF. For φ = 1

16 the same change in the sampling
synchronization mismatch at D = 0.18 results in an increase in the RDF by roughly 4%. These results
demonstrate the unique and counter-intuitive characteristics of the RDF of sampled WSCS signals
which arise from our derivation. It is also interesting to examine how the RDF varies with the
sampling time offset φ. To that aim we plot in Figure 8 the RDF vs. φ for the three sampling rates
used in Figures 6 and 7 at D = 0.18. The points marked on the plot correspond to φ = 0 and φ = 1

16
considered in Figures 6 and 7, respectively. We observe that the RDF is indeed periodic with φ. These
variations in the RDF occur as by changing φ the number of high variance samples within a period
of the variance of the DT process changes due to the duty cycle of the CT variance. Then, at φ = 0
the periodic variance of the DT process corresponding to Ts = 2.000µsecs has the smallest number
of high variance values within a period, and when φ = 1

16 the periodic variance of the DT process
corresponding to asynchronous sampling has the smallest number of high variance values within a
period. For the asynchronous sampling rate the sampling time offset does not matter as in any case
(nearly) all values of the CT variance are reflected in the variance of the DT process.
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6. Conclusions

In this work the RDF of a sampled CT WSCS Gaussian source process was characterized for
scenarios in which the resulting DT process is memoryless and the distortion is relatively small. This
characterization shows the relationship between the sampling rate and the minimal number of bits per
source sample required for compression at a given distortion. For cases in which the sampling rate is
synchronized with the period of the statistics of the source process, the resulting DT process is WSCS
and standard information theoretic framework can be used for deriving its RDF. For asynchronous
sampling, information stability does not hold, and hence we resort to the information spectrum
framework to obtain a characterization. To that aim we derived a relationship between some relevant
information spectrum quantities for uniformly convergent sequences of RVs. This relationship was
further applied to characterize the RDF of an asynchronously sampled CT WSCS Gaussian source
process as the limit superior of a sequence of RDFs, each corresponding to the synchronous sampling
of the CT WSCS Gaussian process. The results were derived in the low distortion regime, i.e., under
the condition that the distortion constraint D is less than the minimum variance of the source, and
for sampling intervals which are larger than the correlation length of the CT process. Our numerical
examples give rise to non-intuitive insights which follow from the derivations. In particular, the
numerical evaluation demonstrates that the RDF for a sampled CT WSCS Gaussian source can change
dramatically with minor variations in the sampling rate and the sampling time offset. In particular,
when the sampling rate switches from being synchronous to being asynchronous and vice versa, the
RDF may change considerably as the statistical model of the source switches between WSCS and
WSACS. The resulting analysis enables determining the sampling system parameters in order to
facilitate accurate and efficient source coding of acquired CT signals.
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Appendix A. Proof of Lemma 1

Proof. To prove that the minimum achievable rate at a given maximum distortion for a code with
arbitrary blocklength can be achieved by considering only codes whose blocklength is an integer
multiple of r, we apply the following approach: We first show that every rate-distortion pair achievable
when restricted to using source codes whose blocklength is an integer multiple of r is also achievable
when using arbitrary blocklenghts; We then prove that every achievable rate-distortion pair is also
achievable when restricted to using codes whose blocklength is an integer multiple of r. Combining
these two assertions proves that the rate-distortion function of the source {S[i]}i∈N can be obtained
when restricting the blocklengths to be an integer multiple of r. Consequently, a reproduction signal
{Ŝ[i]}i∈N which achieves the minimal rate for a given D under the restriction to use only blocklengths
which are an integer multiple of r is also the reproduction signal achieving the minimal rate without
this restriction, and vice versa, thus proving the lemma.

To prove the first assertion, consider a rate-distortion pair (R, D) which is achievable when using
codes whose blocklength is an integer multiple of r. It thus follows directly from Definition 6 that
for every η > 0, ∃b0 ∈ N such that for all b > b0 there exists a a source code

(
R(b·r), b · r

)
with rate

R(b·r) ≤ R + η satisfying d̄
(
S(b·r), Ŝ(b·r)) ≤ D + η

2 . We now show that we can construct a code with an
arbitrary blocklength l = b · r + j where 0 < j < r (i.e., the blocklength l is not an integer multiple of
r) satisfying Definition 6 for all j ∈ {1, . . . , r− 1} as follows: Apply the code

(
R(b·r), b · r

)
to the first

b · r samples of S[i] and then concatenate each codeword by j zeros to obtain a source code having
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codewords of length b · r + j. The average distortion (i.e., see (2)) of the resulting
(

R(b·r+j), b · r + j
)

code is given by:

d̄
(

S(b·r+j), Ŝ(b·r+j)
)
=

1
b · r + j

(
b·r
∑
i=1
E
{(

S[i]− Ŝ[i]
)2
}
+

b·r+j

∑
i=b·r+1

E
{
(S[i])2

})

=
1

b · r + j

(
b · r · d̄

(
S(b·r), Ŝ(b·r)

)
+

j

∑
i=1

σ2
S [i]

)

=
b · r

b · r + j
· d̄
(

S(b·r), Ŝ(b·r)
)
+

1
b · r + j

j

∑
i=1

σ2
S [i]. (A.1)

Thus, ∃b1 > b0 such that 1
b1·r+j

j
∑

i=1
σ2

S [i] <
η
2 and hence, for all b > b1

d̄
(

S(b·r+j), Ŝ(b·r+j)
)
=

b · r
b · r + j

· d̄
(

S(b·r), Ŝ(b·r)
)
+

1
b · r + j

j

∑
i=1

σ2
S [i]

≤ b · r
b · r + j

· d̄
(

S(b·r), Ŝ(b·r)
)
+

η

2

≤ d̄
(

S(b·r), Ŝ(b·r)
)
+

η

2
≤ D + η. (A.2)

The rate R(b·r+j) satisfies:

R(b·r+j) =
1

b · r + j
· log2 M = R(b·r) ·

b · r
b · r + j

≤ (R + η) · b · r
b · r + j

≤ R + η. (A.3)

Consequently, any rate-distortion pair achievable with codes whose blocklength is an integer
multiple of r can be achieved by codes with arbitrary blocklengths.

Next, we prove that any achievable rate-distortion pair (R, D) can be achieved by codes whose
blocklength is an integer multiple of r. To that aim, we fix η > 0. By Definition 6, it holds that there
exists a code of blocklength l satisfying (3) and (4). To show that (R, D) is achievable using codes
whose blocklength is an integer multiple of r, we assume here that l is not an integer multiple of r,
hence, there exist some positive integers b and j such that j < r and l = b · r + j. We denote this code by(

R(b·r+j), b · r + j
)

. It follows from Definition 6 that R(b·r+j) ≤ R + η and d̄
(

S(b·r+j), Ŝ(b·r+j)
)
≤ D + η

2 .

Next, we construct a code
(

R(b+1)·r, (b + 1) · r
)

with codewords whose length is (b + 1) · r, i.e., an

integer multiple of r, by adding r− j zeros at the end of each codeword of the code
(

R(b·r+j), b · r + j
)

.
The average distortion can now be computed as follows:

d̄
(

S((b+1)·r), Ŝ((b+1)·r)
)
=

1
(b + 1) · r

(
b·r+j

∑
i=1

E
{(

S[i]− Ŝ[i]
)2
}
+

(b+1)·r

∑
i=b·r+j+1

E
{
(S[i])2

})

=
1

(b + 1) · r

(
(b · r + j) · d̄

(
S(b·r+j), Ŝ(b·r+j)

)
+

(b+1)·r

∑
i=b·r+j+1

σ2
S [i]

)

=
b · r + j
(b + 1) · r · d̄

(
S(b·r+j), Ŝ(b·r+j)

)
+

(b+1)·r
∑

i=b·r+j+1
σ2

S [i]

(b + 1) · r , (A.4)
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Thus, since the variance is finite and bounded, ∃b1 > b0 such that

(b1+1)·r
∑

i=b1 ·r+j+1
σ2

S [i]

(b1+1)·r < η
2 for all b > b1.

Hence, for all b > b1

d̄
(

S((b+1)·r), Ŝ((b+1)·r
)
≤ b · r + j

(b + 1) · r · d̄
(

S(b·r+j), Ŝ(b·r+j)
)
+

η

2

≤ d̄
(

S(b·r+j), Ŝ(b·r+j)
)
+

η

2
≤ D + η. (A.5)

The rate R(b+1)·r can be expressed as follows:

R(b+1)·r =
1

(b + 1) · r · log2 M = R(b·r+j) ·
b · r + j
(b + 1) · r ≤ (R + η) · b · r + j

(b + 1) · r < R + η. (A.6)

It follows that R(b+1)·r ≤ R + η for any arbitrary η by selecting a sufficiently large b. This proves
that every rate-distortion pair achievable with arbitrary blocklengths (e.g., l = b · r + j, j < r) is also
achievable when considering source codes whose blocklength is an integer multiple of r (i.e., l = b · r).
This concludes the proof.

