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ABSTRACT

We study the discrete, memoryless multiple-access channelwith two independent sources, two relays and a single
destination. We refer to this configuration as the multiple-access channel with multiple relays (MACMR), which is a
generalization of the multiple-access relay channel (MARC) model obtained by adding a relay node. We present inner
and outer bounds on the capacity region of the MACMR. The inner bound is based on a hierarchical decode-and-forward
scheme, in which each relay decodes the messages of the lowerhierarchy. We extend the regular encoding, sliding-window
decoding and backward decoding techniques, previously applied to MARCs and multiple-relay channels, to MACMRs.
The outer bounds are obtained using the cut-set bound. For Gaussian MACMRs the bounds are evaluated and compared
to those obtained for the multiple-access channel with parallel relays. We conclude that a significant improvement in
performance can be obtained by letting the relays interact with each other. Copyrightc© 0000 John Wiley & Sons, Ltd.

1. INTRODUCTION

In this work we study the multiple-access channel with
multiple relays (MACMR). This model extends the
multiple-access relay channel (MARC) by adding relays
to assist the communication from the sources to the
destination. We first recall the main results on the two
component channels of the MACMR: the MARC and the
multiple-relay channel.

1.1. The Multiple-Access Relay Channel

The MARC is a network in which several users
communicate with a single destination in the presence
of a relay [1]. A two-user MARC is depicted in Figure
1. The MARC is a suitable model for situations in
which direct cooperation between the nodes is either
undesirable or not possible, but an intermediate relay node
is available to aid communications between the sources
and the destination. This model, therefore, applies to
hybrid wireless LAN/WAN networks, sensor networks,
and ad hoc networks. An outer bound on the capacity of
the discrete memoryless MARC (DM-MARC) using cut-
sets was derived in [1] (see also [2]). An achievable rate
region for the Gaussian MARC was also obtained in [1]
by extending the decode-and-forward (DF) coding scheme
proposed in [3]. The DF scheme of [3] combines block
Markov superposition encoding, random partitioning
(binning), and successive decoding. An achievable rate
region was also obtained in [4] using DF based on block
Markov encoding and backward decoding (see [5]). In [6],

Figure 1. A two-user multiple-access relay channel.

potentially tighter outer bounds on the capacity region of
the DM-MARC as well as achievable rate regions based
on the compress-and-forward strategy, [3, Theorem 6],
were obtained, and an achievable rate region for Gaussian
MARCs, based on the amplify-and-forward strategy, was
derived.

Additionally, in [6], [7] a new code construction for
MARCs using offset encoding with the DF strategy was
presented. This construction facilitates the more practical
window decoding (see [8]) at the destination, while
achieving the same rate region as in backward decoding.
At the same time, this construction avoids the excessive
delay associated with backward decoding.

One simple instance of the MARC is the degraded
Gaussian MARC [9]. AK-user Gaussian MARC is
degraded when, given the transmitted signal at the relay,
the multiple-access signal received at the destination is
a noisier version of the signal received at the relay.
For a K-user degraded Gaussian MARC, Sankar et al.
developed an inner bound on the capacity region using
Gaussian codebooks at the sources and at the relay and
the DF strategy. Outer bounds on the capacity region
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were obtained by specializing the cut-set bound of [10,
Theorem 15.10.1] to the case of independent sources and
by applying the degradedness condition.

In [11] Ho et al. proposed and analyzed a decode-and-
forward scheme for the MARC with generalized feedback.
In their scheme, a common auxiliary random variable
is used for facilitating cooperation. This requires that
all nodes successfully decode the messages intended for
cooperation. The coding scheme of [11] can be viewed
as a combination of the schemes for the MARC and for
the two-way relay channel [12]. Another type of MARC
with feedback is the MARC with relay-source feedback
that was studied by Hou et al. in [13].

1.2. The Multiple Relay Channel

In the classic relay channel [3], a single helper node
assists the communication from a single source to a single
destination. In recent years there has been increasing
interest in scenarios that include multiple relays. For
instance, the Gaussian parallel relay channel considered in
[14] includes two relay nodes. In [15] the DF scheme was
applied to the physically degraded Gaussian multiple-relay
channel and its capacity was characterized. The general
multiple-level relay channel, where each level of relaying
consists of one or more nodes was studied in [16]. In this
paper the irregular encoding/sliding-window decoding DF
scheme of [3] was extended to multiple relays, and an
achievable rate expression was derived.

In [17], Xie and Kumar proposed a new coding
scheme for the Gaussian multiple-level relay channel
by combining regular encoding with sliding-window
decoding. The scheme they developed is an extension
of [8] to a multistage format (i.e., sliding-window). This
scheme gives the same achievable rate for the single-relay
channel as in [3]. However, it is easier to extend to the
multiple-level relay channel, and generally achieves higher
rates than those achieved in [16]. An achievable rate using
the regular encoding/sliding-window decoding scheme for
the DM multiple-relay channel was derived in [18].

Kramer, Gastpar and Gupta applied in [19] the regular
encoding/sliding-window decoding scheme to memoryless
relay networks, and generalized the approach of [17] to
additional classes of relay networks. They also generalized
regular encoding/backward decoding to the multiple-relay
channel. The achievable rates of the two regular encoding
methods turn out to be the same. However, thedelay of
sliding-window decoding is lower than that of backward
decoding. Additional related work can be found in [28],
[29] and [30].

1.3. Previous Models and Results for MACMRs

We now describe two models for MACMRs that were
considered recently, which are most relevant to the present
work. These models serve as a baseline for our work.
The first model is the multiple-access channel (MAC) with
multiple parallel relays (MPR-MAC) studied in [20]–[22].
Two relays are said to be parallel if there is no direct link

between them, while each relay has a direct link from the
source and a direct link towards the destination. In [20],
del Coso et al. derived the capacity region for the multiple-
access channel assisted byN parallel relays that have only
buffering and amplifying capabilities. In [21], the authors
derived rate regions for the MAC assisted byN parallel
relays using the DF strategy. The work [21] considered
both full-duplex and half-duplex relaying. The asymptotic
sum-rate for this channel under Rayleigh fading was also
presented. In [22], an achievable rate region with linear
relaying was derived for the MPR-MAC. In linear relaying,
each relay node transmits at each symbol time a linear
combination of its previously received channel outputs, see
[24]. Additional results on the MPR-MAC can be found in
[23].
• The scenario considered in this work generalizes the
one in [20]–[22] as we consider non-parallel relays: in the
present work, each relay can use the signal from the other
relay to enhance coordination.

The second model is the multiple-access relay network
(MARN), studied in [25]. The MARN consists of multiple
transmitters, multiple relays and a single receiver. The
authors obtained an achievable rate region for MARNs by
considering the partial decode-and-forward (PDF) strategy
at the relays. They showed that the region obtained using
the PDF strategy subsumes the region obtained by for the
MARC in [19]. They also define the semi-deterministic
MARN, in which the output of every transmitter-relay link
is a deterministic function of the input from the transmitter.
The authors present inner and outer bounds on the capacity
region of the semi-deterministic MARN.
• The key difference between the present contribution and
the work of [25] is in the way the relays cooperate: in our
network the relays cooperate witheach other in order to
improve their effectiveness in assisting the communication
between sources and destination. In the scheme of [25],
each relay cooperates with the sources, but the relaysdo
not cooperate between themselves. Our scheme is therefore
more general then the one in [25], but the one in [25] has
the advantage of scalability, and it can be easily adapted to
any number of relays. These differences will be elaborated
later.

The rest of this paper is organized as follows: In Section
2 we introduce the notation, channel model and definitions.
In Section 3 we present the coding scheme and derive
an achievable rate region for the MACMR. In Section
4 we derive the cut-set outer bound for the MACMR.
We also write explicit expressions for the outer and inner
bounds for the Gaussian MACMR. In Section 5 the bounds
are numerically evaluated and comparison with previous
work is made. It is demonstrated that in some scenarios,
our achievable rate region is outside the outer bound for
the MACMR with parallel relays (i.e., the MPR-MAC)
considered in [23]. Finally, Section 6 concludes the work.

