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I. CONVEX OPTIMIZATION

In convex optimization, our goal is to minimize an objectaveonvex function subject
to convex inequality and affine equality constraints. Thebpgm can be mathematically
written as:

minimize  fo(x) (1)
subject to  fi(z) <b; i=1,---.,k

where fy(x) and{f;(x)}}_, are convex functions, anfly;(x)},_, are affine.
Throughout the following lectures, the following notatsoand definitions will be used:

A. Notations

1) R - the set of all real numbers
2) R, - the set of all non-negative real numbers
3) R, - the set of all positive real numbers
4) R” - the set of all reak-dimensional vectors
5) R™*" - the set of realn x n matrices
6) (a,b,c) - a column vector whose elements (by order) @aré andc.
7) (-)T - the transpose operator.
8) 1 - a column vector composed of oned; 1,...,1)
9) x - a vector
10) x; - the i*" element ofx.
11) S* - the set of all (real) symmetrik x k matrices:S* = {A € RM* . AT = A}
12) S% - the set of all (real) symmetric positive semi-definite (33Dx & matrices:
Sk ={A eSS =0}
13) S%., - the set of all (real) symmetric positive semi-definite (3$Dx k matrices:
Sk, ={A eSS 350}
14) x > y (vectors) - element-wise inequalityi x; >y
15) A = B (matrices) -(A — B) € S%
16) dom(f) - the domain on whichf is defined. For exampldog : R — R, and
dom(f) =Ry
1760=1-146
Note the difference between the interpretations of inageslin R” whenn = 1 and
n > 1. As R is well-ordered, the elemenig b € R satisfya < b,a = b or a > b.
However. forR? the vectorg0, 1) and(1,0) do not satisfy any of the relations, =, >.



B. Definitions

Let x;,x, € R" be two arbitrary vectors. Then:
1) Theline that goes througly; andx, is the set of all point#x; +x,, whered € R.

T

Fig. 1. Aline

2) Theline segmentthat goes througlk; andx, is the set of all point¥x; + 0x,,

wheref € [0, 1].

Fig. 2. A line segment

3) A setC C R" is anaffine setif any line that goes through any two points@nis
contained inC:
VOeR: x5,%x3€C =0x1+60x,€CC.

4) A setC C R" is aconvex setif the line segment that goes through any two points
in C'is contained inC"
VO €0,1]: x5,%, € C = 0x; + 0x, € C. For example, see Figure 3.

Fig. 3. To the left: a convex set. To the right: a non-conveix se

5) A convex combinationof (x,xs,...,x,) IS any linear combinatiorEf:1 0;%;,
wheref; > 0 and>_F 6, = 1.

6) aconvex hull, denotedConv(C), is the set of all convex combinations of points in
C'. A convex hull is the smallest convex set that contaihd-or example, in Figure
4, the convex hull of the non-convex set is obtained by addiegarea inside the
dashed line.



Fig. 4. Convex hull

7) A setC is called aconeif Vx € C andf > 0 we havefx € C.

Fig. 5. A Cone

8) A cone( is called aconvex coneif it is convex:
V91,9220: Xl,XQEC:>91X1+92X2€C.
9) A conic combinationof (x;,xa, ..., X,;) iS any linear combinatioEf:1 0;x;, where
0; > 0.
10) A conic hull is the set of all conic combinations of points Gh
11) A coneC' is calledpointed if x € C' and —x € C implies thatx = 0. This means
that the cone”' contains no line.
12) A coneC C R" is called aproper cone if the following requirements hold:
a) C' is a convex cone.
b) C is a closed set.
c) C' has a non-empty interior.
d) C is pointed.
13) Aray is a set of pointdx : x = xq + fy|0 > 0}.
14) A Hyperplane is a set{x : a’x = b}, wherea,x € R", a # 0 andb € R.
Another possible notation i%x ral (x —xg) = b}, wherex, is any point on the
hyperplane (so thad’x, = b).



