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Active Anomaly Detection in Heterogeneous
Processes

Boshuang Huang, Kobi Cohen, Qing Zhao

Abstract— An active inference problem of detecting an anoma-
lous process among M heterogeneous processes is considered. At
each time, a subset of processes can be probed. The objective is to
design a sequential probing strategy that dynamically determines
which processes to observe at each time and when to terminate
the search so that the expected detection time is minimized
under a constraint on the probability of misclassifying any
process. This problem falls into the general setting of sequential
design of experiments pioneered by Chernoff in 1959, in which
a randomized strategy, referred to as the Chernoff test, was
proposed and shown to be asymptotically optimal as the error
probability approaches zero. For the problem considered in this
paper, a low-complexity deterministic test is shown to enjoy the
same asymptotic optimality while offering significantly better
performance in the finite regime and faster convergence to the
optimal rate function, especially when the number of processes
is large. Furthermore, the proposed test offers considerable
reduction in implementation complexity. Extensions to detecting
multiple anomalous processes are also discussed.

Index Terms— Active hypothesis testing, sequential design
of experiments, anomaly detection, dynamic search.

I. INTRODUCTION

We consider the problem of detecting an anomalous process
(referred to as the target) among M heterogeneous processes
(referred to as the cells). At each time, K (1 ≤ K < M ) cells
can be probed simultaneously to search for the target. Each
search of cell i generates a noisy observation drawn i.i.d. over
time from two different distributions fi and gi, depending on
whether the target is absent or present. The objective is to
designa sequential search strategy that dynamically determines
which cells to probe at each time and when to terminate the
search so that the expected detection time is minimized under
a constraint on the probability of declaring a wrong location
of the target.

The above problem is prototypical of searching for rare
events in a large number of data streams or a large system. The
rare events could be opportunities (e.g., financial trading op-
portunities or transmission opportunities in dynamic spectrum
access [1]), unusual activities in surveillance feedings, frauds
in financial transactions, attacks and intrusions in communica-
tion and computer networks, anomalies in infrastructures such
as bridges, buildings, and the power grid that may indicate
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catastrophes. Depending on the application, a cell may refer
to an autonomous data stream with a continuous data flow or
a system component that only generates data when probed.

A. Main Results

The anomaly detection problem considered in this paper
is a special case of active hypothesis testing originated from
Chernoff’s seminal work on sequential design of experiments
in 1959 [2]. Compared with the classic passive sequential
hypothesis testing pioneered by Wald [3], where the obser-
vation model under each hypothesis is predetermined, active
hypothesis testing has a control aspect that allows the de-
cision maker to choose the experiment to be conducted at
each time. Different experiments generate observations from
different distributions under each hypothesis. Intuitively, as
more observations are gathered, the decision maker becomes
more certain about the true hypothesis, which in turn leads to
better choices of experiments.

In [2], Chernoff proposed a randomized strategy, referred
to as the Chernoff test, and established its asmyptotic (as the
error probability diminishes) optimality1. This randomized test
chooses, at each time, a probability distribution that governs
the selection of the experiment to be carried out at this time.
This distribution is obtained by solving a minimax problem so
that the next observation generated under the random action
can best differentiate the current maximum likelihood estimate
of the true hypothesis (using all past observations) from its
closest alternative, where the closeness is measured by the
Kullback-Liebler (KL) divergence. Due to the complexity in
solving this minimax problem at each time, the Chernoff test
can be expensive to compute and cumbersome to implement,
especially when the number of hypotheses or the number of
experiments is large.

It is not difficult to see that the problem at hand is a special
case of the general active hypothesis testing problem. Speci-
cally, the available experiments are in the form of different
subsets of K cells to probe, and the number of experiments
is
(
M
K

)
. Under each hypothesis that cell m (m = 1, ...,M)

is the target, the distribution of the next observation (a vector
of dimension K) depends on which K cells are chosen. The
Chernoff test thus directly apply. Unfortunately, with the large
number of hypotheses and the large number of experiments,
it can be computationally prohibitive to obtain the Chernoff
test.

1The asymptotic optimality of the Chernoff test was shown under the
assumption that the hypotheses are distinguishable under every experiment.
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In this paper, we show that the anomaly detection problem
considered here exhibits sufficient structures to admit a low-
complexity deterministic policy with strong performance. In
particular, we develop a deterministic test that explicitly spec-
ifies which K cells to search at each given time and show
that this test enjoys the same asymptotic optimality as the
Chernoff test2. Furthermore, extensive simulation examples
have demonstrated a significant performance gain over the
Chernoff test in the finite regime and faster convergence to the
optimal rate function, especially when M is large. In contrast
to the Chernoff test, the proposed test requires little offline
or online computation. The test can also be extended to cases
with multiple targets as discussed in Section V. Its asymptotic
optimality is preserved for K = 1.

We point out that proving the asymptotic optimality of the
deterministic policy is much more involved comparing with
the Chernoff test, due to the time dependency in the test
statistics, namely, the log-likelihood ratios (LLRs), introduced
by deterministic actions. In particular, since the distribution of
the random action chosen by the Chernoff test depends only on
the current maximimum likelihood estimate of the underlying
hypothesis which becomes time-invariant after an initial phase
with a bounded duration, the stochastic behaviors of the
LLRs are independent over time, resulting in a much easier
analysis of the detection delay. The deterministic actions of the
proposed test, however, lead to complex time dependencies in
LLRs that make the analysis much more involved.

B. Related Work

Chernoff’s pioneering work on sequential design of ex-
periments focuses on sequential binary composite hypothesis
testing [2]. Variations and extensions of the problem were
studied in [4]–[9], where the problem was referred to as
controlled sensing for hypothesis testing in [5]–[7] and active
hypothesis testing in [8], [9]. As variants of the Chernoff test,
the tests developed in [4]–[9] are all randomized tests.

There is an extensive literature on dynamic search and target
whereabout problems under various scenarios, most of them
focusing on homogeneous processes. We discuss here existing
studies within the sequential inference setting, which is the
most relevant to this work. In [10], the problem of searching
among Gaussian signals with rare mean and variance values
was studied and an adaptive group sampling strategy was
developed. In [11], searching over homogeneous Poisson point
processes with unknown rates was investigated and an asymp-
totically optimal randomized test was developed. In [12], the
problem of tracking a target that moves as a Markov Chain in a
finite discrete environment is studied and a search strategy that
provides the most confident estimate is developed. In [13], an
important case of multichannel sequential change detection is
studied and an asymptotic framework in which the number
of sensors tends to infinity was proposed. Asymptotically
optimal search policies over homogeneous processes were
established in [14] under a non-parametric setting with finite
discrete distributions and in [15] under a parametric composite

2The asymptotic optimality of the proposed test holds for all but at most
three singular values of K (see Lemma 1 and Theorem 1).

hypothesis setting with continuous distributions. In [16], [17],
the problem of quickly detecting anomalous components under
the objective of minimizing system-wide cost incurred by
all anomalous components was studied. The objective of
minimizing operational cost as opposed to detection delay led
to a different problem from the one considered in this paper.
Other related work on quickest search over multiple processes
under various models and formulations includes [18]–[21]
and references therein. Sequential spectrum sensing within
both the passive and active hypothesis testing frameworks has
also received extensive attention in the application domain
of cognitive radio networks (see, for example, [22]–[25] and
references therein). The readers are also referred to [26] for
a comprehensive survey on the problem of detecting outlying
sequences.

A prior study by Cohen and Zhao considered the problem
for homogeneous processes (i.e., fi ≡ f and gi ≡ g) [27]. This
work builds upon this prior work and addresses the problem
in heterogeneous systems where the absence distribution fi
and the presence distribution gi are different across processes.
Allowing heterogeneity significantly complicates the design
of the test and the establishment of asymptotic optimality.
Specifically, since each process has different observation dis-
tributions, the rate at which the state of a cell can be in-
ferred is different across processes. Hence, the decision maker
must balance the search time effectively among the observed
processes, which makes both the algorithm design and the
performance analysis much more involved under the hetero-
geneous case. In terms of algorithm design, when dealing with
homogeneous processes, the search strategy is often static in
nature [11], [14], [18], [27]. In contrast, the asymptotically
optimal search strategy developed here for heterogeneous pro-
cesses dynamically changes based on the current belief about
the location of the target. In terms of performance analysis,
handling heterogeneity adds new challenges and difficulties
for establishing asymptotic optimality. When searching over
homogeneous processes, the resulting rate function (which
is inversely proportional to the search time) always obeys a
certain averaging over the KL divergences between normal and
abnormal distributions of all process. This observation follows
from the fact that the decision maker completes gathering
the required information from all the processes at approxi-
mately the same time due to the homogeneity. In contrast,
when searching over heterogeneous processes, the overall rate
function does not always obey a simple averaging across the
KL divergences of all processes. In Section IV, we show that
the search time can be analyzed by considering two separate
scenarios, referred to as the balanced and the unbalanced
cases. The balanced case holds when the a judicious allocation
of probing resources can ensure the information gathering
from all the processes be completed at approximately the
same time, in which case the rate function is a weighted
average among the heterogeneous processes. The unbalanced
case occurs when there is a process with a sufficiently small
KL divergence that it dominates the overall rate function of
the search. We establish asymptotic optimality by analyzing
the sum LLR dynamics of the heterogeneous processes under
these two cases which adds significant technical difficulties as
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compared to the homogeneous case as detailed in Section IV.
Besides the active inference approach to anomaly detection

considered in this paper, there is a growing body of literature
on various approaches to the general problem of anomaly
detection. We refer the readers to [28], [29] for comprehensive
surveys on this topic.

II. PROBLEM FORMULATION

We consider the problem of detecting a single target located
in one of M cells. If the target is in cell m, we say that
hypothesis Hm is true. The a priori probability that Hm is
true is denoted by πm, where

∑M
m=1 πm = 1. To avoid trivial

solutions, it is assumed that 0 < πm < 1 for all m.
When cell m is observed at time n, an observation ym(n)

is drawn, independent of previous observations. If cell m
contains a target, ym(n) follows distribution gm(y). Oth-
erwise, ym(n) follows distribution fm(y). Let Pm be the
probability measure under hypothesis Hm and Em the operator
of expectation with respect to the measure Pm.

An active search strategy Γ consists of a stopping rule τ
governing when to terminate the search, a decision rule δ for
determining the location of the target at the time of stopping,
and a sequence of selection rules {φ(n)}n≥1 governing which
K cells to probed at each time n. Let y(n) be the set of all
cell selections and observations up to time n. A deterministic
selection rule φ(n) at time n is a mapping from y(n − 1)
to {1, 2, ...,M}K . A randomized selection rule φ(n) is a
mapping from y(n − 1) to probability mass functions over
{1, 2, ...,M}K .

The error probability under policy Γ is defined as Pe(Γ) =∑
m πmαm(Γ), where αm(Γ) = Pm(δ 6= m|Γ) is the

probability of declaring δ 6= m when Hm is true. Let
E(τ |Γ) =

∑M
m=1 πmEm(τ |Γ) be the average detection delay

under Γ.
We adopt a Bayesian approach as in Chernoff’s original

study [2] by assigning a cost of c for each observation and
a loss of 1 for a wrong declaration. Note that c represents
the ratio of the sampling cost to the cost of wrong detections.
The Bayes risk under strategy Γ when hypothesis Hm is true
is given by:

Rm(Γ) , αm(Γ) + cEm(τ |Γ). (1)

The average Bayes risk is given by:

R(Γ) =

M∑
m=1

πmRm(Γ) = Pe(Γ) + cE(τ |Γ). (2)

The objective is to find a strategy Γ that minimizes the
Bayes risk R(Γ):

inf
Γ

R(Γ). (3)

A strategy Γ∗ is asymptotically optimal if

lim
c→0

R(Γ∗)

infΓR(Γ)
= 1, (4)

which is denoted as

R(Γ∗) ∼ inf
Γ
R(Γ). (5)

Fig. 1: Typical sample paths of sum LLRs.