2 Eur. Trans. Telecomms. 0000; 00:1–16 c© 0000 John Wiley & Sons, Ltd.
DOI: 10.1002/ett

Prepared using ettauth.cls



Boaz Ghelber and Ron Dabora

2. NOTATIONS AND CHANNEL MODEL

In the following we denote random variables with upper
case letters, e.g.X, Y , and their realizations with lower
case letters,x, y. A random variable (RV)X takes values
in a setX . We usepX(x) to denote the probability mass
function (p.m.f.) of a discrete RVX onX . For brevity we
may omit the subscriptX when it is the uppercase version
of the realization symbolx. We usepX|Y (x|y) to denote
the conditional p.m.f. ofX given Y . We denote column
vectors with boldface letters, e.g.x, y; the i’th element
of a vectorx is denoted withxi and we usexj

i where
i < j to denote the vector(xi, xi+1, ..., xj−1, xj); xj is
a short form notation forxj

1, andx ≡ xn. A vector of
random variables is denoted byX ≡ Xn. I(·; ·) denotes
the mutual information between two random variables,
H(·) andh(·) denote the entropy and differential entropy,
respectively, as defined in [10, Chapter 2, Chapter 8].X∗

denotes the conjugate ofX andAH denotes the Hermitian
transpose of a matrixA. We denote withA(n)

ǫ the set of
weakly jointly-typical sequences as defined in [10, Chapter
3]. Finally, we denote the proper, circularly symmetric,
complex Normal distribution with meanµ and varianceσ2

by CN (µ, σ2), andE{X} is the stochastic expectation of
X.

Figure 2. The multiple-access channel with multiple relays.

The multiple-access channel with multiple relays
is depicted in Figure 2. In this network two users
communicate with a single destination with the help
of two relays. There are four channel inputs,X1, X2,
X3, X4, and three channel outputs,Y , Y3 and Y4. The
transmitters send independent messagesW1 and W2,
representing information at ratesR1 andR2 respectively.
Transmission is carried out in blocks of lengthn. X1,i

and X2,i, the channel inputs from sources1, 2 at time
i, i = 1, 2, ...n, are functions ofW1,W2 respectively. The
relays’ channel inputsX3,i andX4,i are causal functions
of theirs received signals,Y i−1

3,1 andY i−1
4,1 , respectively.

The relays are assisting both transmitters to communicate
with the receiver. The destination uses the channel output
Y n to decode the messages(W1, W2). The channel is
assumed to be causal, time-invariant, and memoryless as
characterized by the conditional probability distribution

p(yi, y3,i, y4,i|xi
1,1, x

i
2,1, x

i
3,1, x

i
4,1, y

i−1
1 , yi−1

3,1 , yi−1
4,1 ,

w1, w2) = p(yi, y3,i, y4,i|x1,i, x2,i, x3,i, x4,i).

We define an(R1, R2, n) code for the MACMR to consist
of

1. Two sets of integersW1 , {1, 2, ..., 2nR1} and
W2 , {1, 2, ..., 2nR2}, called message sets.

2. Two encoding functions at the sources,ek : Wk 7→
Xn

k , k = 1, 2.
3. Two sets of relay functions{fji}ni=1, j = 3, 4, such

thatxj,i = fji(y
i−1
j,1 ), i = 1, 2, . . . , n, j = 3, 4.

4. A decoding function at the destination,g : Yn 7→
W1 ×W2

We define the average probability of error for this code as

P (n)
e , Pr

{
g(Y) 6= (W1,W2)

}

=
1

2nR1 · 2nR2

∑

(w1,w2)∈W1×W2

Pr
{
g(Y) 6=

(w1, w2)|W1 = w1,W2 = w2

}
,

under the assumption that the messagesW1 andW2 are
drawn according to a uniform distribution overW1 ×W2.
The rate pair(R1, R2) is said to be achievable for the
MACMR if there exists a sequence of(R1, R2, n) codes
with P

(n)
e → 0, asn → ∞.

In the followingwk,b denotes the message transmitted
from nodek ∈ {1, 2} at message intervalb.

3. A NEW ACHIEVABLE REGION

In this section we present a new achievable region for the
multiple-access channel with multiple relays. The region
is obtained by extending the multi-relay DF scheme to
MACMRs with two sources and two relays. The achievable
region is characterized in the following theorem:

Theorem 1
Any non-negative rate pair(R1, R2) satisfying constraints
(1)–(3):

R1 ≤ I(X1;Y3|X2, X3, X4, V
(2)
1 ) (1a)

R2 ≤ I(X2;Y3|X1, X3, X4, V
(2)
2 ) (1b)

R1 +R2 ≤ I(X1, X2;Y3|X3, X4, V
(2)
1 , V

(2)
2 ), (1c)

R1 ≤ I(X1;Y4|X2, X3, X4, V
(2)
1 )

+ I(X3, V
(2)
1 ;Y4|X4, V

(1)
1 , V

(2)
2 ) (2a)

R2 ≤ I(X2;Y4|X1, X3, X4, V
(2)
2 )

+ I(X3, V
(2)
2 ;Y4|X4, V

(2)
1 , V

(1)
2 ) (2b)

R1 +R2 ≤ I(X1, X2, X3;Y4|X4, V
(1)
1 , V

(1)
2 ), (2c)

R1 ≤ I(X1, X3, X4;Y |X2, V
(1)
2 , V

(2)
2 ) (3a)

R2 ≤ I(X2, X3, X4;Y |X1, V
(1)
1 , V

(2)
1 ) (3b)

R1 +R2 ≤ I(X1, X2, X3, X4;Y ), (3c)
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subject to input distribution

p(x1, x2, x3, x4, v
(1)
1 , v

(2)
1 , v

(1)
2 , v

(2)
2 ) =

p(v
(1)
1 )p(v

(1)
2 )p(v

(2)
1 |v(1)1 )p(v

(2)
2 |v(1)2 )p(x4|v(1)1 , v

(1)
2 )

p(x1|v(2)1 )p(x2|v(2)2 )p(x3|v(2)1 , v
(2)
2 , x4), (4)

is achievable.

Figure 3. Schematic description of the Markov chain for the
MACMR.

In the constraints above, equations (1) are decoding
constraints at relay1, equations (2) are decoding
constraints at relay2 and equations (3) are decoding
constraints at the destination. The Markov chain (4) is
schematically depicted in Figure 3. This chain lends itself
to the following interpretation: consider transmission of
B − 2 messages.V (1)

1 , V (2)
1 , V (1)

2 andV (2)
2 are auxiliary

random variables that enable cooperation between the
relays and the two sources.V (2)

1 andV
(2)
2 are functions

of the messagesW1 and W2 respectively, sent by the
sources in the previous message interval.V

(1)
1 andV (1)

2 are
functions of the messagesW1 andW2 respectively, sent
by the sources two message intervals before. Relay1 is
cooperating with both sources and with relay2 by sending
signals which depend onV (2)

1 , V (2)
2 andX4. Relay2 is

cooperating with both sources by sending signals which
depend onV (1)

1 and V
(1)
2 . The two sources are also

transmitting signals which depend onV (2)
1 , V (2)

2 .
Note that in the present work, coordination at timeb

is achieved using the messages sent at the two previous
blocks: sourcek cooperates with relay1 through the
messagewk,b−1 and with relay2 through the message
wk,b−2, k ∈ {1, 2}.

In the MARN [25] source-relay cooperation at time
b is achieved through the messages that were sent at
the previous block, i.e., only at blockb− 1: source1
cooperates with relay1 through the messagewr1

1,b−1

and with relay2 through the messagewr2
1,b−1. Source2

cooperates with relay1 through the messagewr1
2,b−1 and

with relay 2 through the messagewr2
2,b−1. The sources

do not cooperate with each other. Note that each relay
coordinates its transmissions with the sources, but relay
1 and relay2 do not coordinate their transmissions with
each other. Also note that while in our scheme source-
relay coordination is achieved for the entire messages, in
[25] coordination is done using only parts of the messages.

To demonstrate the difference between the schemes,
consider a multihop wireless network example in which
relay 1 is the only node that can reliably decode the
sources’ messages, as depicted in Figure 4. In the scheme
proposed in [25] the relays do not cooperate with each
other, and because each relay decodes only part of each
message, relay2 becomes useless and the scheme [25] uses
the channel as a standard MARC. In the scheme proposed
in the present paper the relays cooperate also with each
other, and due to this interaction, relay2 is useful also in
multihop scenarios: First, the signals from both sources are
observed at relay1, then relay2 observes the signal of relay
1, and lastly, the destination observes the signals from both
relays.

Figure 4. A multihop MACMR scenario.

The rest of this section is dedicated to the detailed proof of
Theorem 1.

