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Multi-User Information Theory Jan 03, 2012

Lecture 8

Lecturer:Dr. Haim Permuter Scribe: Wasim Huleihel

I. NOTATION

• R: The set of real numbers.

• R+: The set of nonnegative real numbers.

• R++: The set of positive real numbers.

• S
k: The set of symmetrick × k matrices.

• S
k
+: The set of symmetric positive semi-definitek × k matrices.

• S
k
++: The set of symmetric positive definitek × k matrices.

• domf : The domain of the functionf . Let f : R
n → R

m, then domf ,

{x ∈ R
n : f (x) exists}. For example,dom log = R++

II. CONVEX OPTIMIZATION

In the previous lecture, we discussed about convex set. Thislecture we will continue

the discussion about convex set and start discussing about convex functions.

Definition 1 (Supporting hyperplanes) SupposeC ⊆ R
n, and x0 is a point on the

boundary ofC. If a 6= 0 satisfiesaTx ≤ aTx0 for all x ∈ C, then the hyperplane
{

x ∈ R
n : aTx = aTx0

}

is called asupporting hyperplane to C at the pointx0.

The geometric interpretation is that the hyperplane
{

x ∈ R
n : aTx = aTx0

}

is tangent

to C at x0, and the halfspace
{

x ∈ R
n : aTx ≤ aTx0

}

containsC. This is illustrated in

Fig. 1.

Definition 2 (Dual cones) Let K be a cone. Then, the set

K∗ =
{

y : xTy ≥ 0 for all x ∈ K
}

, (1)

is called thedual cone of K.
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Fig. 1. The hyperplane supportsC at x0.
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Fig. 2. K∗ is the dual cone (blue dotted) ofK (black). The boundary hyperplanes ofK∗ are orthogonal to the

boundary hyperplanes ofK.

Geometrically,y ∈ K∗ iff −y is the normal of a hyperplane that supportsK at the origin.

This is illustrated in Fig. 2.

Example 1 (Subspace)The dual cone of a subspaceV ⊆ R
n is its orthogonal

complementV ⊥ =
{

y : yTx = 0 for all x ∈ V
}

.

Example 2 (Nonnegative quadrants)The coneR+ is its own dual

yTx ≥ 0 for all x ≥ 0 ⇐⇒ y ≥ 0. (2)

We shall call such a coneself-dual.
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In the following, we present equivalent definitions of convex functions, and present

some examples of convex functions.

Definition 3 (Convex function) A function f : Rn → R is convex if domf is a convex

set and if for allx, y ∈ domf , andθ with 0 ≤ θ ≤ 1, we have

f
(

θx+ θy
)

≤ θf (x) + θf (y) , (3)

whereθ
△

= 1 − θ. A function is strictly convex if strict inequality hold in (3) forx 6= y

and0 < θ < 1. Also, we say thatf is concave if −f is convex, andstrictly concave if

−f is strictly convex.

Note that this definition is true also for vectors. Next, we present special criteria to verify

the convexity of a function.

Lemma 1 (Restriction of a convex function to a line)The functionf : Rn → R is

convex iff the functiong : R → R,

g (t) = f (x+ tv) domg = {t ∈ R : x+ tv ∈ domf} , (4)

is convex in t for any x ∈ domf and v ∈ R
n. Therefore, checking convexity of

multivariate functions can be carried out by checking convexity of univariate functions.

Example 3 Let f : Sn → R with

f (X) = − log detX, domf = S
n
++. (5)

Then

g (t) = − log det (X + tV )

= − log detX − log det
(

I + tX−1/2V X−1/2
)

= − log detX −

n
∑

i=1

log (1 + tλi) , (6)

where I is the identity matrix andλi, i = 1, . . . , n are the eigenvalues of the matrix

X−1/2V X−1/2. Since−
n
∑

i=1

log (1 + tλi) is convex int, as sum of convex functions (prove

that the inner term of the sum is convex), and because− log detX is constant with respect
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to t, we have proven that for any choice ofV and anyX ∈ domf, g is convex. Hence

f is also convex.

Next, we present first-order conditions which assures that afunction is convex.