III. THE DETERMINISTIC DGFI POLICY

In this section we propose a deterministic policy, referred
to as the DGFi policy.

A. DGFi policy for K = 1

We first consider the case where only a single process can
be observed at a time, i.e., K = 1.

Let 1m(n) be the indicator function, where 1m(n) = 1 if
cell m is observed at time n, and 1m(n) = 0 otherwise. Let

`m(n) , log
gm(ym(n))

fm(ym(n))
, (6)

and

Sm(n) ,
n∑
t=1

`m(t)1m(t) (7)

be the log-likelihood ratio (LLR) and the observed sum LLRs
of cell m at time n, respectively. Let D(g||f) denote the KL
divergence between two distributions g and f given by

D(g||f) ,
∫ ∞
−∞

log
g(x)

f(x)
g(x) dx. (8)

Illustrated in Fig. 1 are typical sample paths of the sum LLRs
of M = 4 cells, where, without loss of generality, we assume
that cell 1 is the target. Note that the sum LLR of cell 1 is a
random walk with a positive expected increment D(g1||f1),
whereas the sum LLR of cell i is a random walk with a
negative expected increment −D(fi||gi) for i = 2, 3, 4. Thus,
when the gap between the largest sum LLR and the second
largest sum LLR is sufficiently large, we can declare with
sufficient accuracy that the cell with the largest sum LLR is
the target. This is the intuition behind the stopping rule and
the decision rule. Specifically, we define m(i)(n) as the index
of the cell with the ith largest observed sum LLRs at time n.
Let

∆S(n) , Sm(1)(n)(n)− Sm(2)(n)(n) (9)

denote the difference between the largest and the second
largest observed sum LLRs at time n. The stopping rule and
the decision rule under the DGFi policy are given by:

τ = inf {n : ∆S(n) ≥ − log c} , (10)

and
δ = m(1)(τ) . (11)
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We now specify the selection rule of the DGFi policy. The
intuition behind the selection rule is to select a cell from
which the observation can increase ∆S(n) at the fastest rate.
The selection rule is thus given by comparing the rate at
which Sm(1)(n) increases with the rate at which Sm(2)(n)(n)
decreases. If Sm(1)(n) is expected to increase faster than
Sm(2)(n)(n) decreases, cell m(1)(n) is chosen. Otherwise, cell
m(2)(n) is chosen. This leads to the following selection rule:

φ(n) =

{
m(1)(n) if D(gm(1)(n)||fm(1)(n)) ≥ Fm(1)(n)

m(2)(n) otherwise
,

(12)
where

Fm ,
1∑

j 6=m
1

D(fj ||gj)

. (13)

The selection rule in (12) can be intuitively understood by
noticing that D(gm(1)(n)||fm(1)(n)) is the asymptotic increas-
ing rate of Sm(1)(n) when cell m(1) is probed at each time.
This is due to the fact that m(1)(n) is the true target after an
initial phase (defined by the last passage time that m(1)(n)
is an empty cell) which can be shown to have a bounded
expected duration. Similarly, even though much more involved
to prove, Fm(1)(n) is the asymptotic rate at which Sm(2)(n)(n)

decreases when cell m(2)(n) is probed at each time. To see
the expression of Fm for any m as given in (13), consider
the following analogy. Consider M − 1 cars being driven
by a single driver from 0 to −∞. Car j (j = 1, . . . ,M ,
j 6= m) has a constant speed of D(fj ||gj). At each time,
the car closest to the origin is chosen by the driver and driven
by one unit of time. We are interested in the average moving
speed of the position of the closest car to the origin. It is not
difficult to see that it is given by Fm in (13). This analogy,
concerned with deterministic processes, only serves as an
intuitive explanation for the expression of Fm. As detailed
in Sec. IV, proving Fm(1)(n) to be the asymptotic decreasing
rate of Sm(1)(n)(n) requires analyzing the trajectories of the
M sum LLRs {Sm(n)}Mm=1, which are stochastic processes
with complex dependencies both in time and across processes.

B. DGFi under multiple simultaneous observations
Next we extend the DGFi policy to the case where multiple

simultaneous observations are allowed, i.e., K > 1.
The stopping rule and the decision rule remains the same

as given in (10), (11), whereas the selection rule requires
significant modification. The main reason is that when K cells
can be observed simultaneously, the asymptotic increasing
rate of Sm(1)(n)(n) and the asymptotic decreasing rate of
Sm(2)(n)(n) are much more involved to analyze.

The selection rule is as follows. At each time n, the selection
rule φ(n), as given in (14), chooses either the K cells with

the top K largest sum LLRs or those with the second to the
(K + 1)th largest sums LLRs, where

Fm(K) , min{ K∑
j 6=m

1
D(fj ||gj)

, min
j 6=m

D(fj ||gj)}. (15)

Similar to the case with K = 1, the intuition behind the
selection rule is to select K cells from which the observations
increase ∆S(n) at the fastest rate. Specifically, Fm(1)(n)(K) is
the asymptotic decreasing rate of Sm(2)(n)(n) when K cells
with the second largest to the (K + 1)th largest sum LLRs
are probed each time. The expression of Fm(K) for any m
as given in (15) can be explained with the same car analogy,
except now there are K > 1 drivers. It is not difficult to see
that Fm(K) is upper bounded by the speed minj 6=mD(fj ||gj)
of the slowest car among the M − 1 cars. In particular, when
the speed of the slowest car is sufficiently small, this car
always lags behind even with a dedicated driver. We refer
to this case as the unbalanced case, which presents the most
challenge in proving the asymptotic optimality of DGFi (see
Theorem 1 and Appendix B). With this intuitive understanding
of Fm(K), we can see that the asymptotic increasing rate
of ∆S(n) is D(gm(1)(n)||fm(1)(n)) + Fm(1)(n)(K − 1) when
the cells with the top K largest sum LLRs are probed each
time, where D(gm(1)(n)||fm(1)(n)) is the asymptotic increasing
rate of Sm(1)(n)(n) and Fm(1)(n)(K − 1) is the asymptotic
decreasing rate of Sm(2)(n)(n).

It is easy to see that when K = 1, the policy reduces to the
one described in section III-A.

IV. PERFORMANCE ANALYSIS

In this section, we establish the asymptotic optimality of the
DGFi policy. While the intuitive exposition of DGFi given in
Sec. III may make its asymptotic optimality seem expected,
constructing a proof is much more involved. In particular,
bounding the detection time of DGFi requires analyzing the
trajectories of the M stochastic processes {Sm(n)}Mm=1 which
exhibit complex dependencies both over time and across
processes as induced by the deterministic selection rule.

We first state the following assumption.

Assumption 1: Under hypothesis Hm, assume that

u∗m , arg max
u∈[0,1]

uD(gm||fm) + Fm(K − u) (16)

takes value of either 0 or 1, where we allow the domain of
Fm(·) defined in (15) to be all real numbers.

In the following lemma, we give an explicit characterization
on when Assumption 1 is violated and at what values of K.

Lemma 1: For any given {D(gi||fi), D(fi||gi)}Mi=1, we
have the following statements.

φ(n) =

{(
m(1)(n),m(2)(n), ...,m(K)(n)

)
if D(gm(1)(n)||fm(1)(n)) + Fm(1)(n)(K − 1) ≥ Fm(1)(n)(K)(

m(2)(n),m(3)(n), ...,m(K+1)(n)
)

otherwise
(14)
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1) For each m = 1, . . . ,M , Assumption 1 holds if at least
one of the following two statements is true:
(a)

∑
j 6=m

minj 6=mD(fj ||gj)
D(fj ||gj) is an integer,

(b) D(gm||fm) ≥ 1∑
j 6=m

1
D(fj ||gj)

.

If neither is true, then Assumption 1 does not hold for a
single value of K, denoted as K̃m, as given below.

K̃m =


∑
j 6=m

minj 6=mD(fj ||gj)
D(fj ||gj)

 (17)

2) All {K̃m}Mm=1 take at most three distinct values.

Proof: See Appendix A.

From Lemma 1, we conclude that for every given M
and {D(gi||fi), D(fi||gi)}Mi=1, Assumption 1 always holds for
K = 1. For the general case and with an arbitrarily large
M , Assumption 1 holds for all but at most three values of
K ∈ {1, 2, . . . ,M}.

Next, we establish the asymptotic optimality of DGFi under
Assumption 1. Define

Im , max{D(gm||fm) + Fm(K − 1), Fm(K)}, (18)

which is the increasing rate of ∆S(n) under hypothesis
Hm. For a given a priori distribution {πm}Mm=1 of the true
hypothesis, define

I∗ ,
1∑M

m=1
πm

Im

. (19)

As shown in Theorem 1 below, I∗ is the optimal rate function
of the Bayes risk.

Theorem 1: Let R∗ and R(Γ) be the Bayes risks under the
DGFi policy and an arbitrary policy Γ, respectively. Assume
that Assumption 1 holds for all m = 1, . . . ,M . Then,

R∗ ∼ −c log c

I∗
∼ inf

Γ
R(Γ) (20)

Proof: Here we provide a sketch of the proof. The detailed
proof can be found in Appendix B.

We first show that the proposed DGFi policy achieves a
Bayes risk −c log c/I∗ asymptotically. First, we show that
when ∆S(τ) is large, the probability of error is small, i.e.
Pe = O(c). As a result, by the definition of the Bayes risk,
it suffices to show that the detection time is upper bounded
by − log c/I∗. By the definition of I∗ in (19), it suffices to
show that the detection time is upper bounded by − log c/Im
under hypothesis Hm. Since the decision maker might not
complete to gather the required information from all the cells
at the same time, we carry out the analysis by considering the
balanced and the unbalanced cases separately. In particular,
if K/

∑
j 6=m

1
D(fj ||gj) < minj 6=mD(fj ||gj), we refer to this

case as the balanced case. Otherwise, we refer to this case as
the unbalanced case.

The balanced case is when K/
∑
j 6=m

1
D(fj ||gj) ≤

minj 6=mD(fj ||gj). The key to bounding the detection time in
this case is to show that the dynamic range of the M − 1 sum
LLRs corresponding to the M − 1 empty cells are sufficiently

small such that the increasing rate of ∆S(n) is given by a
certain averaging among the heterogeneous processes.

The unbalanced case is when K/
∑
j 6=m

1
D(fj ||gj) >

minj 6=mD(fj ||gj). In this case, there is a process with a
sufficiently small information acquisition rate D(fj ||gj) such
that it becomes the bottleneck of the detection process and
determines the asymptotic increasing rate of ∆S(n). Directly
bounding the dynamic range of all sum LLR trajectories
is no longer tractable. Instead, the proof is built upon the
analysis of the trajectory of the sum LLR with the smallest
expected increment. In particular, we recognize that the key
in handling the imbalance in the information acquisition rates
among empty cells is to define a last passage time as the last
time at which the empty cell with the smallest D(fj ||gj) is
not probed and then analyze, separately, the detection process
before and after this last passage time.

