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Feature detection and matching — Why?

Image stitching
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Image Stitching

[ Brown, Szeliski, Winder CVPR 2005 |

Feature detection and matching — Why?

3D Reconstruction and Alignment




Feature detection and matching — \Why?

T

Object detection and classification
http://inthefray.org/2015/07/strays-street-people-and-their-dogs/

Feature detection and matching — Why?

IA. 57/5711

Find the one false positive

Object detection and classification
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Feature detectors and descriptors

Point-like interest operators (Brown, Szeliski, and Winder 2005)

Feature detectors and descriptors

region-like interest operators (Matas, Chum, Urban et al. 2004)
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Feature detectors and descriptors

Edges (Elder and Goldberg 2001)

Feature detectors and descriptors

Straight lines (Sinha, Steedly, Szeliski et al. 2008)
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Finding feature points and their

Correspondences

- Two main approaches:

- Find features in one image that can be accurately
tracked using a local search technique, such as
correlation or least squares

Nearby viewpoints

- Independently detect features in all the images under
consideration and then match features based on their

local appearance

Large distance, appearance change

Feature detection and matching

- Feature detection (extraction)

- Feature description
- Feature matching

- Feature tracking




Feature detection and matching

- Feature detection (extraction)

- each image is searched for locations that are likely to
match well in other images.

- Feature description
- Feature matching

- Feature tracking

Feature detection and matching

- Feature detection (extraction)

- Feature description

- each region around detected keypoint locations is
converted into a more compact and stable (invariant)
descriptor that can be matched against other
descriptors.

- Feature matching

- Feature tracking
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Feature detection and matching

- Feature detection (extraction)

- Feature description

- Feature matching

- efficiently searches for likely matching candidates in
other images.

- Feature tracking

Feature detection and matching

- Feature detection (extraction)

- Feature description
- Feature matching

- Feature tracking

- alternative to the third stage that only searches a small
neighborhood around each detected feature and is therefore more
suitable for video processing.
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Feature detection and matching

- Feature detection (extraction)

- each image is searched for locations that are likely to match
well in other images.

- Feature description

- each region around detected keypoint locations is converted
into a more compact and stable (invariant) descriptor that
can be matched against other descriptors.

- Feature matching
- efficiently searches for likely matching candidates in
other images.
- Feature tracking

- alternative to the third stage that only searches a small
neighborhood around each detected feature and is
therefore more suitable for video processing.

What are good key-points (patches)?
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Comparing two image patches

Ewssp(u) = Y w(@)[I1(zi +u) — Io(:)]?
Weighted Suqfn Square Differences (WSSD)

Io, I two images being compared
u = (U, U) displacement vector

w(z;) Spatially varying weighting function

Comparing an image patch against itself

Exc(Au) = Zw(mi)[IO(mi + Au) — Io(z;)]
an auto-cbrrelation function or surface

Measure how stable this metric with respect to small variations in
positions Au

1/7/21
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Auto-correlation surfaces

Auto-correlation surfaces

1/7/21
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e
Auto-correlation surfaces

e
Auto-correlation surfaces

Using a Taylor Series expansion of the image function
Io(:l:,'+A’u,) ~ Io(:l:,')-i-VIo(.’Bi) - Au
we can approximate the auto-correlation surface as

Bac(Aw) = > w(e:)llo(: + Au) - To()]?
i w(z;) [Lo(x;) + VIo(x;) - Au — Ip(;))?
= Z w(®;)[VIo(x:) - Aul?

= AiuTAAu,

oly Ol
where, VIp(z;) = (6—::,6—;)(%) is the image gradientat x; .

&
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e
Auto-correlation surfaces

The auto-correlation matrix A can be written as

2 I.I
A=w=x * vy
[IIIy IZ

. E(z.y]EW Ig Z(z.y)ew I I!J
E(:,y)EWITIy Z(r,y)EWIg

As first shown by Anandan (1984; 1989) that the inverse of
the matrix A provides a lower bound on the uncertainty

in the location of a matching patch.