Appendix B. Proof of Theorem 1

Recall that α ∈ R++. To prove the theorem, we fix a rate-distortion pair (R, D) that is achievable
for the source {S[i]}i∈N . By Definition 6 this implies that for all η > 0 there exists l0(η) ∈ N
such that for all l > l0(η) there exists a source code Cl with rate R(l) ≤ R + η and MSE distortion

D(l) = E
{ 1

l

∥∥S(l) − Ŝ(l)∥∥2} ≤ D + η, where
∥∥ · ∥∥ denotes the norm of a vector. Next, we use the code

Cl to define the source code C(α)l , which operates in the following manner: The encoder first scales its
input block by 1/α. Then, the block is encoded using the source code Cl . Finally, the selected codeword
is scaled by α. Since the C(α)l has the same number of codewords and the same blocklength as Cl , it

follows that its rate, denote R(α)
(l) , satisfied R(α)

(l) = R(l) ≤ R + η. Furthermore, by the construction of

C(α)l , it holds that its reproduction vector when applied to α · S(l) is equal to the output of Cl applied to

S(l) scaled by α, i.e., α · Ŝ(l). Consequently, the MSE of C(α)l when applied to the source {α · S[i]}i∈N ,

denoted D(α)
(l) , satisfies D(α)

(l) = E
{ 1

l

∥∥α · S(l) − α · Ŝ(l)∥∥2}
= α2 · D(l) ≤ α2 · D + α2η.

It thus follows that for all η̃ > 0 there exists l̃0(η̃) = l0
(

min(η̃, α2η̃)
)

such that for all l > l̃0(η̃)

there exists a code C(α)l with rate R(α)
(l) ≤ R + η̃ which achieves an MSE distortion of D(α)

(l) ≤ α2 · D + η̃

when applied to the compression of {α · S[i]}i∈N . Hence, (R, α2 · D) is achievable for compression of
{α · S[i]}i∈N by Definition 6, proving the theorem.

Appendix C. Proof of Theorem 3

In this appendix, we prove (17b) by applying a similar approach as used for proving (17a) in ([17]
Appendix A). We first note that Definition 9 can also be written as follows:

p− lim sup
k→∞

Zk
(a)
= inf

{
β ∈ R

∣∣∣ lim sup
k→∞

Pr (Zk > β) = 0

}
(b)
= inf

{
β ∈ R

∣∣∣ lim inf
k→∞

Fk(β) = 1
}

. (C.1)

For the equality (a), we note that the set of probabilities {Pr (Zk > β)}k∈N is non-negative
and bounded in [0, 1]; hence, for any β ∈ R for which lim sup

k→∞
Pr (Zk > β) = 0, it also holds

from ([31] Theorem 3.17) that the limit of any subsequence of {Pr (Zk > β)}k∈N is also 0, since
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non-negativity of the probability implies lim inf
k→∞

Pr (Zk > β) ≥ 0. Then, combined with the relationship

lim inf
k→∞

Pr (Zk > β) ≤ lim sup
k→∞

Pr (Zk > β), we conclude:

0 ≤ lim inf
k→∞

Pr (Zk > β) ≤ lim sup
k→∞

Pr (Zk > β) = 0

=⇒ lim inf
k→∞

Pr (Zk > β) = lim sup
k→∞

Pr (Zk > β)
(a)
= lim

k→∞
Pr (Zk > β) = 0,

where (a) follows from ([31] Example 3.18(c)). This implies lim
k→∞

Pr (Zk > β) exists and is equal to 0.

In the opposite direction, if lim
k→∞

Pr (Zk > β) = 0 then it follows from ([31] Example

3.18(c)) that lim sup
k→∞

Pr (Zk > β) = 0. Next, we note that since Fk(β) is bounded in [0, 1] then

lim inf
k→∞

Fk(β) is finite ∀β ∈ R, even if lim
k→∞

Fk(β) does not exist. Equality (b) follows since

lim sup
k→∞

Pr (Zk > β) = lim sup
k→∞

(1− Pr (Zk ≤ β)) which according to ([32] Theorem 7.3.7) is equal

to 1 + lim sup
k→∞

(−Pr (Zk ≤ β)). By ([33] Chapter 1, page 29), this quantity is also equal to 1 −

lim inf
k→∞

(Pr (Zk ≤ β)) = 1− lim inf
k→∞

Fk(β).

Next, we state the following lemma:

Lemma C.1. Given assumption AS2, for all β ∈ R it holds that

lim inf
k→∞

Fk(β) = lim
n→∞

lim inf
k→∞

F̃k,n(β). (C.2)

Proof. To prove the lemma we first show that lim inf
k→∞

Fk(β) ≤ lim
n→∞

lim inf
k→∞

F̃k,n(β), and then we show

lim inf
k→∞

Fk(β) ≥ lim
n→∞

lim inf
k→∞

F̃k,n(β). Recall that by AS2, for all β ∈ R and k ∈ N , F̃k,n(β) converges as

n → ∞ to Fk(β), uniformly over k and β, i.e., for all η > 0 there exists n0(η) ∈ N , k0
(
n0(η), η

)
∈ N

such that for every n > n0(η), β ∈ R and k > k0
(
n0(η), η

)
, it holds that

∣∣F̃k,n(β) − Fk(β)
∣∣ < η.

Consequently, for every subsequence 0 < k1 < k2 < . . . such that lim
l→∞

F̃kl ,n(β) exists for any n > n0(η),

it follows from ([31] Theorem 7.11) that, as the convergence over k is uniform, the limits over n and l
are interchangeable:

lim
n→∞

lim
l→∞

F̃kl ,n(β) = lim
l→∞

lim
n→∞

F̃kl ,n(β) = lim
l→∞

Fkl
(β). (C.3)

The existence of such a convergent subsequence is guaranteed by the Bolzano-Weierstrass
theorem ([31] Theorem 2.42) as F̃k,n(β) ∈ [0, 1].

From the properties of the limit inferior ([31] Theorem 3.17) it follows that there
exists a subsequence of

{
Fk(β)

}
k∈N , denoted

{
Fkm(β)

}
m∈N , such that lim

m→∞
Fkm(β) =

lim inf
k→∞

Fk(β). Consequently,

lim inf
k→∞

Fk(β) = lim
m→∞

Fkm(β)
(a)
= lim

n→∞
lim

m→∞
F̃km ,n(β)

(b)
≥ lim

n→∞
lim inf

k→∞
F̃k,n(β), (C.4)

where (a) follows from (C.3), and (b) follows from the definition of the limit inferior ([31]
Definition 3.16). Similarly, by ([31] Theorem 3.17), for any n ∈ N there exists a subsequence of



Entropy 2020, 22, 345 23 of 34

{F̃k,n(β)}k∈N which we denote by
{

F̃kl ,n(β)
}

l∈N where {kl}l∈N satisfy 0 < k1 < k2 < . . ., such that
lim
l→∞

F̃kl ,n(β) = lim inf
k→∞

F̃k,n(β). Therefore,

lim
n→∞

lim inf
k→∞

F̃k,n(β) = lim
n→∞

lim
l→∞

F̃kl ,n(β)

(a)
= lim

l→∞
Fkl

(β)
(b)
≥ lim inf

k→∞
Fk(β), (C.5)

where (a) follows from (C.3), and (b) follows from the definition of the limit inferior ([31] Definition
3.16). Therefore, lim inf

k→∞
Fk(β) ≤ lim

n→∞
lim inf

k→∞
F̃k,n(β). Combining (C.4) and (C.5) proves (C.2) in the

statement of the lemma.

Lemma C.2. Given assumptions AS1–AS2, the sequence of RVs
{

Z̃k,n
}

k,n∈N satisfies

lim
n→∞

(
p− lim sup

k→∞
Z̃k,n

)
= inf

{
β ∈ R

∣∣∣ lim
n→∞

lim inf
k→∞

F̃k,n(β) = 1
}

. (C.6)

Proof. Since by assumption AS1, for every n ∈ N , every convergent subsequence of
{

Z̃k,n
}

k∈N
converges in distribution as k → ∞ to a deterministic scalar, it follows that every convergent
subsequence of F̃k,n(β) converges as k→ ∞ to a step function, which is the CDF of the corresponding
sublimit of Z̃k,n. In particular, the limit lim inf

k→∞
F̃k,n(β) is a step function representing the CDF of the

deterministic scalar ζn, i.e.,

lim inf
k→∞

F̃k,n(β) =

{
0 β < ζn

1 β ≥ ζn.
(C.7)

Since, by Lemma C.1, AS2 implies that the limit lim
n→∞

lim inf
k→∞

F̃k,n(β) exists (convergence to a

discontinuous function is in the sense of ([31] Ex. 7.3)), then lim
n→∞

ζn exists. Hence, we obtain that

lim
n→∞

lim inf
k→∞

F̃k,n(β) =

0 β < lim
n→∞

ζn

1 β ≥ lim
n→∞

ζn,
(C.8)

and from the right-hand side of (C.6) we have that

inf
{

β ∈ R
∣∣∣ lim

n→∞
lim inf

k→∞
F̃k,n(β) = 1

}
= lim

n→∞
ζn. (C.9)

Next, from (C.1) and (C.7) we note that

p− lim sup
k→∞

Z̃k,n = inf
{

β ∈ R
∣∣∣ lim inf

k→∞
F̃k,n(β) = 1

}
= ζn.