3.1. Proof Outline of Theorem 1

The channel model in Figure 2 combines elements of
both the MARC and the multiple-relay channel. Encoding
and decoding techniques employed in both models are
therefore used in our code construction. Due to the
observations described in Sections 1.1 and 1.2, the coding
scheme developed for the MACMR in this work combines
regular encoding, MAC decoding at relay1, sliding-
window decoding at relay2, and backward decoding at the
destination.

An important property of our coding scheme is that, due
to the use of multiple relays, the codebooks used at any two
consecutive message blocks are independent of each other.
Therefore, in the decoding process, when simultaneously
considering consecutive blocks, the error events arising
from each block are independent, see [18].

3.2. The Coding Scheme for Theorem 1

Each source sendsB − 2 messages, each sent using a
codeword ofn channel symbols, inB transmission blocks.
For sourcek, k ∈

{
1, 2

}
, the messages are denoted with

wk,b ∈ Wk, b = 1, 2, . . . , B − 2. Note that asB → ∞,
for a fixedn, the bit rateRk(B − 2)/B is arbitrarily close
toRk, k ∈

{
1, 2

}
.

Fix the input distribution (4). Codebook construction
now proceeds as follows:
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1. Generate at random2nRk i.i.d n-sequences in
V(1)
k

n
, each drawn according to

p(v
(1)
k ) =

n∏

i=1

p(v
(1)
k,i),

k ∈
{
1, 2

}
. Index them asv(1)

k

(
s
(1)
k

)
, s(1)k ∈ Wk,

k ∈
{
1, 2

}
.

2. For eachv(1)
k (s

(1)
k ), generate2nRk conditionally

independent n-sequencesv(2)
k (s

(2)
k |s(1)k ), s

(2)
k ∈

Wk, drawn according to

p
(
v
(2)
k

∣
∣v

(1)
k (s

(1)
k )

)
=

n∏

i=1

p
(
v
(2)
k,i

∣
∣v

(1)
k,i (s

(1)
k )

)
,

k ∈
{
1, 2

}
.

3. For eachv(2)
k

(
s
(2)
k

∣
∣s

(1)
k

)
generate2nRk condition-

ally independentn-sequencesxk

(
wk|s(2)k , s

(1)
k

)
,

wk ∈ Wk, drawn according to

p
(
xk

∣
∣v

(2)
k (s

(2)
k |s(1)k )

)
=

n∏

i=1

p
(
xk,i

∣
∣v

(2)
k,i (s

(2)
k |s(1)k )

)
,

k ∈ {1, 2}.
4. For eachs(1)1 , s

(1)
2 generate a conditionally inde-

pendentn-sequencex4(s
(1)
1 , s

(1)
2 ) drawn according

to

p
(
x4|v(1)

1 (s
(1)
1 ),v

(1)
2 (s

(1)
2 )

)
=

n∏

i=1

p
(
x4,i|v(1)1,i (s

(1)
1 ), v

(1)
2,i (s

(1)
2 )

)
.

5. For each
(
x4(s

(1)
1 , s

(1)
2 ),v

(2)
1 (s

(2)
1 |s(1)1 ),v

(2)
2 (s

(2)
2 |

s
(1)
2 )

)
generate a conditionally independentn-

sequencex3(s
(2)
1 , s

(2)
2 , s

(1)
1 , s

(1)
2 ) drawn according

to

p
(

x3

∣
∣
∣v

(2)
1 (s

(2)
1 |s(1)1 ),v

(2)
2 (s

(2)
2 |s(1)2 ),x4(s

(1)
1 , s

(1)
2 )

)

=

n∏

i=1

p
(
x3,i|v(2)1,i (s

(2)
1 |s(1)1 ),

v
(2)
2,i (s

(2)
2 |s(1)2 ), x4,i(s

(1)
1 , s

(1)
2 )

)
.

Let C0 denote the joint codebook for the two sources and
the two relays:

C0 ,
{
x1(w1|s(2)1 , s

(1)
1 ),x2(w2|s(2)2 , s

(1)
2 ),

x3(s
(2)
1 , s

(2)
2 , s

(1)
1 , s

(1)
2 ),x4(s

(1)
1 , s

(1)
2 ),

v
(1)
1 (s

(1)
1 ),v

(2)
1 (s

(2)
1 |s(1)1 ),

v
(1)
2 (s

(1)
2 ),v

(2)
2 (s

(2)
2 |s(1)2 )

}
,

for all wk ∈ Wk, s
(1)
k ∈ S(1)

k , s
(2)
k ∈ S(2)

k , k ∈ {1, 2}.
Repeating the above steps 1–5 independently one more

time, we generate an additional random codebookC1.
These two codebooks are used alternately as follows:
In block b = 1, 2, ..., B, the codebookCb mod 2 is used.
Hence, for any two consecutive blocks, codewords from
different blocks are independent. This property is used in
the analysis of the probability of error. The joint codebooks
are known at all network nodes. To establish cooperation
s
(1)
k ands(2)k are chosen to be

s
(2)
k = wk,b−1,

s
(1)
k = wk,b−2, k = 1, 2.

Encoding at timeb: Let ŵk,b denote the estimate at relay
1 of the message sent at blockb by senderk, k ∈ {1, 2},
ˆ̂wk,b denote this estimate at relay2, and ˆ̂

ŵk,b denote this
estimate at the destination receiver. At the beginning of
each blockb ∈ {3, 4, ..., B}, relay 1 is assumed to have
message estimateŝw1,b−1, ŵ2,b−1 of w1,b−1, w2,b−1 as
well as estimateŝw1,b−2, ŵ2,b−2 of w1,b−2, w2,b−2. Relay
2 is assumed to have message estimatesˆ̂w1,b−2, ˆ̂w2,b−2,
of w1,b−2, w2,b−2. Letw1,b ∈ W1,w2,b ∈ W2 be the new
messages to be sent at block b.

• Sender1 sendsx1

(
w1,b

∣
∣v

(2)
1 (w1,b−1|w1,b−2)

)
.

• Sender2 sendsx2

(
w2,b

∣
∣v

(2)
2 (w2,b−1|w2,b−2)

)
.

• Relay1 sendsx3

(
v
(2)
1 (ŵ1,b−1

∣
∣ŵ1,b−2),

v
(2)
2 (ŵ2,b−1|ŵ2,b−2),x4(ŵ1,b−2, ŵ2,b−2)

)
.

• Relay2 sendsx4

(
v
(1)
1 ( ˆ̂w1,b−2),v

(1)
2 ( ˆ̂w2,b−2)

)
.

The transmitted signals at timeb are summarized in Table
I.

Remark 1
In the first block,b = 1, relay 1 has no information for
cooperation. To start the cooperation̂wk,0, ŵk,−1, k =
1, 2, are set to constant1. To start cooperation at relay
2, ˆ̂wk,−1 and ˆ̂wk,0, k = 1, 2, are set to constant1. In
the last two blocks, the sources do not transmit any new
information, thuswk,B−1 andwk,B , k = 1, 2 are set to
constant1.

In the following, let x denote the codewords from
codebookC0, andx′ denote the codewords from codebook
C1. The same convention is used for all codewords.
Decoding at timeb: At the end of each blockb ∈
{1, 2, ..., B}, decoding at relays1 and 2 is done
simultaneously, but independently.

In the error analysis it is assumed that at the end of
each blockb ∈ {1, 2, ..., B}, relay 1 has ŵb−1

1,1 = wb−1
1,1

and ŵb−1
2,1 = wb−1

2,1 . It is also assumed that at the end of

each blockb ∈ {1, 2, ..., B}, relay 2 has ˆ̂wb−2
1,1 = wb−2

1,1

and ˆ̂wb−2
2,1 = wb−2

2,1 .
Relay1 declares that(ŵ1,b, ŵ2,b) are decoded if it is the
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Table I. Regular encoding for the MACMR with two sources and two relays.

block b

v
(1)
1 (w1,b−2)

v
(1)
2 (w2,b−2)

v
(2)
1

(
w1,b−1

∣
∣v

(1)
1 (w1,b−2)

)

v
(2)
2

(
w2,b−1

∣
∣v

(1)
2 (w2,b−2)

)

x1

(
w1,b

∣
∣v

(2)
1 (w1,b−1|w1,b−2)

)

x2

(
w2,b

∣
∣v

(2)
2 (w2,b−1|w2,b−2)

)

x3

(
v
(2)
1 (ŵ1,b−1|ŵ1,b−2),v

(2)
2 (ŵ2,b−1|ŵ2,b−2),x4(ŵ1,b−2, ŵ2,b−2)

)

x4

(
v
(1)
1 ( ˆ̂w1,b−2),v

(1)
2 ( ˆ̂w2,b−2)

)

unique pair inW1 ×W2 such that at blockb

{

x1

(
ŵ1,b|v(2)

1 (w1,b−1|w1,b−2)
)
,

x2

(
ŵ2,b|v(2)

2 (w2,b−1|w2,b−2)
)
,

x3

(
v
(2)
1 (w1,b−1|w1,b−2),v

(2)
2 (w2,b−1|w2,b−2),

x4(w1,b−2, w2,b−2)
)
,

x4

(
v
(1)
1 (w1,b−2),v

(1)
2 (w2,b−2)

)
,v

(1)
1

(
w1,b−2

)
,

v
(2)
1

(
w1,b−1|v(1)

1 (w1,b−2)
)
,v

(1)
2

(
w2,b−2

)
,

v
(2)
2

(
w2,b−1|v(1)

2 (w2,b−2)
)
,y3,b

}

∈ A(n)
ǫ .

