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Training-Based Time-Delay Estimation for CPM
Signals Over Time-Selective Fading Channels

Ron Dabora, Jason Goldberg, Senior Member, IEEE, and Hagit Messer, Fellow, IEEE

Abstract—In this paper, we consider training-based symbol
timing synchronization for continuous phase modulation over
channels subject to flat, Rayleigh fading. A high signal-to-noise-
ratio maximume-likelihood estimator based on a simplified
channel correlation model is derived. The main objective is to
reduce algorithm complexity to a single-dimensional search on
the delay parameter, similar to that of the static-channel (slow
fading) estimator. The asymptotic behavior of the algorithm is
evaluated, and comparisons are made with the Cramer-Rao
lower bound for the problem. Simulation results demonstrate
highly improved performance over the conventional, static-
channel delay estimator.

Index Terms—Continuous phase modulation (CPM), fading
channels, maximum-likelihood (ML) estimation, synchronization,
timing.

1. INTRODUCTION

ONTINUOUS phase modulation (CPM) is an important

class of digital modulation that combines good spectral
efficiency with the desirable property of constant signal mod-
ulus. This latter characteristic enables the use of highly efficient,
nonlinear power amplification in transmission, and provides in-
herent robustness to amplitude fading in reception, e.g., [1]. Due
to the popularity of CPM, considerable effort has been directed
toward the problem of time synchronization for such signals,
e.g., [2] and [3]. Nevertheless, most of the work on this subject
has concentrated on the additive white Gaussian noise (AWGN)
channel, with relatively little research directly addressing CPM
time synchronization over fast-fading (i.e., time-varying) chan-
nels (see [4] for an exception).

Also, while the general problem of time synchronization over
fast-fading channels has been considered in the literature, e.g.,
[2] and [5]-[7], some of this work either neglects the statis-
tical nature of the fading or imposes additional signal assump-
tions. For example, in [2], a high signal-to-noise ratio (SNR) ap-
proximation removes the influence of the fading statistics from
the problem, and in [5], the channel is simply treated as deter-
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ministically time varying, while in [7], a low-SNR-type “low
energy coherence” assumption is used. Time synchronization
for linear modulation types is considered in [8] and [9], where
a cyclostationary approach is used, and in [10], which uses a
delay-and-multiply method. In [11], a cyclostationary approach
is applied to blind synchronization of minimum-shift keying
(MSK) signals over time-selective fading channels. However,
such methods require long data sequences, and are therefore not
applicable to burst communications, for example.

The inherent limitations in time-delay estimation over flat,
Rayleigh fading channels were investigated by several authors.
In [9], the Cramer—Rao lower bound (CRLB) is derived for
blind time-delay estimation for /inear modulation by calcu-
lating the covariance of the transmitted signal (which is re-
stricted to be real) and then imposing Gaussianity on the re-
ceived signal. A general study of the bound on phase param-
eters for random amplitude phase-modulated signals can be
found in [12] for a real random component, and in [13] for a
complex random component. Finally, a detailed analysis of the
inherent limitations in time synchronization of CPM for fast-
fading channels can be found in [14]. In this paper, we present
a simple estimation procedure derived through an approximate,
high-SNR maximum-likelihood (ML) approach based on a
simplified (mismatched) model for the channel fading process.
The estimation procedure requires only a single-dimensional
parameter search. Specifically, we focus on training-based syn-
chronization, wherein the transmitted symbol sequence is a
priori known at the receiver. Such a scenario may arise, for
example, in communication systems which use known pilot
transmission to synchronize the receiver to the transmitter. An-
other possible application is burst transmission, where a known
preamble is periodically transmitted to enable correction of the
receiver’s reference clock.

Finally, we note that an important motivation for presenting
this estimation procedure is that the simple, slow-fading esti-
mator has considerably poorer performance than the proposed
method, while both methods have approximately the same
complexity. This is demonstrated in the following through
simulations.

The rest of this paper is structured as follows. Section II re-
views CPM, compares two fast-fading correlation models, and
specifies the overall model of the received signal. The problem
to be solved is then formulated. In Section III, the ML estimator
is derived for a high SNR approximation, and in Section IV, sim-
ulation results are presented. Last, Section V summarizes the
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II. MODELING AND PROBLEM FORMULATION

Begin by considering a general, discrete-time complex base-
band signal received over a time-selective fading channel and
sampled at sampling interval T

yi = fisi(T) + (1)
where f;, s;(7) = s(iTs — 7), and n; are the baseband-equiv-
alent time-varying channel, transmitted signal subject to un-
known delay 7, and additive noise components, respectively.