It is therefore a useful indicator of which patches can be

reliably matched. See examples

Harris Feature detector (Harris 88)

2 I.1
A =w=* * TVl
[I_Tfy IS ]

Harr= det(A) -« trace(A)2 = /\0/\1 - a(/\O + /\1)2
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Cornerness — Harris Corner

Fei-Fei Li

Example: Harris Corner
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Adaptive non-maximal suppression

(ANMS, Brown, Szeliski, and Winder 2005)

(a) Strongest 250 (b) Strongest 500

(c) ANMS 250, r = 24 (d) ANMS 500, r = 16

117121

Rotation Invariance (Brown et al)

1/7/21
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Scale Invariance

Multi-scale oriented patches (MOPS) extracted at five pyramid levels (Brown,
Szeliski, and Winder 2005). The boxes show the feature orientation and the
region from which the descriptor vectors are sampled.

SIFT: Motivation

- The Harris operator is not invariant to scale and
correlation is not invariant to rotation’:

- For better image matching, Lowe’s goal was to
develop an interest operator that is invariant to scale
and rotation.

- Also, Lowe aimed to create a descriptor that was
robust to the variations corresponding to typical
viewing conditions. The descriptor is the most-used
part of SIFT.

1But Schmid and Mohr developed a rotation invariant descriptor for it in 1997.

16



|dea of SIFT

- Image content is transformed into local feature
coordinates that are invariant to translation, rotation,
scale, and other imaging parameters

39

117121

Claimed Advantages of SIFT

- Locality: features are local, so robust to occlusion
and clutter (no prior segmentation)

- Distinctiveness: individual features can be matched
to a large database of objects

- Quantity: many features can be generated for even
small objects

- Efficiency: close to real-time performance

- Extensibility: can easily be extended to wide range
of differing feature types, with each adding
robustness

1/7/21
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Overall Procedure at a High Level
1. Scale-space extrema detection

Search over multiple scales and image locations.

2. Keypoint localization
Fit a model to determine location and scale.
Select key points based on a measure of stability.

3. Orientation assignment

Compute best orientation(s) for each key point region.

4. Key point description
Use local image gradients at selected scale and rotation
to describe each key point region.

117121

1. Scale-space extrema detection

- Goal: Identify locations and scales that can be
repeatably assigned under different views of the
same scene or object.

- Method: search for stable features across multiple
scales using a continuous function of scale.

- Prior work has shown that under a variety of
assumptions, the best function is a Gaussian
function.

- The scale space of an image is a function L(x,y,c)
that is produced from the convolution of a Gaussian
kernel (at different scales) with the input image.

1/7/21
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Aside: Image Pyramids

a And so on.

3 level is derived from the
2d |evel according to the same
funtion

2nd level is derived from the

original image according to
some function

Bottom level is the original image.

117121

Aside: Mean Pyramid

And so on.

At 31 |evel, each pixel is the mean

y 4 of 4 pixels in the 2" level.

At 2" |evel, each pixel is the mean

of 4 pixels in the original image.
mean

Bottom level is the original image.

19



1/7/21

Aside: Eaussian Pyramid

At each level, image is smoothed and
reduced in size. o

y 4 And so on.

At 27 |evel, each pixel is the result
of applying a Gaussian mask to
the first level and then subsampling
to reduce the size.

Bottom level is the original image.

117121

Example: Subsampling with Gaussian pre-filtering

Gaussian 1/2

20
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Lowe’s Scale-space Interest Points

- Laplacian of Gaussian kernel -
- Scale normalized (x by scale?) [
- Proposed by Lindeberg TV A

- Scale-space detection
- Find local maxima across scale/space
- A good “blob” detector

[ T. Lindeberg IJCV 1998 |

117121

Lowe’s Scale-space Interest Points:
Difference of Gaussians

- Gaussian is an ad hoc
solution of heat diffusion
equation

IG

2 M
— =oV-°G.
90 oV

- Hence

G(x,y. ko) — G(x,y.0) = (k—1)0°V?G.