If no unique (ŵ1,b, ŵ2,b) as above exists, an error is
declared.

Remark 2
Note that relay1 knows the previous messages of the
sources,wk,b−1 and wk,b−2, k = 1, 2. Therefore, this
decoding rule represents MAC decoding.

Relay 2 declares that( ˆ̂w1,b−1, ˆ̂w2,b−1) are decoded
if they are the unique values inW1 ×W2 such that in
blocksb andb− 1 (assume now thatb is even, but the all
arguments and the results hold also whenb is odd)

{

x3

(
v
(2)
1 ( ˆ̂w1,b−1|w1,b−2),v

(2)
2 ( ˆ̂w2,b−1|w2,b−2),

x4(w1,b−2, w2,b−2)
)
,

x4

(
v
(1)
1 (w1,b−2),v

(1)
2 (w2,b−2)

)
,

v
(1)
1

(
w1,b−2

)
,v

(2)
1

(
ˆ̂w1,b−1|v(1)

1 (w1,b−2)
)
,

v
(1)
2

(
w2,b−2

)
,v

(2)
2

(
ˆ̂w2,b−1|v(1)

2 (w2,b−2)
)
,y4,b

}

∈A(n)
ǫ

and

{

x
′
1

(
ˆ̂w1,b−1|v′(2)

1 (w1,b−2|w1,b−3)
)
,

x
′
2

(
ˆ̂w2,b−1|v′(2)

2 (w2,b−2|w2,b−3)
)
,

x
′
3

(
v
′(2)
1 (w1,b−2|w1,b−3),v

′(2)
2 (w2,b−2|w2,b−3),

x
′
4(w1,b−3, w2,b−3)

)
,

x
′
4

(
v
′(1)
1 (w1,b−3),v

′(1)
2 (w2,b−3)

)
,v

′(1)
1

(
w1,b−3

)
,

v
′(2)
1

(
w1,b−2|v′(1)

1 (w1,b−3)
)
,v

′(1)
2

(
w2,b−3

)
,

v
′(2)
2

(
w2,b−2|v′(1)

2 (w2,b−3)
)
,y4,b−1

}

∈ A(n)
ǫ .

If no unique( ˆ̂w1,b−1, ˆ̂w2,b−1) as above exists, an error is
declared.

Remark 3
Note the relay2 knows wk,b−2, k = 1, 2, and decodes
wk,b−1, k = 1, 2, over two consecutive blocks. This
represents sliding window decoding.

Decoding at the destination receiver is done using the
backward decoding technique. The destination collects
all of its B output blocks. Starting from the last block,
the destination decodes(w1,b−2, w2,b−2), b = B,B −
1, ..., 3 by usingyb and by assuming that its previously
decoded message estimates are correct. Namely, the
destination decodes the message pair at timeb− 2 by

finding a unique( ˆ̂ŵ1,b−2,
ˆ̂
ŵ2,b−2) ∈ W1 ×W2 such that

{

x1

(
w1,b|v(2)

1 (w1,b−1| ˆ̂ŵ1,b−2)
)
,

x2

(
w2,b|v(2)

2 (w2,b−1| ˆ̂ŵ2,b−2)
)
,

x3

(
v
(2)
1 (w1,b−1| ˆ̂ŵ1,b−2),v

(2)
2 (w2,b−1| ˆ̂ŵ2,b−2),

x4(
ˆ̂
ŵ1,b−2,

ˆ̂
ŵ2,b−2)

)
,

x4

(
v
(1)
1 (

ˆ̂
ŵ1,b−2),v

(1)
2 (

ˆ̂
ŵ2,b−2)

)
,v

(1)
1

( ˆ̂
ŵ1,b−2

)
,

v
(2)
1

(
w1,b−1|v(1)

1 (
ˆ̂
ŵ1,b−2)

)
,v

(1)
2

( ˆ̂
ŵ2,b−2

)
,

v
(2)
2

(
w2,b−1|v(1)

2 (
ˆ̂
ŵ2,b−2)

)
,yb

}

∈ A(n)
ǫ .
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3.3. Analysis of the Probability of Error

We analyze the probability of error averaged over all
codebooks. First, note that by the symmetry of the random
code construction, the averaged probability of error does
not depend on the pair of messages sent. Hence, without
loss of generality, we may assume that(w1,b, w2,b) =
(1, 1) was sent, see e.g. [10, Chapter 7.7]. We analyze the
probability of error at the relays at blockb assuming that at
the previous blocks there were no decoding errors [7].
At relay1: An error occurs if either the transmitted
codewords are not jointly typical with the received
sequence, or there is a pair of incorrect codewords that are
jointly typical with the received sequence. We define the
following event for decoding(w1,b, w2,b) at timeb:

Ejk=
{

x1

(
j|v(2)

1 (w1,b−1|w1,b−2)
)
,

x2

(
k|v(2)

2 (w2,b−1|w2,b−2)
)
,

x3

(
v
(2)
1 (w1,b−1|w1,b−2),

v
(2)
2 (w2,b−1|w2,b−2),x4(w1,b−2, w2,b−2)

)
,

x4

(
v
(1)
1 (w1,b−2),v

(1)
2 (w2,b−2)

)
,v

(1)
1

(
w1,b−2

)
,

v
(2)
1

(
w1,b−1|v(1)

1 (w1,b−2)
)
,v

(1)
2

(
w2,b−2

)
,

v
(2)
2

(
w2,b−1|v(1)

2 (w2,b−2)
)
,y3,b

}

∈ A(n)
ǫ .

By the union bound,

P (n)
e (relay1) = Pr



Ec
11

⋃







⋃

(j,k) 6=(1,1)

Ejk











≤ p(Ec
11) +

2nR1
∑

j=2

p(Ej1) +
2nR2
∑

k=2

p(E1k)

+
2nR1
∑

j=2

2nR2
∑

k=2

p(Ejk),

wherep(·) is the conditional probability given that(1, 1)
was sent and(wk,b−1, wk,b−2), k = 1, 2, were correctly
decoded at relay1. By the joint AEP [10, Theorem 15.2.1]
p(Ec

11) → 0 asn → ∞. Forj 6= 1, we show in Appendix
A that

p(Ej1) ≤

2−n

(
I(X1;Y3|X2,X3,X4,V

(1)
1 ,V

(2)
1 ,V

(1)
2 ,V

(2)
2 )−10ǫ

)

.