Consequently, the left-hand side of (C.6) is equal to lim
n→∞

ζn. Combining with (C.9) we arrive at

the equality (C.6) in the statement of the lemma.

Substituting (C.2) into (C.1) results in

p− lim sup
k→∞

Zk = inf
{

β ∈ R
∣∣∣ lim

n→∞
lim inf

k→∞
F̃k,n(β) = 1

}
(a)
= lim

n→∞

(
p− lim sup

k→∞
Z̃k,n

)
, (C.10)

where (a) follows from (C.6). Equation (C.10) concludes the proof for (17b).
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Appendix D. Proof of Theorem 4

In this appendix we detail the proof of Theorem 4. The outline of the proof is given as follows:

• We first show in Appendix D.1 that for any k ∈ N , the PDF of the random vector S(k)
n , representing

the first k samples of the CT WSCS source Sc(t) sampled at time instants Ts(n) =
Tps

p+εn
, converges

in the limit as n→ ∞ and for any k ∈ N to the PDF of S(k)
ε , which represents the first k samples

of the CT WSCS source Sc(t), sampled at time instants Ts =
Tps
p+ε . We prove that this convergence

is uniform in k ∈ N and in the realization vector s(k) ∈ Rk. This is stated in Lemma D.1.

• Next, in Appendix D.2 we apply Theorem 3 to relate the mutual information density rates for

the random source vector S(k)
n and its reproduction Ŝ(k)

n with that of the random source vector
S(k)

ε and its reproduction Ŝ(k)
ε . To that aim, let the functions FSn ,Ŝn

and FSε ,Ŝε
denote the joint

distributions of an arbitrary dimensional source and reproduction vectors corresponding to the
synchronously sampled and to the asynchronously sampled source process respectively. We
define the following mutual information density rates:

Z̃′k,n

(
FSn ,Ŝn

)
,

1
k

log
p

S(k)
n |Ŝ

(k)
n

(
S(k)

n |Ŝ
(k)
n

)
p

S(k)
n

(
S(k)

n

) , (D.1a)

and

Z′k,ε

(
FSε ,Ŝε

)
,

1
k

log
p

S(k)
ε |Ŝ

(k)
ε

(
S(k)

ε

∣∣Ŝ(k)
ε

)
p

S(k)
ε

(
S(k)

ε

) , (D.1b)

k, n ∈ N . The RVs Z̃′k,n

(
FSn ,Ŝn

)
and Z′k,ε

(
FSε ,Ŝε

)
in (D.1) denote the mutual information

density rates ([14] Definition 3.2.1) between the DT source process and the corresponding
reproduction process for the case of synchronous sampling and for the case of asynchronous
sampling, respectively.

We then show that if the pairs of source process and optimal reproduction process{
Sn[i], Ŝn[i]

}
i∈N and

{
Sε[i], Ŝε[i]

}
i∈N satisfy that p

Ŝ(k)
n

(
ŝ(k)
)
−→
n→∞

p
Ŝ(k)

ε

(
ŝ(k)
)

uniformly with

respect to ŝ(k) ∈ Rk and k ∈ N , and that p
S(k)

n |Ŝ
(k)
n

(
s(k)
∣∣ŝ(k)) −→

n→∞
p

S(k)
ε |Ŝ

(k)
ε

(
s(k)
∣∣ŝ(k)) uniformly

in
((

ŝ(k)
)T ,
(
s(k)
)T
)T
∈ R2k and k ∈ N , then Z̃′k,n

(
FSn ,Ŝn

)
(dist.)−→
n→∞

Z′k,ε

(
FSε ,Ŝε

)
uniformly in k ∈ N .

In addition, Lemma D.3 proves that every subsequence of
{

Z̃′k,n

(
FSn ,Ŝn

)}
k∈N

w.r.t. k, indexed as

kl converges in distribution, in the limit l → ∞ to a deterministic scalar.

• Lastly, in Appendix D.3 we combine the above results to show in Lemmas D.5 and D.6 that
Rε(D) ≤ lim sup

n→∞
Rn(D) and Rε(D) ≥ lim sup

n→∞
Rn(D) respectively; implying that Rε(D) =

lim sup
n→∞

Rn(D), which proves the theorem.

To facilitate our proof we will need uniform convergence in k ∈ N , of p
S(k)

n

(
s(k)
)

, p
Ŝ(k)

n

(
ŝ(k)
)

and p
S(k)

n |Ŝ
(k)
n

(
s(k)
∣∣ŝ(k)) to p

S(k)
ε

(
s(k)
)

, p
Ŝ(k)

ε

(
ŝ(k)
)

and p
S(k)

ε |Ŝ
(k)
ε

(
s(k)
∣∣ŝ(k)), respectively. To that aim,

we will make the following scaling assumption w.l.o.g.:

Assumption D.1. The variance of the source and the allowed distortion are scaled by some factor α2 such that

α2 ·min

{
D,

(
min

0≤t≤Tps
σ2

Sc
(t)− D

)}
>

1
2π

. (D.2)
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Note that this assumption has no effect on the generality of the RDF for multivariate stationary
processes detailed in ([5] Section 10.3.3), ([34] Section IV). Moreover, by Theorem 1, for every α > 0 it
holds that when any rate R achievable when compressing the original source Sc(t) with distortion not
larger that D is achievable when compressing the scaled source α · Sc(t) with distortion not larger than
α2 · D. Note that if for the source Sc(t) the distortion satisfies D < min

0≤t≤Tps
σ2

Sc
(t), then for the scaled

source and distortion we have α2 · D < min
0≤t≤Tps

α2 · σ2
Sc
(t).

Appendix D.1. Convergence in Distribution of S(k)
n to S(k)

ε Uniformly with Respect to k ∈ N

In order to prove the uniform convergence in distribution, S(k)
n

(dist.)−→
n→∞

S(k)
ε , uniformly with respect

to k ∈ N , we first prove, in Lemma D.1, that as n → ∞ the sequence of PDFs of S(k)
n , p

S(k)
n

(
s(k)
)

,

converges to the PDF of S(k)
ε , p

S(k)
ε

(
s(k)
)

, uniformly in s(k) ∈ Rk and in k ∈ N . Next, we show in

Corollary D.1 that S(k)
n

(dist.)−→
n→∞

S(k)
ε uniformly in k ∈ N .

To that aim, let us define the set K , {1, 2, . . . , k} and consider the k- dimensional zero-mean,
memoryless random vectors S(k)

n and S(k)
ε with their respective diagonal correlation matrices

expressed below:
R
(k)
n , E

{(
S(k)

n
)(

S(k)
n
)T}

= diag
(
σ2

Sn
[1], . . . , σ2

Sn
[k]
)
, (D.3a)

R
(k)
ε , E

{(
S(k)

ε

)(
S(k)

ε

)T}
= diag

(
σ2

Sε
[1], . . . , σ2

Sε
[k]
)
. (D.3b)

Since εn , bn·εc
n it holds that n·ε−1

n ≤ εn ≤ n·ε
n ; therefore

lim
n→∞

εn = ε. (D.4)

Now we note that since σ2
Sc
(t) is uniformly continuous, then by the definition of a uniformly

continuous function, for each i ∈ N , the limit in (D.4) implies that

lim
n→∞

σ2
Sn
[i] ≡ lim

n→∞
σ2

Sc

(
i ·

Tps

p + εn

)
= σ2

Sc

(
i ·

Tps

p + ε

)
≡ σ2

Sε
[i]. (D.5)

From Assumption D.1, it follows that σ2
Sn
[i] satisfies σ2

Sn
[i] > 1

2π ; Hence, we can state the
following lemma:

Lemma D.1. The PDF of S(k)
n , p

S(k)
n

(
s(k)
)

, converges as n→ ∞ to the PDF of S(k)
ε , p

S(k)
ε

(
s(k)
)

, uniformly

in s(k) ∈ Rk and in k ∈ N :

lim
n→∞

p
S(k)

n

(
s(k)
)
= p

S(k)
ε

(
s(k)
)

, ∀s(k) ∈ Rk, ∀k ∈ N .