- k is not necessarily very
small in practice

1/7/21
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Lowe’s Pyramid Scheme

 Scale space is separated into octaves:
* Octave 1 uses scale o
* Octave 2 uses scale 2¢
* etc.

* In each octave, the initial image is repeatedly convolved
with Gaussians to produce a set of scale space images.

* Adjacent Gaussians are subtracted to produce the DOG
* After each octave, the Gaussian image is down-sampled

by a factor of 2 to produce an image 7 the size to start
the next level.

117121

Lowe’s Pyramid Scheme

e | g 3

octave)

s+2 filters
Ggry=205g,

Scale
- . (first
6=25c, octave)

s+2
differ-

Difference of ence
Gaussian (DOG) images

. s+3
0,=2%5c, images
64=2"c, includin
o original Gebisian
The parameter s determines the number of images per octave.

1/7/21

22



Key pOi nt Iocal ization s+2 difference images.

top and bottom ignored.
s planes searched.

- Detect maxima and S
minima of difference-of- scale  EEAZZ
Gaussian in scale space S

- Each point is compared to
its 8 nel_ghbors in the For each max or min found,
current Image and 9 output is the location and
neighbors each in the the scale.
scales above and below

117121

Scale-space extrema detection: experimental results over 32
imaaes that were svntheticallv transformed and noise added.

1 3500 T T T T T
o, | | !
% fetdcted _ | | | averade no. déteced
bt ] $ 3000 b——f——T———f—— ==
2 = = A i
£ |/ % correctly matthe ] S St S =t S S
< /|7 correptly matched i R -
£ [ | & 200 L1
- S L1 1 = L
& R 1 3 e gelno. mafched
" L | Matching location and scale —— £ | | . '!' bJ o | . |
Tt e otal number of keyponts
| T«eum |d mnp‘f’ " dmfme | 2 1000 - |L' T T Nearest descriptor in dn‘:qu —n—
) | | | | | | - | | | | | |
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Number of scales sampled per octave Number of scales sampled per octave

Stability Expense
- Sampling in scale for efficiency
- How many scales should be used per octave? S=?
- More scales evaluated, more keypoints found
« S < 3, stable keypoints increased too
- S > 3, stable keypoints decreased
- S = 3, maximum stable keypoints found

1/7/21
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2. Keypoint localization

detailed fit to nearby data to determine

scale of a central sample point.
improve interpolation accuracy.

responses.

- location, scale, and ratio of principal curvatures
- In initial work keypoints were found at location and

- Once a keypoint candidate is found, perform a

- In newer work, they fit a 3D quadratic function to

- The Hessian matrix was used to eliminate edge

Eliminating the Edge Response

- Reject flats:
ID(®)| <0.03
- Reject edges:

DJ’!/ D!/!/

H-— D,, D, Let o be the eigenvalue with
- larger magnitude and 3 the smaller.

Tr(H) = Doy + Dy = oo+ 3,
Det(H) = DyyDyy — (Day)* = afi.

« What does this look like?

Letr = o/B. TH?  (a+8)? (B+8)°  (r+1)?
Soa=rB Det(H) =~ a3 —  rp? ro
-r<10

(r+1)%r is ata
min when the

2 eigenvalues
are equal.

1/7/21
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Keypoint localization with orientation

233x189 832
initial keypoints
536
729

keypoints after
ratio threshold

keypoints after
gradient threshold

() I

3.0rientation estimation

’ If 2 major orientations, use both.