The channel component is assumed to be a realization

of a zero-mean, stationary, circular, complex Gaussian
random process, f; ~ CN(0, U?), with correlation function

Rys[m] 2 E{fif} .} where (-)* denotes complex conjuga-
tion. Gaussianity of the channel gives rise to the well-known
Rayleigh-distributed amplitude fading. The additive noise is
assumed to be a realization of a sequence of independent,
identically distributed (i.i.d.), zero-mean, circular, complex
Gaussian random variables, n; ~ CN(0,02).

The continuous-time complex envelope of a CPM waveform
may be written as, e.g., [15], 5(t) = \/(Es/Taym)e’FtM+eol
where E is the symbol energy, Tsym is the symbol duration,
©(t,n) is the information-bearing phase, ( is an arbitrary phase
shift (which can be incorporated into the fading process and
is thus taken to be zero), and n = [...,1m_2,7_1,70,71,...]F
(where [-]7 denotes the vector transpose operation) is an infin-
itely long column vector of data symbols. Note that we use the
convention s,.(t) = 2R{s(t)e/“*}, where s, (t) and w. de-
note the real signal and the carrier frequency, respectively, and
R{-} denotes the real part of the specified element.

A. Channel-Fading Statistics

A commonly used model for land-mobile communication
scenarios with isotropic scattering and horizontal propagation
is the “U-shaped” Jakes Doppler spectrum [16]

1 1 |w| Swm
Sf(w) =

Wm /2 /17(ﬁ)27 (2)
0, otherwise
where w,,, is the maximum Doppler shift in radians/second,
which for the above model also corresponds to the Doppler
bandwidth, By, through w,, = 27w B,. The associated correla-
tion sequence is

2
gy

R}(k) = 05 Jo(wnkTy) 3)

where Jy () is the zeroth-order Bessel function of the first kind.

Though common, this representation of the fading process
correlation was not found to enable derivation of a simple,
ML-oriented estimate of the time delay. Thus, to facilitate
the derivation of a simple estimator, we choose to model the
channel as an autoregressive process (e.g., [17]) of order one
(AR1).! Under the AR1 channel model, the channel correlation
function may be written as

A m m
RfR[m] = J%ﬂTsl I = JJZfozl | 4
where [ is the correlation parameter of the continuous-time

fading process, and & = 7° can be viewed as an “effective
correlation parameter” induced by the channel as well as the

INote that, at least for frequency estimation, both [17] and [18] claim that the
actual shape of the Doppler spectrum has no noticeable effect on performance.
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Fig. 1. Temporal correlation of the fading process for B;T.ym = 0.1, for
Jakes model and for AR1 fading correlation model, U'?e =1,T, = Tiym, 0 =
Jo(wnTs) = 0.9037.

sampling rate. We define o of the AR1 model to be the normal-
ized Jakes correlation at lag one

= Jo(wm Ts). (5)

To aid in visualizing the difference between the two models,
Fig. 1 depicts their respective temporal correlation functions.
As can be seen from the figure, the correlation produced by the
AR1 model lacks the oscillations present in the Jakes model,
so there is no strong peak at w,,, and the spectrum decays more
slowly with frequency. Use of the AR1 model when the channel
is governed by (3) creates a type of model mismatch, the effect
of which will be analyzed in the following.

B. Statistics of the Received Signal

Assume an observation interval of /N samples giving rise to
{v:} f\;?)l which, from (1), may be written in matrix form as

Yy =[yos- yn—1] =Sf+mn (6)
f=[fo.....fvo1]"

S = diag[s], s = [so(7),51(7),...,sn_1(7)]"

n = [ng,... ,nN_l]T

with diag[] denoting a diagonal matrix of specified diagonal
elements. Before continuing with the derivation, note that since
it is impossible to distinguish between the fading channel power
a]% and the signal power E/Tyym, we will use o]% to represent
their product (i.e., the signal power is normalized to one), such
that the SNR is defined as p = JJZC/ o2. Since the transmitted
signal s is known up to the fixed time delay, y is a zero-mean
complex Gaussian random vector, with correlation matrix given
by

E{yy"} =Ry = SR¢S" + 021 (7
Ry = E{fff}
where [-]¥ denotes conjugate transposition, I stands for the N x

N identity matrix, and Ry is the fading-channel correlation ma-
trix generated according to the Jakes model. The true (i.e., not
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mismatched) probability density function (pdf) of the received
signal can now be written as

1 H 21\~ lgqH
9,) — —y"8(Re+021I) "8ty
P(yib) = IR, 7020
T
0: = [r,0%, 00, 0] (8)

where | - | denotes the determinant of a matrix, and we used the
fact that for CPM, the signal matrix S is unitary.