Next, we show that −c log c
I∗ is an asymptotic lower bound

on the Bayes risk. This is done by first proving that if the
Bayes risk is sufficiently small under strategy Γ, i.e., R(Γ) =
O(−c log c), the difference between the largest sum LLRs and
the second largest sum LLRs must be sufficiently large when
the test terminates, i.e. ∆S(τ) = Ω(− log c). Otherwise, it
is not possible to achieve a risk O(−c log c) due to a large
error probability. We then show that in order to make ∆S(n)
sufficiently large, the sample size must be large enough, i.e.,
E[τ |Γ] ≥ − log c

I∗ . Since each sample costs c, the total risk will
be lower bounded by −c log c

I∗ as desired.

V. EXTENSION TO DETECTING MULTIPLE TARGETS

In this section we extend the DGFi policy to the case with
L > 1 targets. The number of hypotheses in this case is

(
M
L

)
.

We consider first K = 1. The DGFi policy can be extended
to detect multiple targets as follows. The stopping rule and
decision rule are given below, similar in principle to those for
L = 1 as described in Section III:

τ = inf {n : ∆SL(n) ≥ − log c} , (21)

δ = {m(1)(τ),m(2)(τ), ...,m(L)(τ)}, (22)

where

∆SL(n) , Sm(L)(n)(n)− Sm(L+1)(n)(n) (23)

denotes the difference between the Lth and the (L + 1)th

largest observed sum LLRs at time n.
For the selection rule, define, for a given set D ⊂
{1, 2, . . . ,M} with |D| = L,

FD ,
1∑

j /∈D
1

D(fj ||gj)

. (24)

Similar to Fm defined in (13), FD can be viewed as the
asymptotic increasing rate of ∆SL(n) when the L targets are
given by set D and we probe the cell with the (L+1)th largest
sum LLR. We also define

GD ,
1∑

j∈D
1

D(gj ||fj)

, (25)
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which can be viewed as the asymptotic increasing rate for
∆SL(n) when we probe the cell with the Lth largest sum
LLR.

The selection rule follows the same design principle of
maximizing the asymptotic increasing rate of ∆SL(n), and
is given by

φ(n) =

{
m(L)(n) if GD(n) ≥ FD(n)

m(L+1)(n) otherwise
, (26)

where

D(n) = {m(1)(n),m(2)(n), ...,m(L)(n)}. (27)

It is not difficult to see that when L = 1, the policy reduces
to the one described in Section III.

Next, we establish the asymptotic optimality of the DGFi
policy for L > 1 and K = 1. Let D denote a subset of L cells
and πD the prior probability of hypothesis HD (i.e, the target
cells are given by D). Define

ID , max{FD, GD},
I∗L ,

1∑
D
πD
ID

, (28)

where I∗L is again the optimal rate function of the Bayes risk
as shown in the theorem below, and reduces to the one defined
in (19) when L = 1.

Theorem 2: Let R∗L and RL(Γ) be the Bayes risks under
the DGFi policy and an arbitrary policy Γ, respectively. Then,
for K = 1,

R∗ ∼ −c log c

I∗L
∼ inf

Γ
R(Γ) . (29)

Proof: See Appendix C.

When K > 1, the stopping rule and the decision rule remain
the same. For the selection rule, define

FD(K) , min{ K∑
j /∈D

1
D(fj ||gj)

, min
j /∈D

D(fj ||gj)}. (30)

Similar to Fm(K) defined in (15), FD(K) can be viewed as
the asymptotic increasing rate of ∆SL(n) when the L targets
are given by set D and we probe those K cells with the (L+
1)th to the (L+K)th largest sum LLR. Similarly,

GD(K) , min{ K∑
j∈D

1
D(gj ||fj)

, min
j∈D

D(gj ||fj)}, (31)

which can be viewed as the asymptotic increasing rate of
∆SL(n) when we probe the cells with the (L − K + 1)th

to the Lth largest sum LLR.
Let

k∗D , arg max
0≤k≤K

FD(K − k) +GD(k), (32)

which can be interpreted as the optimal number of target
cells that should be probed at each time for maximizing the
asymptotic increasing rate of ∆SL(n). The selection rule of
DGFi is thus given by

φ(n) = {m(L−k∗D(n)+1)(n), · · · ,m(L−k∗D(n)+K)(n)}, (33)

where

D(n) = {m(1)(n),m(2)(n), ...,m(L)(n)}. (34)

The asymptotic optimality of DGFi for L > 1 and K > 1
remains open. We have, however, strong belief of the following
conjecture.

Conjecture 1: The DGFi policy preserves its asymptotic
optimality if

u∗D , arg max
u∈[0,K]

FD(K − u) +GD(u) (35)

is an integer for all D, where we allow the domain of FD(·)
and GD(·) to be real numbers.

VI. COMPARISON WITH THE CHERNOFF TEST

In this section, we compare the performance of the proposed
DGFi policy and the Chernoff test in terms of both computa-
tional complexity and sample complexity.

A. The Chernoff Test
The Chernoff test has a randomized selection rule. Specifi-

cally, let q = (q1, ..., qκ) be a probability mass function over
a set of κ available experiments {ui}κi=1 that the decision
maker can choose from, where qi is the probability of choosing
experiment ui. Note that in our case, κ =

(
M
K

)
. For a

general M -ary active hypothesis testing problem, the action
at time n under the Chernoff test is drawn from a distribution
q∗(n) = (q∗1(n), ..., q∗κ(n)) that depends on the past actions
and observations:

q∗(n) = arg max
q

min
j∈M\{î(n)}

∑
ui

qiD(pui

î(n)
||pui

j ) , (36)

where M is the set of the M hypotheses, î(n) is the ML
estimate of the true hypothesis at time n based on past actions
and observations, and pui

j is the observation distribution under
hypothesis j when action ui is taken. The stopping rule and
the decision rule are the same as in (10), (11).

B. Comparison in computational complexity
Here we compare the computational complexity of the

proposed DGFi policy with the Chernoff test. We show that
the Chernoff test can be expensive to compute especially when
the number of processes or the number of experiments is large.
In contrast to the Chernoff test, the DGFi policy requires little
computaion.

For the case of detecting a single target (L = 1), computing
the selection rule of Chernoff test defined in (36) requires solv-
ing M minimax problems, each corresponding to a particular
value of the ML estimate î(n) ∈ {1, . . . ,M}. One efficient
way of solving minimax problems is through linear program-
ming which takes polynomial time with respect to the number
of variables and constraints. For this problem, however, the
number of variables is

(
M
K

)
, which is not polynomial and can

be exponential in M in the worst case.
The only computation involved in the selection rule of DGFi

is (15), which requires M summations each with M − 1
elements. As a result, the compuational time is O(M2), which
is polynomial in M and independent of K.
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Fig. 2: Performance comparison (K = 1, λ
(m)
g = 9 +

m,λ
(m)
f = 0.0188, c = 10−5).

Fig. 3: Performance comparison (K = 2, λ
(m)
g = 9 +

m,λ
(m)
f = 0.0188, c = 10−5).

C. Comparison in sample complextity

Although both the Chernoff test and the DGFi policy
are asymptotically optimal3, we show below via simulation
examples the significant performance gain of DGFi over the
Chernoff test in the finite regime (i.e., when the sample cost
c is bounded away from 0).

Consider a uniform prior and exponentially distributed ob-
servations: fm ∼ exp(λ

(m)
f ) and gm ∼ exp(λ

(m)
g ). The KL

divergences can be easily computed as follows.

D(gm||fm) = log(λ(m)
g )− log(λ

(m)
f ) +

λ
(m)
f

λ
(m)
g

− 1 ,

D(fm||gm) = log(λ
(m)
f )− log(λ(m)

g ) +
λ

(m)
g

λ
(m)
f

− 1 .

Shown in Fig. 2 is the performance comparison between
DGFi policy and Chernoff test for L = 1 and K = 1.
The figure clearly demonstrates the significant reduction in
detection delay offered by the DGFi policy as compared with
the Chernoff test. The performance gain increases drastically
as M increases. A similar comparison is observed in Fig. 3

3While the assumption of positive KL divergence between every pair of
hypotheses under every probing action as required in Chernoff’s proof of
asymptotic optimality does not hold here, it can be shown that Chernoff test
preserves its asymptotic optimality for the problem at hand.

Fig. 4: Performance comparison (L = 2,K = 1, λ
(m)
g = 9 +

m,λ
(m)
f = 0.0188, c = 10−5).

Fig. 5: Performance comparison (M = 20, L = 2,K =

2, λ
(m)
g = 50 + 0.1m,λ

(m)
f = 2).

with K = 2. The performance comparison for a case with
multiple targets is shown in Fig. 4 with L = 2,K = 1.

In Fig. 5, we consider a case of L = 2 and K = 2 and
examine the performance of DGFi as c approaches 0. Also
plotted in Fig. 5 is the asymptotic lower bound − log c

I∗L
on the

detection delay which increases linearly with − log c with rate
1/I∗L as given in (28). We observe that the increasing rate of
the detection delay offered by DGFi quickly converges to that
of the lower bound, which supports the conjecture that DGFi
preserves its asymptotic optimality for the case with L > 1
and K > 1. Besides showing the same level of reduction
in the finite regime compared with the Chernoff test, Fig. 5
also reveals a significantly faster convergence to the optimal
rate function I∗L with the detection delay of the Chernoff test
increasing at a faster rate even at c = 10−10.

Next, we provide an intuition argument for the better finite-
time performance of DGFi. Consider a special case where
K = 1 and all fi and gi are identical, i.e., fi ≡ f and
gi ≡ g and we assume D(f ||g) > (M − 1)D(g||f). In
this case, the DGFi policy chooses, at each time, the cell
with the second largest sum LLR whereas the Chernoff test
randomly and uniformly chooses a cell from all but the one
with the largest sum LLR at each time. Consider a short
horizon scenario where the sampling cost c is sufficiently high
such that D(f ||g) > − log c. This means each empty cell only
need one observation (with high probability) to distinguish
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from the true cell. We can formulate this as coupon collectors
problem, where each empty cell is a coupon and the goal is
to collect all M − 1 coupons.

Since Chernoff test employs a randomized strategy that
chooses empty cells with equal probability, based on results
in coupon collectors problem, the expected probing time will
be roughly M logM . However, the proposed DGFi policy is
deterministic and guaranteed to collect a new coupon at each
time, therefore the expected probing time will only be M .

VII. CONCLUSION

The problem of detecting anomalies among a large number
of heterogeneous processes was considered. A low-complexity
deterministic test was developed and shown to be asymptot-
ically optimal. Its finite-time performance and computational
complexity were shown to be superior to the classic Chernoff
test for active hypothesis testing, especially when the problem
size is large.

APPENDIX A: PROOF OF LEMMA 1

Define

hm(u) = uD(gm||fm) + Fm(K̃m − u). (37)

If u∗m takes value other than 0 or 1, i.e., u∗m ∈ (0, 1), then
h′m(u) > 0 for u ∈ (0, u∗m) and h′m(u) < 0 for u ∈ (u∗m, 1).
By taking the derivative of hm(u), we have

h′m(u) = D(gm||fm)− F ′m(K̃m − u), (38)

where

F ′m(u) =


1∑

j 6=m
1

D(fj ||gj)
, if u <

∑
j 6=m

minj 6=mD(fj ||gj)
D(fj ||gj)

0, if u >
∑
j 6=m

minj 6=mD(fj ||gj)
D(fj ||gj) .