0 2n

_> angle histogram

Image gradients

Create histogram of local gradient directions at selected scale
Assign canonical orientation at peak of smoothed histogram
Each key specifies stable 2D coordinates (x, y, scale,orientation)

1/7/21

25



177121

4. Keypoint Descriptors

- At this point, each keypoint has
- location
- scale
- orientation
- Next is to compute a descriptor for the local image region
about each keypoint that is
- highly distinctive
- invariant as possible to variations such as changes in viewpoint
and illumination

%] S| T | 7| 7
T3 A 7T

T} d % - >
| - -

A/ —Dlﬂ -

" & A ul*

B3 3ar ;Li ;TE

> x e~ e

(a) image gradients (b) keypoint descriptor

A schematic representation of Lowe’s (2004) scale invariant feature transform
(SIFT): (a) Gradient orientations and magnitudes are computed at each pixel and
weighted by a Gaussian fall-off function (blue circle). (b) A weighted gradient
orientation histogram is then computed in each sub-region, using trilinear
interpolation. While this figure shows an 8 X8 pixel patch and a 2X2 descriptor array,
Lowe’s actual implementation uses 16X16 patches and a 4 4 array of eight-bin
histograms.

1/7/21
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SIFT Keypoint Descriptor

- use the normalized region about the keypoint

- compute gradient magnitude and orientation at each
point in the region

- weight them by a Gaussian window overlaid on the
circle

- create an orientation histogram over the 4 X 4
subregions of the window

-4 X 4 descriptors over 16 X 16 sample array were
used in practice. 4 X 4 times 8 directions gives a
vector of 128 values. L1 11 [ |

/7]
SIFT Results

Panorama

27



SIFT Results: Matching “Objects”

SIFT Results: Recognizing objects in
clutter scenes

1/7/21
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Feature Descriptors (other than SIFT)

- Multiscale Oriented Patches (MOPs).

- Scale invariant feature transform (MSERS)

- PCA-SIFT

- Gradient location-orientation histogram (GLOH).
- Histograms of Oriented Gradients (HOGs)

- Speeded Up Robust Features (SURF)

- and many others ...

- (e.g. BRISK))

]
MOPs Descriptors

MOPS descriptors are formed using an 8 x8 sampling of bias and gain normalized
intensity values, with a sample spacing of five pixels relative to the detection scale.
This low frequency sampling gives the features some robustness to interest point
location error and is achieved by sampling at a higher pyramid level than the
detection scale.

29
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Maximally stable extremal regions
(MSERSs)

]
MSER

Binary regions are computed by thresholding the image at
all possible gray levels
This operation can be performed efficiently by
first sorting all pixels by gray value and then incrementally adding
pixels to each connected component
As the threshold is changed, the area of each component
(region) is monitored; regions whose rate of change of

area with respect to the threshold is minimal are defined as
maximally stable.

Matal et al, 2004

1/7/21
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Gradient location-orientation histogram
(GLOH) descriptor

First 3 steps —same as SIFT
Step 4 — Local image descriptor

* Consider log-polar location grid with 3 different radii and 8
angular direction for two of them, in total 17 location bin

* Form histogram of gradients having 16 bins /A

I |

* Form a feature vector of 272 dimension (17*16) -

+ Perform dimensionality reduction and project the features
to a 128 dimensional space.

Mikolajczyk
and Schmid (2005),

Gradient location-orientation histogram
(GLOH) descriptor

*

(a) image gradients (b) keypoint descriptor

The gradient location-orientation histogram (GLOH) descriptor uses log-polar

bins instead of square bins to compute orientation histograms (Mikolajczyk and Schmid
2005).

1/7/21
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GLOH

First 3 steps —same as SIFT
Step 4 — Local image descriptor

* Consider log-polar location grid with 3 different radii and 8
angular direction for two of them, in total 17 location bin

* Form histogram of gradients having 16 bins

| |

* Form a feature vector of 272 dimension (17*16) -

+ Perform dimensionality reduction and project the features
to a 128 dimensional space.

75/ B

192 correct
matches
(yellow) and
208 false
matches

= A3 A7 e o).

