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Game Theoretic Aspects of the Multi-Channel
ALOHA Protocol in Cognitive Radio Networks

Kobi Cohen, Amir Leshem, and Ephraim Zehavi

Abstract— In this paper we consider the problem of distributed
throughput maximization of cognitive radio networks with the
multi-channel ALOHA medium access protocol. First, we char-
acterize the Nash Equilibrium Points (NEPs) of the network
when users solve an unconstrained rate maximization (i.e., the
total transmission probability equals one). Then, we focus on
constrained rate maximization, where user rates are subject
to a total transmission probability constraint. We propose a
simple best-response algorithm that solves the constrained rate
maximization, where each user updates its strategy using its local
channel state information (CSI) and by monitoring the channel
utilization. We prove the convergence of the proposed algorithm
using the theory of potential games. Furthermore, we show that
the network approaches a unique equilibrium as the number
of users increases. Then, we formulate the problem of choosing
the access probability as a leader-followers Stackelberg game,
where a single user is chosen to be the leader to manage the
network. We show that a fully distributed setup can be applied
to approximately optimize the network throughput for a large
number of users. Finally, we extend the model to the case where
primary and secondary users co-exist in the same frequency
band.

Index Terms—Cognitive radio networks, collision channels,
multi-channel ALOHA, Nash equilibrium point, potential games,
Stackelberg game.

I. INTRODUCTION

THE increasing demand for wireless communication,
along with spectrum utilization inefficiency, have trig-

gered the development of dynamic spectrum access schemes
for cognitive radio networks. The technology enabling differ-
ent intelligent devices and networks to co-exist in the same
frequency band is called cognitive radio. A good overview
of the various dynamic spectrum access models for cognitive
radio networks can be found in [1]. Dynamic spectrum access
strategies can be categorized into three main models [1]: a
hierarchical model that allows secondary (unlicensed) cogni-
tive users to use the spectrum whenever they do not interfere
with primary (licensed) users, a dynamic exclusive use model,
where the spectrum bands are licensed to services for exclusive
use, and finally an open sharing model among users that acts
as the basis for managing a spectral region. In this paper we
mainly focus on the third model, as was done in [2]–[4],
so generally we will not assume that there are primary and
secondary users in the networks. However, in Section V we
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extend the model to the case where primary and secondary
users co-exist in the same frequency band.

Multi-channel systems are widely used in cognitive radio
networks. In multi-channel systems, the bandwidth is divided
into K orthogonal sub-bands using Orthogonal Frequency
Division Multiple Access (OFDMA). Each sub-band can be a
cluster of multiple carriers. A diversity of channel realizations
is advantageous when users exploit local CSI to access good
channels. Multi-channel systems have been widely investi-
gated recently in cognitive radio networks. A related work
on this subject can be found in [1], [2], [4]–[6].

Medium Access Control (MAC) schemes are used to man-
age users’ access to the shared channels. The slotted ALOHA
access protocol is a popular tool primarily because of its
ease of implementation and its random-access [7]. In each
time-slot, a user can access a shared channel according to a
specific transmission probability. Transmission is successful
only if a single user tries to access a shared channel in a
given time-slot. If two or more users transmit in the same
time slot over the same channel a collision occurs. Here, we
examine the ALOHA protocol with multi-channel cognitive
radio systems, dubbed multi-channel ALOHA [8]–[10]. A
related work on stabilization and analysis of the multi-channel
ALOHA protocol can be found in [8], [9].

We consider distributed optimization algorithms, where
users make autonomous decisions based on local information
and where coordination or message-passing between users are
not required. In wireless networks, distributed optimization
algorithms are simple to implement and generally preferred
over centralized solutions. A natural framework to analyze
distributed optimization algorithms in wireless networks is
non-cooperative game-theory. Optimization of cognitive radio
networks, random sensing and access games were examined
in [11]–[14]. The problem of multi-radio multi-channel allo-
cation non-cooperative games was investigated in [10], [15]–
[17]. In [16], a distributed learning algorithm was proposed
that converges in some special cases. In multi-radio multi-
channel allocation, users are encouraged to spread resources
over channels, since the utility of each channel decreases with
the number of radios transmitting over it. This is not the case in
our setup. A related work on optimization of a single-channel
ALOHA using game theoretic tools can be found in [18]–
[20]. In this setup, the utility of each user increases with the
transmission probability. Here, we consider a similar model.

In this paper we present a game theoretic approach to
the problem of distributed rate maximization of a multi-
channel ALOHA in cognitive radio networks. A related work
on cognitive radio networks using ALOHA-based protocols
can be found in [21]–[23]. In the multi-channel ALOHA
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protocol, each user tries to randomly access a channel using a
probability vector defining the access probability to the various
channels. First, we characterize the Nash Equilibrium Points
(NEPs) of the network when users solve the unconstrained rate
maximization. We show that in this case, for any NEP, each
user’s probability vector is a standard unit vector (i.e., each
user occupies a single channel with probability 1 and does not
try to access other channels). In terms of the unconstrained rate
maximization, we are mainly interested in the case where the
number of channels is greater or equal to the number of users,
to avoid collisions. Specifically, in the case where the number
of users, N , is equal to the number of channels there are N !
NEPs.