Proof. The proof of the lemma directly follows from the steps in the proof of ([17] Lemma B.1), which
was applied to random Gaussian processes with independent entries and variance larger than 1

2π .

Lemma D.1 gives rise to the following corollary:

Corollary D.1. For any k ∈ N it holds that S(k)
n

(dist.)−→
n→∞

S(k)
ε , and convergence is uniform over k.

Proof. The corollary holds due to ([35] Theorem 1): Since p
S(k)

n

(
s(k)
)

converges to p
S(k)

ε

(
s(k)
)

then

S(k)
n

(dist.)−→
n→∞

S(k)
ε . In addition, since the convergence of the PDFs is uniform in k ∈ N , the convergence of

the CDFs is also uniform in k ∈ N .
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Appendix D.2. Showing that Z̃′k,n

(
Fopt

Sn ,Ŝn

)
and Z′k,ε

(
FSε ,Ŝε

)
Satisfy the Conditions of Theorem 3

Let Fopt
Sn ,Ŝn

denote the joint distribution for the source process and the corresponding optimal

reproduction process satisfying the distortion constraint D. We next prove that for Fopt
Sn ,Ŝn

(dist.)−→
n→∞

FSε ,Ŝε
,

then Z̃′k,n

(
Fopt

Sn ,Ŝn

)
and Z′k,ε

(
FSε ,Ŝε

)
satisfy AS1–AS2. In particular, Lemma D.2 proves that

Z̃′k,n

(
Fopt

Sn ,Ŝn

)
(dist.)−→
n→∞

Z′k,ε

(
FSε ,Ŝε

)
uniformly in k ∈ N for the optimal zero-mean Gaussian reproduction

vectors with independent entries. Lemma D.3 proves that for any fixed n, Z̃′k,n

(
Fopt

Sn ,Ŝn

)
converges in

distribution to a deterministic scalar as k→ ∞.

Lemma D.2. Let {Ŝ(k)
n }n∈N and {W (k)

n }n∈N be two sets of mutually independent sequences of k × 1
zero-mean Gaussian random vectors related via the backward channel (20), each having independent entries and
let PDFs p

Ŝ(k)
n

(
ŝ(k)
)

and p
W (k)

n

(
w(k)

)
, respectively, denote their PDFs. Consider two other zero-mean

Gaussian random vectors Ŝ(k)
ε and W (k)

ε each having independent entries with the PDFs p
Ŝ(k)

ε

(
ŝ(k)
)

and p
W (k)

ε

(
w(k)

)
, respectively, such that lim

n→∞
p

Ŝ(k)
n

(
ŝ(k)
)

= p
Ŝ(k)

ε

(
ŝ(k)
)

uniformly in ŝ(k) ∈ Rk and

uniformly with respect to k ∈ N , and lim
n→∞

p
W (k)

n

(
w(k)

)
= p

W (k)
ε

(
w(k)

)
uniformly in w(k) ∈ Rk and

uniformly with respect to k ∈ N . Then, the RVs Z̃′k,n

(
Fopt

Sn ,Ŝn

)
and Z′k,ε

(
FSε ,Ŝε

)
, defined via (D.1) satisfy

Z̃′k,n

(
Fopt

Sn ,Ŝn

)
(dist.)−→
n→∞

Z′k,ε

(
FSε ,Ŝε

)
uniformly over k ∈ N .

Proof. To begin the proof, for
(

s(k), ŝ(k)
)
∈ R2k, define

fk,n

(
s(k), ŝ(k)

)
,

p
S(k)

n |Ŝ
(k)
n

(
s(k)
∣∣ŝ(k))

p
S(k)

n

(
s(k)
) , fk,ε

(
s(k), ŝ(k)

)
,

p
S(k)

ε |Ŝ
(k)
ε

(
s(k)
∣∣ŝ(k))

p
S(k)

ε

(
s(k)
) . (D.6)

Now, we recall the backward channel relationship (20):

S(k)
n = Ŝ(k)

n + W (k)
n , (D.7)

where Ŝ(k)
n and W (k)

n are mutually independent zero-mean, Gaussian random vectors with independent
entries, corresponding to the optimal compression process and its respective distortion. From this
relationship we obtain

p
S(k)

n |Ŝ
(k)
n

(
s(k)
∣∣ŝ(k)) (a)

= p
Ŝ(k)

n +W (k)
n |Ŝ

(k)
n

(
s(k)
∣∣ŝ(k))

= p
W (k)

n |Ŝ
(k)
n

(
s(k) − ŝ(k)

∣∣ŝ(k))
(b)
= p

W (k)
n

(
s(k) − ŝ(k)

)
, (D.8)

where (a) follows since S(k)
n = Ŝ(k)

n + W (k)
n , see (D.7), and (b) follows since W (k)

n and Ŝ(k)
n are mutually

independent. The joint PDF of S(k)
n and Ŝ(k)

n can be expressed via the conditional PDF as:

p
S(k)

n ,Ŝ(k)
n

(
s(k), ŝ(k)

)
= p

S(k)
n |Ŝ

(k)
n

(
s(k)
∣∣ŝ(k)) · p

Ŝ(k)
n

(
ŝ(k)
)

(a)
= p

W (k)
n

(
s(k) − ŝ(k)

)
· p

Ŝ(k)
n

(
ŝ(k)
)

, (D.9)

where (a) follows from (D.8). Since Ŝ(k)
n and W (k)

n are Gaussian and mutually independent and
since the product of two multivariate Gaussian PDFs is also a multivariate Gaussian PDF ([36]
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Section 3), it follows from (D.9) that S(k)
n and Ŝ(k)

n are jointly Gaussian. Following the mutual
independence of W (k)

n and Ŝ(k)
n , the right hand side (RHS) of (D.9) is also equivalent to the

joint PDF of
[(

W (k)
n

)T
,
(

Ŝ(k)
n

)T
]T

denoted by p
W (k)

n ,Ŝ(k)
n

(
s(k) − ŝ(k), ŝ(k)

)
. Now, from (D.8), the

assumption lim
n→∞

p
W (k)

n

(
w(k)

)
= p

W (k)
ε

(
w(k)

)
implies that a limit exists for the conditional PDF

p
S(k)

n |Ŝ
(k)
n

(
s(k) | ŝ(k)

)
, this we denote by p

S(k)
ε |Ŝ

(k)
ε

(
s(k) | ŝ(k)

)
. Combining this with the assumption

lim
n→∞

p
Ŝ(k)

n

(
ŝ(k)
)
= p

Ŝ(k)
ε

(
ŝ(k)
)

, we have that,

lim
n→∞

p
S(k)

n ,Ŝ(k)
n

(
s(k), ŝ(k)

)
= lim

n→∞

(
p

S(k)
n |Ŝ

(k)
n

(
s(k)
∣∣ŝ(k)) · p

Ŝ(k)
n

(
ŝ(k)
))

(a)
= lim

n→∞

(
p

W (k)
n

(
s(k) − ŝ(k)

)
· p

Ŝ(k)
n

(
ŝ(k)
))

(b)
= lim

n→∞

(
p

W (k)
n

(
s(k) − ŝ(k)

))
· lim

n→∞

(
p

Ŝ(k)
n

(
ŝ(k)
))

= p
S(k)

ε |Ŝ
(k)
ε

(
s(k)
∣∣ŝ(k)) · p

Ŝ(k)
ε

(
ŝ(k)
)

= p
S(k)

ε ,Ŝ(k)
ε

(
s(k), ŝ(k)

)
, (D.10)

where (a) follows from (D.8), and (b) follows since the limit for each sequence in the product exists ([31]

Theorem 3.3); Convergence is uniform in
((

ŝ(k)
)T

,
(

s(k)
)T
)T
∈ R2k and k ∈ N , as each sequence

converges uniformly in k ∈ N ([31] Page 165). Observe that the joint PDF for the zero-mean Gaussian
random vectors

[
S(k)

n , Ŝ(k)
n

]
is given by the general expression:

p
S(k)

n ,Ŝ(k)
n

(
s(k), ŝ(k)

)
=
(

Det
(
2πC̃

(2k)
n
))− 1

2
exp

(
− 1

2

[(
ŝ(k)
)T

,
(

s(k)
)T
] (

C̃
(2k)
n
)−1
[(

ŝ(k)
)T

,
(

s(k)
)T
]T
)

, (D.11)

where C̃
(2k)
n denotes the joint covariance matrix of

[(
Ŝ(k)

n

)T
,
(

S(k)
n

)T
]T

. From (D.11) we note that

p
S(k)

n ,Ŝ(k)
n

(
s(k), ŝ(k)

)
is a continuous mapping of C̃(2k)

n with respect to the index n, see ([17] Lemma B.1).