Thus

2nR1
∑

j=2

p(Ej1)

≤ 2nR12−n

(
I(X1;Y3|X2,X3,X4,V

(1)
1 ,V

(2)
1 ,V

(1)
2 ,V

(2)
2 )−10ǫ

)

,

and we conclude that
2nR1
∑

j=2

p(Ej1) → 0, for n → ∞, as

long as

R1 < I(X1;Y3|X2, X3, X4, V
(1)
1 , V

(2)
1 , V

(1)
2 , V

(2)
2 )

= I(X1;Y3|X2, X3, X4, V
(2)
1 ). (7)

In a similar way one can obtain that
2nR2
∑

k=2

p(E1k) → 0, for

n → ∞, as long as

R2 < I(X2;Y3|X1, X3, X4, V
(2)
2 ), (8)

and forj 6= 1, k 6= 1,
2nR1
∑

j=2

2nR2
∑

k=2

p(Ejk) → 0, forn → ∞,

as long as

R1 +R2 < I(X1, X2; Y3|X3, X4, V
(2)
1 , V

(2)
2 ). (9)

At relay2: An error occurs if either the transmitted
codewords are not jointly typical with the received
sequence at blockb or at blockb− 1, or there is a pair
of incorrect messages whose corresponding codewords are
jointly typical with the received sequence at blockb and at
block b− 1. We define the following events for decoding
(
w1,b−1, w2,b−1

)
at timeb:

Ejk=
{

x
′
1

(
j|v′(2)

1 (w1,b−2|w1,b−3)
)
,

x
′
2

(
k|v′(2)

2 (w2,b−2|w2,b−3)
)
,

x
′
3

(
v
′(2)
1 (w1,b−2|w1,b−3),v

′(2)
2 (w2,b−2|w2,b−3),

x
′
4(w1,b−3, w2,b−3)

)
,

x
′
4

(
v
′(1)
1 (w1,b−3),v

′(1)
2 (w2,b−3)

)
,v

′(1)
1

(
w1,b−3

)
,

v
′(2)
1

(
w1,b−2|v′(1)

1 (w1,b−3)
)
,v

′(1)
2

(
w2,b−3

)
,

v
′(2)
2

(
w2,b−2|v′(1)

2 (w2,b−3)
)
,y4,b−1

}

∈ A(n)
ǫ

and

E∗
jk=

{

x3

(
v
(2)
1 (j|w1,b−2),v

(2)
2 (k|w2,b−2),

x4(w1,b−2, w2,b−2)
)
,

x4

(
v
(1)
1 (w1,b−2),v

(1)
2 (w2,b−2)

)
,v

(1)
1

(
w1,b−2

)
,

v
(2)
1

(
j|v(1)

1 (w1,b−2)
)
,v

(1)
2

(
w2,b−2

)
,

v
(2)
2

(
k|v(1)

2 (w2,b−2)
)
,y4,b

}

∈ A(n)
ǫ .
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The average probability of error at relay2 can now be
bounded via

Pe
(n)(relay2) = P

(
{
Ec

11 ∪ (E∗
11)

c
}

⋃{ ⋃

(j,k) 6=(1,1)

(Ejk ∩E∗
jk)

})

(a)

≤ p(Ec
11) + p

(
(E∗

11)
c
)
+

∑

(j,k) 6=(1,1)

p(Ejk ∩E∗
jk)

(b)
= p(Ec

11) + p
(
(E∗

11)
c
)

+
∑

(j,k) 6=(1,1)

p(Ejk) · p(E∗
jk)

(c)

≤ 2ǫ+
2nR1
∑

j=2

p(Ej1)p(E
∗
j1) +

2nR2
∑

k=2

p(E1k)p(E
∗
1k)

+
2nR1
∑

j=2

2nR2
∑

k=2

p(Ejk)p(E
∗
jk),

wherep(·) is the conditional probability given that(1, 1)
was sent and(wk,b−2, wk,b−3), k = 1, 2, were correctly
decoded at relay2. In (a) we applied the union bound,
and in (b) we used the fact that codewords from two
consecutive blocks are generated independently. In(c)
we used the joint AEP for boundingp(Ec

11) ≤ ǫ and
p
(
(E∗

11)
c
)
≤ ǫ.

Similarly to the derivation in AppendixA it follows that
2nR1
∑

j=2

p(Ej1)p(E
∗
j1) → 0, for n → ∞, as long as

R1 <I(X1;Y4|X2, X3, X4, V
(2)
1 )

+ I(X3, V
(2)
1 ;Y4|X4, V

(1)
1 , V

(2)
2 ), (11)

2nR2
∑

k=2

p(E1k)p(E
∗
1k) → 0, for n → ∞, as long as

R2 <I(X2;Y4|X1, X3, X4, V
(2)
2 )

+ I(X3, V
(2)
2 ;Y4|X4, V

(1)
2 , V

(2)
1 ), (12)

and
2nR1
∑

j=2

2nR2
∑

k=2

p(Ejk)p(E
∗
jk) → 0, forn → ∞, as long as

R1 +R2 < I(X1, X2, X3;Y4|X4, V
(1)
1 , V

(1)
2 ). (13)

At the destination receiver:An error occurs if either the
transmitted codewords are not jointly typical with the
received sequence, or there is a pair of incorrect codewords
that are jointly typical with the received sequence. We

define the following event for decoding(w1,b−2, w2,b−2):

Ejk =
{

x1

(
w1,b|v(2)

1 (w1,b−1|j)
)
,

x2

(
w2,b|v(2)

2 (w2,b−1|k)
)
,

x3

(
v
(2)
1 (w1,b−1|j),v(2)

2 (w2,b−1|k),x4(j, k)
)
,

x4

(
v
(1)
1 (j),v

(1)
2 (k)

)
,v

(1)
1

(
j
)
,

v
(2)
1

(
w1,b−1|v(1)

1 (j)
)
,v

(1)
2

(
k
)
,

v
(2)
2

(
w2,b−1|v(1)

2 (k)
)
,yb

}

∈ A(n)
ǫ .

Then, by the union bound,

P (n)
e (destination) = Pr



Ec
11

⋃{ ⋃

(j,k) 6=(1,1)

Ejk

}





≤p(Ec
11) +

2nR1
∑

j=2

p(Ej1) +
2nR2
∑

k=2

p(E1k)

+

2nR1
∑

j=2

2nR2
∑

k=2

p(Ejk),

wherep(·) is the conditional probability given that(1, 1)
was sent and(wk,b, wk,b−1), k = 1, 2, were correctly
decoded at the destination. From the joint AEPp(Ec

11) →
0, asn → ∞. Similarly to the derivation in AppendixA

we obtain that
2nR1
∑

j=2

p(Ej1) → 0, for n → ∞, as long as

R1 < I(X1, X3, X4;Y |X2, V
(1)
2 , V

(2)
2 ), (14)

2nR2
∑

k=2

p(E1k) → 0, for n → ∞, as long as

R2 < I(X2, X3, X4;Y |X1, V
(1)
1 , V

(2)
1 ), (15)

and
2nR1
∑

j=2

2nR2
∑

k=2

p(Ejk) → 0, for n → ∞, as long as

R1 +R2 < I(X1, X2, X3, X4; Y ). (16)

Collecting constraints (7)–(9), (11)–(13) and (14)–(16),we
obtain the rate constraints of the theorem.

4. GAUSSIAN MACMR

In this section we focus on the Gaussian channel. We
obtain an outer bound on the capacity region, and an
achievable rate region based on Theorem 1. The Gaussian
MACMR is depicted in Figure 5.
The relationship between the channel inputs and channel
outputs is:

Y3 = h3,1X1 + h3,2X2 + h3,4X4 + Z3 (17a)

Y4 = h4,1X1 + h4,2X2 + h4,3X3 + Z4 (17b)

Y = h1X1 + h2X2 + h3X3 + h4X4 + Z, (17c)
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Encoder 1
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Relay 1 DecoderRelay 2

Source 1

Source 2

(node 2)

(node 1)

(node 3)

(node 4)

Figure 5. Gaussian MACMR.

where Z3, Z4, Z are complex Normal RVs,CN (0, 1),
independent of each other. The channel input signals
are subject to per-symbol average power constraints:
E{|Xk|2} ≤ Pk, k = {1, 2, 3, 4}. We consider the time-
invariant channel, therefore,hi,j , i = {3, 4}, j = {1, 2},
h4,3, h3,4, and{hk}4k=1 are constant complex scalars, and
are known at all nodes.

4.1. An Outer Bound

We next provide an outer bound on the capacity region of
the MACMR:

Proposition 1
The capacity region of the Gaussian MACMR is outer
bounded by the region obtained as the union of all non-
negative rate pairs(R1, R2) that satisfy

R1 ≤ min
{
I(X1;Y3, Y4, Y |X2, X3, X4),

I(X1, X3; Y4, Y |X2, X4),

I(X1, X4;Y3, Y |X2, X3),

I(X1, X3, X4; Y |X2)
}

(18)

R2 ≤ min
{
I(X2;Y3, Y4, Y |X1, X3, X4),

I(X2, X3; Y4, Y |X1, X4),

I(X2, X4;Y3, Y |X1, X3),

I(X2, X3, X4; Y |X1)
}

(19)

R1 +R2 ≤ min
{
I(X1, X2;Y3, Y4, Y |X3, X4),

I(X1, X2, X3;Y4, Y |X4),

I(X1, X2, X4;Y3, Y |X3),

I(X1, X2, X3, X4;Y )
}
, (20)

for someX1, X2, X3 andX4 zero mean, jointly complex
Normal RVs with an arbitrary correlation matrix.

