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Multi-User Information Theory Jan 03, 2012

Lecture 8

Lecturer:Dr. Haim Permuter Scribe: Wasim Huleihel

. NOTATION

« R: The set of real numbers.

« R,: The set of nonnegative real numbers.

« R, .: The set of positive real numbers.

« S*: The set of symmetrié x k& matrices.

« S*: The set of symmetric positive semi-definitex & matrices.

« S*.: The set of symmetric positive definitex k& matrices.

« domf: The domain of the functionf. Let f : R* — R™, then domf £

{z € R": f (z) exists}. For exampledomlog = R, ,

[I. CONVEX OPTIMIZATION

In the previous lecture, we discussed about convex set. [&€bisre we will continue

the discussion about convex set and start discussing abauéx functions.

Definition 1 (Supporting hyperplanes) SupposeC C R”, and xy is a point on the
boundary ofC. If a # 0 satisfiesa’s < a’x, for all z € C, then the hyperplane

{z eR": oz =a"x} is called asupporting hyperplane to C' at the pointz.

The geometric interpretation is that the hyperpldnec R" : a”z = a”2} is tangent
to C' at zy, and the halfspac¢z € R" : o’z < a’zy} containsC. This is illustrated in
Fig. 1.

Definition 2 (Dual cones)Let K be a cone. Then, the set
K*:{y:xTyEOforalleK}, Q)

is called thedual cone of K.
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Fig. 1. The hyperplane supports at zo.

Fig. 2. K~ is the dual cone (blue dotted) df (black). The boundary hyperplanes &f* are orthogonal to the
boundary hyperplanes df.

Geometricallyy € K* iff —y is the normal of a hyperplane that suppdiisat the origin.
This is illustrated in Fig. 2.

Example 1 (Subspace)The dual cone of a subspadé C R" is its orthogonal

complement/* = {y: y"z =0 for all z € V}.

Example 2 (Nonnegative quadrants)The coneR, is its own dual
y'z>0forall z>0<=y>0. (2)

We shall call such a cons=lf-dual.
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In the following, we present equivalent definitions of caoxanctions, and present
some examples of convex functions.

Definition 3 (Convex function) A function f : R — R is convex if dony is a convex

set and if for allz,y € domf, and# with 0 < 0 < 1, we have

f 0z +0y) <0f (x) +0f (y), 3)

whered 2 1 — 6. A function is strictly convex if strict inequality hold in (3) forx # y
and0 < ¢ < 1. Also, we say thatf is concave if —f is convex, andstrictly concave if

— f is strictly convex.

Note that this definition is true also for vectors. Next, wegant special criteria to verify

the convexity of a function.
Lemma 1 (Restriction of a convex function to a line) The functionf : R* — R is
convex iff the functiong : R — R,

g(t)=f(x+tv) domg={t e R:z+tvedomf}, 4)
is convex int for any z € domf and v € R". Therefore, checking convexity of
multivariate functions can be carried out by checking cartyeof univariate functions.

Example 3 Let f: S™ — R with

f(X)=—logdet X, domf =S" . (5)
Then
g (t) = —logdet (X +tV)
= —logdet X — logdet (I +tX 2V X /2
= —logdet X — i log (1 +t\;), (6)
=1
where [ is the identity matrix and\;, : = 1,...,n are the eigenvalues of the matrix

X172y X~1/2_ Since— 3" log (1 + t);) is convex int, as sum of convex functions (prove
=1

that the inner term of the sum is convex), and becaus® det X is constant with respect
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to ¢, we have proven that for any choice bf and anyX € domf, ¢ is convex. Hence
f is also convex.

Next, we present first-order conditions which assures tHanetion is convex.

Lemma 2 (First-order condition) Let f : R™ — R denote a differentiable function, i.e.

domf is open and for alk € domf the gradient vector

s [0f (@) of(@)]"

Vi(x)= o om : ()
exists. Thenf is convex iff dony is convex and for alk:, y € domf
fy) = f@)+ V(@) (y—2). 8)

Remark 1 Forn = 1 Lemma 2 implies thaf is convex iff f (y) > f (x)+f' (z) (y — z).

Before we prove this lemma let us interpret it. The r.h.s. &f i§ the first order
taylor approximation off (y) in the vicinity of z. According to (8), the first order taylor
approximation in case whergis convex, is a global underestimate faf This is a very
important property used in algorithm designs and perfogaamalysis. The inequality
in (8) is illustrated in Fig. 3. In the following, we prove Lena 2 for the case af = 1.

Generalization is straightforward.

J)

F)+V1) (rx)

Fig. 3. If f is convex and differentiable, thef(y) > f (z) + Vf (m)T (y — z) for all z,y € domf.
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Proof: Assume first thaff is convex andr, y € domf. Since donf is convex, using

the definition, for all0 < ¢ <1, x + ¢ (y — z) € domf, and by convexity off,

fle+t(y—a) <A —t)f(z)+1f(y).
If we divide both sides by, we obtain

fla+tly—x)—f(z)
t
flax+tly—x)—f(2)
t-(y—x)

fy) = flx)+
= [(z)+

(y - l’) )
and taking the limit ag — 0 yields (8).
To show sufficiency, assume the function satisfies (8) forajl € domf. Choose any
r#y, and0 < 0 < 1, and letz = 0z + Gy. Applying (8) twice yields
f@zf@+f(=)@-2, fz=fE+E)W-2). 9)

Hence

0f () +0f (y) = 0f (2) +0f (2) (x —2)+0f (2) +0f (2) (y — 2)
= f(2) = 2f" (2) + 0z f (2) + Oy [ (2)
=f ((995 + gy) , (20)

which proves thatf is convex. [ |

Now, we present second-order conditions which assuresathatction is convex.

Theorem 1 (Second-order conditions)Let f : R® — R denote a twice differentiable

function, i.e. donf is open and for all: € domf the Hessian matrixy?f (z) € S,

s P (2)
895@-895]- ’

exists. Thenf is convex iff dony is convex andv?f (z) 3= 0, for all z € domf.

V3 (), (11)

Examples of convex/concave functions

« Convex functions:

— Affine: f(z) =ar+bonR, for anya,b € R.



— Log-sum-exp:f (z) = log (exp (z1) + ...+ exp (x,)) on R™.

Exponential:f (z) = exp (ax) on R, for anya € R.
Powers:f (z) =z onR,,, fora > 1 or a < 0.
Powers of absolute valueg:|” on R, for p > 1.
Negative entropyx log x on R++.

Norms: Every norm (follows from triangle inequality).
Max function: f (z) = max {xy,...,z,} on R™.

Quadratic-over-linear function: Let : R? — R, such that
2

xXr
f T,Yy)= —.
(z,9) ,
Then
2 Yy —x
V2f(x,y)=—2 2
Yy —x %

Therefore, f is convex for anyy > 0.

Quadratic function: Leff : R" — R, such that
f(x) = %prx + gtz +r,
g, € R* and P € S". Since
Vf(x) = Pr+q,

then
V2f (z) = P.

Therefore, if P = 0 then f is convex.

« Cocave functions

Affine: f (z) = ax +bonR, for anya,b € R.

Powers:f (z) =z* onR, ., for 0 < a < 1.

Logarithm:log (z) is concave orR and defined as 0 far = 0.

Log-determinant;f (X) = logdet (X) on S .
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