C. Performance Bound

In Section IV, the performance of the proposed algorithm is
compared with the performance of the conventional slow-fading
delay-estimation algorithm and with the CRLB evaluated for
both the Jakes model and the AR1 channel approximation. The
CRLB is a bound commonly used for the performance evalua-
tion of unbiased estimation algorithms, and is evaluated as fol-
lows. Consider a data vector y whose pdf p(y; 6;) is parameter-
ized by a parameter vector #,. Under a set of regularity condi-
tions, the CRLB for the mean square error (MSE) of any unbi-
ased estimator 9t7i (y), of the ith parameter 8, ; is given by, e.g.,
(19]

E{(B::(y) — 0::)*} > [I71(0.)]us )

where the matrix J(6;) is known as the Fisher information ma-
trix (FIM), whose elements are given by
)}

Ip(y;0:) <8p(y;0t)
where [A];; denotes the (7, j)th element of the matrix A.

@)l = £ { 00, ; 00, ;

D. Estimation Problem

The estimation problem can now be formulated as follows.
Given a received signal y with pdf (8), which is parameterized
by an unknown parameter vector, #;, estimate the time delay,
7. In this problem, 7 is the parameter of interest, and the three
remaining parameters are nuisance parameters.

III. ML ESTIMATOR

A. ARI Approximation of the Likelihood Function

For the AR1 model, use of (4) yields the following correlation
matrix:

1 « a? ceo oVl
« 1 « aN =2
2 N-3
Re=o0}| @ o 1 a (11)
aN-1 G N-2 N-3 1

The pdf of (8) with (11) replacing the Jakes correlation matrix is
the pdf assumed by the estimator. The “mismatched” parameter
vector is now defined as

9= [T,aﬂT,

The relation between « and w,,, given by (5) is now seen to be a
natural consequence of the AR1 approximation for the channel
correlation used by the mismatched estimator.

2

0, = [02,02,0]" . (12)
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Before describing the estimation procedure, we wish to make
a few remarks on the estimation of w,,,. Although in this paper,
we are interested only in delay estimation and not in estimating
the Doppler bandwidth per se, as will be shortly explained, its
estimation can be obtained from the intermediate steps of the
delay-estimation procedure. Due to the introduction of the AR1
correlation model, our estimation procedure will produce the
value of Jo(wmTs). This value is enough for estimating the
delay, but if we would like to estimate the Doppler bandwidth,
we must use the inverse Bessel function. However, the inverse
Bessel function is not a one-to-one mapping. It would be a
one-to-one mapping only if we limit ourselves to the region
from the first maxima (at w,,17s = 0) to the first minima (at
wmTs = 3.83). Hence, using w,;, Ts = 27 ByTeym/Ks, with
K, = (Tiym/Ts), we conclude that for BTy, < 0.6 (up to
the first minimum of the Jakes correlation function) and 7T <
Tsym, and w,, have a one-to-one relation in the sense that
given one of these parameters, the other can be uniquely spec-
ified. Thus, for virtually all practical scenarios, searching the 8
parameter domain is “equivalent” to searching the f; parameter
domain.

B. Outline of Approach

The straightforward approach for deriving the ML solution
to the problem is to try to compress (8) (where (11) is used
instead of the true channel correlation matrix) with respect to
the nuisance parameters, and to perform a search on the delay
and the parameters which cannot be compressed. This approach
has been taken in [20], where using high and low SNR approx-
imations, we were able to reduce the search to a two-dimen-
sional search in 7 and «. Also, note that [21], which considers
the problem of estimating the direction of arrival (DOA) in the
presence of correlated multiplicative AR1 spatial noise, derives
a double search in their “equivalent” 7 and « for low SNR, while
for high SNR, an explicit solution for the ML estimate is de-
rived. However, due to the particularly simple structure of the
S matrix in the DOA problem of [21], such a solution is not
applicable to the current problem. Thus, we turned to another
approach: applying the chain rule for expressing a pdf in terms
of the product of conditional pdfs, we show that it is possible
to reduce the problem, under a high SNR approximation, to a
single-parameter search.