Proof
The mutual information expressions in (18)–(20) follow
directly from the cut-set bound [10, Theorem 15.10.1].
Following similar steps as in [19, Proposition 2, Theorem
8], we write each mutual information expression in (18)–
(20) as

I(XS ;YU |XSc) = h(YU |XSc)− h(ZU ), (21)

whereS is any subset ofT , {1, 2, 3, 4}, andSc is the
complement ofS in T . U ,

{
Destination,Sc

}
, such that

Y1 = Y2 = ∅, where∅ denotes the empty set. Observe

that h(ZU ) is independent ofXT , hence, maximizing
(21) becomes an entropy maximization problem. The best
XT has zero mean because every nodet, t ∈ T uses less
power by sendingXt −E{Xt} rather thanXt, and this
change does not affect the mutual information expressions
(21). Suppose the vectorXT that maximizes (18)–(20)
has a covariance matrixQXT

. ThisQXT
fixesQYU ,XSc

for all U ,S , where QA,B is the covariance matrix of
the vector[ATBT ]T . But onceQYU ,XSc is fixed, then
h(YU |XSc) is maximized by makingYU andXSc jointly
Gaussian [26, Lemma 1]. Hence, choosingXT to be
jointly Gaussian with covariance matrixQXT

maximizes
h(YU |XSc) for every mutual information expression in
(21).

We conclude that the maximizing distribution for (18)–
(20) is zero-mean jointly Gaussian.

We now evaluate the expressions in (18)–(20). Choosing
GaussianXT , we observe that the mutual information
expressions in (18)–(20) can be simplified as follows. Let

h ,





h3,1

h4,1

h1



 ,Z ,





Z3

Z4

Z



 ,

C1 =







P1 α12 α13 α14

α21 P2 α23 α24

α31 α32 P3 α34

α41 α42 α43 P4






,

[
t11 tH21
t21 T22

]

whereαij , E{XiX
∗
j }, T22 is a 3× 3 matrix, and all

transmitters use maximum power. LetIk denote thek × k
identity matrix. Then, we obtain from (18)

R1 ≤I(X1;Y3, Y4, Y |X2, X3, X4)

(a)
=h(Y3, Y4, Y |X2, X3, X4)

− h(Y3, Y4, Y |X1, X2, X3, X4)

=h(

Ŷ3
︷ ︸︸ ︷

h3,1X1 + Z3,

Ŷ4
︷ ︸︸ ︷

h4,1X1 + Z4,

Ŷ
︷ ︸︸ ︷

h1X1 + Z |
X2, X3, X4)− h(Z3, Z4, Z)

(b)
= log2

(

det
(
cov(Ŷ3, Ŷ4, Ŷ |X2, X3, X4)

))

= log2

(

det
(
cov(h ·X1 + Z|X2, X3, X4)

))

(c)
= log2

(

det
(
cov(h ·X1|X2, X3, X4) + cov(Z)

))

= log2

(

det
(
I3 + h · cov(X1|X2, X3, X4) · hH

))

(d)
= log2

(

det
(
I3 + h · (t11 − t

H
21T

−1
22 t21) · hH

))

,

(22)

where (a) follows from the definition of mutual
information [10, Chapter 2], (b) follows asXT is a jointly
Gaussian vector, (c) follows from the independence ofXT
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andZ, and (d) follows from [27, Section VI]. Similarly,

R1 ≤I(X1, X3, X4;Y |X2)

=h(Y |X2)− h(Y |X1, X2, X3, X4)

=h(

Ŷ
︷ ︸︸ ︷

h1X1 + h3X3 + h4X4 + Z |X2)− h(Z)

≤ log2

(

(πe) det
(
cov(Ŷ |X2)

))

− log2(πe)

= log2

(

det
(
cov(Ŷ |X2)

))

= log2

(

det
(
t11 − t12t

−1
22 t

∗
12)

))

, (23)

where

t11 = Trace

{



h∗
1

h∗
3

h∗
4



 ·
[
h1 h3 h4

]

·





P1 α13 α14

α31 P3 α34

α41 α43 P4





}

+ 1,

t−1
22 = P−1

2 , t12 = h1α12 + h3α32 + h4α42.

Following similar steps we obtain

R1 ≤ I(X1, X3;Y4, Y |X2, X4)

≤ log2

(

det
(
I2

+H · (T11 − T12T
−1
22 T

H
12) · HH

))

,

(24)

where

H ,

[
h4,1 h4,3

h1 h3

]

,

C3 =







P1 α13 α12 α14

α31 P3 α32 α34

α21 α23 P2 α24

α41 α43 α42 P4






,

[
T11 T12

T
H
12 T22

]

,

such that each sub-matrixTij is a two dimensional matrix.
Lastly, using steps as in the previous bounds we obtain

R1 ≤ I(X1, X4; Y3, Y |X2, X3)

≤ log2

(

det
(
I2

+H · (T11 − T12T
−1
22 T

H
12) ·HH

))

,

(25)

where

H ,

[
h3,1 h3,4

h1 h4

]

,

C4 =







P1 α14 α12 α13

α41 P4 α42 α43

α21 α24 P2 α23

α31 α34 α32 P3






,

[
T11 T12

T
H
12 T22

]

,

such that each sub-matrixTij is a two dimensional matrix.
The expressions for the bounds onR2 in (19) are

obtained similarly to the bound onR1. The expressions for
the bounds onR1 +R2 in (20) are derived in AppendixB.

All the inequalities (22)-(25) are achieved with equality
when the Gaussian vector(X1, X2, X3, X4) has a zero
mean. The outer bound is now obtained by finding the
maximizing covariance matrix such that for each possible
value ofR1, the largestR2 is obtained.

4.2. Evaluation of the Achievable Region of
Theorem 1 with Gaussian Inputs

LetV (1)
1 , V

(1)
2 , V1,0, V2,0, X1,0, X2,0, X3,0, X4,0 be com-

plex Normal RVs,CN (0, 1), mutually independent. Let

V
(2)
1 =

√
α1V

(1)
1 +

√

β1V1,0 (26a)

V
(2)
2 =

√
α2V

(1)
2 +

√

β2V2,0 (26b)

X4 =
√
α4,1V

(1)
1 +

√
α4,2V

(1)
2 +

√
α4,3X4,0 (26c)

X3 =
√
α3X4 +

√

β3V
(2)
1 +

√
γ3V

(2)
2 +

√
δX3,0

(26d)

X1 =
√

φ1V
(2)
1 +

√
θ1X1,0 (26e)

X2 =
√

φ2V
(2)
2 +

√
θ2X2,0. (26f)

From the average power constraints on the channel input
signals,E{|Xk |2} ≤ Pk, k = 1, 2, 3, 4, we have

E{|X1|2} = φ1(α1 + β1) + θ1 ≤ P1

E{|X2|2} = φ2(α2 + β2) + θ2 ≤ P2

E{|X3|2} = |√α3α4,1 +
√

β3α1|2

+ |√α3α4,2 +
√
γ3α2|2 + α3α4,3

+ β3β1 + γ3β2 + δ ≤ P3

E{|X4|2} = α4,1 + α4,2 + α4,3 ≤ P4,

where α1, β1, α2, β2, α4,1, α4,2, α4,3, α3, β3, γ3, δ, φ1,
θ1, φ2, θ2 are all non-negative real numbers. Then, the
mutual information expressions (1)-(3) can be written as

R1 ≤ I(X1;Y3|X2, X3, X4, V
(2)
1 )

(a)
= h(Y3|X2, X3, X4, V

(2)
1 )

− h(Y3|X1, X2, X3, X4, V
(2)
1 )

= h(h3,1X1 + Z3|X2, X3, X4, V
(2)
1 )− h(Z3)

(b)
= h(h3,1

√

φ1V
(2)
1 + h3,1

√
θ1X1,0

+ Z3|X2, X3, X4, V
(2)
1 )− h(Z3)

= h(h3,1

√
θ1X1,0 + Z3|X2, X3, X4, V

(2)
1 )− h(Z3)

(c)
= log2

(
(πe)cov(h3,1

√
θ1X1,0 + Z3|X2, X3,

X4, V
(2)
1 )

)
− log2

(
(πe)cov(Z3)

)