Hence the convergence in (D.10) of p
S(k)

n ,Ŝ(k)
n

(
s(k), ŝ(k)

)
as n → ∞ directly implies the convergence

of C̃(2k)
n as n → ∞ to a limit which we denote by C̃

(2k)
ε . It therefore follows that the limit function

p
S(k)

ε ,Ŝ(k)
ε

(
s(k), ŝ(k)

)
corresponds to the PDF of a Gaussian vector with the covariance matrix C̃

(2k)
ε .

The joint PDF for the zero-mean Gaussian random vectors
[
W (k)

n , Ŝ(k)
n

]
can be obtained using

their mutual independence as:

p
W (k)

n ,Ŝ(k)
n

(
s(k) − ŝ(k), ŝ(k)

)
=
(

Det
(
2πΣ(2k)

n
)) 1

2
exp

(
− 1

2

[(
s(k)−ŝ(k)

)T
,
(

ŝ(k)
)T
] (

Σ(2k)
n
)−1
[(

s(k)−ŝ(k)
)T

,
(

ŝ(k)
)T
]T
)

,
(D.12)

where Σ(2k)
n denotes the joint covariance matrix of

[(
W (k)

n

)T
,
(

Ŝ(k)
n

)T
]T

. Since the vectors W (k)
n and

Ŝ(k)
n are zero-mean, mutually independent and, by the relationship (20), each vector has independent
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entries, it follows that Σ(2k)
n is a diagonal matrix with each diagonal element taking the value of the

corresponding temporal variance at the respective index i ∈ {1, 2, . . . , k}. i.e.,

Σ(2k)
n , E

{((
W (k)

n

)T
,
(

Ŝ(k)
n

)T
)T
·
((

W (k)
n

)T
,
(

Ŝ(k)
n

)T
)}

= diag
(
E
{
(Wn[1])

2
}

,E
{
(Wn[2])

2
}

, . . . ,E
{
(Wn[k])

2
}

, σ2
Ŝn
[1], σ2

Ŝn
[2] . . . , σ2

Ŝn
[k]
)
. (D.13)

The convergence of p
W (k)

n ,Ŝ(k)
n

(
s(k) − ŝ(k), ŝ(k)

)
, from (D.10), implies a convergence of the diagonal

elements in (D.13) as n→ ∞. Hence Σ(2k)
n converges as n→ ∞ to a diagonal joint covariance matrix

which we denote by Σ(2k)
ε . This further implies that the limiting vectors W (k)

ε and Ŝ(k)
ε are zero-mean,

mutually independent and each vector has independent entries in i ∈ [1, 2, . . . , k].
Relationship (D.10) implies that the joint limit distribution satisfies p

S(k)
ε ,Ŝ(k)

ε

(
s(k), ŝ(k)

)
=

p
Ŝ(k)

ε

(
ŝ(k)
)

p
W (k)

ε

(
s(k) − ŝ(k)

)
. Consequently, we can define an asymptotic backward channel that

satisfies (D.10) via the expression:

S(k)
ε [i] = Ŝ(k)

ε [i] + W (k)
ε [i]. (D.14)

Next, by convergence of the joint PDF p
W (k)

n

(
s(k) − ŝ(k)

)
· p

Ŝ(k)
n

(
ŝ(k)
)

uniformly in

k ∈ N and in
((

s(k)
)T

,
(

ŝ(k)
)T
)T

∈ R2k, it follows from ([35] Theorem 1) that[(
Ŝ(k)

n
)T ,
(
W (k)

n
)T
]T (dist.)−→

n→∞

[(
Ŝ(k)

ε

)T ,
(
W (k)

ε

)T
]T

and the convergence is uniform in k ∈ N and in((
s(k)
)T

,
(

ŝ(k)
)T
)T
∈ R2k. Then, by the continuous mapping theorem (CMT) ([37] Theorem 7.7), we

have[(
S(k)

n
)T ,
(
Ŝ(k)

n
)T
]T

=
[(

Ŝ(k)
n +W (k)

n
)T ,
(
Ŝ(k)

n
)T
]T (dist.)−→

n→∞

[(
Ŝ(k)

ε +W (k)
ε

)T ,
(
Ŝ(k)

ε

)T
]T

=
[(

S(k)
ε

)T ,
(
Ŝ(k)

ε

)T
]T

.

Now, using the extended CMT ([37] Theorem 7.24), we will show that

fk,n
(
S(k)

n , Ŝ(k)
n
) (dist.)−→

n→∞
fk,ε
(
S(k)

ε , Ŝ(k)
ε

)
for each k ∈ N , following the same approach as in the proof of ([17]

Lemma B.2). Then, since Z̃′k,n

(
Fopt

Sn ,Ŝn

)
= 1

k log fk,n

(
S(k)

n , Ŝ(k)
n

)
and Z′k

(
FSε ,Ŝε

)
= 1

k log fk,ε

(
S(k)

ε , Ŝ(k)
ε

)
,

we conclude that Z̃′k,n

(
Fopt

Sn ,Ŝn

)
(dist.)−→
n→∞

Z′k
(

FSε ,Ŝε

)
, where it also follows from the proof of

([17] Lemma B.2) that the convergence is uniform in k ∈ N . Specifically, to prove that

fk,n

(
S(k)

n , Ŝ(k)
n

)
(dist.)−→
n→∞

fk,ε

(
S(k)

ε , Ŝ(k)
ε

)
, we will show that the following two properties hold:

P1 The distribution of
[(

S(k)
ε

)T
,
(

Ŝ(k)
ε

)T
]T

is separable (as defined in ([37] Pg. 101)).

P2 For any convergent sequence
((

s(k)n

)T
,
(

ŝ(k)n

)T
)T

∈ R2k such that lim
n→∞

(
s(k)n , ŝ(k)n

)
=(

s(k)ε , ŝ(k)ε

)
, then lim

n→∞
fk,n

(
s(k)n , ŝ(k)n

)
= fk,ε

(
s(k)ε , ŝ(k)ε

)
.

To prove property P1, we show that U(k) ,
[(

S(k)
ε

)T ,
(
Ŝ(k)

ε

)T
]T

(here we misuse the dimension

notation as U(k) denotes a 2k-dimensional vector) is separable ([37] Pg. 101), i.e., we show that
∀η > 0, there exists β > 0 such that Pr

(
‖U(k)‖2 > β

)
< η. To that aim, recall first that by

Markov’s inequality ([29] Pg. 114), it follows that Pr (‖U(k)
∥∥2 > β

)
< 1

βE

{∥∥∥U(k)
∥∥∥2
}

. For the
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asynchronously sampled source process, we note that σ2
Sε
[i] , E

{
(Sε[i])

2
}
∈ [0, max

0≤t≤Tps
σ2

Sc
(t)].

By the independence of W (k)
ε and Ŝ(k)

ε , and by the fact that their mean is zero, we have, from
(D.14) that E

{
(Sε[i])

2
}

= E
{(

Ŝε[i]
)2
}
+ E

{
(Wε[i])

2
}
≤ max

0≤t≤Tps
σ2

Sc
(t); Hence E

{(
Ŝε[i]

)2
}
≤

max
0≤t≤Tps

σ2
Sc
(t), and E

{
(Wε[i])

2
}
≤ max

0≤t≤Tps
σ2

Sc
(t). This further implies that E

{∥∥∥U(k)
∥∥∥2
}

=

E

{∥∥∥∥[(S(k)
ε

)T ,
(
Ŝ(k)

ε

)T
]T
∥∥∥∥2
}
≤ 2 · k · max

0≤t≤Tps
σ2

Sc
(t) ; therefore for each β > 1

ηE

{∥∥∥U(k)
∥∥∥2
}

we have

that Pr
(∥∥∥U(k)

∥∥∥2
> β

)
< η, and thus U(k) is separable.

By the assumption in this lemma it follows that ∀η > 0 there exists n0(η) > 0 such that for
all n > n0(η) we have that ∀w(k) ∈ Rk,

∣∣p
W (k)

n

(
w(k)

)
− p

W (k)
ε

(
w(k)

) ∣∣ < η, for all sufficiently large

k ∈ N . Consequently, for all
((

s(k)
)T

,
(

ŝ(k)
)T
)T
∈ R2k, n > n0(η) and a sufficiently large k ∈ N , it

follows from (D.8) that∣∣∣p
S(k)

n |Ŝ
(k)
n

(
s(k)
∣∣ŝ(k))− p

S(k)
ε |Ŝ

(k)
ε

(
s(k)
∣∣ŝ(k))∣∣∣= ∣∣∣p

W (k)
n

(
s(k) − ŝ(k)

)
− p

W (k)
ε

(
s(k) − ŝ(k)

)∣∣∣ < η. (D.15)

Following the continuity of p
S(k)

n |Ŝ
(k)
n

(
s(k)
∣∣ŝ(k)) and of p

S(k)
n
(s(k)), fk,n

(
s(k), ŝ(k)

)
is also continuous

([31] Theorem 4.9); hence, when lim
n→∞

(
s(k)n , ŝ(k)n

)
=

(
s(k), ŝ(k)

)
, then lim

n→∞
fk,n

(
s(k)n , ŝ(k)n

)
=

fk,ε

(
s(k), ŝ(k)

)
. This satisfies condition P2 for the extended CMT; Therefore, by the extended CMT, we

have that fk,n

(
S(k)

n , Ŝ(k)
n

)
(dist.)−→
n→∞

fk,ε

(
S(k)

ε , Ŝ(k)
ε

)
. Since the RVs Z̃′k,n

(
Fopt

Sn ,Ŝn

)
and Z′k,ε

(
FSε ,Ŝε

)
, defined in

(D.1), are also continuous mappings of fk,n

(
S(k)

n , Ŝ(k)
n

)
and of fk,ε

(
S(k)

ε , Ŝ(k)
ε

)
, respectively, it follows

from the CMT ([37] Theorem 7.7) that Z̃′k,n

(
Fopt

Sn ,Ŝn

)
(dist.)−→
n→∞

Z′k,ε

(
FSε ,Ŝε

)
.

