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Improved QRD-QLD Algorithm for Low Complexity MIMO Decoding
Nimrod Peer, Yonathan Murin, Student Member, IEEE, and Ron Dabora, Member, IEEE

Abstract—In this paper we present a decoding algorithm
for multiple-input multiple-output (MIMO) communications.
The algorithm is based on the QRD-QLD algorithm (see, e.g.,
Radosavljevic et al. 2012), proposes an improved path metric
computation, and achieves a low probability of error which is
close to the single tree search sphere decoder, at low implementa-
tion complexity. The proposed improved path metric computation
increases the reliability of combining the results of the partial
searches into sequences representing the maximum likelihood
(ML) and the counter ML hypotheses in soft input MIMO de-
coding. The excellent performance of the improved algorithm are
demonstrated via numerical simulations.

Index Terms—MIMO decoding, QR-QL decomposition.

I. INTRODUCTION

MULTIPLE-input multiple-output (MIMO) wireless
systems have a central role in modern wireless com-

munications due to their ability to enhance spectral efficiency
and reliability. The practical implementation of MIMO commu-
nications requires an efficient decoding algorithm that has a
manageable complexity and a small decoding delay. Since the
straightforward implementation of the maximum likelihood
(ML) decoder has a high computational complexity [1], the
practical implementation of MIMO decoding is based on
approximating the exact ML decoding scheme. The importance
of efficient MIMO decoding has motivated an extensive
research effort on the subject, and many algorithms have been
developed. A major approach for practical MIMO decoding
is the sphere decoding (SD) algorithm [1]. The SD algorithm
applies the QR decomposition (QRD), see [2], to transform the
MIMO decoding process into a tree search in which the search
for the best candidate for the decoded sequence takes place in a
bounded region around the received vector. The SD algorithm
has inspired a large number of approximate ML decoding
algorithms, which can be divided into two general classes.
The first class is breadth-first algorithms. These algorithms are
typically characterized by a constant complexity and delay.
Important members of this class include the QRD-M, which is
a tree search algorithm that maintains M surviving paths after
processing each layer [3]; the smart order candidate adding
(SOCA) algorithm [4]; and a combination of a partial search
on the QRD tree with a partial search based on a tree obtained
via the QL decomposition (QLD), referred to as the QRD-QLD
algorithm [5]. The second class of tree search algorithms
implements a depth-first search. These algorithms have
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variable complexity and delay, and include the list SD (LSD)
algorithm [6]; the single tree search (STS) [7] algorithm; and
the tuple-search (TS) algorithm [8]. In this paper we present
an improved breadth-first algorithm that builds upon the QRD-
QLD scheme. The fundamental idea in QRD-QLD is to replace
the search on a single tree with two smaller searches where one
search is implemented using the QRD and the second search is
implemented using the QLD. Differently from [5], we combine
the two searches by first generating a small set of candidate se-
quences and using this set for path metric computation. Thus, we
refer to the algorithm as QR-QL with improved path metric com-
putation (QRQLIPMC). The complexity of the new algorithm
is analytically derived and shown to be fixed. The performance
of our algorithm is compared with those of the major tree
search algorithms, and the numerical simulations demonstrate
a substantial improvement in the bit error rate (BER) versus
complexity performance achieved by the new algorithms.

The rest of this paper is organized as follows: Section II
describes the system model. Section III briefly revisits the
fundamentals of the SD approach. Section IV provides a de-
tailed description of the proposed QRQLIPMC algorithm and
its associated computational complexity. Section V details the
numerical simulation study and, lastly, Section VI presents
concluding remarks.

II. NOTATIONS AND SYSTEM MODEL

Notations: In this work column vectors are denoted with
boldface lowercase letters, e.g., p, and matrices are denoted
with boldface capital letters, e.g., P; in particular, the M ×M
identity matrix is denoted with IM . We use (·)H to denote
conjugate transposition, and ‖ · ‖, �·� and �·� to denote the
norm, floor and ceil operators, respectively. Slightly abusing
common terminology, we call an N ×M matrix P, with N ≥
M , unitary if PHP = IM . Lastly, E[·] denotes the stochastic
expectation, and C denotes the set of complex numbers.

System Model: We consider a MIMO system with NT trans-
mit antennas and NR ≥ NT receive antennas. Communication
is based on a bit-interleaved coded modulation (BICM) scheme
as depicted in Fig. 1: A data stream of independent and iden-
tically distributed (i.i.d.), equally likely bits, are encoded by a
turbo encoder with rate R. The coded stream is then interleaved,
and partitioned into blocks of size NT · L bits. Each block
is mapped into NT channel symbols which are transmitted
via NT antennas. Each transmitted symbol is taken from a
constellation whose cardinality is 2L. The symbols are received
at the output of a flat Rayleigh fading channel with additive
white Gaussian noise at each receive antenna. The NR × 1
noise vector is obtained as a realization of a complex Normal
random vector n ∈ CNR×1, with E[n] = 0 and E[nnH ] =
N0INR

. The entries of the channel matrix H ∈ CNR×NT are
taken from an i.i.d. complex Normal random process with zero
mean and unit variance. H is assumed to be perfectly known
at the receiver. Let s ∈ CNT×1 be the vector of transmitted
symbols. The received signal y ∈ CNR×1 is given by:

y = Hs+ n. (1)
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Fig. 1. The system model.

