Mathematical methods in communication

December 27th, 2011

Lecture 7

Lecturer: Haim Permuter

Scribe: Moti Teitel

I. CONVEX OPTIMIZATION

In convex optimization, our goal is to minimize an objective a convex function subject to convex inequality and affine equality constraints. The problem can be mathematically written as:

minimize
$$f_0(x)$$
 (1)
subject to $f_i(x) \le b_i$ $i = 1, \cdots, k$
 $g_j(x) = 0$ $j = 1, \cdots, l$

where $f_0(x)$ and $\{f_i(x)\}_{i=1}^k$ are convex functions, and $\{g_j(x)\}_{j=1}^l$ are affine.

Throughout the following lectures, the following notations and definitions will be used:

A. Notations

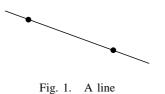
- 1) \mathbb{R} the set of all real numbers
- 2) \mathbb{R}_+ the set of all non-negative real numbers
- 3) \mathbb{R}_{++} the set of all positive real numbers
- 4) \mathbb{R}^n the set of all real *n*-dimensional vectors
- 5) $\mathbb{R}^{m \times n}$ the set of real $m \times n$ matrices
- 6) (a, b, c) a column vector whose elements (by order) are a, b and c.
- 7) $(\cdot)^T$ the transpose operator.
- 8) 1 a column vector composed of one's: $(1, 1, \ldots, 1)$
- 9) x a vector
- 10) \mathbf{x}_i the i^{th} element of \mathbf{x} .
- 11) S^k the set of all (real) symmetric $k \times k$ matrices: $S^k = \{ \mathbf{A} \in \mathbb{R}^{k \times k} : A^T = A \}$
- 12) S_{+}^{k} the set of all (real) symmetric positive semi-definite (PSD) $k \times k$ matrices: $S_{+}^{k} = \{ \mathbf{A} \in S^{k \times k} : S \succeq 0 \}$
- 13) S_{++}^{k} the set of all (real) symmetric positive semi-definite (PSD) $k \times k$ matrices: $S_{++}^{k} = \{ \mathbf{A} \in S^{k \times k} : S \succ 0 \}$
- 14) $\mathbf{x} \succeq \mathbf{y}$ (vectors) element-wise inequality: $\forall i \quad \mathbf{x}_i \geq \mathbf{y}$
- 15) $\mathbf{A} \succeq \mathbf{B}$ (matrices) $(\mathbf{A} \mathbf{B}) \in S^k_+$
- 16) dom(f) the domain on which f is defined. For example: log : $\mathbb{R} \to \mathbb{R}$, and dom $(f) = \mathbb{R}_{++}$
- 17) $\bar{\theta} = 1 \theta$

Note the difference between the interpretations of inequalities in \mathbb{R}^n when n = 1 and n > 1. As \mathbb{R} is well-ordered, the elements $a, b \in \mathbb{R}$ satisfy a < b, a = b or a > b. However, for \mathbb{R}^2 the vectors (0, 1) and (1, 0) do not satisfy any of the relations <, =, >.

B. Definitions

Let $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^n$ be two arbitrary vectors. Then:

1) The line that goes through \mathbf{x}_1 and \mathbf{x}_2 is the set of all points $\theta \mathbf{x}_1 + \overline{\theta} \mathbf{x}_2$, where $\theta \in \mathbb{R}$.



2) The line segment that goes through \mathbf{x}_1 and \mathbf{x}_2 is the set of all points $\theta \mathbf{x}_1 + \overline{\theta} \mathbf{x}_2$, where $\theta \in [0, 1]$.

Fig. 2. A line segment

3) A set $C \subseteq \mathbb{R}^n$ is an **affine set** if any line that goes through any two points in C is contained in C:

- $\forall \theta \in \mathbb{R} : \mathbf{x}_1, \mathbf{x}_2 \in C \Rightarrow \theta \mathbf{x}_1 + \overline{\theta} \mathbf{x}_2 \in C.$ 4) A set $C \subseteq \mathbb{R}^n$ is a **convex set** if the line segment that goes through any two points in C is contained in C:
 - $\forall \theta \in [0,1]: \quad \mathbf{x}_1, \mathbf{x}_2 \in C \Rightarrow \theta \mathbf{x}_1 + \overline{\theta} \mathbf{x}_2 \in C.$ For example, see Figure 3.