(39)
Since F ′m(u) is piecewise constant with a breakpoint∑
j 6=m

minj 6=mD(fj ||gj)
D(fj ||gj) , h′m(u) is piecewise constant with a

breakpoint K̃m −
∑
j 6=m

minj 6=mD(fj ||gj)
D(fj ||gj) . Therefore,

K̃m = u∗m +
∑
j 6=m

minj 6=mD(fj ||gj)
D(fj ||gj)

. (40)

Since h′m(u) < 0 for u ∈ (u∗m, 1),

D(gm||fm) <
1∑

j 6=m
1

D(fj ||gj)

. (41)

Note that u∗m ∈ (0, 1) and K̃m is an integer. Such K̃m exists
only if neither (a) or (b) holds and we have

K̃m =


∑
j 6=m

minj 6=mD(fj ||gj)
D(fj ||gj)

 . (42)

Next we show that there are only three possible values of K.
Let j′ = arg minj D(fj ||gj). Since there is only one possible
K̃j′ as proved above. It remains to show that there are only
two possible values of Km when m 6= j′. Let

V ,
M∑
j=1

D(fj′ ||gj′)
D(fj ||gj)

.

Since 0 ≤ D(fj′ ||gj′ )
D(fm||gm) ≤ 1, we have∑

j 6=m

minj 6=mD(fj ||gj)
D(fj ||gj)

= V − D(fj′ ||gj′)
D(fm||gm)

∈ [V − 1, V ]

for all m 6= j′. Combining (42) implies that K̃m,m 6= j′ can
only take 2 possible integers as desired.

APPENDIX B: PROOF OF THEOREM 1

The structure of the proof is as follows. In subsection A,
we show that −c log c/I∗ is an asymptotic upper bound on
the Bayes risk that DGFi achieves. Specifically, the asymptotic
optimality property of DGFi is based on Lemma 8, showing
that the asymptotic expected search time is upper bounded
by − log c/I∗, while the error probability is O(c) following
Lemma 2. In subsection B, we provide the sum LLR analysis
of the heterogeneous empty cells. The analysis is based on
studying two cases, referred to as balanced and unbalanced
cases. For the balanced case, the decision maker can balance
the remaining information required to be gathered among the
processes. For the unbalanced case, there is a process with a
very small KL divergence so that it dominates the increasing
rate. Finally, in subsection C we show that the asymptotic
Bayes risk that can be achieved by any policy is lower bounded
by −c log c/I∗, in which together with Appendix A completes
the proof.

Throughout the this section, we use the following notations.
Let

Nj(n) ,
n∑
t=1

1j(t) (43)

be the number of times that cell j has been observed up to
time n. Let

∆Sm,j(n) , Sm(n)− Sj(n) (44)

be the difference between the observed sum of LLRs of cells
m and j. We also define

∆Sm(n) , min
j 6=m

∆Sm,j(n) . (45)

As a result, we have:

∆S(n) = Sm(1)(n)(n)− Sm(2)(n)(n) = max
m

∆Sm(n) . (46)

Without loss of generality we prove the theorem when
hypothesis m is true. We define

˜̀
k(i) =

`k(i)−D(gk||fk) , if k = m,

`k(i) +D(fk||gk) , if k 6= m,
(47)

which is a zero-mean r.v under hypothesis Hm.

A. The Asymptotic Upper Bound on the Bayes Risk under
DGFi

In this subsection we show that the Bayes risk obtained by
DGFi policy is upper bounded by −c log c/I∗ as c approaches
zero..
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Lemma 2: If DGFi policy is used, then the error probability
is upper bounded by:

Pe ≤ (M − 1)c . (48)

Proof: Let αm,j = Pm(δ = j) for all j 6= m. Thus,
αm =

∑
j 6=m αm,j . By the definition of the stopping rule

under DGFi (see (10)), accepting Hj is done when ∆Sj(n) ≥
− log c which implies ∆Sj,m ≥ − log c. Hence, for all j 6= m
we have:

αm,j = Pm (δ = j)

≤ Pm (∆Sj,m(τ) ≥ − log c)

≤ cPj (∆Sj,m(τ) ≥ − log c) ≤ c ,

(49)

where changing the measure in the second inequality follows
by the fact that ∆Sj,m(τ) ≥ − log c. As a result,

αm =
∑
j 6=m

αm,j ≤ (M − 1)c .

Hence, (48) follows.

Lemma 3: There exist constants C > 0 and γ > 0 such
that for any fixed 0 < q < 1, under any arbitrary policy, the
following statements hold:

Pm (Sj(n) ≥ Sm(n), Nj(n) ≥ qn) ≤ Ce−γn , (50)

and

Pm (Sj(n) ≥ Sm(n), Nm(n) ≥ qn) ≤ Ce−γn , (51)

for m = 1, 2, ...,M and j 6= m.

Proof: We start with proving (50). Note that
Nj(n), Nm(n) can take integer values Nj(n) =
dqne, dqne + 1, ...n, and Nm(n) = 0, ..., n. Applying
the Chernoff bound and using the i.i.d. property of the
observations across time yield:

Pm (Sj(n) ≥ Sm(n), Nj(n) ≥ qn)

≤
n∑

r=dqne

n∑
k=0

Pm

(
r∑
i=1

`j(i) +

k∑
i=1

−`m(i) ≥ 0

)

≤
n∑

r=dqne

n∑
k=0

[
Em

(
es`j(1)

)]r [
Em

(
es(−`m(1))

)]k (52)

for all s > 0.
Since a moment generating function (MGF) is equal to one

at s = 0 and Em(`j(1)) = −D(fj ||gj) < 0, Em(−`m(1)) =
−D(gm||fm) < 0 are strictly negative, differentiating the
MGFs of `j(1), `m(1) with respect to s yields strictly negative
derivatives at s = 0. As a result, there exist s > 0 and γ1 > 0
such that Em

(
es`j(1)

)
, Em

(
es(−`m(1))

)
are strictly less than

e−γ1 < 1. Hence, there exist C > 0 and γ = γ1 · q > 0 such
that

Pm (Sj(n)− Sm(n) ≥ 0, Nj(n) ≥ qn)

≤
n∑

r=dqne

e−γ1r
n∑
k=0

e−γ1k ≤ Ce−γn .
(53)

For proving (51) we can use the Chernoff bound with minor
modifications.

Definition 1: τ1 is defined as the smallest integer such that
Sm(n) > Sj(n) for all j 6= m for all n ≥ τ1.

Note that τ1 is not a stopping time since it depends on the
future. τ1 is a last passage time. It is the last time in which
Sm(n) crosses Sj(n) for all j 6= m. In Lemma 4 we show that
the probability that τ1 is greater than n decreases exponentially
with n. This result will be used when evaluating the asymptotic
expected search time to show that it is not affected by τ1.

Remark 1: We often analyze the dynamic of the sum LLRs
according to the selection rule of DGfi in the asymptotic
regime. Thus, when we say that the selection rule of DGFi
policy is implemented indefinitely we mean that we probe the
cells according to the selection rule of DGFi as given in (14)
indefinitely, while the stopping rule is disregarded.

Lemma 4: If the selection rule of DGFi is implemented
indefinitely, there exist C > 0 and γ > 0 such that

Pm (τ1 > n) ≤ Ce−γn , (54)

for m = 1, 2, ...,M .

Proof: We focus on proving for M > 2. Proving for
M = 2 is straightforward. Note that the event τ1 > n implies
that there exists a time instant t for t ≥ n in which for some
j 6= m, Sj(t) > Sm(t). Hence,

Pm (τ1 > n) ≤ Pm

(
max
j 6=m

sup
t≥n

(Sj(t)− Sm(t)) ≥ 0

)

≤
∑
j 6=m

∞∑
t=n

Pm (Sj(t) ≥ Sm(t)) .

(55)
Following (55), it suffices to show that there exist C > 0 and
γ > 0 such that Pm (Sj(n) ≥ Sm(n)) ≤ Ce−γn.

We next establish the required exponential decay. Let

km =
maxj 6=mD(fj ||gj)
minj 6=mD(fj ||gj)

,

jm = arg min
j 6=m

D(fj ||gj),

ρm =
1

8(km + 1)(M − 2)
.

(56)

Note that 0 < ρm ≤ 1/16. Thus, we can write

Pm (Sj(n) ≥ Sm(n))

≤ Pm (Sj(n) ≥ Sm(n), Nj(n) < ρmn,Nm(n) < ρmn)

+Pm (Sj(n) ≥ Sm(n), Nj(n) ≥ ρmn)

+Pm (Sj(n) ≥ Sm(n), Nm(n) ≥ ρmn)
(57)

The second and the third terms on the RHS of (57) decay
exponentially with n by Lemma 3. Thus, it remains to show
that the first term decays exponentially with n as well. Note
that the event (Nj(n) < ρmn,Nm(n) < ρmn) implies that at
least ñ = n−Nj(n)−Nm(n) ≥ n (1− 2ρm) times cells j,m
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are not probed. We define Ñr(n) as the number of times in
which cell r 6= j,m has been probed and cells j,m have not
been probed by time n. There exists a cell r 6= j,m such that
Ñr(n) ≥ ñ

M−2 = n(1−2ρm)
M−2 . Hence, we can upper bound (57)

as follows:

Pm (Sj(n) ≥ Sm(n))

≤
∑
r 6=j,m

Pm

(
Ñr(n) >

n(1− 2ρm)

M − 2
, Nj(n) < ρmn,

Nm(n) < ρmn

)
+ 2De−γ1n

(58)

where the second and third terms on the RHS of (57) are
upper bounded by De−γ1n (there exist such D > 0, γ1 > 0
by Lemma 3), and the first term on the RHS of (57) is upper
bounded by the first term (i.e., the summation term) on the
RHS of (58). Next, we show that each term in the summation
decays exponentially with n to get the desired result.

Let t̃r1, t̃
r
2, ..., t̃

r
Ñr(n)

be the indices for the time instants in
which cell r 6= j,m has been probed and cells j,m have not
been probed by time n. Let

ζ ,
1− 2ρm

2(M − 2)
. (59)

Note that the event Sj(t̃rζn) ≤ Sr(t̃rζn) or Sm(t̃rζn) ≤ Sr(t̃rζn)

must occur (otherwise, cell j or m will be probed). Hence4,

Pm

(
Ñr(n) > n(1−2ρm)

M−2 , Nj(n) < ρmn,Nm(n) < ρmn
)

=

n−ζn∑
q=0

ρmn∑
n′=0

Pm

 n′∑
i=1

`j(i) ≤
ζn+q∑
i=1

`r(i)


+

n−ζn∑
q=0

ρmn∑
n′=0

Pm

 n′∑
i=1

`m(i) ≤
ζn+q∑
i=1

`r(i)

 .

(60)
For upper bounding the first term on the RHS of (60) we write
the sum LLRs as follows:

ζn+q∑
i=1

`r(i) +

n′∑
i=1

−`j(i)

=

ζn+q∑
i=1

˜̀
r(i) +

n′∑
i=1

−˜̀
j(i)

−D(fr||gr) (ζn+ q) +D(fn′ ||gn′)n′

≤
ζn+q∑
i=1

˜̀
r(i) +

n′∑
i=1

−˜̀
j(i)−D(fjm ||gjm) (ζn+ q − kmn′) ,

(61)
and by the definitions of ζ, km, ρm in (56) and (59), we have

4For the ease of presentation, throughout the proof we assume that ζn,
ρmn are integers. This assumption does not affect the exponential decay
of the Chernoff bound but only the exact value of C > 0 in (54) (since
αn−1 ≤ bαnc ≤ dαne ≤ αn+1 holds for all α ≥ 0 for all n = 0, 1, ...).

