
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 10, OCTOBER 2010 5307
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Abstract—In this paper, we examine the advantages of transmis-
sion scheduling by medium access control (MAC) protocols for en-
ergy-limited wireless sensor networks (WSN) as a means of maxi-
mizing network lifetime. We consider transmission scheduling for
sensor networks with a mobile access point, where each sensor
transmits its measurement directly to an access point through a
fading channel. WSN lifetime maximization depends almost ex-
clusively on the channel-state information (CSI) and the residual-
energy information (REI) of each sensor in the network. We dis-
cuss distributed protocols which exploit local CSI and REI. We
present a novel protocol for distributed transmission scheduling,
dubbed the time-varying opportunistic protocol (TOP), for max-
imizing the network lifetime. TOP prioritizes sensors with better
channels when the network is young, by exploiting local CSI to
reduce transmission energy. However, TOP prefers sensors with
higher residual energy when the network is old by exploiting local
REI to reduce the wasted energy. We show that the relative perfor-
mance loss of TOP compared to the optimal centralized protocol
in terms of network lifetime decreases as the initial energy stored
in the sensors increases. Furthermore, TOP significantly simpli-
fies the implementation of carrier sensing compared to other dis-
tributed MAC protocols. We also explore the case of large-scale
wireless sensor networks, where the activated sensors are picked
randomly and modify the implementation of TOP for such net-
works. Simulation results show that TOP outperforms other dis-
tributed MAC protocols that have been proposed recently.

Index Terms—Network lifetime, opportunistic medium access
control, wireless sensor networks.

I. INTRODUCTION

L IFETIME maximization in non-rechargeable battery-
powered wireless sensor networks (WSN) has been ex-

tensively studied in recent years. Energy consumption is a major
limitation in such networks and there is a growing body of
literature on this subject. A good survey of available technology
appears in [2] and [3]. Here, we deal with SEnsor Networks
with a Mobile Access point (SENMA) [4]. In SENMA, each
sensor (or sensors cluster head) measures a certain phenom-
enon and upon request transmits its measurement directly to
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an access point (AP) through a fading channel. In some net-
works the transmission energy required for successful one-hop
transmission to the AP through the direct channel is very high.
Therefore, appropriate transmission scheduling is crucial. It
has been shown in [5] that exploiting channel-state informa-
tion (CSI) and residual-energy information (REI) are essential
to network-lifetime maximization. CSI acquisition consumes
energy (due to receiver operation while receiving short beacon
signal from AP) which affects the network lifetime. In cases
where the energy consumed by CSI acquisition is very high CSI
acquisition must be relinquished. However, in most networks
this is not the case and CSI acquisition significantly increases
network lifetime. Due to the presence of small-scale fading,
sensors may experience deep fading channels [6], [7]. CSI
allows sensors with better channel gains to transmit to reduce
transmission energy. In most low-power wireless sensors such
as Mica or Telos receive power operation consumes roughly
12–38 mW [8]. Receiving short beacon signal from access
point is a small cost to pay to reduce transmission energy over
a fading channel. Upper bounds on network lifetimes were
presented in [9]–[11]. Energy-constraint routing for lifetime
maximization was analyzed in [12] and [13]; however, this
issue is not discussed in this paper.

We focus on energy-aware transmission scheduling for max-
imizing the lifetime of sensor networks. The goal is to decide,
based on CSI and REI, which set of sensors should transmit
during each data collection event in order to maximize the
overall network lifetime. The transmission scheduling problem
was formulated as a centralized stochastic control problem
in [14]–[16]. Optimal centralized transmission scheduling
exploiting global CSI and REI was formulated as the stochastic
shortest path in [17]. However, the overhead and computational
complexity of optimal centralized transmission is extremely
high. Distributed MAC protocols which use local CSI and
REI have been extensively analyzed in [18] and [19], and
significantly reduce overhead and computational complexity.
Therefore, they are generally preferred over centralized pro-
tocols. According to the distributed MAC protocol strategy,
each sensor calculates an energy-efficiency index during each
data collection event. The transmission scheduling in these
protocols is executed by selecting the sensor with the largest
energy-efficiency index for transmission at each data collection
event (this can be done by opportunistic carrier sensing [20]).
The energy-efficiency index is a function of local CSI and REI
and is generally time-invariant.1 The design principle for the
energy-efficiency index was developed in [5]. The principle is
to prioritize sensors with better channels when the network is

1CSI and REI values are random variables and indeed time-varying. However,
the formula for calculating the energy-efficiency index does not change during
the network lifetime.
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young, while prioritizing sensors with higher residual energy
when the network is old. A common problem in protocols that
set their energy-efficiency index based on REI is that varying
residual energy during network lifetime reduces carrier-sensing
performance.

In this paper, we present a distributed MAC protocol, dubbed
time-varying opportunistic protocol (TOP). By implementing
TOP, the energy-efficiency index is time-varying and is deter-
mined by exploiting CSI and REI. However, TOP also over-
comes the performance-decreasing problem that occurs during
carrier sensing. We show that if channel fading is independent
and identically distributed (i.i.d.) across data collections and
across sensors, the relative performance loss by executing TOP
compared to the optimal centralized protocol decreases as the
initial energy stored in the sensors increases. We also examine
large-scale wireless sensor networks, where activated sensors
are picked randomly. Then, we suggest a dynamic method to
determine the average number of activated sensors in order to
maximize the lifetime efficiency per sensor. Finally, we modify
the TOP algorithm for such networks.