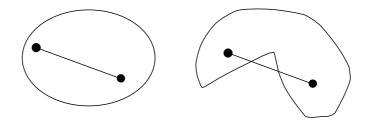


Fig. 3. To the left: a convex set. To the right: a non-convex set.

- 5) A convex combination of $(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_x)$ is any linear combination $\sum_{i=1}^k \theta_i \mathbf{x}_i$, where $\theta_i \ge 0$ and $\sum_{i=1}^k \theta_i = 1$.
- 6) a convex hull, denoted Conv(C), is the set of all convex combinations of points in C. A convex hull is the smallest convex set that contains C. For example, in Figure 4, the convex hull of the non-convex set is obtained by adding the area inside the dashed line.

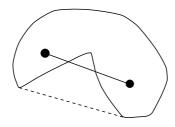


Fig. 4. Convex hull

7) A set C is called a **cone** if $\forall \mathbf{x} \in C$ and $\theta \ge 0$ we have $\theta \mathbf{x} \in C$.

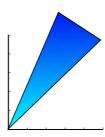


Fig. 5. A Cone

- 8) A cone C is called a **convex cone** if it is convex:
- $\forall \theta_1, \theta_2 \ge 0: \quad \mathbf{x}_1, \mathbf{x}_2 \in C \Rightarrow \theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 \in C.$ 9) A conic combination of $(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_x)$ is any linear combination $\sum_{i=1}^k \theta_i \mathbf{x}_i$, where $\theta_i \geq 0.$
- 10) A **conic hull** is the set of all conic combinations of points in C.
- 11) A cone C is called **pointed** if $\mathbf{x} \in C$ and $-\mathbf{x} \in C$ implies that $\mathbf{x} = 0$. This means that the cone C contains no line.
- 12) A cone $C \subset \mathbb{R}^n$ is called a **proper cone** if the following requirements hold:
 - a) C is a convex cone.
 - b) C is a closed set.
 - c) C has a non-empty interior.
 - d) C is pointed.
- 13) A ray is a set of points {x : x = x₀ + θy|θ ≥ 0}.
 14) A Hyperplane is a set {x : a^Tx = b}, where a, x ∈ ℝⁿ, a ≠ 0 and b ∈ ℝ. Another possible notation is {x : a^T(x x₀) = b}, where x₀ is any point on the hyperplane (so that a^Tx₀ = b).

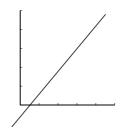


Fig. 6. A Hyperplane

a is called the **normal** to the hyperplane.

15) A **Half-space** is the set of points above (or below) a hyperplane: $\{\mathbf{x} : \mathbf{a}^T (\mathbf{x} - \mathbf{x}_0) > b\}$

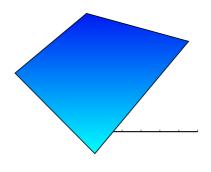


Fig. 7. Half space

16) A **Polyhedra** is the set of points that satisfy a set of linear equalities & inequalities. For instance:

$$P = \{ \mathbf{x} \in \mathbb{R}^n \}$$

$$s.t. \begin{cases} \mathbf{a}_i^T \mathbf{x} \le b_i & i = 1, 2, \dots, K \\ \mathbf{c}_j^T \mathbf{x} = d_j & j = 1, 2, \dots, J \end{cases}$$
(2)

A compact notation is

$$P = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{C}\mathbf{x} = \mathbf{d} \}$$
(3)

where $\mathbf{A} = (\mathbf{a}_1^T, \dots, \mathbf{a}_K^T)$ and $\mathbf{C} = (\mathbf{c}_1^T, \dots, \mathbf{c}_J^T)$. A Polyhedra is the outcome of an intersection of half-spaces and hyperplanes.