Finally, to prove that the convergence Z̃′k,n

(
Fopt

Sn ,Ŝn

)
(dist.)−→
n→∞

Z′k,ε

(
FSε ,Ŝε

)
is uniform in k ∈ N , we

note that as Ŝ(k)
n and Ŝ(k)

ε have independent entries, and the backward channels (21) and (D.14) are
memoryless. Hence, it follows from the proof of ([17] Lemma B.2), that the characteristic function of
the RV k · Z̃′k,n

(
Fopt

Sn ,Ŝn

)
which is denoted by Φk·Z̃k,n

(α) , E
{

ej·α·k·Z̃k,n
}

converges to the characteristic

function of k · Z′k,ε

(
FSε ,Ŝε

)
, denoted by Φk·Zk,ε

(α), uniformly over k ∈ N . Thus, for all sufficiently
small η > 0, ∃k0 ∈ N , n0(η, k0) ∈ N such that ∀n > n0(η, k0), and ∀k > k0∣∣Φk·Z̃k,n

(α)−Φk·Zk,ε
(α)
∣∣ < η, ∀α· ∈ R. (D.16)

Hence, following Lévy’s convergence theorem ([38] Theorem 18.1) we conclude that k ·
Z̃′k,n

(
Fopt

Sn ,Ŝn

)
(dist.)−→
n→∞

k · Z′k,ε

(
FSε ,Ŝε

)
and that this convergence is uniform for sufficiently large k. Finally,

since the CDFs of k · Z̃′k,n

(
Fopt

Sn ,Ŝn

)
and k · Z′k,ε

(
FSε ,Ŝε

)
obtained at α ∈ R are equivalent to the

CDFs of Z̃′k,n

(
Fopt

Sn ,Ŝn

)
and Z′k,ε

(
FSε ,Ŝε

)
obtained at α

k ∈ R respectively, we can conclude that

Z̃′k,n

(
Fopt

Sn ,Ŝn

)
(dist.)−→
n→∞

Z′k,ε

(
FSε ,Ŝε

)
, uniformly in k ∈ N .

The following convergence lemma D.3 corresponds to ([17] Lemma B.3),

Lemma D.3. Let n ∈ N be given. Every subsequence of
{

Z̃′k,n

(
Fopt

Ŝn ,Sn

)}
k∈N

, indexed by kl , converges in
distribution, in the limit as l → ∞, to a finite deterministic scalar.
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Proof. Recall that the RVs Z̃′k,n

(
Fopt

Ŝn ,Sn

)
represent the mutual information density rate between k

samples of the source process Sn[i] and the corresponding samples of its reproduction process Ŝn[i],
where these processes are jointly distributed via the Gaussian distribution measure Fopt

Ŝn ,Sn
. Further,

recall that the relationship between the source signal and the reproduction process which achieves the
RDF can be described via the backward channel in (21) for a Gaussian source. The channel (21) is a
memoryless additive WSCS Gaussian noise channel with period pn, thus, by [21], it can be equivalently
represented as a pn × 1 multivariate memoryless additive stationary Gaussian noise channel, which
is an information stable channel ([39] Section 1.5). For such channels in which the source and its
reproduction obey the RDF-achieving joint distribution Fopt

Sn ,Ŝn
, the mutual information density rate

converges as k increases, almost surely, to the finite and deterministic mutual information rate ([14]
Theorem 5.9.1). Since almost sure convergence implies convergence in distribution ([37] Lemma 7.21),
this proves the lemma.

Appendix D.3. Showing that Rε(D) = lim sup
n→∞

Rn(D)

This section completes the proof to Theorem 4. We note from (14) that the RDF for the source
process Sn[i] (for fixed length coding and MSE distortion measure) is given by:

Rn(D) = inf
FŜn ,Sn :d̄S(FŜn ,Sn)≤D

{
p− lim sup

k→∞
Z̃′k,n

(
Fopt

Ŝn ,Sn

)}
, (D.17)

where d̄S

(
FŜn ,Sn

)
= lim sup

k→∞

1
kE
{∥∥S(k)

n − Ŝ(k)
n
∥∥2}.

We now state the following lemma characterizing the asymptotic statistics of the optimal
reconstruction Ŝ(k)

n process and the respective noise process W (k)
n used in the backward channel

relationship (21):

Lemma D.4. Consider the RDF-achieving distribution with distortion D for compression of a vector Gaussian
source process S(k)

n characterized by the backward channel (21). Then, there exists a subsequence in the index
n ∈ N denoted n1 < n2 < . . ., such that for the RDF-achieving distribution, the sequences of reproduction
vectors {Ŝ(k)

nl }l∈N and backward channel noise vectors {W (k)
nl }l∈N satisfy that lim

l→∞
p

Ŝ(k)
nl

(
ŝ(k)
)
= p

Ŝ(k)
ε

(
ŝ(k)
)

uniformly in ŝ(k) ∈ Rk and uniformly with respect to k ∈ N , as well as lim
l→∞

p
W (k)

nl

(
w(k)

)
= p

W (k)
ε

(
w(k)

)
uniformly in w(k) ∈ Rk and uniformly with respect to k ∈ N , where p

Ŝ(k)
ε

(
ŝ(k)
)

and p
W (k)

ε

(
w(k)

)
are

Gaussian PDFs.

Proof. Recall from the analysis of the RDF for WSCS processes that for each n ∈ N , the marginal
distributions of the RDF-achieving reproduction process Ŝn[i] and the backward channel noise Wn[i] is
Gaussian, memoryless, zero-mean, and with variances σ2

Ŝn
[i] , E

{(
Ŝn[i]

)2
}

and

E
{(

Wn[i]
)2
}
= σ2

Sn
[i]− σ2

Ŝn
[i], (D.18)

respectively. Consequently, the sequences of reproduction vectors {Ŝ(k)
n }n∈N and backward channel

noise vectors {W (k)
n }n∈N are zero-mean Gaussian with independent entries for each k ∈ N . Since

σ2
Sn
[i] ≤ max

t∈R
σ2

Sc
(t), then, from (D.18), it follows that σ2

Ŝn
[i] is also bounded in the interval [0, max

t∈R
σ2

Sc
(t)]

for all n ∈ N . Therefore, by Bolzano-Weierstrass theorem ([31] Theorem 2.42), σ2
Ŝn
[i] has a convergent

subsequence, and we let n1 < n2 < . . . denote the indexes of this convergent subsequence and let
the limit of the subsequence be denoted by σ2

Ŝε
[i]. From the CMT, as applied in the proof of ([17]

Lemma B.1), the convergence σ2
Ŝnl

[i]−→
l→∞

σ2
Ŝε
[i] for each i ∈ N implies that the subsequence of PDFs
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p
Ŝ(k)

nl

(
ŝ(k)
)

corresponding to the memoryless Gaussian random vectors {Ŝ(k)
nl }l∈N converges as l → ∞

to a Gaussian PDF which we denote by p
Ŝ(k)

ε

(
ŝ(k)
)

, and the convergence of p
Ŝ(k)

nl

(
ŝ(k)
)

is uniform in

s(k) for any fixed k ∈ N . By Remark 2, it holds that Wn[i] is a memoryless stationary process with
variance E

{
(Wn[i])

2
}
= D and by Equation (D.18), σ2

Ŝn
[i] = σ2

Sn
[i]− D. Hence by Assumption D.1

and by the proof of ([17] Lemma B.1), it follows that for a fixed η > 0 and k0 ∈ N , ∃n0(η, k0) such that
for all n > n0(η, k0) and for all sufficiently large k, it holds that

∣∣p
Ŝ(k)

nl

(
ŝ(k)
)
− p

Ŝ(k)
ε

(
ŝ(k)
)∣∣ < η for every

ŝ(k) ∈ Rk. Since n0(η, k0) does not depend on k (only on the fixed k0), this implies that the convergence
is uniform with respect to k ∈ N .