The rest of this paper is organized as follows. In Section II,
we present the network model and the definition of network
lifetime. In Section III, we review some existing distributed
protocols which have been proposed recently. In Section IV,
we introduce the time-varying opportunistic protocol (TOP).
In Section V, we consider the network lifetime of large-scale
networks containing a very large number of sensors. Then, we
modify TOP algorithm over such networks. In Section VI, we
provide simulation results.

II. NETWORK MODEL AND LIFETIME DEFINITION

A. Network Model

Consider a WSN that contains sensors, each sensor is
powered by a battery with initial energy . Every sensor has a
fixed equal-sized packet measurement transmitted through a flat
fading channel to the AP. We assume a block-fading channel
which remains constant during each data packet transmission.
Thus, the channel gain for each sensor , is constant
within each slot and varies independently between slots. Due to
the presence of small-scale fading the channel gain is a random
variable. The distance from the sensors to the AP is typically
much larger than the distance between sensors. Therefore, we
assume that the path loss, and thus the channel gain mean, is
approximately equal for all sensors. During each data collection
event, the AP broadcasts a beacon signal and each sensor esti-
mates its channel state. We define as the energy consumed
by each sensor during channel estimation. We assume that
each sensor knows its REI. We define as the residual
energy of sensor at the beginning of the th data collection
event. During each data collection event only a single sensor
(or sensors cluster head) is allowed to transmit its measurement
to the AP (the extension to a larger number of sensors which
are allowed to transmit is explained in Section III-A). The
network’s lifetime is affected by the transmission energy and
the wasted energy:

1) Transmission Energy: By assuming that sensor trans-
mits its data to the AP during a block length of seconds, the
received signal is given by

where is the channel fading experienced by sensor
is the additive white Gaussian noise with power spectrum den-
sity (PSD) , and is the transmitted signal using fixed
power equal for all the sensors. Let be the power con-
sumption of the transmitter circuitry equal for all sensors. We
define the data packet length by bits , and the data-packet-
transmission time of sensor by . Therefore, the total energy

required for transmission during the th data collection
event is given by

(1)

where is the total transmission power con-
sumption of each sensor. The term in the denominator is the data
transmission rate, where and are the Shannon gap to ca-
pacity and the channel bandwidth, respectively. We also assume
in this paper that the required transmission energy is bounded by

, where and denote
the minimal and maximal transmission energy during each data
collection event, respectively.2 The transmission energy
consumed during the th data collection event of each sensor
is given by

if sensor transmits during
the th data collection

otherwise.
(2)

The transmission energy consumed by all the sensors in
the network during the th data collection event is

(3)

where sensor is the chosen sensor for transmission at the th
data collection event.

2) Wasted Energy: We define the wasted energy as the total
unused energy in the network when it dies. Therefore, the total
wasted energy of the network is given by

(4)

where is the residual energy across sensor when the net-
work dies.

B. Network-Lifetime Definition

We define a single sensor as nonfunctional when its residual
energy drops below the threshold energy, , required for trans-
mission with predetermined probability. We define a failed data
collection event as a data collection event where no sensor has

2This assumption is fulfilled in any realistic transmission scheme, since the
fading channel is typically bounded, or due to time-window limitation for trans-
mission.
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sufficient energy for current transmission. The network is de-
fined as nonfunctional when the number of nonfunctional sen-
sors reaches , where , or when the total number
of failed data collection events reaches a finite constant number

. The network lifetime is defined as the number of data col-
lection events until the network is defined as nonfunctional.

Following [5] and [18], since we would like to prolong the
network lifetime before the first sensor dies or the first failed
data collection event occurs, we consider the network as non-
functional when or . Based on lifetime analysis
in [5] and [18], the expected network lifetime is given by

(5)

where is the expected transmission energy consumed in
a randomly chosen data collection event and is the ex-
pected wasted energy. As explained in [5], (5) implies that we
should reduce the transmission energy (by exploiting CSI for se-
lecting a sensor with a better channel) when the data collection
event index is small (i.e., the network is young), since the prob-
ability that the network lives data collection events decreases
with . On the other hand, we need to reduce the wasted energy
(by exploiting REI for selecting sensor with large residual en-
ergy) when is increased.

III. DISTRIBUTED TRANSMISSION SCHEDULING PROTOCOLS

Our goal is to decide during each data collection event which
sensor should transmit in a distributed fashion by exploiting
local CSI and REI in order to maximize the network lifetime.
First, in this section we review the implementation of distributed
MAC protocols via opportunistic carrier sensing [20]. Then, we
analyze some recent distributed protocols.

A. Opportunistic Carrier Sensing

By executing opportunistic carrier sensing [20], each sensor
in the network calculates an energy-efficiency index , which
can be a function of local CSI and REI, and maps its to
a backoff time based on predetermined common function

. Each sensor listens to the channel and if no other sensor
transmits before its backoff time expires, the sensor is allowed
to transmit. When the propagation delay is negligible, the func-
tion can be any decreasing function in order to enable
the sensor with the largest index to transmit, as illustrated
in Fig. 1. However, in a realistic case when the propagation
delay cannot be ignored, must be designed judiciously.
The design of is based on finding a range of values which
bounds most of the energy-efficiency index values and provides
a separation in backoff time only for sensors with an energy-
efficiency index value in this range. Sensors with an energy-
efficiency index value above this range transmit immediately,
whereas sensors with an energy-efficiency index value below
this range do not transmit at the current data collection event.
Hence, the transmission scheduling can be readily implemented
in a distributed fashion via opportunistic carrier sensing. By im-
plementing opportunistic carrier sensing we define the transmis-
sion scheduling problem in this paper explicitly by

(6)

Fig. 1. Example of decreasing function ���� for opportunistic carrier sensing.

where denotes the index of the chosen sensor, and
is chosen according to some scheme. and denote the sensor
index and the data collection event index, respectively. There-
fore, the sensor which has the largest index transmits only
if after the transmission it is still functional, and consequently
the network lifetime is prolonged. We denote the constraint in
(6) as the local survivability condition. Our goal is to find a
strategy for obtaining in problem (6) in terms of maxi-
mizing the network lifetime according to (5).

