#### **Solutions to Final Examinations**

# 1. (20 points) Cookies.

Let

$$V_n = \prod_{i=1}^n X_i,$$

where  $X_i$  are i.i.d.

$$X_i = \begin{cases} 1/8, & \text{probability } 1/2, \\ 1/2, & \text{probability } 1/2. \end{cases}$$

Presumably,  $X_i$  is the fraction remaining after a single mouse bite.

(a) Let

$$V_n' = \alpha^n$$
.

Find the value of  $\alpha$  such that  $V_n$  and  $V_n'$  decrease at the same rate.

For parts (b) and (c), we mix  $V_n$  and  $V_n'$  as follows. Let

$$Y_i = \lambda \alpha + (1 - \lambda)X_i,$$

where  $\lambda \in (0,1)$ . Let

$$V_n'' = \prod_{i=1}^n Y_i.$$

- (b) Is the growth rate of  $V_n''$  larger or smaller than  $\log \alpha$ ?
- (c) What is the growth rate of  $V_n''$  for  $\lambda = 1/2$ ?

#### Solution: Cookies.

(a) Since

$$\frac{1}{n}\log V_n \to E\log X_1 = -2 \quad \text{w.p.1},$$

we need  $\alpha=2^{-2}=1/4$  to have the same growth (or decay) rate.

(b) The growth rate of  $V_n''$  is larger than  $\log \alpha$ . Indeed, by Jensen's inequality,

$$\log(\lambda \alpha + (1 - \lambda)X_i) \ge \lambda \log \alpha + (1 - \lambda) \log X_i,$$

so that

$$E \log Y_i \ge \lambda \log \alpha + (1 - \lambda) E \log X_i = \log \alpha.$$

(c) Since

$$Y_i = \begin{cases} 3/16, & \text{probability } 1/2, \\ 3/8, & \text{probability } 1/2, \end{cases}$$

the growth rate is given by

$$E\log Y_i = \log\left(\frac{3}{8\sqrt{2}}\right),\,$$

which is larger than  $\log(1/4)$ .

2. (20 points) Huffman code.

Find the binary Huffman encoding for

$$X \sim \mathbf{p} = \left(\frac{19}{40}, \frac{8}{40}, \frac{3}{40}, \frac{3}{40}, \frac{3}{40}, \frac{2}{40}, \frac{2}{40}\right).$$

Solution: Huffman code.

Codeword

## 3. (20 points) Good codes.

Which of the following codes are possible Huffman codes?

- (a)  $\{0,00,01\}$
- (b) {0,10,11}
- (c)  $\{0,10\}$

#### Solution: Good codes.

Only (b) can be a Huffman code; it represents a complete binary tree. (a) is not prefix free; (c) can be improved by replacing the codeword 10 with 1.

## 4. (20 points) Errors and erasures.

Consider a binary symmetric channel (BSC) with crossover probability p.



A helpful genie who knows the locations of all bit flips offers to convert flipped bits into erasures. In other words, the genie can transform the BSC into a binary erasure channel. Would you use his power? Be specific.

#### Solution: Errors and erasures.

Although it is very tempting to accept the genie's offer, on a second thought, one realizes that it is disadvantageous to convert the bit flips into erasures when p is large. For example, when p = 1, the original BSC is noiseless, while the "helpful" genie will erase every single bit coming out from the channel.

The capacity  $C_1(p)$  of the binary symmetric channel with crossover probability p is 1-H(p) while the capacity  $C_2(p)$  of the binary erasure channel with erasure probability p is 1-p. One would convert the BSC into a BEC only if  $C_1(p) \leq C_2(p)$ , that is,  $p \leq p^* = .7729$ . (See Figure 1.)



## 5. (40 points) Random walks.

Consider the following graph with three nodes:

$$\{X_i\}$$
  $\underbrace{}_{1}$   $\underbrace{}_{2}$   $\underbrace{}_{3}$ 

(a) What is the entropy rate  $H(\mathcal{X})$  of the random walk  $\{X_i\}_{i=1}^{\infty}$  on this graph?

