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Prerequisites
LPCC requires the installation of two toolboxes:

1. FullBNT — A general Bayes Net toolbox, available at https://code.google.com/p/bnt/
2. SOM Toolbox — A Self-Organizing Map (SOM) algorithm toolbox, available at
http://www.cis.hut.fi/somtoolbox/

How to use?

LPCC can be run in two ways that differ only by the applied approach of clustering,
which is a pre-processing stage to LPCC. The first way is by manual clustering
(performed prior to running LPCC) in which the user applies their favorite clustering
algorithm, analyzes the clustering results, and extracts the major clusters to be inputted
to LPCC. We have good experience with SOM, although any clustering algorithm that
does not need to determine the number of clusters beforehand is good as well. The
second way is by letting LPCC cluster the data itself. Clustering is by applying SOM to the
raw data followed by clustering with k-means with different values for k (taking the
trained SOM as an input). The k-means algorithm is run multiple times with random
initializations for each k, and the one that reduces the sum of squared errors the most is
selected for that k. Then, the Davies-Bouldin index is calculated for each clustering
result to choose the best value of k. That is, because the SOM results need to be
interpreted to identify the major clusters, we could to it either manually (first way) or
automatically (second way), e.g., by using k-means.

Our own experience is that in automatic clustering, the results are less accurate,
because k-means “forces” all data points to be assigned to a cluster, whereas in the
manual clustering, some of the “noisy” points that are far from all centroids may be left
out of the clustering result. However, automatic clustering using k-means makes LPCC’s
run easy and fast. Therefore, although we recommend manual clustering, we also
recommend the user to consider both ways before deciding on that that is most
appropriate for their needs


https://code.google.com/p/bnt/
http://www.cis.hut.fi/somtoolbox/

1. Running LPCC when clusters are inputted by the user
[pdag,Observed,Latent]=LPCC(data_file,observed_cardinality,clusters,clusters_size)

Input:

data_file: A text file in which rows and columns represent samples and values of m
observed variables, respectively.

observed_cardinality: A vector with the cardinalities of the observed variables.
clusters: A matrix nXm that represents clusters’ centroids.
cluster_size: A vector of length n with the clusters’ sizes.

Output:

pdag: The learned pattern by LPCC, represented as a VXV matrix, where V=0 U L is
the set of the observed O and latent L variables in the learned pattern. The value of
pdag in row i and column j is 1 if there is a directed edge from V; into V; in the learned

pattern and 2 if there is an undirected edge between V; and V; in the learned pattern.

Observed: A vector of the observed variables in pdag, each is represented as a Matlab
structure.

Latent: A vector of the latent variables in pdag, each is represented as a Matlab
structure.

2. Running LPCC when clustering is performed by the code
[pdag,Observed,Latent]=LPCC(data_file,observed_cardinality)

Input/Output:

Similar to (1).



Examples

In the LPCC Toolbox, we provide three examples: LPCC_Examplel.m, LPCC_Example2.m,
and LPCC_Example3.m for running LPCC to learn graphs G1, G2, and G3 of Figure 1,
respectively. For example, Figure 2 shows the pdag learned by LPCC for G1. All examples
use simulated data sets of size 1,000, which were generated from the three graphs with
binary variables and are provided in the toolbox. The priors on the exogenous latents
were distributed uniformly, and the conditional probabilities between a latent L; and
each of its endogenous children EN; (either a latent or an observed) are

P(EN; = v|L;, = v) =0.8, v = 0 or 1, except of L4 in G3, for which

P(L, = 0|LzLs = 00,01,10) = P(L, = 1|L3Ls = 11) =0.8.
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Figure 1: Three example latent variable models, which are multiple indicator models, learned using LPCC.
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Figure 2: The pdga learned by LPCC for G1 (Figure 1). Indices 1-9 correspond to the observed variables X1-
X9, and indices 10-12 correspond to the latent variables L1-L3. Note that this pdag represents a pattern
over the structural model (connections among latent variables) of G1, because this model is of a serial
connection.