= log2
(
|h3,1|2θ1 + 1

)
,
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where (a) follows from the definition of mutual
information [10, Chapter 2], (b) follows from the
assignments (26), and (c) follows as all variables are jointly
Gaussian. Similarly,

R2 ≤ I(X2;Y3|X1, X3, X4, V
(2)
2 )

= log2

(
|h3,2|2θ2 + 1

)
,

R1 +R2 ≤I(X1, X2;Y3|X3, X4, V
(2)
1 , V

(2)
2 )

= log2
(
|h3,1|2θ1 + |h3,2|2θ2 + 1

)
,

R1 ≤I(X1;Y4|X2, X3, X4, V
(2)
1 )

+ I(X3, V
(2)
1 ;Y4|X4, V

(1)
1 , V

(2)
2 )

= log2(|h4,1|2θ1 + 1)

+log2

(

1+
|h4,1

√
φ1β1+h4,3

√
β3β1|2+ |h4,3|2δ

|h4,1|2θ1 + |h4,2|2θ2 + 1

)

,

R2 ≤I(X2; Y4|X1, X3, X4, V
(2)
2 )

+ I(X3, V
(2)
2 ;Y4|X4, V

(2)
1 , V

(1)
2 )

= log2(|h4,2|2θ2 + 1)

+log2

(

1+
|h4,2

√
φ2β2+h4,3

√
γ3β2|2+|h4,3|2δ

|h4,1|2θ1 + |h4,2|2θ2 + 1

)

,

R1 +R2 ≤I(X1, X2, X3; Y4|X4, V
(1)
1 , V

(1)
2 )

= log2
(
|h4,1

√

φ1β1 + h4,3

√

β3β1|2

+ |h4,2

√

φ2β2 + h4,3

√

γ3β2|2

+ |h4,1|2θ1 + |h4,2|2θ2 + |h4,3|2δ + 1
)
,

R1 ≤I(X1, X3, X4;Y |X2, V
(1)
2 , V

(2)
2 )

= log2
(
|h1

√

φ1α1 + h3
√
α3α4,1 + h3

√

β3α1

+ h4
√
α4,1|2 + |h1

√

φ1β1 + h3

√

β3β1|2

+ |h3
√
α3α4,3 + h4

√
α4,3|2

+ |h1|2θ1 + |h3|2δ + 1
)
,

R2 ≤I(X2, X3, X4;Y |X1, V
(1)
1 , V

(2)
1 )

= log2

(
|h2

√

φ2α2 + h3
√
α3α4,2 + h3

√
γ3α2

+ h4
√
α4,2|2 + |h2

√

φ2β2 + h3

√

γ3β2|2

+ |h3
√
α3α4,3 + h4

√
α4,3|2

+ |h2|2θ2 + |h3|2δ + 1
)
,

and

R1 +R2 ≤I(X1, X2, X3, X4;Y )

= log2
(
|h1

√

φ1α1 + (h3
√
α3 + h4)

√
α4,1

+ h3

√

β3α1|2 + |h1

√

φ1β1 + h3

√

β3β1|2

+ |h2

√

φ2α2 + (h3
√
α3 + h4)

√
α4,2

+ h3
√
γ3α2|2 + |h2

√

φ2β2

+ h3

√

γ3β2|2 + |√α4,3(h4 + h3
√
α3)|2

+ |h1|2θ1 + |h2|2θ2 + |h3|2δ + 1
)
.

5. NUMERICAL RESULTS AND
COMPARISON WITH PREVIOUS
WORK

To demonstrate the benefit of coordination between relays
we compare our results to the MPR-MAC with two parallel
relays, depicted in Figure 6. In the MPR-MAC model,
there is no wireless connectivity between the relays, e.g.,
each relay uses a directional transmit antenna to the
destination. Thus, the received signals at the destination

Encoder 1

Encoder 2

Relay 1

Decoder

Relay 2

Source 1

Source 2

(node 1)

(node 2) (node 4)

(node 3)

Figure 6. Gaussian MAC with two parallel relays.

and at the relays are given by (see [23])

Y3 =h3,1X1 + h3,2X2 + Z3 (27a)

Y4 =h4,1X1 + h4,2X2 + Z4 (27b)

Y =h1X1 + h2X2 + h3X3 + h4X4 + Z, (27c)

whereZ3, Z4, Z are additive white Gaussian noises. The
average transmit power of nodek is constrained toPk.
Note that the MPR-MAC channel outputs are similar to
the MACMR channel outputs with the exception that each
relay cannot receive signals transmitted by the other relay.
More precisely, equations (27a), (27b) can be obtained
by settingh3,4 and h4,3 to be zero in equations (17a)
and (17b). Hence, the MPR-MAC is a special case of
our model. It is interesting to evaluate the impact of the
parallel relays restriction, that is, how much do we benefit
by letting the relays communicate with each other. To
this aim we compare the region of Theorem 1 with the
achievable region obtained in [23] for the MPR-MAC.
The outer bound of Proposition 1 was evaluated for the
MPR-MAC and for the MACMR. Different configurations
of the MPR-MAC and the MACMR were considered.

Eur. Trans. Telecomms. 0000; 00:1–16 c© 0000 John Wiley & Sons, Ltd. 11
DOI: 10.1002/ett
Prepared using ettauth.cls



Boaz Ghelber and Ron Dabora

The numerical evaluations were carried out through the
interior-point method, and each evaluation was repeated
with random initial conditions to guarantee convergence.

5.1. Linear MACMR vs. Linear MPR-MAC

The first configuration is a scenario in which the relays
and the destination are located on a straight line, see
Figure 7, withdA < dB < dC . For both the MACMR

Figure 7. Line MACMR network.

and the MPR-MAC, we usedh1 = h2 = 0.1, h3 = 0.2,
h4 = 0.4, h3,1 = h3,2 = 0.5, h4,1 = h4,2 = 0.2. For the
MACMR we set h4,3 = h3,4 = 1, while for the MPR-
MAC we seth4,3 = h3,4 = 0. In Figure 8 we observe that
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Figure 8. Achievable rate regions and outer bounds for the
MACMR and the MPR-MAC for the line network of Figure 7.

the achievable rate region for the MACMR contains the
outer bound for the MPR-MAC model.

We next change the locations of the relays and check the
effect of the relative location of the sources, the relays and
the destination on the performance.

5.2. MACMR vs. MPR-MAC when the Relays Are
Close to the Sources

The second configuration is a scenario in which the relays
are located closer to the sources than to the destination.
This configuration is depicted in Figure 9, withdA <
dB < dD < dC . The values of the channel coefficients

Figure 9. MACMR with relays closer to the sources.

are h1 = h2 = 0.1, h3 = h4 = 0.2, h3,1 = h4,2 = 0.5,
h3,2 = h4,1 = 0.3, andh4,3 = h3,4 = hrr, where for the
MACMR hrr = 1 and for the MPR-MAChrr = 0. In
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Figure 10. Achievable rate regions and outer bounds for the
MACMR and the MPR-MAC for relays close to the sources

network, see Figure 9.

Figure 10 we observe that the achievable rate region for
the MACMR is greater than the achievable rate region
obtained for the MPR-MAC model. Source1 can transmit
at higher rates whenhrr = 1. This is because letting
the relays coordinate their transmissions allows relay1
to assist also relay2, thereby improving the decoding
performance at relay2. Although this change also allows
relay1 to observe signals from relay2, it does not affect the
decoding performance at relay1, as relay1 knows a-priori
the signal from relay2 due to the DF scheme. Therefore,
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whenhrr = 1 decoding at relay1 becomes the bottleneck
of the network. In the configuration depicted in Figure 9,
the distance between source1 and relay1 is shorter than
that between source2 and relay1. Therefore, source1 can
transmit at higher rates than source2. Observe that part of
the achievable region of the MACMR is outside the outer
bound for the MPR-MAC.

5.3. MACMR vs. MPR-MAC when the Relays Are
Close to the Destination

The third configuration is a scenario in which the relays
are located closer to the destination than to the sources.
This configuration is depicted in Figure 11, withdD <
dA < dB < dC . The values of the channel coefficients

Figure 11. MACMR with relays closer to the destination.

are h1 = h2 = 0.1, h3 = h4 = 0.6, h3,1 = h4,2 = 0.3,
h3,2 = h4,1 = 0.2, andh4,3 = h3,4 = hrr, where for the
MACMR hrr = 1 and for the MPR-MAChrr = 0. In
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Figure 12. Achievable rate regions and outer bounds for the
MACMR and the MPR-MAC for relays close to destination, see

Figure 11.