Next, we consider the more interesting case where the num-
ber of users is much larger than the number of channels. In this
case, to reduce the load (i.e., reduce the number of collisions),
we focus on constrained rate maximization, where user rates
are subject to a total transmission probability constraint. We
characterize the NEPs when users solve the problem under a
total probability constraint. We propose a simple best-response
algorithm that solves the constrained rate maximization, where
each cognitive user updates its strategy using its local CSI
and by monitoring the channel utilization. A best-response
algorithm is a common method in non-cooperative games to
achieve a NEP [24]–[27]. We prove that the constrained rate
maximization can be formulated as a potential game [28]. In
potential games, the incentive of all players to change their
strategy can be expressed in a one global function, the poten-
tial function. The existence of a bounded potential function
corresponding to the constrained rate maximization problem
implies that the convergence of the proposed algorithm is
guaranteed. Furthermore, the convergence is in finite time,
starting from any point and using any updating dynamics
across users. Next, we analyze the algorithm’s performance
when the number of users approaches infinity. We show that
the network approaches a unique equilibrium as the number
of users increases.

Then, we discuss practical network management for con-
strained distributed rate maximization using the proposed best
response algorithm. We formulate the problem as a leader-
followers Stackelberg game, where a single cognitive user is
chosen to be the leader to manage the network. Such leader-
follower dynamic management has recently been investigated
in cognitive radio networks [29]–[31]. We show that a fully
distributed Stackelberg game setup can be applied that approx-
imately optimizes the network throughput for a large number
of users.

Finally, we extend the model to the hierarchical or exclu-
sive use model (i.e., we assume that there are primary and
secondary users in the network). We consider the case where
the primary users have a high priority to transmit and the
secondary users have a low priority to transmit, such that
QoS requirements are satisfied. This approach, which limits
interferences to primary users such that QoS requirements are
satisfied was used in [32]–[34].

The rest of this paper is organized as follows. In Sec-
tion II we present the network model and game formulation.
In Sections III and IV we discuss the unconstrained and
the constrained rate maximization problems, respectively. In

Section V we extend the model to the case where primary
and secondary users co-exist in the same frequency band. In
Section VI we provide simulation results to demonstrate the
algorithm’s performance.

II. NETWORK MODEL AND GAME FORMULATION

In this paper we consider a wireless network containing N
users (or equivalently, N pairs of transmitters and receivers)
who transmit over K orthogonal collision channels. The users
transmit using the slotted ALOHA scheme. We make the
following assumptions:

• In each time slot each user is allowed to access a single
channel.

• A transmission is successful only if no other user tries to
access the same channel simultaneously. If two or more
users tries to access the same channel simultaneously, a
collision occurs.

• Each user knows its local CSI, which can be obtained by
a pilot signal in practical implementations.

• Each user perfectly estimates the load on all channels
(i.e., monitors the channel utilization for a sufficient time)

In this paper we denote the collision-free achievable rate of
user n at channel k by un(k) ≥ 0. The collision-free achiev-
able rate is given by un(k) = W log

(
1 + 1

λSNR
)
, where W is

the channel bandwidth and λ is the SNR gap to capacity which
includes the noise margin and coding gain. Furthermore, we
define a virtual zero-rate channel un(0) = 0, , ∀n, i.e.,
accessing a channel k = 0 refers to no-transmission.
The collision-free rate vector of user n in all K +1 channels
is given by:

un �
[
un(0) un(1) un(2) · · · un(K)

]
, (1)

and the collision-free rate matrix of all N users in all K + 1
channels is given by:

U �

⎡⎢⎢⎣
u1(0) u1(1) u1(2) · · · u1(K)
u2(0) u2(1) u2(2) · · · u2(K)

:
uN(0) uN (1) uN (2) · · · uN (K)

⎤⎥⎥⎦ . (2)

Let pn(k) be the probability that user n tries to access channel
k. Let Pn be the set of all probability vectors of user n in all
K + 1 channels. A probability vector pn ∈ Pn of user n is
given by:

pn �
[
pn(0) pn(1) pn(2) · · · pn(K)

]
. (3)

Let P be the set of all probability matrices of all N users in
all K + 1 channels. The probability matrix P ∈ P is given
by:

P �

⎡⎢⎢⎣
p1(0) p1(1) p1(2) · · · p1(K)
p2(0) p2(1) p2(2) · · · p2(K)
:

pN (0) pN (1) pN (2) · · · pN (K)

⎤⎥⎥⎦ , (4)

where
∑K

k=0 pn(k) = 1 ∀n.
Let P−n be the set of all probability matrices of all N users
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in all K + 1 channels, except user n. The probability matrix
P−n ∈ P−n is given by:

P−n �

⎡⎢⎢⎢⎢⎢⎢⎣
p1(0) p1(1) p1(2) · · · p1(K)
:

pn−1(0) pn−1(1) pn−1(2) · · · pn−1(K)
pn+1(0) pn+1(1) pn+1(2) · · · pn+1(K)

:
pN (0) pN(1) pN(2) · · · pN (K)

⎤⎥⎥⎥⎥⎥⎥⎦ .