Mathematically, the compression can be expressed as

7 = argmax{A(T;y)} (13)
) = max{A(8., 7))
) = Wy — log|Re + 021

—y"S (Re + 021)71 sty
where A(f,,,7;y) is the log-likelihood function for the
problem, Wy, = —Nlog(n), and Ry is defined in (11). The next
subsections concentrate on simplified computation of A(7;y).
C. Evaluating the Conditional PDF

Our objective is to compress the estimation problem into a
one-dimensional search on the delay. Thus, the nuisance param-
eters are to be expressed in terms of the received signal y and
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the delay 7. Since the received symbols are a priori known, by

fixing 7 we can write z 2gH y, which for a CPM signal, is a
unitary transformation of y. This implies that

A(r;y) = max{A(6n, 7:2 = S™y)}

n

2 max{A(6,;2)}.

n

(14)

We seek to find the solution #,, = arg maxg_{A(0,.;2)}.

Applying the transformation z = SHy to (8) yields an ex-
pression for A(6,,; z) of the form

A7) = Wy — log |Re + 021| — 27 (Re + 021) ™ 2.

The AR1 model allows us to use the chain rule, and limit the
“history dependence” of z; to z;_; only. Derivation of the
(Gaussian) likelihood functions p(zo;8,,) and p(z;]z;—1;65)
yields (see Appendix A)

A(8r;2) = log(p(z0: 0r))

N-1
+ Z log(p(zi|zi—1;0,)) 5
i=1
1 _ I_;0|22
B(z2030n) = ————¢ 77 (1o
s (UJZC + 0%)
(\0'2 2
~ Zi*Zi—l—U?Jrffr%
(ac2)2
) 1 AR
(22 1:0,) = @2y © 4 Fton
s (szc +02 — g§+foﬁ)

The complete likelihood function for the estimation of the
nuisance parameters can now be written as

2
00 o) (2 2 |z0]
A(anaz) - WO - log (Un +Uf) - O'; _1_0-%
2
N—-1 (ao?)
2 2
+; —log of—}-on—m

I 17
(ar2) a7

5 -
O'f—l—o%

0]20-1—0721—

Differentiating (17) with respect to « and equating to zero re-
sults in a third-order polynomial for the estimation of o, which
depends on the other two nuisance parameters, UJZC and o2, and
on the delay and the received signal through z. This requires a
simultaneous solution of the likelihood equations for the nui-
sance parameters O’? and o2 at any given 7. However, since we
are interested in a simpler estimation procedure, we resort to a
high-SNR approximation.

D. High-SNR Approximation

For the high-SNR approximation, we assume that
o, 4+ 0} ~ o}. The high-SNR approximation allows us

to omit o2 from the nuisance parameters vector, leaving us
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with 88" = [02 a]T. The likelihood function of (17) under
this approximation becomes

, 2
Ahish (02@1; z) ~ Wy —log (U]%) - |?2|
f

N-1

— Z {log (ajzc(l — a2))
=1

+ |Zz — OéZi_1|2 }

o3 (1—a?)

(18)

where it is assumed that |a| # 1.
Straightforward differentiation of (18) can now be used to
obtain closed-form estimators for o7 and «. Begin with o7

HAhigh (0213}1; Z)

80%
B - _L n 1 |z —azio
— o} (0_;)2 1—a?
_Ui; (':;')2 ~0. (19)
f
Extracting o'} yields
| Nz
5? =N |20/* + 1—a? ZZ;(|Zi|2 + a?|zi_q?
—a(zizl 1+ 27 21)) (20)

In (20), (}J% is expressed in terms of « and z. We now calculate
the high-SNR ML equation for « by first writing

HAhigh (agigh; z)

|zi — azi_1)?
szc(l —a?)?

(2 = az:_1><—z“>} o

o2(1 - a?)

—2a) + (—2a)

(zi — azi1)(=2z}_y)

o2(1 - a?)