ζn+ q − kmn′ ≥ ζn+ q − kmn′ − (km + 1) (ρmn− n′)

= n (ζ − (km + 1)ρm) + q + n′ ≥ 1

4(M − 2)
n+ q + n′

≥ 1

4(M − 2)
(n+ q + n′) ,

for all n′ ≤ ρmn. Therefore,

ζn+q∑
i=1

`r(i) +

n′∑
i=1

−`j(i) ≥ 0 (62)

implies

ζn+q∑
i=1

˜̀
r(i) +

n′∑
i=1

−˜̀
j(i) ≥ C1 (n+ q + n′) , (63)

where

C1 =
D(fjm ||gjm)

4(M − 2)
> 0. (64)

Applying the Chernoff bound yields:

Pm

 n′∑
i=1

`j(i) ≤
ζn+q∑
i=1

`r(i)


≤ Pm

ζn+q∑
i=1

˜̀
r(i) +

n′∑
i=1

−˜̀
j(i) ≥ C1 (n+ q + n′)


≤
[
Em

(
es

˜̀
r(1)
)]ζn+q [

Em

(
es(−

˜̀
j(1))

)]n′
×e−sC1(n+q+n′)

=
[
Em

(
es(

˜̀
r(1)−C1)

)]ζn+q

×
[
Em

(
es(−

˜̀
j(1)−C1)

)]n′
× e−sC1(n−ζn) .

(65)
for all s > 0.

Since Em(˜̀
r(1)−C1) = −C1 < 0 and Em(−˜̀

j(1)−C1) =
−C1 < 0 are strictly negative, by applying a similar argument
as at the end of the proof of Lemma 3, there exist s > 0 and
γ2 > 0 such that Em

(
e(s˜̀

r(1)−C1)
)

, Em
(
es(−

˜̀
j(1)−C1)

)
and

e−sC1 are strictly less than e−γ2 < 1. Hence,

Pm

 n′∑
i=1

`j(i) ≤
ζn+q∑
i=1

`r(i)

 ≤ e−γ2(n+q+n′), (66)

and
n−ζn∑
q=0

ρmn∑
n′=0

Pm

 n′∑
i=1

`j(i) ≤
ζn+q∑
i=1

`r(i)


≤ e−γ2n

n−ζn∑
q=0

e−γ2q
ρmn∑
n′=0

e−γ2n
′
≤ C2e

−γ2n ,

(67)

where C2 = (1− e−γ2)
−2.

A similar Chernoff bounding technique can be applied to
upper bound the second term on the RHS of (60).
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Next, we consider two cases:

1) the balanced case, referring to the case when
minj 6=mD(fj ||gj) ≥ 1∑

j 6=m 1/D(fj ||gj) ;
2) the unbalanced case, when the above inequality is re-

versed.

The reason for referring to the first case as the balanced
case is that DGFi policy is able to balance the detection
time so that the difference between the largest sum LLR
and the sum LLRs of any other cell exceeds the threshold
− log c approximately at the same time. As a result, the rate
function is determined by a certain averaging among the KL
divergences of the heterogeneous processes. On the other hand,
when the smallest KL divergence is too small, then too many
measurements are required to be gathered from that cell. In
that case, the difference between the largest sum LLR and
the sum LLR gathered from the cell with the smallest KL
divergence exceeds the threshold − log c significantly after the
difference between the largest sum LLR and the sum LLR
gathered from any other cell does. As a result, the rate function
is dominated by the smallest KL divergence.

For the unbalanced case, the proof follows directly from
subsection B.2. Thus, here it remains to show the proof for
the balanced case.

Definition 2: τ2 is defined as the smallest integer such that∑n
i=τ1+1 `jn(i)1jn(i) ≤ log c for some jn 6= m for all n ≥

τ2 ≥ τ1.
We also define n2 , τ2 − τ1 as the total amount of time
between τ1 and τ2.

In Lemma 5 we show that the probability that n2 is greater
than n decays exponentially with n when n is greater than
− log c/Im. Later, we will show that the asymptotic search
time is dominated by n2, which together with Lemma 5 yields
the desired search time − log c/Im under hypothesis Hm.

Lemma 5: If the selection rule of DGFi is implemented
indefinitely, then for every fixed ε > 0 there exist C > 0 and
γ > 0 such that

Pm (n2 > n) ≤ Ce−γn ∀n > −(1 + ε) log c/Im , (68)

for all m = 1, 2, ...,M .

Proof: First, we consider the case where Im >
D(gm||fm). Note that cell m is not observed for all n ≥ τ1 in
this case. Define N ′j(τ1+t) =

∑τ1+t
i=τ1+1 1j(i) and j∗(τ1+t) =

arg maxj N
′
j(τ1 + t)D(fj ||gj). Thus,

Pm(n2 > n)

≤ Pm(sup
t≥n

τ1+t∑
i=τ1+1

`j∗(τ1+t)(i)1j∗(τ1+t)(i) ≥ log c).
(69)

Since Kt is the total number of obeservation from τ1 to τ1 +t,
by the definition of j∗(t) we have

Kt =
∑
j 6=m

N ′j(τ1 + t) =
∑
j 6=m

N ′j(τ1 + t)D(fj ||gj)
D(fj ||gj)

≤
∑
j 6=m

N ′j∗(τ1+t)(τ1 + t)D(fj∗(τ1+t)||gj∗(τ1+t))

D(fj ||gj)
.

(70)

Let ε1 = Imε/(1 + ε). Since Im =
∑
j 6=mK/D(fj ||gj), we

have

ε1 =
εK

(1 + ε)
∑
j 6=m 1/D(fj ||gj)

. (71)

Then,

τ1+t∑
i=τ1+1

`j∗(τ1+t)(i)1j∗(τ1+t)(i)− log c

=

τ1+t∑
i=τ1+1

˜̀
j∗(τ1+t)(i)1j∗(τ1+t)(i)

−N ′j∗(τ1+t)(τ1 + t)D(fj∗(τ1+t)||gj∗(τ1+t))− log c

≤
τ1+t∑
i=τ1+1

˜̀
j∗(τ1+t)(i)1j∗(τ1+t)(i)

− Kt∑
j 6=m 1/D(fj ||gj)

− log c

≤
τ1+t∑
i=τ1+1

˜̀
j∗(τ1+t)(i)1j∗(τ1+t)(i)− tIm + tIm/(1 + ε)

≤
τ1+t∑
i=τ1+1

˜̀
j∗(τ1+t)(i)1j∗(τ1+t)(i)− tε1

(72)
for all t ≥ n > −(1 + ε) log c/Im. By applying the Chernoff
bound, it can be shown that there exists γ1 > 0 such that
Pm(

∑τ1+t
τ1+1−˜̀

j∗(τ1+t)(i) ≥ tε1) < e−γ1t for all t ≥ n >
−(1+ε) log c/Im. Hence, there exist C1 > 0 and γ1 > 0 such
that Pm(n2 > n) ≤ C1e

−γ1n for all n > −(1 + ε) log c/Im.
A similar argument applies for case where Im ≤ D(gm||fm).

In what follows we define a r.v. DR(t) as the dynamic
range between sum LLRs of empty cells, maxj 6=m Sj(t) −
minj 6=m Sj(t). Note that the dynamic range at time τ2 (which
is the time in which sufficient information has been gathered
to distinguish Hm from at least one false hypothesis) can be
viewed as a measure of the amount of information remains
to gather in order to distinguish Hm from any other false
hypothesis. Lemma 6 below shows that the dynamic range at
time τ2 is sufficiently small.

Definition 3: The dynamic range between sum LLRs of
empty cells at time t is defined as follows:

DR(t) , max
j 6=m

Sj(t)−min
j 6=m

Sj(t) . (73)

Lemma 6: If the selection rule of DGFi is implemented
indefinitely. Then, for every fixed ε1 > 0, ε2 > 0 there exist
C > 0 and γ > 0 such that

Pm (DR(τ2) > ε1n) ≤ Ce−γn

∀n > −(1 + ε2) log c/Im ,
(74)

for all m = 1, 2, ...,M .

Proof: The proof follows directly by applying Lemma 5
and substituting τ2 in subsection B.2.
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Definition 4: τ j3 is defined as the smallest integer such that
Sj(n) ≥ − log c for all n ≥ τ2. We also define τ3 = maxj τ

j
3 .

Note that by the definitions of the last passage times we
have τ j3 ≥ τ2.

Remark 2: Using some algebraic manipulations, it can
be verified that ∆Sm,j(n) ≥ − log c for all j 6= m for
all n ≥ τ j3 . Since τ3 = maxj 6=m τ

j
3 we have ∆S(n) =

Sm(n) − Sm(2)(n)(n) ≥ − log c for all n ≥ τ3. Recall that
DGFi stops the test once ∆S(n) first occurs. Thus, in the
sequel we will use τ3 as an upper bound on the actual stopping
time τ .

Definition 5: n3 , τ3− τ2 is defined as the total amount of
time between τ2 and τ3.

In Lemma 7 we show that n3 is sufficiently small with high
probability. We will use this result to show that the asymptotic
expected search time is not affected by n3.

Lemma 7: If the selection rule of DGFi is implemented
indefinitely, then for every fixed ε > 0 there exist C > 0 and
γ > 0 such that

Pm (n3 > n) ≤ Ce−γn ∀n > −ε log c/Im , (75)

for all m = 1, 2, ...,M .

Proof: To prove the Lemma, we first define N j
3 as the

total number of observations that the decision maker collected
from cell j between τ2 and τ j3 . Since n3 ≤

∑
j N

j
3 , we only

need to show that Pm(N j
3 > n) decays exponentially with n.

We can write Pm(N j
3 > n) as follows:

P(N j
3 > n) ≤ Pm(DR(τ2) > n

minj D(fj ||gj)
2

)

+Pm(N j
3 > n|DR(τ2) ≤ nminj D(fj ||gj)

2
)

(76)

Lemma 6 provides the desired decay for the first term on the
RHS. We next show the desired decay for the second term.
Let t1, t2, · · · denote the time indices when cell j is observed
between τ2 and τ j3 . We can write:

Pm(N j
3 > n|DR(τ2) ≤ nminj D(fj ||gj)

2
)

≤ Pm( inf
r>n

r∑
i=1

−`j(ti) < n
minj D(fj ||gj)

2
)

≤ Pm(

r∑
i=1

˜̀
j(ti) > r

minj D(fj ||gj)
2

).

(77)

Using the Chernoff bound and the i.i.d. property of ˜̀
j(ti)

yields:

Pm(

n∑
i=1

˜̀
j(ti) > n

minj D(fj ||gj)
2

) < C3e
−γn (78)

for some C3, γ3 which completes the proof.

The following Lemma provides an upper bound on the
detection time when DGFi policy implemented (i.e., the cells
are probed based on the selection rule and the test terminates
based on the stopping rule).

Lemma 8: If DGFi policy is implemented, then the expected
detection time τ is upper bounded by:

Em(τ) ≤ − (1 + o(1))
log(c)

Im
, (79)

for m = 1, ...,M .

Proof: Since the actual detection time under DGFi is
upper bounded by: τ ≤ τ3 = τ1 + n2 + n3, combining
Lemmas 4, 5 and 7 proves the statement.

B. Analyzing the Dynamic of Empty Cells under DGFi

In this appendix we analyze the sum LLRs dynamics
at empty cells under DGFi, used to prove the theorem in
subsection A. To analyze the sum LLR of empty cells, we
introduce the following (slightly different) active hypothesis
testing problem. It should be noted that in what follows we
slightly change the notations for the new problem setting for
convenience and differentiating it from the original problem.

At each time, only k cells can be observed from cells
1, 2, · · · ,m. When cell j is observed at time n, an obser-
vation xj(n) is drawn independently from previous times and
xj(n) follows distribution fj . We also assume that gj , j =
1, 2, · · · ,m are m known distributions.

For the ease of the presentation when analyzing the sum
LLRs of empty cells. we remove the subscript m from Pm()
when referring to the probability measure.

Let 1j(n) be the indicator function, where 1j(n) = 1 if cell
j is observed at time n, and 1j(n) = 0 otherwise.

