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I. CONVEX OPTIMIZATION

In convex optimization, our goal is to minimize an objectivea convex function subject
to convex inequality and affine equality constraints. The problem can be mathematically
written as:

minimize f0(x) (1)

subject to fi(x) ≤ bi i = 1, · · · , k

gj(x) = 0 j = 1, · · · , l

wheref0(x) and{fi(x)}ki=1 are convex functions, and{gj(x)}lj=1 are affine.

Throughout the following lectures, the following notations and definitions will be used:

A. Notations

1) R - the set of all real numbers
2) R+ - the set of all non-negative real numbers
3) R++ - the set of all positive real numbers
4) R

n - the set of all realn-dimensional vectors
5) R

m×n - the set of realm× n matrices
6) (a, b, c) - a column vector whose elements (by order) area, b andc.
7) (·)T - the transpose operator.
8) 1 - a column vector composed of one’s:(1, 1, . . . , 1)
9) x - a vector

10) xi - the ith element ofx.
11) Sk - the set of all (real) symmetrick × k matrices:Sk =

{

A ∈ R
k×k : AT = A

}

12) Sk
+ - the set of all (real) symmetric positive semi-definite (PSD) k × k matrices:

Sk
+ =

{

A ∈ Sk×k : S � 0
}

13) Sk
++ - the set of all (real) symmetric positive semi-definite (PSD) k × k matrices:

Sk
++ =

{

A ∈ Sk×k : S ≻ 0
}

14) x � y (vectors) - element-wise inequality:∀i xi ≥ y

15) A � B (matrices) -(A−B) ∈ Sk
+

16) dom(f) - the domain on whichf is defined. For example:log : R → R, and
dom(f) = R++

17) θ̄ = 1− θ

Note the difference between the interpretations of inequalities in R
n whenn = 1 and

n > 1. As R is well-ordered, the elementsa, b ∈ R satisfy a < b, a = b or a > b.
However. forR2 the vectors(0, 1) and(1, 0) do not satisfy any of the relations<,=, >.



B. Definitions

Let x1,x2 ∈ R
n be two arbitrary vectors. Then:

1) Theline that goes throughx1 andx2 is the set of all pointsθx1+ θ̄x2, whereθ ∈ R.
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Fig. 1. A line

2) The line segmentthat goes throughx1 andx2 is the set of all pointsθx1 + θ̄x2,
whereθ ∈ [0, 1].
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Fig. 2. A line segment

3) A setC ⊆ R
n is anaffine set if any line that goes through any two points inC is

contained inC:
∀θ ∈ R : x1,x2 ∈ C ⇒ θx1 + θ̄x2 ∈ C.

4) A setC ⊆ R
n is a convex setif the line segment that goes through any two points

in C is contained inC:
∀θ ∈ [0, 1] : x1,x2 ∈ C ⇒ θx1 + θ̄x2 ∈ C. For example, see Figure 3.
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Fig. 3. To the left: a convex set. To the right: a non-convex set.

5) A convex combination of (x1,x2, . . . ,xx) is any linear combination
∑k

i=1
θixi,

whereθi ≥ 0 and
∑k

i=1
θi = 1.

6) a convex hull, denotedConv(C), is the set of all convex combinations of points in
C. A convex hull is the smallest convex set that containsC. For example, in Figure
4, the convex hull of the non-convex set is obtained by addingthe area inside the
dashed line.
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Fig. 4. Convex hull

7) A setC is called acone if ∀x ∈ C andθ ≥ 0 we haveθx ∈ C.

Fig. 5. A Cone

8) A coneC is called aconvex coneif it is convex:
∀θ1, θ2 ≥ 0 : x1,x2 ∈ C ⇒ θ1x1 + θ2x2 ∈ C.

9) A conic combinationof (x1,x2, . . . ,xx) is any linear combination
∑k

i=1
θixi, where

θi ≥ 0.
10) A conic hull is the set of all conic combinations of points inC.
11) A coneC is calledpointed if x ∈ C and−x ∈ C implies thatx = 0. This means

that the coneC contains no line.
12) A coneC ⊂ R

n is called aproper cone if the following requirements hold:
a) C is a convex cone.
b) C is a closed set.
c) C has a non-empty interior.
d) C is pointed.

13) A ray is a set of points{x : x = x0 + θy|θ ≥ 0}.
14) A Hyperplane is a set

{

x : aTx = b
}

, wherea,x ∈ R
n, a 6= 0 and b ∈ R.

Another possible notation is
{

x : aT (x− x0) = b
}

, wherex0 is any point on the
hyperplane (so thataTx0 = b).



Fig. 6. A Hyperplane

a is called thenormal to the hyperplane.
15) A Half-space is the set of points above (or below) a hyperplane:

{

x : aT (x− x0) > b
}

Fig. 7. Half space

16) A Polyhedra is the set of points that satisfy a set of linear equalities & inequalities.
For instance:

P = {x ∈ R
n} (2)

s.t.