1)

Collecting the coefficients for each order of o we find that & is
given as the solution of:

—20°0}(N = 1)+ a’B +a (203(N —1) = 24) + B =0,
where B = Zﬁ\;_ll(ziz;“_l + zi_12f) and A =
SV T'(zioa|? + |zi)?). Observe that the estimation of «

requires solving a third-order polynomial for & that depends
on UJZC and z. We can now plug in the expression for &ch of (20)
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into this equation, yielding an equation for o only. Assume that
N is large enough so that UJ% (N-1)= J]%N. From (20)

o3N =D + a2 (a*A — aB) (22)
where D 2 Z?;Bl |z;|?. Hence, we have
- 2a—3((1 —a?)D 4+ a?A—aB) +o’B
1—a?
+ 21_;“02((1 —a?)D+a?A—aB
—(1-a®A)+B=0.
Collecting coefficients of the same order of « yields
a’(2D — 2A) + a*B + o*(4A - 4D) — 2a*B
+a(2D —2A)+ B =0. (23)
Define next
N-1
E=D—-A=-> |z (24)
i=2

so the ML equation for o can be written as
a’2E + o'B — o*4E — 20°B + a2E + B =0
= (a2E+ B)(a®> -=1)2 =0 (25)

resulting in an explicit high-SNR estimate for o

(26)

o = 2—E
Using (26) in (20), we obtain the estimate of o]% in terms of

the input sequence and the delay as

1 1

N 4E? — B2

Note that if f; has a correlation following the Jakes model, then,

at the true value of 7, the estimator for & yields (recall that

cr]% > JZ)

5 =

(4E°D + B*E). (27)

-B_ - ey iz + 2i17))

& = .
2E 2375 2 2
Nevoo 2(N = 1)o7 Jo(wimTs)

~ Jo(wmTs) (28)

2(N —2)(0} +02)

further motivating the definition of « in (5).

Similarly, we can find the limiting estimate of UJ% that the
estimator produces. From (20), using (28) and the high-SNR
condition o']% > J%, we get that

6_2 N:)oo i
! N

N -2

1—a2

N -1
[@%WQ+T:§@%w@a+y>

(0} +a2)]
~ ﬁ (szc +a,§) (1+ &2 — 2642)

2 2 2
:Jf—l—anzof.

—242

(29)

Note that (29) is not valid for |&| = 1.

The overall estimation procedure is now summarized as fol-
lows. For each value of 7 in the search domain, we evaluate
z = SH¥y. Next, use z in (26) and (27) to obtain the estimates
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of & and &J%, respectively. The estimates of the nuisance param-
eters are then plugged into (18), and the log-likelihood value
is evaluated for the corresponding 7. The delay estimate is that
value of 7 which maximizes ARigh(ghish. z),

Thus, for high SNR, the nuisance parameters are given in
closed-form expressions that depend solely on the delay and
the received sequence, reducing the search to a single-parameter
search on 7 only.

The estimator derived above was derived under the assump-
tion that « # 1 (o = 1 implies w,, = 0, the slow-fading
case). Thus, the algorithm would produce valid results as long
as |&| # 1. In that context, the actual value of « is not relevant.
Whenever |&| = 1, the estimator will not produce a valid result.
However, the estimate &, calculated using (26), is a random vari-
able, thus Pr(]&| = 1) = 0.2 This implies that even for the case
of a = 1, the probability that the estimated channel correlation
parameter is exactly one is zero. Hence, even when the value of
the (a priori unknown) channel correlation parameter is one, we
are able to apply the method above as an ad-hoc procedure. In
the next section, we examine its performance for this case via
simulation.

IV. NUMERICAL EXAMPLE

This section presents numerical examples which illustrate the
performance of the estimator derived in this paper as a function of
SNR, Doppler-time product, and sample size. A nominal MSK
modulation scenario is considered with a bit rate of Rsyy, =
(1/Tsym) = 24 Kb/s, a sampling rate of Ty = (Tyym/2), an
SNR of p = 10 dB, and a bit sequence of length L, = 41 bits,
alternating in pairs. This sequence is shown in [14] to minimize
the CRLB for the problem. The Jakes channel correlation model
with Doppler-time product of B;14ym = 0.02 (corresponding,
via (5), to an AR1 fading channel model with &« = 0.999) is used
to generate the channel. We note that the search in the simulations
was restricted to delays in the range [—2Tsym, 2T5ym), since this
is the length of the basic period of the MSK signal, hence, delays
outside this interval will fold inside. The results are plotted as one
of the above-listed parameters is varied from its nominal value.
Each figure depicts the simulation results for the AR1 estimator,
together with the CRLBs for the AR1 and the Jakes channel cor-
relation models (see [14]), and an analytically computed asymp-
totic error variance (see Appendix B). The performance of the
slow-fading matched-filter-type estimator, which assumes that
the channel is a realization of an unknown complex Gaussian
random variable, is also presented for comparison (see [6]).