Now consider a derived process

$$Y_i = \begin{cases} 0, & \text{if } X_i = 1 \text{ or } 3, \\ 1, & \text{if } X_i = 2. \end{cases}$$

- (b) Is it Markov?
- (c) Find the entropy rate  $H(\mathcal{Y})$  of  $\{Y_i\}_{i=1}^{\infty}$ .

Now consider another derived process

$$Z_i = \begin{cases} 0, & \text{if } X_i = 1 \text{ or } 2, \\ 1, & \text{if } X_i = 3. \end{cases}$$

- (d) Is it Markov?
- (e) Find the entropy rate  $H(\mathcal{Z})$  of  $\{Z_i\}_{i=1}^{\infty}$ .

For parts (f), (g), and (h), consider the following graph with three nodes:



(f) What is the entropy rate  $H(\mathcal{U})$  of the random walk  $\{U_i\}_{i=1}^{\infty}$  on this graph?

Now consider a derived process

$$V_i = \begin{cases} 0, & \text{if } U_i = 1 \text{ or } 2, \\ 1, & \text{if } U_i = 3. \end{cases}$$

- (g) Is it Markov?
- (h) Find the entropy rate  $H(\mathcal{V})$  of  $\{V_i\}_{i=1}^{\infty}$ .

## Solution: Random walks.

- (a) It is easy to see that the stationary distribution is given by  $\mu = (1/4, 1/2, 1/4)$ . The entropy rate is  $\sum_{j} H(X_{n+1}|X_n=j)\mu_j = 1/2$ .
- (b) Yes, it is Markov. If  $Y_n = 0$ , then  $Y_{n+1} = 1$  w.p.1, and vice versa.
- (c) Since the process evolves deterministically, the entropy rate  $H(\mathcal{Y})$  is 0.
- (d) No, it is not Markov. For example, it is easy to check that  $P(Z_{n+1} = 1 | Z_n = 0, Z_{n-1} = 1) = 1/2$ , while  $P(Z_{n+1} = 1 | Z_n = 0) = 2/3$ .
- (e) Although the process is not Markov, as in Problem 6 in midterm, knowing  $(X_1, Z_1, \ldots, Z_{n-1})$  is equivalent to knowing  $(X_1, \ldots, X_{n-1})$ . Thus we have

$$H(Z_n|X_1,Z^{n-1}) = H(Z_n|X^{n-1}) = H(Z_n|X_{n-1}) = 1/2,$$

and hence

$$H(\mathcal{Z}) = \lim_{n \to \infty} H(Z_n | X_1, Z^{n-1}) = 1/2.$$

- (f) Given  $U_n$ ,  $U_{n+1}$  takes two values with equal probability. Hence,  $H(\mathcal{U}) = 1$ .
- (g) Yes, it is Markov with the following transition probability:



(h) The stationary distribution is  $\mu = (2/3, 1/3)$ , so that

$$H(V) = \sum_{j} H(V_{n+1}|V_n = j)\mu_j = 2/3.$$

5

#### 6. (20 points) Code constraint.

What is the capacity of a BSC(p) under the constraint that each of the codewords has a proportion of 1's less than or equal to  $\alpha$ , i.e.,

$$\frac{1}{n} \sum_{i=1}^{n} X_i(w) \le \alpha, \quad \text{for } w \in \{1, 2, \dots, 2^{nR}\}.$$

(Pay attention when  $\alpha > 1/2$ .)

#### Solution: Code constraint.

Using the similar argument for the capacity of Gaussian channels under the power constraint P, we find that the capacity C of a  $\mathrm{BSC}(p)$  under the proportion constraint  $\alpha$  is

$$C = \max_{p(x): EX \le \alpha} I(X; Y).$$

Now under the Bernoulli( $\pi$ ) input distribution with  $\pi \leq \alpha$ , we have

$$I(X;Y) = H(Y) - H(Y|X)$$

$$= H(Y) - H(Z|X)$$

$$= H(Y) - H(Z)$$

$$= H(\pi * p) - H(p),$$
(1)