Lemma 2 (First-order condition) Let f : Rn → R denote a differentiable function, i.e.

domf is open and for allx ∈ domf the gradient vector

∇f (x) ,

[

∂f (x)

∂x1

, . . . ,
∂f (x)

∂xn

]T

, (7)

exists. Thenf is convex iff domf is convex and for allx, y ∈ domf

f (y) ≥ f (x) +∇f (x)T (y − x) . (8)

Remark 1 Forn = 1 Lemma 2 implies thatf is convex ifff (y) ≥ f (x)+f ′ (x) (y − x).

Before we prove this lemma let us interpret it. The r.h.s. of (8) is the first order

taylor approximation off (y) in the vicinity of x. According to (8), the first order taylor

approximation in case wheref is convex, is a global underestimate off . This is a very

important property used in algorithm designs and performance analysis. The inequality

in (8) is illustrated in Fig. 3. In the following, we prove Lemma 2 for the case ofn = 1.

Generalization is straightforward.

Fig. 3. If f is convex and differentiable, thenf (y) ≥ f (x) +∇f (x)T (y − x) for all x, y ∈ domf .
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Proof: Assume first thatf is convex andx, y ∈ domf . Since domf is convex, using

the definition, for all0 < t ≤ 1, x+ t (y − x) ∈ domf , and by convexity off ,

f (x+ t (y − x)) ≤ (1− t) f (x) + tf (y) .

If we divide both sides byt, we obtain

f (y) ≥ f (x) +
f (x+ t (y − x))− f (x)

t

= f (x) +
f (x+ t (y − x))− f (x)

t · (y − x)
(y − x) ,

and taking the limit ast → 0 yields (8).

To show sufficiency, assume the function satisfies (8) for allx, y ∈ domf . Choose any

x 6= y, and0 ≤ θ ≤ 1, and letz = θx+ θy. Applying (8) twice yields

f (x) ≥ f (z) + f ′ (z) (x− z) , f (y) ≥ f (z) + f ′ (z) (y − z) . (9)

Hence

θf (x) + θf (y) ≥ θf (z) + θf ′ (z) (x− z) + θf (z) + θf ′ (z) (y − z)

= f (z)− zf ′ (z) + θxf ′ (z) + θyf ′ (z)

= f
(

θx+ θy
)

, (10)

which proves thatf is convex.

Now, we present second-order conditions which assures thata function is convex.

Theorem 1 (Second-order conditions)Let f : Rn → R denote a twice differentiable

function, i.e. domf is open and for allx ∈ domf the Hessian matrix,∇2f (x) ∈ S
n,

∇2f (x)i,j ,
∂2f (x)

∂xi∂xj
, (11)

exists. Thenf is convex iff domf is convex and∇2f (x) < 0, for all x ∈ domf .

Examples of convex/concave functions

• Convex functions:

– Affine: f (x) = ax+ b on R, for anya, b ∈ R.
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– Exponential:f (x) = exp (ax) on R, for anya ∈ R.

– Powers:f (x) = xα on R++, for α ≥ 1 or α ≤ 0.

– Powers of absolute values:|x|p on R, for p ≥ 1.

– Negative entropy:x log x on R++.

– Norms: Every norm (follows from triangle inequality).

– Max function:f (x) = max {x1, . . . , xn} on R
n.

– Quadratic-over-linear function: Letf : R2 → R, such that

f (x, y) =
x2

y
. (12)

Then

∇2f (x, y) =
2

y2





y −x

−x x2

y



. (13)

Therefore,f is convex for anyy > 0.

– Quadratic function: Letf : Rn → R, such that

f (x) =
1

2
xTPx+ qTx+ r, (14)

q, r ∈ R
n andP ∈ S

n. Since

∇f (x) = Px+ q, (15)

then

∇2f (x) = P. (16)

Therefore, ifP < 0 thenf is convex.

– Log-sum-exp:f (x) = log (exp (x1) + . . .+ exp (xn)) on R
n.

• Cocave functions

– Affine: f (x) = ax+ b on R, for anya, b ∈ R.

– Powers:f (x) = xα on R++, for 0 ≤ α ≤ 1.

– Logarithm: log (x) is concave onR and defined as 0 forx = 0.

– Log-determinant:f (X) = log det (X) on Sn
++.
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