
2nd Semester 2010

Solutions to Set #3 Part B

Data Compression via Matlab, AEP and block source coding

1. Matlab simulation of Compression

Recall Question 3 from part A of HW 3

Give a Huffman encoding into an alphabet of size D = 2 of the following
probability mass function:
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Assume you have a file of size 10,000 symbols where the symbols are dis-
tributed i.i.d. according to the pmf above. After applying the Huffman
code, what would be the pmf of the compressed binary file (namely,
what is the probability of ’0’ and ’1’ in the compressed file), and what
would be the expected length?

(a) Generate a sequence (using Matlab or any other software) of 10,000
symbols of X with i.i.d. probability PX . Assume the alphabet of
X is X = (0, 1, ..., 6).

(b) What is the percentage of each symbol (0, 1, ..., 6) in the sequence.
Explain the result this using the law of large numbers.

(c) Represent each symbol in X using a simple binary representation.
Namely, X = 0 represent as ’000’, X = 1 represent as ’001’,X = 2
represent as ’010’,..., X = 6 represent as ’110’.

(d) What is the length of the simple representation. What percentage
of ’0’ and ’1’ do you have in this representation?

(e) Now, compress the 10,000 symbols of X , into bits using Huffman
code.

(f) What is the length of the compressed file. What percentage of ’0’
and ’1’ do you have in this representation?

(g) Explain the results using the law of large number and the analyt-
ical solution of Question 3 from HW 3.
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2. An AEP-like limit. Let X1, X2, . . . be i.i.d. drawn according to
probability mass function p(x). Find

lim
n→∞

[p(X1, X2, . . . , Xn)]
1

n .

Solution: An AEP-like limit.
X1, X2, . . . , i.i.d. ∼ p(x). Hence log(Xi) are also i.i.d. and

lim(p(X1, X2, . . . , Xn))
1

n = lim 2log(p(X1,X2,...,Xn))
1
n

= 2lim
1

n

∑
log p(Xi)

= 2E(log(p(X)))

= 2−H(X)

by the strong law of large numbers.

3. AEP. Let X1, X2, . . . be independent identically distributed random
variables drawn according to the probability mass function p(x), x ∈
{1, 2, . . . , m}. Thus p(x1, x2, . . . , xn) =

∏n

i=1 p(xi). We know that
− 1

n
log p(X1, X2, . . . , Xn) → H(X) in probability. Let q(x1, x2, . . . , xn) =

∏n

i=1 q(xi), where q is another probability mass function on {1, 2, . . . , m}.

(a) Evaluate lim− 1
n
log q(X1, X2, . . . , Xn), where X1, X2, . . . are i.i.d.

∼ p(x).

(b) Now evaluate the limit of the log likelihood ratio 1
n
log q(X1,...,Xn)

p(X1,...,Xn)

when X1, X2, . . . are i.i.d. ∼ p(x). Thus the odds favouring q are
exponentially small when p is true.

Solution: AEP.

(a) Since the X1, X2, . . . , Xn are i.i.d., so are q(X1), q(X2), . . . , q(Xn),
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and hence we can apply the strong law of large numbers to obtain

lim−
1

n
log q(X1, X2, . . . , Xn) = lim−

1

n

∑

log q(Xi)

= −E(log q(X)) w.p. 1

= −
∑

p(x) log q(x)

=
∑

p(x) log
p(x)

q(x)
−

∑

p(x) log p(x)

= D(p||q) +H(p).

(b) Again, by the strong law of large numbers,

lim−
1

n
log

q(X1, X2, . . . , Xn)

p(X1, X2, . . . , Xn)
= lim−

1

n

∑

log
q(Xi)

p(Xi)

= −E(log
q(X)

p(X)
) w.p. 1

= −
∑

p(x) log
q(x)

p(x)

=
∑

p(x) log
p(x)

q(x)

= D(p||q).

4. Lossless source coding with side information.

Consider the lossless source coding with side information that is avail-
able at the encoder and decoder, where the source X and the side
information Y are i.i.d. ∼ PX,Y (x, y).

Xn f(Xn, Y n) ∈ {1, 2, ..., 2nR}
Encoder Decoder

Y nY n

X̂n(f(Xn, Y n), Y n)

Figure 1: Lossless source coding with side information at the encoder and
decoder.
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Show that a code with rate R < H(X|Y ) can not be achievable, and
interpret the result.

Hint: Let T , f(Xn, Y n). Consider

nR ≥ H(T )

≥ H(T |Y n), (1)

and use similar steps, including Fano’s inequality, as we used in the
class to prove the converse where side information was not available.

Solution Sketch of the solution (please fill in the explanation for each
step):

nR ≥ H(T )

≥ H(T |Y n),

≥ I(Xn;T |Y n)

= H(Xn|Y n)−H(Xn|T, Y n)

= nH(X|Y )− ǫn,

where ǫn → 0.
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