Fig. 6. A Hyperplane

a is called thenormal to the hyperplane.
15) A Half-space is the set of points above (or below) a hyperplane:

{x:a” (x —x0) > b}

Fig. 7. Half space

16) A Polyhedrais the set of points that satisfy a set of linear equalities1@qualities.
For instance:

P={xeR"} (2)

A compact notation is
P={xeR":Ax=b,Cx=d} (3)

whereA = (af,...,ak) andC = (c{,...,c%).
A Polyhedra is the outcome of an intersection of half-spases hyperplanes.

C. Examples
1) The empty se@, a single point inx, € R™ and the entire space are affine.
2) Any line is affine.
3) Any line that passes through the origin is a cone.



4) A line segment is convex, but not affine.
5) A ray is convex but not affine. It is a cone i, = 0.
6) A subspace is convex, affine & a cone.

We start with the following lemma regarding convex sets:

Lemma 1 Convexity is preserved under intersections: 15gtS, be convex sets. Then
S NSy is convex.

Excercise: Prove Lemma 1.
Later we will see that iff;(x) and f,(z) are convex, therf(z) = max (fi(z), f2(x))
is convex, and we will see that this is equivalent to Lemma 1.

[I. GENERALIZED INEQUALITIES
A. Definition

Let K C R™ be a proper cone. We define the generalized inequality wihewt to
K as following:

Xxgkyex—yeK (4)

B. Properties of the Generalized Inequality

1) The G.I. is preserved under addition: <x y1, X2 =k ¥2 = X1+Xs =g y1+¥2
2) The G.l. is transitivea <x b, b=<xc=a=<kc
3) The G.I. is preserved under non-negative scalg, y, a > 0= ax <k ay
4) The G.I. is reflexiveyx : x <x x
5) The G.I. is preserved under limits: ¥i x; <x y;, andx = lim; .. x; andy =
lim;_, . y; exist, thenx <x y
Excercise: Prove properties 1-5.

Theorem 1 Separation Theorem
Let C, D be two convex sets iiR", such thatC’ "D = (). Then, there exists a hyperplane
a’ (x — xg) = 0 such that:
« Vxe(C: al(x-xy) <0, and
e VxeD: al(x—xy) >0.
Proof: Assume that”, D are closed sets. Define the following distance measure :
dist (C, D)2 min [ju—v|? (5)

ueC,veD

Let c € C,d D be the elements that achieve the minimum:
2 _ 1 _ . 2
le—d|* = dist (C,D) = min_fu—v]| (6)

and leta be the line connecting,d (a =d — ¢), andx, = ng. Define the following
functional:

o) = (xx0) = (x = S54) = (a0 (x- “59) ™)




:(d—c)T (x—d+d;C) :(d—c)T(x—d)—l—%Hd—cH2

We show that for everya € D we havef(u) > 0:
Assume that there exists a veciwore D s.t. f(u) < 0. Then we may write

0> f(u) = <d—c>T(u—cl)+%Hcl—cH2 >(d—c) (u-d) (8)
Define the following function:
gy =lld+t(u—d)—c* =1 —t)d +tu—c| (9)

= (1-t)d+tu—c)" (1 —t)d +tu—c)
=(d+tlu—d)—c) (d+tu—d)—c)

%g(t} = % (d+tu—d)—c)"|(d+tu—d)—c) (10)
+(d+t(u—d) —c)T%(d+t(u—d) —¢)
—(u—-d)T(d+tu-d)—c)+(d+tu—d)—c) (u—d)
and inspect
Coleo =2~ o) (n—a) (11)

By (8) we have that

d
%g(mt:o <0 (12)
S0 ¢g(t) is decreasing at = 0. If so, there exists a (smalt) s.t. 0 < ty < 1 for which
g9(to) < 9(0), so
(1 —to)d + tou — c|” < ||d — ¢||* = dist (C, D) (13)

But since D is convex, and by assumption we hawed € D, we also haveu’ =
(1 —tp)d +tou € D. So, we may write

Ju — ¢l < |ld - ¢]* = dist (C, D) (14)

which contradicts the assumption thatd satisfy the minimum in (6). Therefore we
conclude thatf(u) > 0 for all u € D. The proof of f(v) < 0 for all v € C follows
from similar steps. [ |