Let ES be the total average energy of the transmitted con-
stellation symbols vector, and Eb be the average energy
per information bit at the receiver. The signal-to-noise ratio
(SNR) per information bit at the receiver is SNRb = Eb/N0 =
(ESNR)/(N0NTLR). Each received vector is first processed
by a MIMO decoder, which outputs a soft (coded) bit stream.
This bit stream is deinterleaved and then passed to a turbo
decoder whose output is passed to the data sink, see Fig. 1. We
measure the computational complexity of the MIMO decoder by
the average number of visited tree nodes per vector decoding.

III. THE SPHERE DECODING APPROACH

The first step in the application of efficient tree-based SD
algorithms, is expressing H via the QRD as H = QR, where
Q is an NR ×NT unitary matrix and R is an NT ×NT upper
triangular matrix [2]. By left multiplying both sides of (1) with
QH we obtain:

y′ Δ
= QHy = Rs+QHn. (2)

Note that the distribution of the noise vector QHn is identical
to the distribution of n, see [7]. Also, note that y′(NT ) depends
only on the transmitted symbol s(NT ), y′(NT − 1) depends
only on the symbols s(NT ) and s(NT − 1), and so on. This
structure allows solving the MIMO decoding problem through
a tree search where the first layer of the tree corresponds
to the equation for y′(NT ), the second layer corresponds to
the equation for y′(NT − 1), and so on. As such, decoding
requires processing a tree with NT layers. Let ŝ denote a
vector of the estimated transmitted symbols. Using the max-
log approximation (see e.g., [9]), the objective of the decoder is
to find the vector ŝ with the minimal Euclidean distance metric
λ, where

λ = ||y′ −Rŝ||2. (3)

During the processing of the tree nodes, decoding complexity
is reduced by applying pruning to nodes which pass a certain
accumulated metric threshold, see e.g., [3]. Once the processing
of the tree is completed, the symbol vector with the lowest
metric λ is taken as the ML hypothesis. We denote this vector
as ŝML, and the value of this metric as λML. Let B̂i ∈ {0, 1}
be the bit in the i’th location out of the NT · L bits represented
by the vector ŝML. Then, for each bit in the ML hypothesis,
the counter-hypothesis is defined as the symbol vector with the
lowest metric λ in which the i’th bit in its binary representation
is flipped from its value in the ML hypothesis ŝML. We denote
the metric of the counter-hypothesis for bit B̂i, computed via
(3), as λCounter(B̂i). Using the path metrics computed dur-
ing the processing of the tree, the MIMO decoder generates,

for each bit B̂i, i = 1, 2, . . . , NT · L, a measure called log-
likelihood ratio (LLR), which is computed via [7, Eq. (5)]:

LLR(B̂i) =
(
λML − λCounter(B̂i)

)
(−1)B̂i . (4)

In recent years, several preprocessing algorithms based on the
QRD were developed. One of the most common preprocessing
algorithms among the SD-type schemes is the sorted QRD
(SQRD) [2]. Another possible matrix decomposition for gen-
erating a search tree is the QLD, which decomposes the matrix
H as H = QL where Q is an NR ×NT unitary matrix and
L is an NT ×NT lower triangular matrix. An algorithm that
uses both the QRD and the QLD was recently proposed in [5].
In this algorithm, referred to in this work as the QRD-QLD
algorithm, instead of a single search that goes through all the
layers of the tree, two shorter searches are carried out. One
search is implemented on the QRD tree and the other search
is implemented on the QLD tree. Each search proceeds up to
the middle of its tree (if there is an odd number of layers the
QLD tree search will go through one extra layer). During the
processing of each of the trees, after processing each layer,
all nodes except for the M nodes with the lowest metrics, are
pruned. Thus, at the end of each of the two tree searches, the
algorithm obtains from each tree a set of M partial vectors, each
containing an estimate of only half of the transmitted symbols.
Then the QRD-QLD algorithm generates symbol vectors of
length NT by merging all possible combinations of partial
vectors from both trees. This results in M2 vectors of length
NT . The metric of each of these vectors is set to the sum of the
metrics of its two partial vectors. Lastly, from the M2 vectors,
the QRD-QLD algorithm selects the vector with the lowest
metric to be the ML hypothesis and from the other M2 − 1
vectors the corresponding counter-hypotheses are selected, and
then the LLR values are computed from the ML and counter-
ML hypotheses.