where  $\pi * p = (1 - \pi)p + \pi(1 - p)$ . (Breaking I(X;Y) = H(X) - H(X|Y) = H(X) - H(Z|Y) is way more complicated since Z and Y are correlated.) Now when  $\alpha > 1/2$ , we have

$$\max_{\pi} H(\pi * p) - H(p) = 1 - H(p),$$

with the capacity-achieving  $\pi^* = 1/2$ . On the other hand, when  $\alpha \leq 1/2$ ,  $\pi^* = \alpha$  achieves the maximum of (1); hence

$$C = H(\alpha * p) - H(p).$$

## 7. (20 points) Typicality.

Let (X,Y) have joint probability mass function p(x,y) given as

| X | 0  | 1  |
|---|----|----|
| 0 | .1 | .3 |
| 1 | .4 | .2 |

- (a) Find H(X), H(Y), and I(X; Y). (Don't bother to compute the actual numerical values.)
- (b) Suppose  $\{X_i\}$  is independent and identically distributed (i.i.d.) according to Bern(.4),  $\{Y_i\}$  is i.i.d. Bern(1/2), and  $X^n$  and  $Y^n$  are independent. Find (to first order in the exponent) the probability that  $(X^n, Y^n)$  is jointly typical (with respect to the joint distribution p(x, y).

## Solution: Typicality.

(a)

$$H(X) = H(.4),$$
  
 $H(Y) = H(1/2) = 1,$   
 $I(X;Y) = H(Y) - H(Y|X) = 1 - .4H(1/4) - .6H(1/3).$ 

(b) From the joint AEP, the probability  $(X^n, Y^n)$  is jointly typical w.r.t. p(x, y) is  $\stackrel{.}{=} 2^{-n(I(X;Y)\pm\epsilon)}$ .

8. (20 points) Partition.

Let (X,Y) denote height and weight. Let [Y] be Y rounded off to the nearest pound.

- (a) Which is greater I(X;Y) or I(X;[Y])?
- (b) Why?

#### Solution: Partition.

- (a)  $I(X;Y) \ge I(X;[Y])$ .
- (b) Data processing inequality.
- 9. (20 points) Amplify and forward.

We cascade two Gaussian channels by feeding the (scaled) output of the first channel into the second.



Thus noises  $Z_1$  and  $Z_2$  are independent and identically distributed according to N(0, N),

$$EX_1^2 = EX_2^2 = P,$$
  
 $Y_1 = X_1 + Z_1,$   
 $Y_2 = X_2 + Z_2,$ 

and

$$X_2 = \alpha Y_1$$

where the scaling factor  $\alpha$  is chosen to satisfy the power constraint  $EX_2^2 = P$ .

- (a) (5 points) What scaling factor  $\alpha$  satisfies the power constraint?
- (b) (10 points) Find

$$C = \max_{p(x_1)} I(X_1; Y_2).$$

(c) (5 points) Is the cascade capacity C greater or less than  $\frac{1}{2}\log\left(1+\frac{P}{N}\right)$ ?

## Solution: Amplify and forward.

- (a) We want  $\alpha^2 E Y_1^2 = \alpha^2 (P + N) = P$ . Hence  $\alpha = \sqrt{\frac{P}{P+N}}$ .
- (b) Since  $Y_2 = X_2 + Z_2 = \alpha Y_1 + Z_2 = \alpha X_1 + (\alpha Z_1 + Z_2)$ , the channel from  $X_1$  to  $Y_2$  is a Gaussian channel with signal-to-noise ratio  $\alpha^2 P : (\alpha^2 N + N)$ . Hence, the capacity is

$$C = \frac{1}{2}\log\left(1 + \frac{\alpha^2 P}{(\alpha^2 + 1)N}\right) = \frac{1}{2}\log\left(1 + \frac{P^2}{(2P + N)N}\right) = \frac{1}{2}\log\left(\frac{(P + N)^2}{(2P + N)N}\right).$$

(c) The cascade capacity C is less than  $\frac{1}{2}\log\left(1+\frac{P}{N}\right)$ , which can be shown by data processing inequality. Adding an extra noise wouldn't increase the capacity.