We point out that the transmission scheduling can be readily
extended to the case where sensors (or sensors cluster
head) are allowed to transmit in each data collection event. This
can be done by implementing opportunistic carrier sensing tech-
niques for more than a single-sensor transmission as described
in [20].

B. Distributed MAC Protocols

In order to extend the sensor network lifetime, several solu-
tions have been proposed. We review some existing protocols
and their advantages and limitations:

1) Pure Opportunistic Protocol: The pure opportunistic pro-
tocol was discussed in [17]–[20], and serves us in the remainder
of this paper. A pure opportunistic strategy involves choosing
the sensor with the best channel to minimize the average trans-
mission energy. Explicitly, the energy-efficiency index in (6) of
sensor , during the th data collection event is given by

2) Max-Min Protocol: In this protocol [19], the energy-effi-
ciency index is given by

Max-Min protocol trades off between CSI and REI and maxi-
mizes the minimum residual energy in the network [19].

3) Dynamic Protocol for Lifetime Maximization (DPLM): In
this protocol [19], the energy-efficiency index is given by

Thisschemeselects thesensorwhichisabletotransmitthehighest
number of times under the current channel condition during each



5310 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 10, OCTOBER 2010

data collection event. It was shown that DPLM is asymptotically
optimal (when ) [19] in terms of maximizing the ex-
pected network lifetime. Specifically, the relative performance
loss of the expected network lifetime achieved by DPLM com-
pared to the optimal protocol diminishes with the initial energy.

As discussed at the beginning of this section, the proposed
distributed MAC protocols are implemented via opportunistic
carrier sensing. By executing the pure opportunistic protocol
the range of the energy-efficiency index values does not change
during network lifetime. Therefore, only one predetermined
backoff function is needed during the network’s lifetime. A
backoff function was constructed in [20] for the pure oppor-
tunistic protocol which has very good performance with respect
to propagation delay. However, since the pure opportunistic
protocol does not exploit REI, the wasted energy across the sen-
sors when the network dies is extremely high (since sensor can
be chosen for transmission although its residual energy is low).
Therefore, the performance of the pure opportunistic protocol
in terms of network lifetime is extremely poor. On the other
hand, DPLM and Max-Min protocols exploit REI to reduce the
wasted energy. However, the implementation of such protocols
via opportunistic carrier sensing is more complicated. The range
of energy-efficiency index values is time-varying due to the
decreasing residual energy during each data collection event.
Therefore, in order to minimize the occurrence of collisions,
the backoff function should vary during the network lifetime
(theoretically, different backoff functions are required for each
data collection event, which is impractical). The backoff function
must vary during the network lifetime such that it prioritizes a
group of sensors in terms of transmission order as intended while
minimizing the occurrence of collisions. Another challenge is
constructing a backoff function for each realization during the
network lifetime (depending on channel distribution and residual
energy distribution).

IV. TIME-VARYING OPPORTUNISTIC PROTOCOL

In this section we develop the TOP. In designing TOP we
need to fulfill three requirements.

1) Define an opportunistic strategy in terms of favoring sen-
sors with better channels when the network is young, while
a less opportunistic and more conservative strategy in terms
of prioritizing sensors with higher residual energy is used
when the network is old.

2) Provide a simple implementation via opportunistic carrier
sensing.

3) Approach the pure opportunistic protocol as .
The first and second requirements were discussed in Sections II
and III. The third requirement is analyzed in this section. First
we consider the case where (i.e., no energy is con-
sumed during channel estimation). We show that selecting the
sensor with the best channel for transmission is generally pre-
ferred over other distributed protocols in this special case. Then,
we consider the realistic case where . By estimating
the predicted energy loss due to CSI acquisition, we design the
transmission scheduling decision. We show that selecting the
sensor with the best channel for transmission is generally pre-
ferred over other distributed protocols, as long as the sensor has
sufficient energy for current transmission plus the estimated pre-
dicted energy loss.

A. Special Case:

Consider the case where . We can rewrite (5) as

Theorem 1: Assume . Let and
be the achieved expected transmission energies by two different
protocols, denoted by and . If there exists such that

(7)

then there exists a finite constant such that

(8)

where and are the achieved expected life-
times when implementing and , respectively.

Proof: The proof is given in Appendix A.
From Theorem 1, we infer that minimizing the expected

transmission energy in the case where , generally
maximizes the network lifetime, since the wasted energy is
upper bounded by a constant independent of the initial energy
(for details, the reader is referred to the Proof of Theorem 1).
Therefore, the pure opportunistic protocol is generally preferred
over other distributed protocols in the case where .