Let

lj(n) , log
fj(xj(n))

gj(xj(n))
(80)

and

Sj(n) ,
n∑
t=1

lj(t)1j(t) (81)

Note that we are now focusing on empty cells. Thus, for
convenience the LLR is defined as negative LLR defined in
the original problem. The sum LLR is defined accordingly.

We know that

E[lj(n)] =

∫
x

fj(x) log
fj(x)

gj(x)
dx = D(fj ||gj). (82)

Thus, here the sum LLR of an empty cell j is a random walk
with a positive increment D(fj ||gj). Similarly, we define

l̃j(n) , lj(n)−D(fj ||gj), (83)

which is a zero mean r.v.. Without loss of generality, we
assume D(f1||g1) ≤ D(f2||g2) ≤ · · · ≤ D(fm||gm). We also
define

v̄ ,
1∑

j 1/D(fj ||gj)
. (84)

Let r(i)(n) denotes the cell index with the ith smallest sum
LLR collected from this cell up to time n. We define the
following random variables:

U(n) , max
j
Sj(n), L(n) , min

j
Sj(n), (85)
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DRkj (n) , Sr(k)(n)(n)− Sr(j)(n)(n), (86)

and
DR(n) , DRm1 (n) = U(n)− L(n), (87)

Also, let

Nj(t) =

t∑
i=1

1j(i), (88)

j(t) = arg min
j
Nj(t)D(fj ||gj), (89)

j̄(t) = arg max
j
Nj(t)D(fj ||gj). (90)

Remark 3: Note that we defined the LLR in this appendix as
the negative LLR which was defined in the original problem.
Thus, the corresponding DGFi policy in this appendix chooses
the k cells with smallest sum LLRs (in contrast to the selection
of the empty cells with the top sum LLRs as done in the
original problem).

Definition 6: The modified selection rule of DGFi for the
active hypothesis testing problem defined in this appendix is
given by: φ(n) = {r(1)(n), r(2)(n), · · · , r(k)(n)}.

Next, we provide the outline for the next lemmas. Lemma 9
states that the smallest observed sum LLR is sufficiently small
as requireed with high probability. Lemma 10 states that the
largest observed sum LLR is sufficiently large as required with
high probability. Lemma 11 shows that under (the modified)
DGFi policy, the difference between the largest sum LLR and
the (m − k + 1)th largest sum LLR is sufficiently small as
required with high probability. Whether the smallest sum LLR
is approximately equal to the largest sum LLR depends on
which one of balanced or unbalanced cases is valid. For the
balanced case, Lemma 12 claims that the dynamic range is
small under DGFi policy. Hence, DGFi can balance the search
time among all the processes so that the search time is a
certain averaging of their KL divergences. For the unbalanced
case, Lemma 13 states that the sum LLRs of the cell with
the smallest KL divergence cannot be too small (which will
determine the rate function function for the search in this case)
with high probability. Lemma 14 shows that the sum LLR of
other cells are larger than that of the cell with the smallest KL
divergence. Finally, Lemma 15 upper bounds the asymptotic
search time.

Lemma 9: For any selection rule, ∀t, ∀ε > 0, there exist
C, γ > 0 such that

P(L(t) > t · kv̄ + nε) < Ce−γn ∀n > t. (91)

Proof: Note that

P(L(t) > t · kv̄ + nε) ≤ P(Sj(t)(t) > t · kv̄ + nε), (92)

and

Sj(t)(t) = Nj(t)(t)D(fj(t)||gj(t)) +

t∑
i=1

l̃j(t)(i)1j(t)(i). (93)

Since kt is the total number of observations by time t, by the
definition of j(t) we have

kt =
∑
j

Nj(t) =
∑
j

Nj(t)D(fj ||gj)
D(fj ||gj)

≥
∑
j

Nj(t)(t)D(fj(t)||gj(t))
D(fj ||gj)

.

(94)

Hence,

Nj(t)(t)D(fj(t)||gj(t)) ≤ kt ·
1∑

j 1/D(fj ||gj)
= t · kv̄. (95)

Therefore,
Sj(t)(t) > t · kv̄ + nε (96)

implies
t∑
i=1

l̃j(t)(i)1j(t)(i) > nε. (97)

Since l̃j(t)(t) is a zero mean r.v. with a bounded moment gen-
erating function, applying the Chernoff inequality completes
the proof.

Lemma 10: For any selection rule, ∀t, ∀ε, there exist C, γ >
0 such that

P(U(t) < t · kv̄ − nε) < Ce−γn ∀n > t. (98)

Proof: Note that

P(U(t) > t · kv̄ − nε) ≤ P(Sj̄(t)(t) < t · kv̄ − nε), (99)

and

Sj̄(t)(t) = Nj̄(t)(t)D(fj̄(t)||gj̄(t))+
t∑
i=1

l̃j̄(t)(i)1j̄(t)(i). (100)

Since kt is the total number of observations by time t, by the
definition of j̄(t) we have

kt =
∑
j

Nj(t) =
∑
j

Nj(t)D(fj ||gj)
D(fj ||gj)

≤
∑
j

Nj̄(t)(t)D(fj̄(t)||gj̄(t))
D(fj ||gj)

.
(101)

Hence,

Nj̄(t)(t)D(fj̄(t)||gj̄(t)) ≥ kt·
1∑

j 1/D(fj ||gj)
= t·kv̄. (102)

Therefore,
Sj̄(t)(t) < t · kv̄ − nε (103)

implies
t∑
i=1

l̃j(t)(i)1j(t)(i) < −nε. (104)

Since l̃j(t)(t) is a zero mean r.v. with a bounded moment gen-
erating function, applying the Chernoff inequality completes
the proof.
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Lemma 11: For DGFi selection rule, ∀t,∀ε, there exist
C, γ > 0 such that

P(DRmk (t) > D(fm||gm) + nε) < Ce−γn ∀n > t. (105)

Proof: We prove by induction with respect to t. When
t = 1, DRmk (1) > D(fm||gm) + nε indicates that

D(fm||gm) + nε < lj(1) = l̃j(1) +D(fj ||gj)
≤ l̃j(1) +D(fm||gm)

(106)

which indicates that
l̃j(1) > nε.

Using the Chernoff bound completes the induction base.

If the statement is true for t− 1, then for t we have

P(DRmk (t) > D(fm||gm) + nε)

=P(DRmk (t) > D(fm||gm) + nε, r(m)(t) = r(m)(t− 1))

+ P(DRmk (t) > D(fm||gm) + nε, r(m)(t) 6= r(m)(t− 1)).
(107)

For the first term on the RHS, we have

P(DRmk (t) > D(fm||gm) + nε, r(m)(t) = r(m)(t− 1))

≤ P(DRmk (t− 1) > D(fm||gm) +
nε

2
, r(m)(t) = r(m)(t− 1)

or lr(k)(t−1)(t) < −
nε

2
, r(m)(t) = r(m)(t− 1))

≤ P(DRmk (t− 1) > D(fm||gm) +
nε

2
)

+P(lr(k)(t−1)(t) < −
nε

2
) ≤ C1e

−γ1n,

(108)
where the first term can be bounded using assumptions on
t− 1 and the second term can be bounded using the Chernoff
bound.

For the second term on the RHS of (107), we have

P(DRmk (t) > D(fm||gm) + nε, r(m)(t) 6= r(m)(t− 1))

≤P(lr(m)(t)(t) > D(fm||gm) + nε)

≤P(l̃r(m)(t)(t) > nε) < C2e
−γ2n

(109)

Combining (107), (108), (109) completes the proof.

1) The Balanced Case:
Lemma 12: Under the DGFi selection rule, if

D(f1||g1) ≥ k · v̄ (110)

holds, then we have the following statements:
1) ∀t,∀ε, there exist C, γ > 0 such that

P(U(t) > t ·kv̄+kD(fm||gm)+nε) < Ce−γn ∀n > t.
(111)

2) ∀t,∀ε, there exist C, γ > 0 such that

P(L(t) < t ·kv̄−kD(fm||gm)−nε) < Ce−γn ∀n > t.
(112)

3) ∀t,∀ε, there exist C, γ > 0 such that

P(DR(t) > k ·D(fm||gm) + nε) < Ce−γn ∀n > t.
(113)

Proof: We prove by induction with respect to k. For k =
1, statement 3 follows directly from Lemma 11. For statement
1,

P(U(t) > t · v̄ +D(fm||gm) + nε)

≤P(L(t) > t · v̄ + nε or DR(t) > D(fm||gm) + nε)

≤P(L(t) > t · v̄ + nε) + P(DR(t) > D(fm||gm) + nε),
(114)

which can be bounded by Lemma 9 and 11. Similarly, we can
prove statement 2 using Lemmas 10 and 11.

If the statement is true for k − 1, for k we first prove
statement 3. For any fixed t, let j̄ = arg minj Sj(t), and let
t0 be the smallest integer such that j̄ ∈ φ(τ),∀t0 < τ ≤ t.
From Lemma 11 it follows that ∀ε, there exist C, γ > 0 such
that

P(DRmk (t0) > D(fm||gm) + nε) < Ce−γn, ∀n > t0.

Since j̄ /∈ φ(t0), we have:

P(Sj̄(t0)− U(t0) < −D(fm||gm)− nε) < Ce−γn,∀n > t0.
(115)

Since that j̄ ∈ φ(τ),∀t0 < τ ≤ t we have:

P(Sj̄(t)− U(t0) < (t− t0)D(fj̄ ||gj̄)−D(fm||gm)− nε)

< Ce−γn, ∀n > t
(116)

by applying the Chernoff bound.
Next, consider a subproblem where cell j̄ is removed and

only k − 1 cells can be selected. Let S′j(n) be the sum LLR
in this subproblem. Then, by statement 1 with assumption on
k − 1 we have that ∀ε, there exist C, γ > 0 such that

P (U(t− t0) > (t− t0) · (k − 1)v̄′

+ (k − 1)D(fm||gm) + nε)

< Ce−γn, ∀n > t− t0

(117)

where
v̄′ =

1∑
j 6=j̄ 1/D(fj ||gj)

.

Now, for the original problem, we have Sj(t) = Sj(t0) +
S′j(t− t0) ≤ U(t0) + S′j(t− t0). By (117) we have

P(U(t)− U(t0) > (t− t0) · (k − 1)v̄′

+(k − 1)D(fm||gm) + nε)

< Ce−γn ∀n > t

(118)

since D(f1||g1) ≥ kv̄ implies D(fj̄ ||gj̄) ≥ (k−1)v̄′. By (116)
and (118) we have that ∀ε, there exist C, γ > 0 such that

P(U(t)− Sj̄(t) > k ·D(fm||gm) + nε) < Ce−γn ∀n > t,
(119)

which proves statement 3 for k as desired. Then, statements
1 and 2 can be proved using Lemma 9 and 10 with statement
3 similar to the case with k = 1.
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2) The Unbalanced Case:
Lemma 13: Under the DGFi selection rule, if

D(f1||g1) < k · v̄ (120)

then ∀t, ∀ε, there exist C, γ > 0 such that

P(S1(t) < tD(f1||g1)− nε) < Ce−γn ∀n > t. (121)

Proof: Define t0 as the smallest integer such that cell 1
is observed at time i for all t0 < i ≤ t. Then, by our selection
rule, cell 1 is the one of the top m− k sum LLRs at time t0.
Then, by applying t = t0 to Lemma 11 we have

P(U(t0)− S1(t0) > nε) < C1e
−γ1n ∀n > t0 (122)

for some C1, γ1. Substituting t = t0 in Lemma 10 we have:

P(U(t0) < t0 · kv̄ − nε) < C2e
−γ2n ∀n > t0 (123)

for some C2, γ2. Hence,

P(S1(t0) < t0 · kv̄ − nε) < C3e
−γ3n ∀n > t0 (124)

for some C3, γ3. Then, by the definition of t0 and using the
Chernoff bound we have

P(S1(t)− S1(t0) < (t− t0)D(f1||g1)− nε) < C4e
−γ4n

∀n > (t− t0).
(125)

Since kv̄ > D(f1||g1), we have:

P(S1(t) < tD(f1||g1)− nε) < C5e
−γ5n ∀n > t (126)

as desired.