IV. QR-QL WITH IMPROVED

PATH-METRIC COMPUTATION

A. The Algorithm

Our proposed algorithm uses the QR and QL decompositions
with a new method for combining the partial vectors. The
new combining leads to a substantially improved performance
at the cost of a small increase in the complexity compared
to the QRD-QLD algorithm [5]. Thus, we refer to this algo-
rithm as QRD-QLD with improved path metric computation
(QRQLIPMC). The QRQLIPMC algorithm consists of three
steps: preprocessing, double tree search, and path metric com-
putation with final path selection. Next, we describe each step
in detail.

Step A—Preprocessing: In the preprocessing step two sets
of matrices are generated: QL and L constituting the QLD of
H, and QR and R constituting the QRD of H. Note that in
the QRQLIPMC algorithm it is not possible to use SQRD and
SQLD since those algorithms will produce R and L matrices
whose diagonal elements correspond to the same symbols.
Instead of using SQRD, the work [5] proposed to permute the
columns of H at the beginning of the preprocessing step, before
applying the QRD and the QLD, such that the column of H with
the highest norm correspond to the first layer of the QLD tree
and the last layer of the QRD tree; the column of H with the
second-highest norm correspond to the first layer of the QRD
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tree and the last layer of the QLD tree, and so on. Finally, note
that it is possible to obtain the QLD using the QRD algorithm
via a permutation of the columns of the matrix H, see [5].

Step B—Double Tree Search: After creating the QRD
and the QLD of H, the QRQLIPMC algorithm implements a
breadth-first search (e.g., as in [3]) on each tree up to the middle
of the tree, in the case that NT is even. In case NT is odd, the
QLD tree will process one extra layer (e.g., for NT = 5 the
search on the QRD tree will process two layers and the search
on the QLD tree will process three layers). After processing
each layer, all but the M nodes with the lowest metrics are
pruned. After processing both trees, the QRQLIPMC algorithm
will have M partial vectors from each tree, each vector con-
taining an estimate of only part of the transmitted symbols. The
two M partial vectors from each search tree are next merged
into M2 vectors, each containing an estimate of the entire NT

transmitted symbols. The metric for each merged vector is set to
be the sum of the metrics of the two partial component vectors
composing the merged length-NT vector. Up to this point the
algorithm operates as the QRD-QLD algorithm.

Step C—Path Metric Computation: The QRQLIPMC al-
gorithm prunes the M2 symbol vectors keeping only the K
candidate length-NT vectors with the lowest metrics. Next, the
decoder recalculates the metric for each of the K remaining
candidate vectors based on the QLD tree (note that the metric
computation for the first �NT /2� symbols of each vector was
already done during the QLD tree search in Step B). Once the
path computation on the vectors is completed, each vector has
a metric computed using only the QLD tree. We emphasize
that this computation is not a search: From each node there is
only one predetermined decedent node. Next, from the set of K
vectors, the algorithm chooses the vector with the lowest metric
to be the ML hypothesis. From the remaining K − 1 candidate
vectors the algorithm selects the counter hypotheses such that
the counter hypothesis for B̂i is the vector whose metric is
the lowest among all non-ML vectors with the i’th bit flipped
compared to B̂i. Then, the LLR values are computed via (4).
The algorithm is summarized in Algorithm 1.

The main benefit of the QRQLIPMC algorithm, compared
to the QRD-QLD algorithm, is the increased reliability of the
computed path metrics. This follows from the fact that the

partial QLD search ignores the information about the first
�NT /2� symbols, which is embedded in the last �NT /2�
QLD layers. A similar observation holds for the partial QRD
search. On the other hand, the QRQLIPMC algorithm ex-
ploits this information via the computation which is based
on the QLD tree in Step C. Note that this increased relia-
bility comes at the cost of a minor increase in the computa-
tional complexity, compared to the QRD-QLD algorithm, as
discussed next.

B. Analysis of the Computational Complexity

For each search tree, the number of visited nodes at the
first layer is 2L. Combined over both trees, there are NT − 2
remaining layers, and at each of these layers, the number of
visited nodes is M · 2L. Lastly, in the path computation step
�NT /2� layers are processed with K visited nodes at each
layer. Thus, the overall computational complexity (the number
of visited nodes) of the algorithm is (M < 2L):

2 · 2L +M · 2L · (NT − 2) +K ·
⌊
NT

2

⌋
. (5)