- C. Examples
 - 1) The empty set \emptyset , a single point in $\mathbf{x}_0 \in \mathbb{R}^n$ and the entire space are affine.
 - 2) Any line is affine.
 - 3) Any line that passes through the origin is a cone.

- 4) A line segment is convex, but not affine.
- 5) A ray is convex but not affine. It is a cone iff $x_0 = 0$.
- 6) A subspace is convex, affine & a cone.

We start with the following lemma regarding convex sets:

Lemma 1 Convexity is preserved under intersections: Let S_1, S_2 be convex sets. Then $S_1 \cap S_2$ is convex.

Excercise: Prove Lemma 1.

Later we will see that if $f_1(x)$ and $f_2(x)$ are convex, then $f(x) = \max(f_1(x), f_2(x))$ is convex, and we will see that this is equivalent to Lemma 1.

II. GENERALIZED INEQUALITIES

A. Definition

Let $K \subset \mathbb{R}^n$ be a proper cone. We define the generalized inequality with respect to K as following:

$$\mathbf{x} \preceq_K \mathbf{y} \Leftrightarrow \mathbf{x} - \mathbf{y} \in K \tag{4}$$

B. Properties of the Generalized Inequality

1) The G.I. is preserved under addition: $\mathbf{x}_1 \preceq_K \mathbf{y}_1$, $\mathbf{x}_2 \preceq_K \mathbf{y}_2 \Rightarrow \mathbf{x}_1 + \mathbf{x}_2 \preceq_K \mathbf{y}_1 + \mathbf{y}_2$

- 2) The G.I. is transitive: $\mathbf{a} \preceq_K \mathbf{b}$, $\mathbf{b} \preceq_K \mathbf{c} \Rightarrow \mathbf{a} \preceq_K \mathbf{c}$
- 3) The G.I. is preserved under non-negative scaling: $\mathbf{x} \preceq_K \mathbf{y}$, $a \ge 0 \Rightarrow a\mathbf{x} \preceq_K a\mathbf{y}$
- 4) The G.I. is reflexive: $\forall \mathbf{x} : \mathbf{x} \preceq_K \mathbf{x}$
- 5) The G.I. is preserved under limits: if $\forall i \ \mathbf{x}_i \leq_K \mathbf{y}_i$, and $\mathbf{x} = \lim_{i \to \infty} \mathbf{x}_i$ and $\mathbf{y} =$ $\lim_{i\to\infty} \mathbf{y}_i$ exist, then $\mathbf{x} \preceq_K \mathbf{y}$

Excercise: Prove properties 1-5.

Theorem 1 Separation Theorem

Let C, D be two convex sets in \mathbb{R}^n , such that $C \cap D = \emptyset$. Then, there exists a hyperplane $\mathbf{a}^T (\mathbf{x} - \mathbf{x}_0) = 0$ such that:

- $\forall \mathbf{x} \in C$: $\mathbf{a}^T (\mathbf{x} \mathbf{x}_0) \leq 0$, and $\forall \mathbf{x} \in D$: $\mathbf{a}^T (\mathbf{x} \mathbf{x}_0) \geq 0$.

Proof: Assume that C, D are closed sets. Define the following distance measure :

dist
$$(C, D) \stackrel{\Delta}{=} \min_{\mathbf{u} \in C, \mathbf{v} \in D} \|\mathbf{u} - \mathbf{v}\|^2$$
 (5)

Let $c \in C$, d D be the elements that achieve the minimum:

$$\|\mathbf{c} - \mathbf{d}\|^2 = \operatorname{dist} (C, D) = \min_{\mathbf{u} \in C, \mathbf{v} \in D} \|\mathbf{u} - \mathbf{v}\|^2$$
(6)

and let a be the line connecting c, d (a = d - c), and $x_0 = \frac{c+d}{2}$. Define the following functional:

$$f(\mathbf{x}) = \mathbf{a}^T \left(\mathbf{x} - \mathbf{x}_0 \right) = \mathbf{a}^T \left(\mathbf{x} - \frac{\mathbf{c} + \mathbf{d}}{2} \right) = \left(\mathbf{d} - \mathbf{c} \right)^T \left(\mathbf{x} - \frac{\mathbf{c} + \mathbf{d}}{2} \right)$$
(7)

$$= (\mathbf{d} - \mathbf{c})^T \left(\mathbf{x} - \mathbf{d} + \frac{\mathbf{d} - \mathbf{c}}{2} \right) = (\mathbf{d} - \mathbf{c})^T \left(\mathbf{x} - \mathbf{d} \right) + \frac{1}{2} \|\mathbf{d} - \mathbf{c}\|^2$$