Definition 7: Define τ̃2 = − log c/D(f1||g1).

Lemma 14: For every fixed ε > 0, there exists C > 0 and
γ > 0, such that for all j we have:

P(S1(τ̃2)− Sj(τ̃2) > εn) ≤ Ce−γn, ∀n > τ̃2. (127)

Proof: For fixed j, define tj0 as the smallest integer
such that S1(n) > Sj(n) for all tj0 < i ≤ τ̃2. By def-
inition, S1(tj0) ≤ Sj(t

j
0). Then, by our selection rule, for

all tj0 < i ≤ τ̃2, whenever cell 1 is observed, cell j must
be observed based on their ranking of sum LLRs. Note that
D(f1||g1) ≤ D(fj ||gj). Thus,

τ̃2∑
i=tj0

lj(i)1j(i)−
τ̃2∑
i=tj0

l1(i)11(i)

=

τ̃2∑
i=tj0

l̃j(i)1j(i)−
τ̃2∑
i=tj0

l̃1(i)11(i)

+D(fj ||gj)
τ̃2∑
i=tj0

1j(i)−D(f1||g1)

τ̃2∑
i=tj0

11(i)

≥
τ̃2∑
i=tj0

l̃j(i)1j(i)−
τ̃2∑
i=tj0

l̃1(i)11(i),

(128)

which indicates that the LHS has positive means. By applying
the Chernoff bound and using the i.i.d. property of l̃j(ti) we
have:

P(S1(τ̃2)− S1(tj0)− (Sj(τ̃2)− Sj(tj0)) > εn) ≤ Ce−γn,
(129)

for some C, γ. Since S1(tj0) ≤ Sj(tj0), we have:

P(S1(τ̃2)− Sj(τ̃2) > εn)

≤ P(S1(τ̃2)− S1(tj0)− (Sj(τ̃2)− Sj(tj0)) > εn)

≤ Ce−γn, ∀n > τ̃2

(130)

as desired.

Definition 8: Define τ̃ j3 as the smallest integer such that
Sj(n) ≥ − log c for all n ≥ τ̃ j3 . We also define τ̃3 = maxj τ̃

j
3 .

Definition 9: ñ3 , τ̃3− τ̃2 denotes the total amount of time
between τ̃2 and τ̃3.

Lemma 15: For every fixed ε > 0, there exists C > 0 and
γ > 0 such that

P(ñ3 > n) < Ce−γn, ∀n > −ε log c/D(f1||g1). (131)

Proof: By substituting t = τ̃2 in Lemma 13 we have:

P(S1(τ̃2) < − log c− nε) < C1e
−γ1n ∀n > τ̃2 (132)

for some C1, γ1. By applying Lemma 14, we have:

P(Sj(τ̃2) < − log c− nε) < C2e
−γ2n

∀n > τ̃2, j = 1, 2, · · · ,m
(133)

for some C2, γ2 > 0.

Let N j
3 denote that total number of observations, taken from

cell j between τ̃2 and τ̃ j3 . Since ñ3 ≤
∑
N j

3 , it suffices to
show that P(N j

3 > n) decays exponentially with n. Note that

P(N j
3 > n)

≤ P

(
Sj(τ̃2) < − log c− nD(f1||g1)

2

)
+P

(
N j

3 > n|Sj(τ̃2) ≥ − log c− nD(f1||g1)

2

)
.

(134)

By (133) it remains to show that the second term decays
exponentially with n. Let t1, t2, · · · denote the time indices
when cell j is observed between τ̃2 and τ̃ j3 . Then,

P(N j
3 > n|Sj(τ̃2) ≥ − log c− nD(f1||g1)

2
)

≤P

(
inf
r>n

r∑
i=1

lj(ti) < n
D(f1||g1)

2

)

≤P

(
r∑
i=1

l̃j(ti) > r
D(f1||g1)

2

)
.

Applying the Chernoff bound and using the i.i.d. property of
l̃j(ti) across time we have

P

(
r∑
i=1

l̃j(ti) > r
D(f1||g1)

2

)
< C3e

−γn (135)
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for some C3, γ3 which completes the proof.

C. The Asymptotic Lower Bound on the Bayes Risk

In this appendix, we show that the asymptotic Bayes risk
that can be achieved by any policy is lower bounded by
−c log c/I∗.

Lemma 16: Assume that αj(Γ) = O(−c log c) for all j =
1, ...,M . Let 0 < ε < 1. Then:

Pm (∆Sm(τ) < − (1− ε) log c | Γ) = O(−cε log c) , (136)

for all m = 1, ...,M .

Proof: Note that:

Pm (∆Sm(τ) < − (1− ε) log c|Γ)

= Pm (∆Sm(τ) < − (1− ε) log c , δ = m|Γ)

+Pm (∆Sm(τ) < − (1− ε) log c , δ 6= m|Γ)

≤ Pm (∆Sm(τ) < − (1− ε) log c , δ = m|Γ) + αm(Γ),
(137)

where αm(Γ) = O(−c log c) by assumption. In what follows,
we upper bound

Pm (∆Sm(τ) < − (1− ε) log c , δ = m|Γ) .

Similar to [2, Lemma 4] we can show that for all j 6= m
there exists G > 0 such that:
−Gc log c ≥ Pj (δ 6= j|Γ) ≥ Pj (δ = m|Γ)

≥ Pj (∆Sm,j(τ) ≤ −(1− ε) log c , δ = m|Γ)

≥ c1−εPm (∆Sm,j(τ) < − (1− ε) log c , δ = m|Γ) ,
(138)

where the last inequality holds by changing the measure as in
[2, Lemma 4]. Thus,

Pm (∆Sm,j(τ) < − (1− ε) log c , δ = m|Γ)

= O (−cε log c) ∀j 6= m .
(139)

As a result,

Pm (∆Sm(τ) < − (1− ε) log c , δ = m|Γ)

≤
∑
j 6=m

Pm (∆Sm,j(τ) < − (1− ε) log c , δ = m|Γ)

= O (−cε log c) .

(140)
Finally,

Pm (∆Sm(τ) < − (1− ε) log c|Γ) = O (−cε log c) .
(141)

Lemma 17: Assume that

D(gm||fm) ≥ 1∑
j 6=m

1
D(fj ||gj)

. (142)

Then, the function:

d(t) , t

[
D(gm||fm) +

n
t − 1∑

j 6=m
1

D(fj ||gj)

]
(143)

is monotonically increasing with t for 0 ≤ t ≤ n.
Proof: Differentiation d(t) with respect to t yields:

∂d(t)

∂t
= D(gm||fm)− 1∑

j 6=m
1

D(fj ||gj)

≥ 0 ,

which completes the proof.

For the next lemma we define

j∗(t) , arg min
j 6=m

Nj(t)D(fj ||gj), (144)

and

W ∗m(t) ,
t∑
i=1

˜̀
m(i)1m(i)−

t∑
i=1

˜̀
j∗(t)(i)1j∗(t)(i), (145)

which is a sum of zero-mean r.v.

Lemma 18: For every fixed ε > 0 there exist C > 0 and
γ > 0 such that

Pm

(
max

1≤t≤n
W ∗m(t) ≥ nε|Γ

)
≤ Ce−γn (146)

for all m = 1, ...,M and for any policy Γ.
Proof: We upper bound (146) by summing over any

possible values that Nm(t), Nj∗(t)(t) can take and using the
Chernoff bound:

Pm

(
max

1≤t≤n
W ∗m(t) ≥ nε|Γ

)

=

n∑
t=1

t∑
i=0

t∑
j=0

Pm

(
t∑

r=1

˜̀
m(r)1m(r) +

t∑
r=1

−˜̀
j∗(t)(r)1j∗(t)(r) ≥ nε,

Nm(t) = i,Nj∗(t) = j|Γ
)

≤
n∑
t=1

t∑
i=0

t∑
j=0

[
Em

(
es(

˜̀
m(1)−ε/2)

)]i
×

[
Em

(
es(−

˜̀
j∗(t)(1)−ε/2)

)]j
×

exp
{
−s ε

2
(2n− i− j)

}
,

(147)
for all s > 0.

Since Em(˜̀
m(1)− ε/2) = −ε/2 < 0 and Em(−˜̀

j∗(t)(1)−
ε/2) = −ε/2 < 0 are strictly negative, using a similar
argument as at the end of the proof of Lemma 3, there
exist s > 0 and γ′ > 0 such that Em

(
es(

˜̀
m(1)−ε/2)

)
,

Em

(
es(−

˜̀
j∗(t)(1)−ε/2)

)
and e−sε/2 are strictly less than

e−γ
′
< 1. Since 2n − i − j ≥ 0, there exist C > 0 and

γ > 0, such that summing over t, i, j yields (146).

Lemma 19: For any fixed ε > 0,

Pm

(
max

1≤t≤n
∆Sm(t) ≥ n (Im + ε) | Γ

)
→ 0

as n→∞ ,
(148)
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for all m = 1, ...,M and for any policy Γ.
Proof: We next show exponential decay of (148) (which

is stronger than the polynomial decay shown under the binary
composite hypothesis testing case in [2, Lemma 5]). Let

∆S∗m(t) , Sm(t)− Sj∗(t)(t).

Note that ∆Sm(t) ≤ ∆S∗m(t) for all m and t. As a result,

Pm

(
max

1≤t≤n
∆Sm(t) ≥ n (Im + ε) |Γ

)
≤ Pm

(
max

1≤t≤n
∆S∗m(t) ≥ n (Im + ε) |Γ

)
.

(149)

We next prove the lemma for the case where Im = Fm(K).
Proving the lemma for the cases where Im = D(gm||fm) +
Fm(K − 1) applies with minor modifications.

Note that:

∆S∗m(t) = W ∗m(t) +Nm(t)D(gm||fm)

+Nj∗(t)(t)D(fj∗(t)||gj∗(t))

≤W ∗m(t) +Nm(t) · 1∑
j 6=m 1/D(fj ||gj)

+Nj∗(t)(t)D(fj∗(t)||gj∗(t)).

(150)

Since that j∗(t) = arg minj 6=mNj(t)D(fj ||gj) and Kt −
Nm(t) is the total number of observations taken from M − 1
cells j 6= m, we have:∑
j 6=m

Nj∗(t)D(fj∗(t)||gj∗(t))
D(fj ||gj)

≤ Kt−Nm(t) ≤ Kn−Nm(t).

(151)
Hence,

∆S∗m(t) ≤W ∗m(t) +Kn 1∑
j 6=m 1/D(fj ||gj)

= W ∗m(t) + nIm .
(152)

Therefore,

∆S∗m(t) ≥ n (Im + ε)

implies

W ∗m(t) ≥ nε.

By Lemma 18 we have:

Pm

(
max

1≤t≤n
∆Sm(t) ≥ n (Im + ε)

)
≤ Pm

(
max

1≤t≤n
W ∗m(t) ≥ nε

)
≤ Ce−γn → 0 as n→∞.