B. Realistic Case:

Consider the case where . According to (6), a sensor
whose residual energy is bounded by

, does not transmit during the current data collection
event. However, since , its residual energy is decreased
during the next channel estimation and the sensor may die. In
this case, selecting the sensor with the best channel in order to
minimize the transmission energy in each data collection event
significantly increases the wasted energy, since REI has not been
used to reduce it. However, the following theorem shows that the
network lifetime can be extended by selecting the sensor with
the best channel for transmission under certain conditions.

Theorem 2: Assume . Let and ,
respectively, be the achieved expected lifetime and transmission
energy by implementing protocol . Define3

(9)

Assume there exists another sensor network, where the initial
energy of each sensor is , and no energy is consumed during
channel estimation . Let and be the
achieved expected lifetime and transmission energy by imple-
menting the pure opportunistic protocol over this network, re-
spectively. If there exists such that

(10)

then there exists a finite constant such that

(11)

Proof: The proof is given in Appendix B.

3Note that: � � � � � ��� � � ��� � � �.
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From Theorem 2 we infer that the network lifetime can be
significantly extended by estimating the predicted energy loss
due to CSI acquisition. In Section IV-C, we present the TOP
algorithm based on this observation.

C. TOP Algorithm

Now we present the time-varying opportunistic protocol. By
estimating the predicted energy loss due to CSI acquisition, we
design the TOP strategy. We infer from Theorem 2 that we
should select the sensor with the best channel only if the residual
energy is higher than its required transmission energy in the cur-
rent data collection event plus the predicted energy loss due to
CSI acquisitions. At the beginning of the th data collection
event we assume that the AP has sent the th beacon toward
the network and that each sensor has estimated its channel gain

and calculated the required transmission energy
according to (1).
Step 1) Predicted Energy Loss Estimation: The predicted en-

ergy loss consumed by CSI acquisition is estimated
by each sensor and is given by

(12)

where is the estimated network lifetime at
the th data collection event. The network-lifetime
estimation process is discussed in Section IV-D.

Step 2) Residual Energy Correction: The sensor with the
best channel gain is selected for transmission as
long as the sensor has sufficient energy for current
transmission plus the remaining estimated energy
loss. As a result, each sensor updates its corrected
residual energy, by4

(13)

The term denotes the corrected residual en-
ergy of sensor at the beginning of the th data col-
lection event.

Step 3) Transmission Scheduling: Each sensor transmits ac-
cording to the following scheme:

(14)

where the transmission scheduling is implemented
in a distributed fashion by opportunistic carrier
sensing (as explained in Section III-A) and is
given by

(15)

4Note that � ��� � � � � ���� � � � . Therefore, as long as
� � �� ���, the corrected residual energy is given by � ��� � � ����
�� ���� � � . The term �� ���� � � is the remaining estimated en-

ergy loss due to CSI acquisition.

We denote the constraint in (14) as the long term local surviv-
ability condition. Note that if the network lifetime is overesti-
mated, there may be data collection events where no sensor has
sufficient energy for transmission plus the remaining estimated
energy loss, although they have sufficient energy for transmis-
sion. In that case the sensors should transmit without consid-
ering the long term local survivability condition. This can be
done by the carrier-sensing operation. If no sensor transmits to
the AP after the maximal backoff time expires, the transmission
scheduling will take place without incorporating the long term
local survivability condition. Another option is to receive infor-
mation from the AP after a data collection request which has
gone unanswered. However, simulation results show very good
performance without exploiting the remaining energy due to es-
timation error.

D. Network-Lifetime Estimation

In this section, we explain how to estimate the network life-
time in (12). According to (5), the network lifetime is
estimated by

where the index indicates the update at the th data collection
event. Note that TOP requires each sensor to know the number
of sensors in the network to estimate the network lifetime. How-
ever, in most networks this information is essential for other
considerations. For instance, the design of the carrier-sensing
function depends on the number of sensors. Furthermore,
in other distributed protocols that need to vary during the
network lifetime, the number of sensors information is essential
to fit the appropriate function to each realization of the network
during the network lifetime. Estimating the number of sensors is
often done by the AP [21], [22]. Therefore, the AP can transmit
this information back to the sensors.

In numerous cases the expected transmission energy is known
a priori by off line measurements. However, if this is not the
case, each sensor can estimate the expected transmission energy
by averaging the transmission energy over its previous trans-
missions. Practically, the estimated transmission energy can be
much more accurate. During the carrier-sensing operation, all
the sensors know the backoff time of the chosen sensor .
Recall that the predetermined function maps the energy-ef-
ficiency index to a backoff time . Since is common
to all the sensors, the energy-efficiency index of the chosen
sensor can be found by calculating5 . Since the energy-
efficiency index in the TOP scheme equals the channel gain,
each sensor can calculate the transmission energy by (1). An-
other scheme to estimate the expected transmission energy can
be done by the AP, by averaging over previous data collection
events and transmitting its estimation to the sensors.

The wasted energy in the network can be estimated by

(16)

5Practically, ���� maps a range of energy-efficiency indexes to a single
backoff time. Therefore, the energy-efficiency index of the chosen sensor can
be estimated by the middle index of this range, for instance.



5312 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 10, OCTOBER 2010

i.e., all the sensors have been exploited when the network is de-
fined as nonfunctional (Thus, the estimated wasted energy in
each sensor is less than ). We will shortly intro-
duce in the form of a theorem the claim that the wasted energy
achieved by implementing TOP approaches zero as the initial
energy increases, which will be proved in the Appendix. There-
fore, inaccuracy in the wasted energy estimation is generally
tolerable and hardly affects TOP performance.