We show that for every $\mathbf{u} \in D$ we have $f(\mathbf{u}) \ge 0$: Assume that there exists a vector $\mathbf{u} \in D$ s.t. $f(\mathbf{u}) < 0$. Then we may write

$$0 > f(\mathbf{u}) = (\mathbf{d} - \mathbf{c})^T (\mathbf{u} - \mathbf{d}) + \frac{1}{2} \|\mathbf{d} - \mathbf{c}\|^2 > (\mathbf{d} - \mathbf{c})^T (\mathbf{u} - \mathbf{d})$$
(8)

Define the following function:

$$g(t) = \|\mathbf{d} + t(\mathbf{u} - \mathbf{d}) - \mathbf{c}\|^{2} = \|(1 - t)\mathbf{d} + t\mathbf{u} - \mathbf{c}\|^{2}$$

$$= ((1 - t)\mathbf{d} + t\mathbf{u} - \mathbf{c})^{T}((1 - t)\mathbf{d} + t\mathbf{u} - \mathbf{c})$$

$$= (\mathbf{d} + t(\mathbf{u} - \mathbf{d}) - \mathbf{c})^{T}(\mathbf{d} + t(\mathbf{u} - \mathbf{d}) - \mathbf{c})$$
(9)

$$\frac{d}{dt}g(t) = \frac{d}{dt} \left[(\mathbf{d} + t(\mathbf{u} - \mathbf{d}) - \mathbf{c})^T \right] (\mathbf{d} + t(\mathbf{u} - \mathbf{d}) - \mathbf{c}) + (\mathbf{d} + t(\mathbf{u} - \mathbf{d}) - \mathbf{c})^T \frac{d}{dt} (\mathbf{d} + t(\mathbf{u} - \mathbf{d}) - \mathbf{c}) \\ = (\mathbf{u} - \mathbf{d})^T (\mathbf{d} + t(\mathbf{u} - \mathbf{d}) - \mathbf{c}) + (\mathbf{d} + t(\mathbf{u} - \mathbf{d}) - \mathbf{c})^T (\mathbf{u} - \mathbf{d})$$
(10)

and inspect

$$\frac{d}{dt}g(t)|_{t=0} = 2\left(\mathbf{d} - \mathbf{c}\right)^{T}\left(\mathbf{u} - \mathbf{d}\right)$$
(11)

By (8) we have that

$$\frac{d}{dt}g(t)|_{t=0} < 0 \tag{12}$$

so g(t) is decreasing at t = 0. If so, there exists a (small) t_0 s.t. $0 < t_0 < 1$ for which $g(t_0) < g(0)$, so

$$\|(1 - t_0)\mathbf{d} + t_0\mathbf{u} - \mathbf{c}\|^2 < \|\mathbf{d} - \mathbf{c}\|^2 = \operatorname{dist}(C, D)$$
(13)

But since D is convex, and by assumption we have $\mathbf{u}, \mathbf{d} \in D$, we also have $\mathbf{u}' = (1 - t_0)\mathbf{d} + t_0\mathbf{u} \in D$. So, we may write

$$\left\|\mathbf{u}' - \mathbf{c}\right\|^2 < \left\|\mathbf{d} - \mathbf{c}\right\|^2 = \operatorname{dist}\left(C, D\right)$$
(14)

which contradicts the assumption that \mathbf{c}, \mathbf{d} satisfy the minimum in (6). Therefore we conclude that $f(\mathbf{u}) \ge 0$ for all $\mathbf{u} \in D$. The proof of $f(\mathbf{v}) \le 0$ for all $\mathbf{v} \in C$ follows from similar steps.