(153)

Finally, we show that the Bayes risk cannot be made smaller
than −c log(c)

Im
:

Lemma 20: Any policy Γ that satisfies Rj(Γ) = O(−c log c)
for all j = 1, ...,M must satisfy:

Rm(Γ) ≥ − (1 + o(1))
c log(c)

Im
. (154)

for all m = 1, ...,M .

Proof: For any ε > 0 let nc = −(1−ε) log c

Im + ε
. Note that

Pm (τ ≤ nc | Γ)

= Pm (τ ≤ nc , ∆Sm(τ) ≥ − (1− ε) log c | Γ)

+Pm (τ ≤ nc , ∆Sm(τ) < − (1− ε) log c | Γ)

≤ Pm

(
max
t≤nc

∆Sm(t) ≥ − (1− ε) log c | Γ
)

+Pm (∆Sm(τ) < − (1− ε) log c | Γ) .

(155)

Both terms on the RHS approaches zero as c → 0 by
Lemmas 16, 19. Hence,

Em(τ |Γ) ≥
∞∑

n=nc+1

nPm (τ = n|Γ)

≥ ncPm (τ ≥ nc + 1|Γ)→ nc as c→ 0

(156)

Since ε > 0 is arbitrarily small we have Em(τ |Γ) ≥
− (1 + o(1)) log(c)/Im. As a result, Rm(Γ) ≥ cEm(τ |Γ) ≥
− (1 + o(1)) c log(c)/Im.

APPENDIX C: PROOF OF THEOREM 2

We now focus on proving asymptotic optimality for L > 1,
and K = 1. For L > 1, we define τ1 as the smallest integer
such that Sm(n) > Sj(n) for all m ∈ D, j 6= D and n ≥ τ1.
Note that when K = 1 and n ≥ τ1 the decision maker always
probe the consistent cell (target or not depending on the order
of GD and FD) for making the difference between the Lth

and (L + 1)th largest sum LLRs greater than the threshold
− log c. As a result, the decision maker can always balance
the detection time so that the difference between the largest
sum LLR and the sum LLRs of any other cell exceeds the
threshold − log c approximately at the same time as c → 0.
Thus, proving the asymptotic optimality of DGFi for L > 1
and K = 1 follows similar arguments as in the balanced case
in the proof of Theorem 1 given in Appendix B, and we focus
here only on the key modifications. Let

∆SD(n) , min
m∈D,j /∈D

∆Sm,j(n), (157)

where ∆Sm,j(n) is defined in (44). Without loss of generality
we prove the theorem when set D contains all the targets. We
define

˜̀
k(i) =

`k(i)−D(gk||fk) , if k ∈ D,

`k(i) +D(fk||gk) , if k /∈ D,
(158)

which is a zero-mean r.v.

We start with sowing the upper bound on the Bayes risk
obtained by DGFi. Similar to Lemma 2, we can show that
the error probability under DGFi is O(c). Specifically, we can
show that the error probability is upper bounded by:

Pe ≤ (M − L)L · c . (159)
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We can show this by letting αD = PD(δ 6= D) and αD,j =
PD(j ∈ δ) for all j /∈ D, where the subscript D denotes
the measure when set D contains all the targets. Thus, αD ≤∑
j /∈D αD,j . By the stopping rule, accepting j ∈ δ implies

∆Sj,m ≥ − log c for some m ∈ D. Hence, for all j /∈ D we
have:

αD,j = PD (j ∈ D)

≤
∑
m∈D PD (∆Sj,m(τ) ≥ − log c)

≤
∑
m∈D

cPD∪j\m (∆Sj,m(τ) ≥ − log c) ≤ L · c,
(160)

where we changed the measure in the second inequality. As a
result,

αD ≤
∑
j /∈D

αD,j ≤ (M − L)L · c,

which yields (159).

Here we consider the case where ID = GD, the case ID =
FD applies with minor modifications. For showing that τ1 is
sufficiently small we need to show first the following Lemmas:

Lemma 21: For all j /∈ D, ∀0 < q < 1, there exist C, γ > 0
such that

PD(Nj(n) > qn) < Ce−γn (161)

Proof: For each j, define tj(n) as the time when cell j
is observed for the nth time. By DGFi selection rule, if cell
j is observed at time t, then there exists m ∈ D such that
Sj(t) ≥ Sm(t). Hence,

PD(Nj(n) > qn)

≤
n∑
t=1

PD(Nj(t) > qn,∃m ∈ D : Sj(t) > Sm(t))

×PD(tj(dqne) = t).

(162)

It suffices to show that there exist constants C, γ such that

PD(Nj(t) > qn,∃m ∈ D : Sj(t) > Sm(t)) ≤ Ce−γn (163)

for all t ≤ n.
First we have

PD(Nj(t) > qn,∃m ∈ D : Sj(t) > Sm(t))

≤
∑
m∈D

PD(Nj(t) > qn, Sj(t) > Sm(t)). (164)

Fix m, then we have

PD(Nj(t) > qn, Sj(t) > Sm(t))

≤
n∑

r=dqne

n∑
k=0

PD

(
n∑
i=1

`j(i) +

k∑
k=1

−`m(i) ≥ 0

)
≤ Cme−γmn.

(165)

The last inequality can be shown using the Chernoff bound as
in Lemma 3.

To show (163), we let C =
∑
m Cm, γ = minm γm, which

completes the proof.

Lemma 22: For all m ∈ D, and ε > 0, there exist C, γ > 0
such that

PD

(
Nm(n) >

GD
D(gm||fm)− ε

· n
)
≤ Ce−γn (166)

Proof: For each m, define tm(n) as the time when cell
m is observed for the nth time. By DGFi selection rule, if cell
m is observed at time t, either there exists j /∈ D such that
Sj(n) > Sm(n) or Sm′(n) > Sm(n) for all m′ ∈ D. Similar
to (162), it suffices to show that

PD

(
Nm(t) > GD

D(gm||fm)−ε · n, ∃j /∈ D : Sj(t) > Sm(t)
)

≤ Ce−γn
(167)

and

PD

(
Nm(t) > GD

D(gm||fm)−ε · n,∀m
′ ∈ D : Sm′(t) > Sm(t)

)
≤ Ce−γn

(168)
for all t < n.
Since (167) can be shown similarly as in (163), it remains to
show (168). By the definition of GD, if Nm(t) > GD

D(gm||fm)−ε ·
n, there exists m′ ∈ D and ε′ > 0 such that Nm′(t) <

GD
D(g′m||f ′m)+ε′ · t. Hence,

PD

(
Nm(t) >

GD
D(gm||fm)− ε

· n,

∀m′ ∈ D : Sm′(t) > Sm(t)

)
≤
∑
m′∈D

PD

(
Nm(t) >

GD
D(gm||fm)− ε

· n,

Sm′(t) > Sm(t), N ′m(t) <
GD

D(g′m||f ′m) + ε′
· t
)
.

(169)

Fix m′, and let s1 = GD
D(gm||fm)−ε , s2 = GD

D(gm′ ||fm′ )+ε
.

Then, we have

PD

(
Nm(t) >

GD
D(gm||fm)− ε

· n,

Sm′(t) > Sm(t), N ′m(t) <
GD

D(gm′ ||fm′) + ε′
· t
)

≤
n∑

r=ds1ne

bs2tc∑
k=0

PD

(
r∑
i=1

−`m(i) +

k∑
i=1

`m′(i) ≥ 0

)

≤
n∑

r=ds1ne

bs2tc∑
k=0

PD

(
r∑
i=1

D(gm||fm)− ε− `m(i)

+
k∑
i=1

`m′(i)−D(gm′ ||fm′)− ε′ ≥ 0

)

≤
n∑

r=ds1ne

bs2tc∑
k=0

[
ED

(
es(−

˜̀
m(1)−ε)

)]r [
ED

(
es(`m′ (1)−ε′)

)]k
≤ Cm′e−γm′n

(170)
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The last inequality can be shown using the Chernoff bound
as in Lemma 3. To show (169), we let C =

∑
m′ Cm′ , γ =

minm′ γm′ , which completes the proof.

Lemma 23: For all m ∈ D, ∀ε > 0, there exist C, γ > 0
such that

PD

(
Nm(n) < (

GD
2D(gm||fm)

)n

)
≤ Ce−γn. (171)

Proof: By choosing qj and ε′m in Lemma 21 and
Lemma 22 such that

∑
j qj +

∑′
m ε
′
m = GD

2D(gm||fm) , we have

PD

(
Nm(n) < (

GD
2D(gm||fm)

)n

)
≤
∑
j /∈D

PD (Nj(n) > qjn)

+
∑
m′∈D

PD

(
N ′m(n) > (

GD
D(g′m||f ′m)

+ ε′m)n

)
≤ Cm′e−γn

(172)
as desired.

Next, similar to Lemma 4, we can show that the probability
that τ1 is greater than n decreases exponentially with n. This
result is used when evaluating the asymptotic expected search
time to show that it is not affected by τ1. We can show this
by noting that

PD (τ1 > n) ≤ PD

(
max

j /∈D,m∈D
sup
t≥n

(Sj(t)− Sm(t)) ≥ 0

)

≤
∑

j /∈D,m∈D

∞∑
t=n

PD (Sj(t) ≥ Sm(t)) .

(173)
Following (173), it suffices to show that PD (Sj(n) ≥ Sm(n))
decays exponentially with n. Note that

PD (Sj(n) ≥ Sm(n))

≤ PD

(
Sj(n) ≥ Sm(n), Nm(n) ≥ (

GD
2D(gm||fm)

)n

)
+PD

(
Nm(n) < (

GD
2D(gm||fm)

)n

)
(174)

The first term decays exponentially with n by Lemma 3 (with
minor modifications). The second term decays exponentially
with n by Lemma 23.

Note that we obtained that the expectation of τ1 is bounded,
and we can use similar arguments as in the balanced case of
Theorem 1 in Appendix B to obtain the detection rate ID
for n ≥ τ1. Combining these results yields that the expected
detection time τ under the DGFi policy is upper bounded by:

ED(τ) ≤ − (1 + o(1))
log(c)

ID
, (175)

for m = 1, ...,M .

Finally, showing that the asymptotic Bayes risk is lower
bounded by −c log c/I∗L follows a similar outline as in Ap-
pendix B. Specifically, similar to Lemma 16, if αD(Γ) =
O(−c log c) for all D, and we let 0 < ε < 1, then:

PD (∆Sm(τ) < − (1− ε) log c | Γ) = O(−cε log c) , (176)

for all D and m ∈ D. Then, we define:

j∗(t) , arg min
j /∈D

Nj(t)D(fj ||gj), (177)

m∗(t) , arg min
m∈D

Nm∗(t)(t)D(gm||fm), (178)

and

W ∗D(t) ,
t∑
i=1

˜̀
m∗(t)(i)1m∗(t)(i)−

t∑
i=1

˜̀
j∗(t)(i)1j∗(t)(i),

(179)
where W ∗D(t) is a sum of zero-mean r.v. Using these defini-
tions, similar to Lemma 18, we can show that for every fixed
ε > 0 there exist C > 0 and γ > 0 such that

PD

(
max

1≤t≤n
W ∗D(t) ≥ nε|Γ

)
≤ Ce−γn (180)

for all D and for any policy Γ.
Next, similar to Lemma 19 we can show that for any fixed

ε > 0,

PD

(
max

1≤t≤n
∆SD(t) ≥ n (ID + ε) | Γ

)
→ 0

as n→∞ ,
(181)

for all D and for any policy Γ.
Finally, similar to Lemma 20, we can show that any policy

Γ that satisfies RD(Γ) = O(−c log c) for all D must satisfy:

RD(Γ) ≥ − (1 + o(1))
c log(c)

ID
. (182)

for all D.
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