Figure 12 we observe that the achievable rate region
for the MACMR is greater than the achievable rate

region obtained for the MPR-MAC model. Source1 can
transmit at higher rates whenhrr = 1. As in previous
configuration, the distance between source1 and relay1
is less than the distance between source2 and relay1.
Recalling that the bottleneck is decoding at relay1 leads
again to the situation that source1 can transmit at higher
rates than source2.

In order to evaluate the significance of the ability of the
relays to receive each other’s signals, and to understand
how the channel coefficientsh4,3 = h3,4 affect the
achievable region, we carried out a numerical evaluation
which compared the achievable region of the MACMR for
different values ofh4,3 = h3,4 = hrr, to the outer bound
for the MPR-MAC. The value ofmax{R1 +R2} was
used as a figure-of-merit for the different regions. Figure
13 shows the MACMR achievable regions forhrr =
0, 0.15, 0.3, 1, and the MPR-MAC outer bound (i.e.,
settinghrr = 0 in the MACMR). Lastly, Figure 14 depicts
the difference between the maximal sum-rates of the
achievable regions for the MACMR and the outer bound
for the MPR-MAC (the fluctuations at high values ofhrr

are due to numerical accuracy. The figure in monotonically
increasing withhrr). Observe that forhrr ≥ 0.2 the
MACMR achievable sum-rate is greater than the MPR-
MAC maximal sum-rate. This can be explained as follows:
as hrr increases, the quality of the link between the
relays improves, and the relays receive better (i.e., less
noisy) signals from each other. Therefore, the relays in the
MACMR improve their coordination with each other and
improve their assistance to the communication between
sources and destination. As a result, the achievable region
for the MACMR is increasing.
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Figure 13. MACMR achievable rate regions for different values
of hrr and the MPR-MAC outer bound, for the line network

depicted in Figure 7.
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6. CONCLUSIONS

In this work we derived a new achievable rate region
for the MACMR with two sources and two relays. We
proposed a coding scheme in which the two relays assist
the communication between the sources and destination.
Each relay decodes the messages based on its channel
output and forwards them to both the receiver and the
other relay. The proposed coding scheme combines several
techniques: regular encoding, sliding-window decoding
at the relays, and backward decoding at the destination.
We also derived the cut-set outer bound on the capacity.
The achievable rate region and the outer bound were
numerically evaluated for the Gaussian MACMR. To
understand the benefit of our scheme over the previously
proposed MPR-MAC model we carried out a numerical
evaluation for different scenarios. For the case of two
relays, we showed that because MACMR enables better
cooperation in the network, the MACMR achievable
region contains that of the MPR-MAC and in some
scenarios it even contains the MPR-MAC outer bound. Our
scheme also outperforms the scheme presented in [25] for
the MACMR. We explained that this is because in [25] the
relays do not cooperate and can only decode part of the
sources’ messages. This limitation is more pronounced in
multihop wireless networks.

Future work includes error exponent analysis for the
MACMR, in order to evaluate the effect of multiple relays
on the relationship between the probability of error and
the blocklength. Note that the present work can also be
extended to more than two relays. To that aim, observe
that cooperation is done in a hierarchical manner, namely,
relay 2, which does not know the codewords to be sent
by relay1, is at the first (lower) level, and relay1, which

knows the codewords to be transmitted by relay2 is at the
second (top) level. In general, the assignment of the relays
into levels affects the performance of this scheme. Thus,
when there are multiple relays, we first need to decide
how many levels to use, then assign the relays into levels,
and finally, introduce additional auxiliary RVs to facilitate
coordination (i.e., statistical dependence) between the
codewords sent by the nodes at all levels, at each time
block.

In conclusion, allowing the relays to utilize each
other’s transmissions can substantially increase the
achievable region. Our numerical evaluations showed
that this improvement depends on the quality of the
links between the relays. This conclusion has important
practical implication and should be taken into account
when designing communication systems which employ
cooperative strategies using multiple relays.

APPENDIX A: BOUNDING p(Ej1) AT
RELAY 1

We now provide a detailed analysis of the error probability
for relay 1.
Let s , (x1,x2,x3,x4,v

(1)
1 ,v
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1 ,v
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2 ,v
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(2)
2 (w2,b−1|w2,b−2)

))

p
(

x3

∣
∣
∣v

(2)
1 (w1,b−1|w1,b−2),

v
(2)
2 (w2,b−1|w2,b−2),x4(w1,b−2, w2,b−2)

)

p
(

y3

∣
∣
∣x2

(
1|v(2)

2 (w2,b−1|w2,b−2)
)
,

x3

(
v
(2)
1 (w1,b−1|w1,b−2),v

(2)
2 (w2,b−1|w2,b−2),

x4(w1,b−2, w2,b−2)
)
,x4

(
v
(1)
1 (w1,b−2),

v
(1)
2 (w2,b−2)

)
,v

(1)
1 (w1,b−2),v

(2)
1

(
w1,b−1|

v
(1)
1 (w1,b−2)

)
,v

(1)
2 (w2,b−2),v

(2)
2

(
w2,b−1|

v
(1)
2 (w2,b−2)

))
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(b)

≤ 2n
(
H(S,Y3)+ǫ

)

2−nH(V
(1)
1 )2−nH(V

(1)
2 )

2−nH(V
(2)
1 |V

(1)
1 )2−nH(V

(2)
2 |V

(1)
2 )2−nH(X4|V

(1)
1 ,V

(1)
2 )

2−nH(X1|V
(2)
1 )2−nH(X2|V

(2)
2 )2−nH(X3|V

(2)
1 ,V

(2)
2 ,X4)

2−nH(Y3|X2,X3,X4,V
(1)
1 ,V

(2)
1 ,V

(1)
2 ,V

(2)
2 )29ǫn

(c)
= 2−n

(
H(Y3|X2,X3,X4,V

(1)
1 ,V

(2)
1 ,V

(1)
2 ,V

(2)
2 )−H(Y3|S)−10ǫ

)

(d)
= 2−n

(
I(X1;Y3|X2,X3,X4,V

(1)
1 ,V

(2)
1 ,V

(1)
2 ,V

(2)
2 )−10ǫ

)

,

where (a) follows from the codebook construction of
Section 3.2 and the fact thatj 6= 1, (b) follows from the
properties of conditionally i.i.d. sequences [10, Chapter
15.2], (c) follows from the distribution chain (4) and the
chain rule for mutual information [10, Theorem 2.5.2], and
(d) follows from the definition of mutual information [10,
Chapter 2.4].

APPENDIX B: SUM-RATE CUT-SET
BOUNDS FOR THE GAUSSIAN MACMR

R1 +R2 ≤ I(X1, X2;Y3, Y4, Y |X3, X4)

≤ log2

(

det
(
I3

+H · (T11 − T12T
−1
22 T

H
12) · HH

))

where

H ,





h3,1 h3,2

h4,1 h4,2

h1 h2



 ,C1 ,

[
T11 T12

T
H
12 T22

]

,

as defined in Section 4.1, such that each sub-matrixTij is
a two-dimensional matrix. Next,

R1 +R2 ≤ I(X1, X2, X3, X4;Y )

≤ log2

(

cov(Y )
)

,

where

cov(Y ) = Trace













h∗
1

h∗
2

h∗
3

h∗
4






·
[
h1 h2 h3 h4

]

·







P1 α12 α13 α14

α21 P2 α23 α24

α31 α32 P3 α34

α41 α42 α43 P4













+ 1.

We next bound

R1 +R2 ≤ I(X1, X2, X3;Y4, Y |X4)

= log2

(

det
(
I2

+H · (T11 − t12t
−1
22 t

H
12) · HH

))

,

where

H ,

[
h4,1 h4,2 h4,3

h1 h2 h3

]

,C1 ,

[
T11 t12

tH12 t22

]

,

andT11 is a3× 3 matrix. Finally,

R1 +R2 ≤ I(X1, X2, X4;Y3, Y |X3)

≤ log2

(

det
(
I2

+H · (T11 − t12t
−1
22 t

H
12) ·HH

))

where

H ,

[
h3,1 h3,2 h3,4

h1 h2 h4

]

,

C8 ,







P2 α24 α21 α23

α42 P4 α41 α43

α12 α14 P1 α13

α32 α34 α31 P3






=

[
T11 t12

tH12 t22

]

,

andT11 is a3× 3 matrix.
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