Histogram of Oriented Gradients
Descriptors (Hogs)

- Local object appearance and shape within an image are
described by the distribution of intensity gradients or edge
directions.

- The image is divided into small connected regions called cells,
and for the pixels within each cell, a histogram of gradient
directions is compiled.

- The descriptor is the concatenation of these histograms.

- For improved accuracy, the local histograms are

- contrast-normalized by calculating a measure of the intensity
across a larger region of the image, called a block, and then
using this value to normalize all cells within the block.

- This normalization results in better invariance to changes in
ilumination and shadowing.

1/7/21
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HOGs — Block Normalization

v
L2-norm: f = —
y lIvll3 + €2

L1-norm: f = — S

(vl +e)

e = L+

(a) (b) () (d) (e) ® (@)

(a) average gradient image over training examples

(b) each “pixel” shows max positive SVM weight in the block centered on
that pixel

(c) same as (b) for negative SVM weights

(d) testimage

(e) its R-HOG descriptor

(f) R-HOG descriptor weighted by positive SVM weights

(g9) R-HOG descriptor weighted by negative SVM weights

33
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HOGs Examples

-

adapted from Fei-Fei Li

/]
SURF example

adapted from Fei-Fei Li

1/7/21
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Example: Pyramid Histogram Of Words
(PHOW)

= P FVIEEN <

Bosch et al, ICCV 2007 (variant of dense SIFT descriptor)

Features in Matlab

[FEATURES, VALID_POINTS] = extractFeatures(l, POINTS, Name, Value)

Class of POINTS Descriptor extraction method
- SURFPoints object -~ Speeded-Up Robust Features (SURF)
- MSERRegions object - Speeded-Up Robust Features (SURF)
- cornerPoints object - Fast Retina Keypoint (FREAK)
- BRISKPoints object - Fast Retina Keypoint (FREAK)
- M-by-2 matrix of [x yl -~ Simple square neighborhood around [x y]
coordinates point location
Method Feature vector (descriptor)
'BRISK' Binary Robust Invariant Scalable Keypoints (BRISK)
' FREAK' Fast Retina Keypoint (FREAK)
'SURF* Speeded-Up Robust Features (SURF)
'‘Block’ Simple square neighborhood
‘Auto’ Selects the extraction method based on the class of

input points. See the table above.

Default: 'Auto’

35
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Example: Harris Corner Detector

mr WA
-MA §
e (& "‘,
S B
R % Y

corners = detectHarrisFeatures(l);

]
Example: SURF features

A

B <= N | o

10 Strongest

“e8l yePon

points = detectSURFFeatures(l);

36
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Example: SURF features

& =] 4l { b=

(P

80_Strongest
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Example: MSER with upright SURF
fa descripr

Jl ; AF b ¢ g(

regions = detectMSERFeatures(l);

Feature Matching

how can we extract local descriptors that are invariant
to inter-image variations and yet still discriminative enough to establish
correct correspondences?

1/7/21
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Matching strategy and error rates

- Context and application dependent
- matching a pair of images with large overlap
- object detection

- Euclidean distances in feature space can be directly used
for ranking potential matches.

- Thresholding

Performance quantification of matching
algorithms

TP: true positives, i.e., number of correct matches;
FN: false negatives, matches that were not correctly
detected;

FP: false positives, proposed matches that are
incorrect;

TN: true negatives, non-matches that were correctly

rejected.

39
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Performance quantification of matching
algorithms
e true positive rate (TPR),
i 5 T
TR= TN P
e false positive rate (FPR),
FP FP
FPR=EpeIN - N
e positive predictive value (PPV),
Py = & - I,
TP+FP P’
e accuracy (ACC),
TP+TN
R ¥

ROC curve and its related rates

error
rate

S
=

7
_random chance
’

true positive rate

false positive rate

(a) (b)

40
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Efficient Matching

- Multi-dimensional search tree
- Hash table

41