E. Main Properties of TOP

1) TOP Strategy: As long as the network is young, the long
term local survivability condition is not valid, and the chosen
sensor is determined according to the best channel during each
data collection event. However, as the network becomes older,
the long term local survivability condition is valid for some sen-
sors. In this case, the chosen sensor is determined according to
the channel gain and sufficient residual energy. Consequently,
the sensor that has better channel gain may not transmit, al-
though it has sufficient energy for current transmission. This
fulfills Requirement 1 listed at the beginning of this section
(Section IV).

2) Simple Opportunistic Carrier Sensing Implementation:
As discussed in Section III-A, each sensor in the network maps
its energy-efficiency index to a backoff time based on
predetermined common function , and then listens to the
channel. By implementing TOP, is simply the channel
gain if the long term local survivability condition is not valid
(i.e., the sensor is allowed to transmit), and does not depend
on the decreasing residual energy. Therefore, only one prede-
termined backoff function is needed during the network’s
lifetime (a backoff function for the case where the en-
ergy-efficiency indexes are the channel gain constructed in [20]
which performs very well with respect to propagation delay).
This satisfies the second requirement.

3) Approach the Pure Opportunistic Protocol: By imple-
menting the TOP when , the corrected residual en-
ergy in (13), , is equal to the residual energy .
Therefore, TOP approaches the pure opportunistic protocol as

. This satisfies the third requirement.
4) Asymptotic Optimality of TOP: Theorem 3 shows that the

relative performance loss of TOP compared to the optimal pro-
tocol decreases as the initial energy across the sensors increases.

Theorem 3: Assume the channel gains are i.i.d across data
collection events and across sensors. Then

(17)

where and denote the network lifetime achieved by
the optimal protocol and TOP, respectively.

Proof: The proof is given in Appendix D based on
Lemmas 1–4 given in Appendix C.

V. MODIFYING TOP FOR LARGE-SCALE NETWORKS

In this section, we consider large-scale networks containing
a very large number of sensors. In the case where (i.e.,
there is no energy consumption during channel estimation), it
is straightforward that we should exploit all the sensors in each
data collection event in order to obtain a better channel gain
and therefore to reduce the transmission energy. However, in

the realistic case where , activating all the sensors in
such networks in each data collection event is an extreme waste
of resources and significantly shortens network lifetime. Recall
from (5) that the expected lifetime is given by

Hence,

We infer that the network lifetime is upper bounded by
, if all the sensors are activated during each data

collection event. In this section we suggest a successful strategy
to extend the network lifetime beyond this bound. We suggest
a random approach where each sensor autonomously decides
whether to invest energy in order to obtain CSI or whether to
save energy by entering into a sleeping mode until the next data
collection event. Then, we present TOP implementation when
the operating sensors are picked randomly.

A. Random Approach

We consider a WSN containing sensors. In order to main-
tain energy, we require that an average number of sensors,
where , will execute channel estimation in each
data collection event. Therefore, each sensor decides to execute
channel estimation with probability or to enter a
sleeping mode until the next data collection event with proba-
bility . We denote such strategy by . As explained
in Section II-B, since we would like to prolong the network life-
time before the first sensor dies or the first failed data collection
event occurs, we consider the network as nonfunctional when

or . We can show that the expected network
lifetime is given by6

(18)

where denotes the achieved expected net-
work lifetime given that the strategy is executed.
The terms and are the
achieved expected wasted energy and transmission energy
given that the strategy is executed, respectively. We
infer from (18) that executing random estimation with proba-
bility replaces the linear increasing (with

) energy loss in (5) consumed by channel estimation, by a
constant energy loss . By implementing the
strategy the expected lifetime is not upper bounded by .
Note that large-scale networks must be in a sleeping mode for
any lifetime maximization protocol. Therefore, knowing the
number of sensors in the network is essential to determine the
probability of executing channel estimation, . Energy-aware
protocols for estimating the number of sensors in the network
have been proposed in [21] and [22].

B. Determining

The expected transmission energy is indirectly pro-
portional to the channel order statistics distribution. Therefore,
increasing decreases the transmission energy. However, the

6Since the number of activated sensors is a random variable distributed ac-
cording to a binomial distribution and its expected value is � .
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improvement rate in terms of minimizing the transmission en-
ergy is significantly decreased as is increased. Furthermore,
we need to decrease to minimize the invested energy during
channel estimation. Hence, maximizing the expected network
lifetime requires a trade off. On one hand, we need to increase
in order to minimize the transmission energy. On the other hand,
we need to decrease in order to minimize the invested energy
during channel estimation. In the case that a priori knowledge of
the network is available, can be determined according to off-
line experiments. However, there are advantages to a dynamic
strategy to determine when a priori knowledge is not avail-
able. Let denote the expected value of the achieved trans-
mission energy by selecting the sensor with the best channel
in the unconstrained problem (without energy constraints). We
have shown in the Proof of Theorem 3 that for sufficiently high

, the achieved transmission energy by implementing TOP
approaches . Furthermore, since we are considering a large
number of sensors, the number of activated sensors in each data
collection event is approximately . Hence, we define the de-
sired expected lifetime as

where denotes the transmission energy achieved by se-
lecting the sensor with the best channel from a set of i.i.d
channel gains in the unconstrained problem. The term

, denotes the desired wasted energy of a single
sensor. Therefore, if and are sufficiently large, a good
scheme for determining can be significantly simplified by

(19)

where is the desired
lifetime slope and is constant with . The simplified maximiza-
tion in (19) can be solved numerically and can be implemented
dynamically by the AP, after estimating the channel distribu-
tion. After estimating the number of the sensors in the network,

can be updated. Simulation results show that this scheme
achieves very good performance even for small numbers (less
than 200) of sensors and for low initial energy (about 7 trans-
missions per sensor).