Begin with Fig. 2, which presents the results as a function of
the sequence length in symbols. We observe that the CRLB for
the Jakes model is very close to that of the AR1 model. Also note
that the asymptotic variance of the mismatched estimator is very
close to the CRLB for the Jakes model. Therefore, we gain sim-
plified estimation without a significant penalty in excess error.
The variance of the AR1 estimator is seen to asymptotically ap-
proach the CRLB as the sequence length increases, and for 300
symbols sequence, the estimated variance is only 1.12 dB from
the CRLB and only 0.82 dB from the analytic prediction. On the

2Unless the pdf of & contains impulses at +1 or —1, which does not seem to
be the case.
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Fig. 3. Standard deviation of estimated delay versus SNR, for Jakes channel,
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symbols.

other hand, the slow-fading estimator is much worse—its stan-
dard deviation is 67 times that of the AR1 estimator.

Next, Fig. 3 presents the simulation results as the SNR varies
from —10 to 30 dB. Examining the figure, we can see that both
bounds are again quite close. We can also see that the asymp-
totic variance of the mismatched AR1 estimator is higher than
the Jakes bound at low SNR, but converges to the Jakes bound at
high SNR. Observe that the simulation results are quite close to
the CRLB and agree well with the asymptotic analysis; the dif-
ferences are because of the relatively small data-record length
used (i.e., not “sufficiently asymptotic” conditions). Also note
that the slow-fading estimator is considerably worse than the
mismatched estimator for all practical SNRs. For very low SNRs
(below —4 dB), however, we see that the slow-fading estimator
has smaller variance than the AR1 estimator. This can be ex-
plained as follows. The estimator’s performance is influenced
by two factors, the fading process and the thermal noise. As long
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as the fading process is the dominating error factor, the AR1 es-
timator (which uses a high-SNR approximation) is superior to
the slow-fading estimator, since it is better matched to the fading
channel. However, at very low SNRs, the dominant error factor
is the thermal noise. Here, the fact that the AR1 estimator as-
sumes high SNR while the slow-fading estimator does not make
any SNR approximation, plays in favor of the slow-fading esti-
mator and enables it to perform better than the AR1 estimator.
However, for the practical range of SNRs (say, above 0 dB), the
ART1 estimator is superior to the slow-fading estimator.

Fig. 4 presents the simulation results as a function of the
Doppler-time product at the nominal 10 dB SNR. We observe
that as the Doppler-time product increases, the variance of the
ARI1 delay estimate remains quite constant up to Doppler-time
product values of 0.2, which includes almost all practical sce-
narios. The peak of the slow-fading estimator around BqTsym =
0.5 can be explained by examining the sampled Jakes correla-
tion. Since this correlation function has zero crossings, there are
combinations of the Doppler-time product and the sampling in-
terval T that result in a sampled correlation with smaller values
at nonzero lags, and other combinations that result in larger
values of the sampled correlation at nonzero lags. For our spe-
cific scenario, the minimal correlation values are achieved when
the Doppler-time product is near 0.5, and then, with the increase
of the Doppler-time product, the correlation increases (and be-
comes negative at the first lag, due to the zero crossing of the
Jakes correlation function). This implies that the estimator ob-
serves the least correlated fading process around B47 5y, = 0.5,
and this is the reason for the peak in the variance. This is true
also for the ARI1 estimator, only there, this phenomenon be-
comes noticeable when the error is dominated by the fading
process rather than the thermal noise, which is not the case pre-
sented in the figure.