The fact that Wn[i] is a zero-mean stationary Gaussian process with variance D for each n ∈ N ,
implies that the sequence of PDFs p

W (k)
n

(
w(k)

)
converges as n → ∞ to a Gaussian PDF which

we denote by pW (k)

(
w(k)

)
, hence its subsequence with indices n1 < n2 < . . . also converges to

pW (k)

(
w(k)

)
. Since D > 1

2π by Assumption D.1 combined with the proof of ([17] Lemma B.1) it

follows that this convergence is uniform in w(k) and in k ∈ N to p
W (k)

ε

(
w(k)

)
.

Following the proof of Corollary D.1, it holds that the subsequences of the memoryless
Gaussian random vectors

{
Ŝ(k)

nl

}
and

{
W (k)

nl

}
converge in distribution as l → ∞ to a Gaussian

distribution, and the convergence is uniform in k ∈ N for any fixed k ∈ N . Hence, as

shown in Lemma D.2 the joint distribution
[(

S(k)
nl

)T ,
(
Ŝ(k)

nl

)T
]T (dist.)−→

n→∞

[(
S(k)

ε

)T ,
(
Ŝ(k)

ε

)T
]T

, and the limit
distribution is jointly Gaussian.

Lemma D.5. The RDF of {Sε[i]} satisfies Rε(D) ≤ lim sup
n→∞

Rn(D), and the rate lim sup
n→∞

Rn(D) is achievable

for the source {Sε[i]} with distortion D when the reproduction process which obeys a Gaussian distribution.

Proof. According to Lemma D.4, we note that the sequence of joint distributions {Fopt
Sn ,Ŝn
}n∈N has a

convergent subsequence, i.e., there exists a set of indexes n1 < n2 < . . . such that the sequence of
distributions with independent entries {Fopt

Snl ,Ŝnl
}l∈N converges in the limit l → ∞ to a joint Gaussian

distribution F′
Sε ,Ŝε

and the convergence is uniform in k ∈ N . Hence, this satisfies the condition

of Lemma D.2; This implies that Z̃′k,nl

(
Fopt

Snl ,Ŝnl

)
(dist.)−→
l→∞

Z′k
(

F′
Sε ,Ŝε

)
uniformly in k ∈ N . Moreover, by

Lemma D.3 every subsequence of
{

Z̃′k,nl

(
Fopt

Snl ,Ŝnl

)}
l∈N converges in distribution to a finite deterministic

scalar as k→ ∞. Therefore, by Theorem 3 it holds that

lim
l→∞

(
p− lim sup

k→∞
Z̃′k,nl

(
Fopt

Snl ,Ŝnl

))
= p− lim sup

k→∞
Z′k,ε

(
F′Sε ,Ŝε

)
≥ inf

FSε ,Ŝε

{
p− lim sup

k→∞
Z′k,ε

(
FSε ,Ŝε

)}
= Rε(D). (D.19)

From (14) we have that Rn(D) = p− lim sup
k→∞

Z̃′k,n

(
Fopt

Sn ,Ŝn

)
, then from (D.19), it follows that

Rε(D) ≤ lim
l→∞

Rnl (D)
(a)
≤ lim sup

n→∞
Rn(D), (D.20)

where (a) follows since, by ([31] Definition 3.16), the limit of every subsequence is not greater than the
limit superior. Noting that F′

Sε ,Ŝε
is Gaussian by Lemma D.4 concludes the proof.
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Lemma D.6. The RDF of {Sε[i]} satisfies Rε(D) ≥ lim sup
n→∞

Rn(D).

Proof. To prove this lemma, we first show that for a joint distribution FSε ,Ŝε
which achieves a

rate-distortion pair (Rε, D) it holds that Rε ≥ E{Z′k,ε(F′
Sε ,Ŝε

)}: Recall that (Rε, D) is an achievable
rate-distortion pair for the source {Sε[i]}, namely, there exists a sequence of codes {Cl} whose
rate-distortion approach (Rε, D) when applied to {Sε[i]}, This implies that for any η > 0 there
exists l0(η) such that ∀l > l0(η) it holds that Cl has a code rate Rl =

1
l log2 Ml satisfying Rl ≤ Rε + η

by (3). Recalling Definition 5, the source code maps S(l)
ε into a discrete index Jl ∈ {1, 2, . . . , Ml}, which

is in turn mapped into Ŝ(l)
ε , i.e., S(l)

ε 7→ Jl 7→ Ŝ(l)
ε form a Markov chain. Since Jl is a discrete random

variable taking values in {1, 2, . . . , Ml}, it holds that

log2 Ml ≥ H(Jl)

(a)
≥ I(S(l)

ε ; Jl)

(b)
≥ I(S(l)

ε ; Ŝ(l)
ε ), (D.21)

where (a) follows since I(S(l)
ε ; Jl) = H(Jl)−H(Jl |S

(l)
ε ) which is not larger than H(Jl) as Jl takes discrete

values; while (b) follows from the data processing inequality ([5] Chapter 2.8). Now, (D.21) implies
that for each l > l0(η), the reproduction obtained using the code Cl satisfies 1

l I(S(l)
ε ; Ŝ(l)

ε ) ≤ 1
l log Ml ≤

Rε + η. Since for every arbitrarily small η → 0, this inequality holds for all l > l0(η), i.e., for all
sufficiently large l, it follows that Rε ≥ lim sup

k→∞

1
l I(S(l)

ε ; Ŝ(l)
ε ). Hence, replacing the blocklength symbol

from l to k, as 1
k I(S(k)

ε , Ŝ(k)
ε ) = E{Z′k,ε(F′

Sε ,Ŝε
)}([5] Equation (2.3)), we conclude that

Rε(D) ≥ lim sup
k→∞

E{Z′k,ε(F′Sε ,Ŝε
)}. (D.22)

Next, we consider lim sup
k→∞

E{Z′kl ,ε
(F′

Sε ,Ŝε
)}: Let Z′kl ,ε

(
F′

Sε ,Ŝε

)
be a subsequence of E

{
Z′k,ε(F′

Sε ,Ŝε
)
}

with the indexes k1 < k2 < . . . such that its limit equals the limit superior. i.e., lim
l→∞

E
{

Z′kl ,ε

(
F′

Sε ,Ŝε

)}
=

lim sup
k→∞

E
{

Z′k,ε

(
F′

Sε ,Ŝε

)}
. Since by Lemma D.2, the sequence of non-negative RVs

{
Z̃′kl ,n

(
Fopt

Sn ,Ŝn

)}
n∈N

convergences in distribution to Z′kl ,ε

(
F′

Sε ,Ŝε

)
as n → ∞ uniformly in k ∈ N , it follows from ([40]

Theorem 3.5) that E
{

Z′kl ,ε

(
F′

Sε ,Ŝε

)}
= lim

n→∞
E
{

Z̃′kl ,n

(
Fopt

Sn ,Ŝn

)}
. Moreover, we define a family of

distributions F (D) such that F (D) = {FS,Ŝ : D
(

FS,Ŝ

)
≤ D}. Consequently, Equation (D.22) can now

be written as:

Rε(D) ≥ lim sup
k→∞

E
{

Z′k,ε

(
F′Sε ,Ŝε

)}
= lim

l→∞
lim

n→∞
E
{

Z̃′kl ,n

(
Fopt

Sn ,Ŝn

)}
(a)
= lim

n→∞
lim
l→∞

E
{

Z̃′kl ,n

(
Fopt

Sn ,Ŝn

)}
(b)
= lim sup

n→∞
lim
l→∞

E
{

Z̃′kl ,n

(
Fopt

Sn ,Ŝn

)}
≥ lim sup

n→∞
lim
l→∞

inf
FS,Ŝ∈F (D)

E
{

Z̃′kl ,n

(
FS,Ŝ

)}
(c)
= lim sup

n→∞
lim
l→∞

inf
FS,Ŝ∈F (D)

1
kl

I
(

Ŝ(kl)
n ; S(kl)

n

)
, (D.23)
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where (a) follows since the convergence Z̃′kl ,n

(
Fopt

Sn ,Ŝn

)
(dist.)−→
n→∞

Z′kl ,ε

(
F′

Sε ,Ŝ

)
is uniform with respect

to kl , thus the limits are interchangeable ([31] Theorem 7.11); (b) follows since the limit of the
subsequence E

{
Z̃′kl ,n

(
Fopt

Sn ,Ŝn

)}
exists in the index n, and is therefore equivalent to the limit superior,

lim sup
n→∞

E
{

Z̃′kl ,n

(
Fopt

Sn ,Ŝn

)}
([31] Page 57); and (c) holds since mutual information is the expected value

of the mutual information density rate ([5] Equation (2.30)). Finally, we recall that in the proof of
Lemma D.3 it was established that the backward channel for the RDF at the distortion constraint D,
defined in (21), is information stable, hence for such backward channels, we have from ([41] Theorem
1) that the minimum rate is defined as Rn(D) = lim

k→∞
inf

FS,Ŝ∈F (D)

1
k I
(

Ŝ(k)
ε ; S(k)

n

)
and the limit exists;

Hence, lim
k→∞

inf
FS,Ŝ∈F (D)

1
k I
(

Ŝ(k)
ε ; S(k)

n

)
= lim

l→∞
inf

FS,Ŝ∈F (D)

1
kl

I
(

Ŝ(kl); S(kl)
n

)
in the index k. Substituting this

into Equation (D.23) yields the result:

Rε(D) ≥ lim sup
n→∞

Rn(D). (D.24)

This proves the lemma.