C. TOP Implementation via Random Approach

In this section we modify TOP algorithm for the Random
Approach case, termed RA-TOP. We assume that has been
determined and all the sensors wake up with probability

. Note that similar to (28) we can rewrite (18) as

(20)

Now, the predicted energy loss consumed by CSI acquisition is
estimated according to (20), and is given by

where is the estimated network lifetime given that
strategy is executed. The network lifetime is estimated

according to (18). The transmission energy and the wasted en-
ergy estimation process was discussed in Section IV-D. The
residual energy correction and the transmission scheduling steps
is done by each awake sensor as described in Section IV-C.

Simulation results have shown that implementing RA-TOP
achieves a linearly increasing (with ) lifetime which was de-
scribed in Section V-B. Furthermore, simulation results have
shown that determining by maximizing in (19) approx-
imately achieves the maximal lifetime efficiency per sensor.

VI. SIMULATION RESULTS

In this section, we compare the performance of the proposed
TOP algorithm with the following recently proposed protocols:
1) the pure opportunistic protocol; 2) Max-Min protocol; 3) dy-
namic protocol for lifetime maximization (DPLM). We simu-
lated a network with sensors and the following parameters
unless otherwise specified: the sensors transmit through a flat
block-fading channel according to a Rayleigh fading distribu-
tion (therefore, the channel gain is exponentially distributed)
i.i.d across data collection events and across sensors. We set the
channel gain mean to 1, . Only a single sensor was
selected for transmission during each data collection event. We
normalized the channel bandwidth to , and the SNR
was set to 3 dB. The normalized required power for trans-
mission, times the data packet size, with respect to the normal-
ized bandwidth is . The normalized energy required
for CSI acquisition by each sensor is . The nor-
malized threshold energy which defines the sensor functionality
is . We assume perfect carrier sensing without colli-
sions. The network is defined as non functional when
or , where and are defined in Section II-B.

First, we examine the time-varying opportunistic property of
TOP. As explained in Section IV, TOP prioritizes sensors with
better channels when the network is young, while prioritizing
sensors with higher residual energy when the network is old.
Due to the long term local survivability condition, the sensor
with the best channel might not transmit, although it has suffi-
cient energy for transmission (plus ). In contrast, in the pure
opportunistic scheme, in each data collection event the sensor
with the best channel transmits as long as its residual energy
is sufficient for transmission (plus ). In Fig. 2, we show the
probability to select the sensor with the best channel and the
probability to select the sensor with the highest residual en-
ergy during the normalized lifetime by TOP and the pure op-
portunistic protocol for and . It can be seen
that both TOP and pure opportunistic scheme select the sensor
with the best channel with probability 1 when the network is
young. However, due to the long term local survivability con-
dition, the probability to select the sensor with the best channel
by TOP decreases faster than the probability to select the sensor
with the best channel by the pure opportunistic scheme. It can
be seen that the probability to select the sensor with the highest
residual energy by TOP increases faster than the probability to
select the sensor with the highest residual energy by the pure
opportunistic scheme.

Next, we investigated the expected network lifetime for
sensor network model with different values of initial energy
versus network size. We considered the case of a tight en-
ergy constraint where and each sensor transmits
about two to six times. As shown in Fig. 3(a), TOP achieves
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Fig. 2. Illustration of the time-varying opportunistic property. � � �� and
each sensor is initialized with � � ��. (a) Probability to select the sensor with
the best channel. (b) Probability to select the sensor with the highest residual
energy.

a significant performance gain over all other protocols. TOP
achieves roughly an 8%–15% relative performance gain over
DPLM (TOP also has simpler implementation and performs
better via carrier sensing). TOP achieves about a 50% relative
performance gain over the pure opportunistic protocol (and
has a similar implementation and achieves similar performance
via carrier sensing). DPLM outperforms Max–Min, and the
pure opportunistic protocol performs the worst. In Fig. 4,
we investigate the expected transmission and wasted energy
behavior where . As expected, the pure opportunistic
protocol achieves the lowest transmission energy, where TOP,
by selecting the sensor with the best channel most of the time,
outperforms DPLM. Max-Min performs the worst in terms of
transmission energy. In terms of wasted energy, the pure op-
portunistic performance is very poor, while TOP, by balancing
the opportunistic strategy when the network is old, outperforms
both the DPLM and MAx-Min protocols. We point out that we
have also simulated the case of relaxed energy constraint where

Fig. 3. Expected lifetime versus the number of sensors. (a) Each sensor is ini-
tialized with � � �� ��. (b) Each sensor is initialized with � � ��, and
� � �.

each sensor transmits more than 50 times. Simulation results
show that TOP and DPLM performed about equally in this
case and outperform other distributed protocols. These results
confirm the asymptotic optimality property of both TOP and
DPLM.