Also, note the slight deviation from the asymptotic variance
at very low Doppler-time product values. To examine the de-
pendence of this behavior on SNR, the simulation was repeated
at 20 dB SNR, as shown in Fig. 5. In Fig. 5, the dependence
of estimation performance on the Doppler-time product values
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is presented for SNR of 10 dB at the top half and for SNR of
20 dB at the bottom half, zooming in on the interesting region
of low Doppler-time product values. We observe that at SNR
of 20 dB, the performance remains constant over a wide range
of small Doppler-time product values. The reason for the devi-
ation from the prediction in Fig. 4 can now be understood from
(28). As the SNR decreases, the estimation of «« becomes more
and more biased. This effect, in turn, shifts the delay estimate
from its true location, resulting in worse estimator performance.
Furthermore, as o« — 1, the likelihood cost, as a function of «,
becomes steeper (see (21), where the term 1 — «? appears in
the denominator), thus a small error in the value of « causes a
relatively large change in the cost function. This sensitivity in-
duces a large error variance in the estimate. Hence, for very low
values of Doppler-time product, higher SNRs are required for
the asymptotic performance to be attained.

Last, Fig. 6 investigates the performance as a function of
SNR for the slow-fading (i.e., static) channel. As expected, the
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conventional static-channel delay estimator is optimal in the
sense that its performance asymptotically achieves the bound.
In the current scenario, the sequence length is too short for the
asymptotic conditions to exist at low and moderate SNRs, how-
ever, the performance of the static-channel estimator is still the
best. Nevertheless, the newly proposed estimator is seen to offer
nearly optimal performance for the static channel, and for SNRs
higher than 15 dB, its performance practically converges to the
slow-channel estimator performance where both converge to the
bound. It may therefore be applied in scenarios where it is not
known a priori whether the channel fading is of time-varying
nature.

V. CONCLUSION

This paper presented an ML approach for estimating time
delay for CPM over Rayleigh flat-fading channels. The ap-
proach was based on a mismatched AR1 channel-correlation
model upon which a high SNR estimator was derived. The
estimator was compressed into a single-parameter search over
the delay only. Numerical evaluation showed that the error
variance is very close to the CRLB evaluated with the Jakes
channel-correlation model. While both the newly proposed
estimator and the conventional, static-channel estimator require
a one-dimensional search over the delay parameter, simulation
results clearly indicate the superior performance of the former
over the latter.

APPENDIX A
DERIVATION OF THE CONDITIONAL PDF p(z;|z;—1;65)

Under the AR1 model, the received signal is described by the
following equations:

sifi +ni
fi=afii1+V1-aw;

where, w; ~ CN(0, JJ%), i.i.d. By fixing 7, the elements of the
transformed vector z are given by

Yi

(A1)

fi+ sin;

afi-1+V1—a2w; + sin,.

JAN *
Zi = YiS;

(A.2)
Using
Zic1 = fic1 + 8j_1ni—1 = fic1 = Zio1 — Sj_qNi—1

we can write

* *
=azi_1+ V1—a?w; +sin;, — as}_jn;_1

%
=azi_1+V1—- 2w, +n; — an;_, (A.3)
where
L A 2
i = sin; ~CN (0,07) . (A4)

Since y;;0; ~ CN(0, UJQ: + 02), and z; is a deterministic uni-
tary transformation of y;, then z; is also distributed as complex
normal: z;; 8, ~ CN(0,0%+02). Consider next the conditional
pdf of z;, namely p(z;|z*1;6,,),z' ! [20, 215+ .+, zi—1]T.
From (A.3), it is evident that the dependence of z; on its history
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z'~!, for the AR1 fading model, is limited to dependence on the
previous sample z;_; alone

P(zilz" " 150,) = B(2i]zi-1;0,).

By definition, n; and w; are normal and independent of z;_1;
also, z;_1|z;—1 is a constant. Hence, from (A.3), it is evident that
the only element required to be determined in order to evaluate
the conditional distribution p(z;|z;—1; 05 ), 18 P(i—1|zi—1; On)-
To this aim, we define the vector

A Zi
m = ~ .
ng

Clearly, m is a complex normal random vector with pdf param-

eters
Hen = E{m} = (ﬁfﬁ) - <8>

Cm 2 cov(m) = E { < Zi

012, + 03 cr?l
- o2 o2
where in the last equality, we used the fact that z; = f; +
n;. The conditional pdf can now be derived using Bayes’ rule,
p(A|B) = (p(A, B)/p(B)) (in the following we omit the con-
ditioning on ,,, but all the pdfs assume given 8,,)

~ 1 7mHC;}1m
. ~ p(Riy2i)  wCml©
p(nilz:) = = —3
p(z) | T

(o7 on)¢
2

1 of+on | o2
T a3 P T e M 22
™ ﬁ fon f n
where | - | denotes the determinant of a matrix, implying that

nilzi ~ CN (07 /(07 + 072,070, /(0% + 07)). Thus, using
(A.3), we can write the conditional expectation