Combining the Lemmas D.5 and D.6 proves that Rε(D) = lim sup
n→∞

Rn(D) and the rate is achievable

with Gaussian inputs, completing the proof of the theorem.

References

1. Gardner, W.; Brown, W.; Chen, C.K. Spectral correlation of modulated signals: Part II-digital modulation.
IEEE Trans. Commun. 1987, 35, 595–601.

2. Giannakis, G.B. Cyclostationary signal analysis. In Digital Signal Processing Handbook; CRC PRESS:
Boca Raton, FL, USA, 1998; pp. 17–21.

3. Gardner, W.A.; Napolitano, A.; Paura, L. Cyclostationarity: Half a century of research. Signal Process. 2006,
86, 639–697.

4. Berger, T.; Gibson, J.D. Lossy source coding. IEEE Trans. Inf. Theory 1998, 44, 2693–2723.
5. Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: New York, NY, USA, 2006.
6. Wolf, J.K.; Wyner, A.D.; Ziv, J. Source coding for multiple descriptions. Bell Syst. Tech. J. 1980, 59, 1417–1426.
7. Wyner, A.D.; Ziv, J. The rate-distortion function for source coding with side information at the decoder.

IEEE Trans. Inf. Theory 1976, 22, 1–10.
8. Oohama, Y. Gaussian multiterminal source coding. IEEE Trans. Inf. Theory 1997, 43, 1912–1923.
9. Pandya, A.; Kansal, A.; Pottie, G.; Srivastava, M. Lossy source coding of multiple Gaussian sources: m-helper

problem. In Proceedings of the IEEE Information Theory Workshop, San Antonio, TX, USA, 24–29 October
2004; pp. 34–38.

10. Gallager, R.G. Information Theory and Reliable Communication; Springer: Berlin, Germany, 1968; Volume 588.
11. Harrison, M.T. The generalized asymptotic equipartition property: Necessary and sufficient conditions.

IEEE Trans. Inf. Theory 2008, 54, 3211–3216.
12. Kipnis, A.; Goldsmith, A.J.; Eldar, Y.C. The distortion rate function of cyclostationary Gaussian processes.

IEEE Trans. Inf. Theory 2018, 64, 3810–3824.
13. Napolitano, A. Cyclostationarity: New trends and applications. Signal Process. 2016, 120, 385–408.
14. Han, T.S. Information-Spectrum Methods in Information Theory; Springer: Berlin, Germany, 2003; Volume 50.
15. Verdú, S.; Han, T.S. A general formula for channel capacity. IEEE Trans. Inf. Theory 1994, 40, 1147–1157.
16. Zeng, W.; Mitran, P.; Kavcic, A. On the information stability of channels with timing errors. In Proceedings

of the IEEE International Symposium on Information Theory (ISIT), Seattle, WA, USA, 9–14 July 2006;
pp. 1885–1889.

17. Shlezinger, N.; Abakasanga, E.; Dabora, R.; Eldar, Y.C. The Capacity of Memoryless Channels with Sampled
Cyclostationary Gaussian Noise. IEEE Trans. Commun. 2020, 68, 106–121.

18. Shannon, C.E. Communication in the presence of noise. Proc. IEEE 1998, 86, 447–457.



Entropy 2020, 22, 345 34 of 34

19. Cherif, F. A various types of almost periodic functions on Banach spaces: Part I. Int. Math. Forum 2011,
6, 921–952.

20. Shlezinger, N.; Dabora, R. On the capacity of narrowband PLC channels. IEEE Trans. Commun. 2015,
63, 1191–1201.

21. Shlezinger, N.; Dabora, R. The capacity of discrete-time Gaussian MIMO channels with periodic
characteristics. In Proceedings of the IEEE International Symposium on Information Theory (ISIT), Barcelona,
Spain, 10–16 October 2016; pp. 1058–1062.

22. Shlezinger, N.; Zahavi, D.; Murin, Y.; Dabora, R. The secrecy capacity of Gaussian MIMO channels with
finite memory. IEEE Trans. Inf. Theory 2017, 63, 1874–1897.

23. Heath, R.W.; Giannakis, G.B. Exploiting input cyclostationarity for blind channel identification in OFDM
systems. IEEE Trans. Signal Process. 1999, 47, 848–856.

24. Shaked, R.; Shlezinger, N.; Dabora, R. Joint estimation of carrier frequency offset and channel impulse
response for linear periodic channels. IEEE Trans. Commun. 2017, 66, 302–319.

25. Shlezinger, N.; Dabora, R. Frequency-shift filtering for OFDM signal recovery in narrowband power line
communications. IEEE Trans. Commun. 2014, 62, 1283–1295.

26. El Gamal, A.; Kim, Y.H. Network Information Theory; Cambridge University Press: Cambridge, UK, 2011.
27. Wu, X.; Xie, L.L. On the optimal compressions in the compress-and-forward relay schemes. IEEE Trans.

Inf. Theory 2013, 59, 2613–2628.
28. Zitkovic, G. Lecture Notes on the Theory of Probability Parts I and II. Available online: https://web.ma.

utexas.edu/users/gordanz/lecture_notes_page.html (accessed on 12 March 2020).
29. Papoulis, A. Probability, Random Variables, and Stochastic Processes; McGraw-Hill: New York, NY, USA, 2002.
30. Zamir, R.; Kochman, Y.; Erez, U. Achieving the Gaussian rate–distortion function by prediction. IEEE Trans.

Inf. Theory 2008, 54, 3354–3364.
31. Rudin, W. Principles of Mathematical Analysis; International series in pure and applied mathematics;

McGraw-Hill: New York, NY, USA, 1976.
32. Dixmier, J. General Topology; Springer-Verlag: New York, NY, USA, 1984.
33. Stein, E.M.; Shakarchi, R. Real Analysis: Measure Theory, Integration, and Hilbert Spaces; Princeton University

Press: Princeton, NJ, USA, 2009.
34. Kolmogorov, A. On the Shannon theory of information transmission in the case of continuous signals.

IRE Trans. Inf. Theory 1956, 2, 102–108.
35. Scheffé, H. A useful convergence theorem for probability distributions. Ann. Math. Stat. 1947, 18, 434–438.
36. Bromiley, P. Products and convolutions of Gaussian probability density functions. Tina-Vision Memo 2003,

3, 1.
37. Kosorok, M.R. Introduction to Empirical Processes and Semiparametric Inference.; Springer: New York, NY, USA,

2008.
38. Williams, D. Probability with Martingales; Cambridge University Press: Cambridge, UK, 1991.
39. Dobrushin, R.L. A general formulation of the fundamental theorem of Shannon in the theory of information.

Uspekhi Matematicheskikh Nauk 1959, 14, 3–104.
40. Billingsley, P. Convergence of Probability Measures; John Wiley & Sons: New York, NY, USA, 2013.
41. Venkataramanan, R.; Pradhan, S.S. Source coding With feed-forward: Rate-distortion theorems and error

exponents for a general source. IEEE Trans. Inf. Theory 2007, 53, 2154–2179.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://web.ma.utexas.edu/users/gordanz/lecture_notes_page.html
https://web.ma.utexas.edu/users/gordanz/lecture_notes_page.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries and Background
	Notations
	Wide-Sense Cyclostationary Random Processes
	The Rate-Distortion Function for DT WSCS Processes

	Problem Formulation and Auxiliary Results
	Source Model
	Definitions of Relevant Information-Spectrum Quantities
	Information Spectrum Limits

	Rate-Distortion Characterization for Sampled CT WSCS Gaussian Sources
	Main Result
	Discussion and Relationship with Capacity Derivation in Reference 17

	Numerical Examples
	Convergence of Rn(D) in n
	The Variation of the RDF with the Sampling Rate

	Conclusions
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 3
	Proof of Theorem 4 
	Convergence in Distribution of Sn to Seps Uniformly with Respect to set
	Showing that zkn and zk Satisfy the Conditions of Theorem 3
	Showing that RntoReps

	References