{

aT
i x ≤ bi i = 1, 2, . . . , K

cTj x = dj j = 1, 2, . . . , J

A compact notation is

P = {x ∈ R
n : Ax = b,Cx = d} (3)

whereA =
(

aT
1 , . . . , a

T
K

)

andC =
(

cT1 , . . . , c
T
J

)

.
A Polyhedra is the outcome of an intersection of half-spacesand hyperplanes.

C. Examples

1) The empty set∅, a single point inx0 ∈ R
n and the entire space are affine.

2) Any line is affine.
3) Any line that passes through the origin is a cone.



4) A line segment is convex, but not affine.
5) A ray is convex but not affine. It is a cone iffx0 = 0.
6) A subspace is convex, affine & a cone.

We start with the following lemma regarding convex sets:

Lemma 1 Convexity is preserved under intersections: LetS1, S2 be convex sets. Then
S1 ∩ S2 is convex.

Excercise: Prove Lemma 1.
Later we will see that iff1(x) andf2(x) are convex, thenf(x) = max (f1(x), f2(x))

is convex, and we will see that this is equivalent to Lemma 1.

II. GENERALIZED INEQUALITIES

A. Definition

Let K ⊂ R
n be a proper cone. We define the generalized inequality with respect to

K as following:

x �K y ⇔ x− y ∈ K (4)

B. Properties of the Generalized Inequality

1) The G.I. is preserved under addition:x1 �K y1, x2 �K y2 ⇒ x1+x2 �K y1+y2

2) The G.I. is transitive:a �K b, b �K c ⇒ a �K c

3) The G.I. is preserved under non-negative scaling:x �K y, a ≥ 0 ⇒ ax �K ay

4) The G.I. is reflexive:∀x : x �K x

5) The G.I. is preserved under limits: if∀i xi �K yi, andx = limi→∞ xi andy =
limi→∞ yi exist, thenx �K y

Excercise: Prove properties 1-5.

Theorem 1 Separation Theorem
Let C,D be two convex sets inRn, such thatC∩D = ∅. Then, there exists a hyperplane
aT (x− x0) = 0 such that:

• ∀x ∈ C : aT (x− x0) ≤ 0, and
• ∀x ∈ D : aT (x− x0) ≥ 0.

Proof: Assume thatC,D are closed sets. Define the following distance measure :

dist (C,D)
△
= min

u∈C,v∈D
‖u− v‖2 (5)

Let c ∈ C,d D be the elements that achieve the minimum:

‖c− d‖2 = dist (C,D) = min
u∈C,v∈D

‖u− v‖2 (6)

and leta be the line connectingc,d (a = d − c), andx0 = c+d

2
. Define the following

functional:

f(x) = aT (x− x0) = aT

(

x−
c+ d

2

)

= (d− c)T
(

x−
c+ d

2

)

(7)



= (d− c)T
(

x− d+
d− c

2

)

= (d− c)T (x− d) +
1

2
‖d− c‖2

We show that for everyu ∈ D we havef(u) ≥ 0:
Assume that there exists a vectoru ∈ D s.t. f(u) < 0. Then we may write

0 > f(u) = (d− c)T (u− d) +
1

2
‖d− c‖2 > (d− c)T (u− d) (8)

Define the following function:

g(t) = ‖d+ t (u− d)− c‖2 = ‖(1− t)d+ tu− c‖2 (9)

= ((1− t)d+ tu− c)T ((1− t)d+ tu− c)

= (d+ t(u− d)− c)T (d+ t(u− d)− c)

d

dt
g(t) =

d

dt

[

(d+ t(u− d)− c)T
]

(d+ t(u− d)− c) (10)

+ (d+ t(u− d)− c)T
d

dt
(d+ t(u− d)− c)

= (u− d)T (d+ t(u− d)− c) + (d+ t(u− d)− c)T (u− d)

and inspect

d

dt
g(t)|t=0 = 2 (d− c)T (u− d) (11)

By (8) we have that

d

dt
g(t)|t=0 < 0 (12)

so g(t) is decreasing att = 0. If so, there exists a (small)t0 s.t. 0 < t0 < 1 for which
g(t0) < g(0), so

‖(1− t0)d+ t0u− c‖2 < ‖d− c‖2 = dist (C,D) (13)

But sinceD is convex, and by assumption we haveu,d ∈ D, we also haveu′ =
(1− t0)d+ t0u ∈ D. So, we may write

‖u′ − c‖
2
< ‖d− c‖2 = dist (C,D) (14)

which contradicts the assumption thatc,d satisfy the minimum in (6). Therefore we
conclude thatf(u) ≥ 0 for all u ∈ D. The proof off(v) ≤ 0 for all v ∈ C follows
from similar steps.