E{zi|zi—1} = azic1 — E{fi_1|zi—1}

2
0221  QOFZi—1
=0zi-1 — Q5 2~ 2 2"
of + o5 oy + 05

For evaluating the variance, we begin with
E{|zil*|zio1}
= E{|ozzi_1 —ani—1+V1- o2w; + 771,,;|2|Zi_1}.
Next, note that n; is independent of z;_; and, therefore, also of
7;—1|zi—1. We also note that w; is independent of all the other
terms, hence, all the cross terms, except those that involve both
n;—1 and z;_1 equal zero, leaving us with
2
E{|zi|"|zi-1}
21, 2 25 plh ,
= a[zioa]” — @2 E{ni—1]zi-1}
— o’z E{_q |21} + 2 B{jii-1[*|zio )

+ (1= o) E{|wi*} + B[]}

2
2 2,2
o 0,0
=a?|z 4| — f 5 +0z242n f2
o, + 0% o5+ 0%

+(1- az)ajzc + 02,
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The conditional variance can now be readily written as

var(zilzi-1) = E{|zi* |21} — |E{zlzi-1}

2 2
=o0%+o0- — . A5
R (A5)
Hence, the conditional pdf of z;|z;_1;8,, is found to be
5\ 2
aclz (aJ )
A f 1—1 2 2 f
Zi|Zi,1,0nNC./\/ —O'?L-f—O'??Uf—i—an_—O'%—{—O'}%
(A.6)
APPENDIX B

AN EXPLICIT EXPRESSION FOR THE ASYMPTOTIC VARIANCE
OF THE PROPOSED ESTIMATOR

This appendix presents an expression for the asymptotic vari-
ance of the proposed estimator. The derivation of the asymp-
totic variance is complicated and beyond the scope and focus
of this paper. It will appear in a following paper [22]. However,
we chose to present the expression for the asymptotic variance
here, in order to present a complete description of the estimator.

The asymptotic variance of the proposed estimator is given
by

V&T(’f’—’l‘o) = ~7(E1+E2+E3+E4) (Bl)
(N J(70))?
In the above expression
~ ~2 2
~ 2 (0% (O'f)
J(r0) = N 2 57r[1]
(#5) - (%)
N-1
X |sk sk — sh_1s6—1]® (B.2)
k=1

where vkl = RIK/oZ st = sp(T)lrmry sy =
(9s1(7)/OT)|r=r,» and @,5% are the mean of the esti-
mates of the nuisance parameters produced by the estimator
(which, due to their consistency, are asymptotically equal to
their true values).
The expressions for £, Ey, E5 and F4 are
N-1
E, = 2w W, Z |sjst — s)_qs7_1|°
1=1
N—-1

By =Wy Y [WyS(,1-1)S(1—2,1-1)
=2
+ W3S, —1)8(1—1,1—2)
+ WS —1,0)8(1—2,1—1)
+WuS(I—1,0)8(1—1,1—2)]
N—-2
Es =Wy Y [WyS(l,1—1)S(,1+1)
=1
+ WsS(1,1—1)S(I+1,1)
+ W3S -1,0)8(1,1+1)
+ WuS(L—1,0)8(1+1,1)]

(B.3)
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2

-1
Ei= W, (S(1,1—1)
=1 m=1,m#l,l+1,l-1

S(m — 1,m)Ws(l,m)
S(,1 = 1)S(m,m — 1)W (1,m)
S =1,0)S(m —1,m)W=(l,m)
+S(l— 1,0)S(m,m — 1)W5(l,m)]
where
2
Wy = 2(10; 5 (B.4)
(57) - (a03)
Wy = (03 +02)" = (03)*r3[1] (B.5)
Wy = (02)* 1] + (02 + 02) o3rpl2]  (B.6)
Wi =2(03)"r3[1] (B.7)
S(l,m) = sisi + sy (B.8)
Wa(l,m) = (o) r31] + (o) r3ll — m] (B.9)
Woll,m) = (o) 311
+ (03)" gl = m = rg[m — 1 - 1] (B.10)
Wilt.m) = (o3)*r301]

+ (crf) rell = m+ 1rg[m — 1+ 1] (B.11)
where 07 and o, used in (B.5)~(B.11) are the true values of the

nuisance parameters.
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