Next, we investigate the case where the CSI acquisition cost is
negligible . According to Section IV-A, we expected
the pure opportunistic protocol (which is identical to TOP in
this special case) to outperform DPLM and Max-Min. Fig. 3(b)
shows that the pure opportunistic and TOP indeed outperform
DPLM and Max–Min. These results demonstrate the signifi-
cance of TOP dependency on the CSI acquisition cost.

We also examine the case where sensors experience
Ricean fading, where the channels have a dominant line-of-
sight (LOS) component between the sensors and the AP with
fading parameter ( is the ratio of the power
in LOS component, , to the power in non-LOS component,

), while sensors experience Rayleigh fading channel
(i.e., there is no LOS between sensors and AP). We considered
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Fig. 4. Expected transmission and wasted energy versus the number of sensors.
Each sensor is initialized with � � ��. (a) Expected transmission energy. (b)
Expected wasted energy.

the case of a tight and relaxed energy con-
straint. As shown in Fig. 5(a), in the case of a tight energy con-
straint TOP achieves roughly a 10%–12% relative performance
gain over DPLM. In the case of relaxed energy constraint TOP
and DPLM performed about equally. The pure opportunistic
protocol performs the worst in both cases. Next, we examine
the case where all sensors experience a time-correlated Rayleigh
fading channel modeled by an autoregressive (AR) stochastic
process, as proposed in [23]. The order of the AR model was
set to 50 (i.e., each data collection event is correlated with the
last 50 data collection events). We assume maximum Doppler
frequency 5 Hz, and every 30 ms a data collection event is per-
formed. As shown in Fig. 5(b), in the case of a tight energy con-
straint TOP achieves roughly a 10%–15% relative
performance gain over DPLM, while in the case of a relaxed
energy constraint TOP achieves roughly a 5%–7%
relative performance gain over DPLM. Again, the pure oppor-
tunistic protocol performs the worst in both cases.

We investigated large-scale networks as discussed in
Section V. We determined the number of activated sensors

Fig. 5. Expected lifetime versus the number of sensors. Each sensor is ini-
tialized with � � �� ��. (a) ��� sensors experience Ricean fading channel
with dominant LOS component and ��� sensors experience Rayleigh fading
channel. (b) All sensors experience time-correlated Rayleigh fading channel.
Each data collection event is correlated with the last 50 data collection events.

as proposed in Section V-B. Fig. 6(a) depicts the optimal
number of activated sensors which maximizes versus
the SNR. It can be seen that the number of activated sensors
decreases with the SNR. Since increasing the SNR reduces
the required transmission energy, is decreased to keep the
term less dominant. In Fig. 6(b), we show the expected
lifetime improvement by implementing TOP via the random
approach, denoted by RA-TOP, as discussed in Section V-C. It
can be seen that the network lifetime is approximately linear
with , as explained in Section V-B, even for small numbers
(less than 200) of sensors and for low initial energy .

VII. CONCLUSION

In this paper, we examined distributed MAC protocols for
wireless sensor networks lifetime maximization. Based on the
realization that the design principle for lifetime maximization
should prioritize sensors with better channels when the network
is young, while prioritizing sensors with higher residual ener-
gies when the network is old, we proposed the TOP algorithm.
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Fig. 6. Optimal number of activated sensors and achieved expected lifetime
for � � ��. (a) Optimal number of activated sensors which maximizes �
versus the SNR. (b) Expected lifetime versus the number of sensors for � �

5 dB.

Simulation results demonstrated that TOP achieves a significant
performance gain over other protocols that have been proposed
recently.

We also extended the analysis to large-scale networks con-
taining a very large number of sensors. We developed a random
approach for implementing TOP where only small portion of the
sensors is activated in each data collection event. We suggested
a dynamic method to determine the average number of activated
sensors needed to maximize the lifetime efficiency per sensor.

APPENDIX

A. Proof of Theorem 1

Proof: The achieved expected lifetime by implementing
is given by

(21)

According to (6), each sensor with residual energy bounded by
, is not allowed to transmit

during the current data collection event. Since , its
residual energy is not decreased during the next channel esti-
mation. Therefore, as long as at least one sensor has residual
energy above , the network lives at least one more
data collection event. Consequently, the wasted energy across
the network can be upper bounded by

(22)

where is the maximal wasted en-
ergy of a single sensor. Note that the upper bound in (22) is a
constant independent of . Substituting (22) in (21) yields

(23)

The achieved expected lifetime by implementing is

(24)

By substituting (7) in (24), can be upper bounded by

(25)

Moreover, we can show that

(26)

where

Since , by combining (23), (25), and (26)
we obtain (8), where

B. Proof of Theorem 2

Proof: The achieved expected lifetime by implementing
, is given by

(27)

We can rewrite (27) as

(28)

Since all the entries on the right-hand side of (28) are positive,
the numerator has to be positive since . This leads
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to for any feasible which can be achieved by
.
We can rewrite (28) as

(29)

The right-hand side of (29) is the problem of the second sensor
network, where the initial energy of each sensor is , and no
energy is consumed during channel estimation ( . By
assuming that there exists such that (10) is fulfilled, we
infer from Theorem 1 that

(30)

The term is given in (9) and can be rewritten as

(31)

Substituting (31) in (30) yields

(32)

where

Since and , we obtain (11),
where

C. Lemmas 1–4

We provide four lemmas used in the Proof of Theorem 3. We
define and as the achieved network lifetime and the data
collection event index by implementing TOP, re-
spectively. The transmission energy of each sensor is bounded
by , and the channel gains are i.i.d
across data collections and across sensors. We define as the
achieved expected transmission energy by selecting the sensor
with the best channel in the unconstrained problem (without en-
ergy constraints). For convenience we set .