Note that the term K · �NT /2� in (5) represents the incre-
mental computational complexity of the QRQLIPMC algorithm
compared to the complexity of the QRD-QLD algorithm. We
emphasize that for practical values of computational complex-
ity this increase is negligible. Further note that (5) does not
include the complexity of the preprocessing in Step A, since this
preprocessing needs to be done once per channel realization,
and therefore its complexity can be neglected compared to
that of steps B and C. Furthermore, while we measure the
algorithm’s complexity via the average number of visited nodes
per MIMO decoding, as defined in Section II, it is possible to
simultaneously process both trees, thereby decreasing by half
the run time of the algorithm at the cost of adding hardware (see
[5]). Finally, it should be noted that the QRQLIPMC algorithm
has a drawback: The maximum number, M , of surviving paths
that can be maintained by the algorithm is 2L(�NT /2�−1), which
is considerably below the maximum number of paths that can
be maintained by an algorithm that decodes using a single
search tree, which is 2L(NT−1). Thus, the range of BER versus
complexity offered by the QRQLIPMC algorithm is bounded
from reaching best performance, as this requires maintaining
a large number of paths. This disadvantage can be alleviated
by taking the parameter K to be much larger than M (up
to 2L(�NT /2�−1)), but this eliminates the advantages of the
QRQLIPMC algorithm over algorithms which use a single
search.

V. NUMERICAL SIMULATIONS AND RESULTS

A. Simulation Setup

In the simulations we used a rate 1/2 parallel concate-
nated convolutional code (PCCC) with feedback polynomial
GR(D) = 1 +D +D2 and feedforward polynomial G(D) =
1 +D2, see [6]. Each transmitted block consisted of 9216
information and tail bits. A 64-QAM constellation and a 4 × 4
MIMO Rayleigh fading channel were used. For the purpose
of complexity comparison we assumed that the preprocessing
at Step A is negligible compared to other two steps. The
PCCC is decoded by a turbo decoder based on a complex-
valued soft-input soft-output BCJR detector [10] with 8 internal
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Fig. 2. Complexity vs. Eb/N0.

iterations and with no iterations between the MIMO decoder
and the turbo decoder. The results were compared with the
optimal ML decoder and with five major SD algorithms: single
tree search (STS) [7], QRD-M [3], improved K-best sphere
decoder (IKSD) [11], smart order candidate adding (SOCA)
[4] and QRD-QLD [5]. For each of the tested algorithms, the
parameters controlling the tradeoff between complexity and
BER were set such that the computational complexity was
approximately 4000 visited nodes. It should be noted that in the
STS algorithm the Lmax parameter value is different from the
values presented at [7], since [7] normalized the noise variance
to be one. The parameters of the different algorithms were set as
follows: For the SOCA algorithm, the b-parameter (determining
how many children nodes will survive from a single father
node) was taken to be the same as suggested in [4], while
m was taken to be 21, resulting in a constant complexity of
4096 visited nodes. For the QRD-QLD algorithm the value of
the parameter M was chosen to be 31, resulting in a constant
complexity of 4096 visited nodes. For QRD-M the parameter
M was taken to be 21, resulting in a constant complexity
of 4096 visited nodes. For the STS algorithm the value of
Lmax was set to 0.257, setting the algorithm’s complexity to
be approximately 4000 (as the complexity of STS varies from
search to search, and also depends on SNRb it cannot be set to
a constant value). Finally, for the IKSD algorithm we set K to
24 with a fixed threshold value of 0.2, setting the algorithm’s
complexity to be approximately 4000 (similarly to STS, IKSD
does not have fixed complexity). In our proposed QRQLIPMC
algorithm, M was set to 29 and K to 80, resulting in a constant
complexity of 4000 visited nodes.

B. Simulation Results

Fig. 2 depicts the complexity of each tested algorithm in
the simulations. It can be verified that all the algorithms have
approximately the same complexity (up to the differences ex-
plained Section V-A). Note that QRQLIPMC has lower com-
plexity compared to the other algorithms. This further shows
the strength of the new algorithm at lower complexity. Fig. 3
depicts the performance in terms of BER vs. Eb/N0 for the
tested algorithms. As can be seen from the figure, the results
are much in favor of the new algorithm: When complexity is
the same, the BER of QRQLIPMC is lower than the BER of
all other algorithms. At BER of 10−3, the SNR gain of the new
algorithm is 0.3 dB over SOCA and over QRD-QLD, while at

Fig. 3. BER vs. Eb/N0.

BER of 10−4 the SNR gain is 0.4 dB. These gains follow as
the path metrics created by the new algorithm are much more
reliable compared to those created by the QRD-QLD algorithm,
see Section IV-A. Furthermore, observe that the performance of
the new algorithm is very close to the STS, and a gain of 0.1 dB
can be observed at BER 10−3, while in contrast to the STS, the
complexity of the new algorithm is fixed.

VI. CONCLUSION

In this paper we proposed an improved fixed complexity
SD algorithm called QRD-QLD with improved path metric
computation. The proposed algorithm is shown to achieve an
excellent complexity vs. performance tradeoff for practical
values of computational complexity.
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