As explained in Section IV-C, as long as at least one sensor
has sufficient energy for current transmission plus the remaining
estimated energy loss, the corrected residual energy in (13) is
given by

(33)

where is given in (2), and is the estimated network
lifetime7 at the beginning of data collection event . Therefore,
as long as and at least one sensor has sufficient energy
for current transmission plus the remaining estimated energy
loss, the corrected residual energy is restricted by the long term
local survivability condition and is given by

(34)

for all sensors.
However, as explained in Section IV-C, there may be data col-

lections where no sensor has sufficient energy for transmission
plus the remaining estimated energy loss, although they have
sufficient energy for transmission. From that moment the sen-
sors transmit without considering the long term local surviv-
ability condition. If this event occurs or occurs, the
corrected residual energy is not restricted by the long term local
survivability condition and is given by

(35)

for all sensors.
Let

(36)

be the minimal and maximal corrected residual energy during
the network lifetime at the beginning of the th data collection
event, respectively.

We define three major events, denoted by and during
the network lifetime. During the first data collection
events the sensors are restricted by the long term local surviv-
ability condition (i.e., the corrected residual energy is given by
(34)) and . We define as the first data col-
lection event when occurs, or as the first data
collection event when occurs. The event that occurs
first determines . We assume that the lifetime estimation is up-
dated until8 .

We define as the first data collection event when the sen-
sors are not restricted by the long term local survivability con-
dition (i.e., the corrected residual energy is given by (35)). Two
events can determine . The first event is that oc-
curs first. The second is a data collection event when no sensor
has sufficient energy for current transmission plus the remaining
estimated energy loss, although they have sufficient energy for
current transmission. The event that occurs first determines .
Note that if the event determines , then .

During the data collection events from the data collec-
tion event until the data collection event, the cor-
rected residual energy is given by (35) and
is fulfilled (If is not fulfilled, ). We
define as the data collection event when all the sensors are
not restricted by the long term local survivability condition (i.e.,

7As discussed in Section IV-D, all the sensors exploit the same knowledge
for the estimation. Therefore, ����� is equal for all sensors.

8The theorem holds even if the estimation is updated until � � � where �
is a finite constant number, independent of the initial energy.
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Fig. 7. A general illustration of major events during the network lifetime.
Lemmas 1, 2 imply that ��� ����� � � ����� � �� 	 
.

the corrected residual energy is given by (35)) and the event
first occurs.

Therefore, can be written as follows:

(37)

A general illustration of these major events during the network
lifetime is given in Fig. 7.

We define the dynamic range of the corrected residual ener-
gies at the beginning of the th data collection event by

(38)

Finally, we define as the expected value of the transmission
energy achieved by selecting the sensor with the best channel in
the unconstrained problem (without energy constraints).

Next, we present lemmas 1–4. For the sake of brevity and
readability, we provide a rough sketch of the proofs.

Lemma 1: For any , TOP has the following property:

(39)

where denotes the number of data collection events from
the beginning of the data collection event until the beginning
of the data collection event.

Proof: If the event occurs before the event
occurs, then and the claim is

trivial. We consider the case where is determined by the
data collection event that first occurs.
Therefore, the total exploited energy from the beginning of the

data collection event until the beginning of the data
collection event, denoted by , can be upper bounded by

. According to
(37), during the first data collections all the sensors have
sufficient energy for transmission (i.e., each sensor transmits
with probability in each data collection event). Note
that (without
any loss of generality, we assume that
and ). Since the transmission energy is
bounded by , we can show that
increasing increases . Therefore, by using the weak law
of large numbers (WLLN), we can show that
as . Hence, (39) follows when .

Lemma 2: For any , TOP has the following property:

(40)

where denotes the number of data collection events
from the beginning of the data collection event until the net-
work is defined as nonfunctional.

Proof: By using the WLLN, and Lemma 1, the proof is
similar to the Proof of Lemma 1.

Lemma 3: For any , TOP has the following property:

(41)

where is the achieved average transmission energy by im-
plementing TOP.

Proof: According to (37), all the sensors have sufficient
energy for transmission (i.e., the chosen sensor is determined
according to the best channel) for all and

. By using the WLLN, and Lemmas 1–2, (41)
follows.

Lemma 4: For any , TOP has the following property:

(42)

where is the achieved wasted energy by implementing TOP.
Proof: Since , by using the WLLN

and Lemmas 1–2, the rest of the proof is similar to the proof of
Lemma 1.

D. Proof of Theorem 3

Proof: We define
as the minimal lifetime achieved by any protocol. The
minimal achieved lifetime is obtained by investing

energy for transmission during each data col-
lection event by a single sensor until it dies. We inves-
tigate the term , where is
the network lifetime achieved by implementing TOP, and

.
By using Lemmas 3–4, we can show that for any fixed

we obtain

(43)

Next, we define a random variable as follows:

where , where
is the achieved lifetime by the optimal protocol (i.e.,

we reduce the achieved average transmission energy by im-
plementing the optimal protocol, thus we upper bounded the
achieved lifetime by the optimal protocol by ). Therefore,
we obtain

Similar to (43), we can show that for any fixed , we have

(44)
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Finally, we combine (43), (44). For any fixed , we obtain

(45)

Therefore, we obtain (17) when .
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