(5)
We focus in this paper on stationary access strategies, where

each user decides whether or not to access a channel based
on the current utility matrix and all other users’ strategies.
Definition 1: A stationary strategy for user n is a mapping
from {P−n,un} to pn ∈ Pn.
Remark 1: Note that un depends on the local CSI of user
n, which can be obtained by a pilot signal in practical
implementations. On the other hand, in what follows we
show that user n does not need the complete information on
matrix P−n to update its strategy, but only to monitor channel
utilization by other users, defined by:

qn(k) � 1−
∏
i�=n

(1− pi(k)) . (6)

Remark 2: The probability matrix P is called the multi-
strategy matrix and contains all users’ strategies, whereas P−n

is the multi-strategy matrix containing all users’ strategies
except the strategy of user n.
When user n perfectly monitors the kth channel utilization, it
observes:

vn(k) � 1− qn(k) =
∏
i�=n

(1− pi(k)) , (7)

which is the probability that the kth channel is available.
Since a collision occurs when more than one user tries to
access the same channel, the expected rate of user n in the
kth channel is given by:

rn(k) � un(k)vn(k) . (8)

Hence, the expected rate of user n is given by:

Rn � Rn(pn,P−n) =
K∑

k=1

pn(k)rn(k) . (9)

We define the non-cooperative multi-channel ALOHA game
in this paper as follows:
Definition 2: The non-cooperative multi-channel ALOHA
(MCA) game is given by ΓMCA(K,Pmax) = (N ,P , R),
where N = {1, 2, ..., N} denotes the set of players (or
users), P denotes the set of multi-strategy matrices, such that∑K

k=1 pn(k) ≤ Pmax for all n ∈ N . R : P → R
N , given in

(9), denotes the payoff (i.e., rate) function.
Note that Pmax physically signifies the total channel access
probability of each user.
In this paper, we consider a distributed rate maximization
problem, where each user tries to maximize its own expected
rate subject to a total transmission probability constraint:

max
pn

Rn s.t.
K∑

k=1

pn(k) ≤ Pmax . (10)

We are interested in unconstrained (i.e., Pmax = 1) and
constrained (i.e., Pmax < 1) solutions. A NEP for our model
is the multi-strategy matrix P, given in (4), which is stable
in the sense that none of the users can increase its utility by
unilaterally modifying its strategy pn.
Definition 3: A multi-strategy matrix P =

[
pT
1 pT

2 ... pT
N

]T
is a Nash Equilibrium Point (NEP) if

Rn(pn,P−n) ≥ Rn(p̃n,P−n) ∀n , ∀p̃n . (11)

Next, we examine the unconstrained and constrained NEP
solutions of ΓMCA(K,Pmax).

III. UNCONSTRAINED RATE MAXIMIZATION

In this section, we characterize unconstrained NEP
solutions of ΓMCA(K,Pmax), i.e., we set Pmax = 1. When
considering unconstrained solutions, we are interested in the
case where K ≥ N to avoid collisions. Practically, each user
monitors the channel utilization vn(k) for all k = 1, ...,K
(i.e., the complete P−n is not required), and tries to access
only a single available channel, which is the best response to
all users’ strategies P−n.

Theorem 1: Assume that N ≤ K in ΓMCA(K, 1). Then, the
following hold:
a) For any NEP, each user’s probability vector is a standard
unit vector with probability 1 (i.e., each user tries to access a
single channel with probability 1 and does not try to access
other channels).
b) The network converges to a NEP in N iterations.

Proof:
a) Assume that N − 1 users play a multi-strategy matrix
P−n ∈ P−n and user n solves (10) after estimating rn(k) =
un(k)vn(k). Let1 k∗ = arg max

k
{rn(k)}. For any strategy

pn ∈ Pn, we have:

Rn =
K∑

k=1

pn(k)rn(k) ≤
K∑

k=1

pn(k)rn(k
∗)

≤ rn(k
∗)

K∑
k=1

pn(k) ≤ rn(k
∗)

Since we consider the unconstrained rate maximization(∑K
k=1 pn(k) ≤ Pmax = 1

)
, the upper bound is achieved by

setting pn(k
∗) = 1.

b) To prove the theorem we show that every user selects a
channel only once. In the following, the superscript (t) denotes
the iteration index. Without loss of generality, assume that in
the first iteration (t = 1) user 1 selects a channel k = 1, i.e.,
p
(t)
1 (1)|t=1 = p

(1)
1 (1) = 1. In the next iteration, for any user

n �= 1, we have: r
(2)
n (1) = 0 < r

(2)
n (k) , ∀k = 2, ...,K .

Hence, user n will select a different channel k �= 1. The
process continues until the network converges to a NEP in
the N th iteration.

1Since we consider a continuous value utility, k∗ is unique with probability
1. When considering a quantized utility, we choose the best continuous value
channel gain in cases where k∗ is not unique.
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We infer from Theorem 1 that the unconstrained distributed
rate maximization is equivalent to a channel assignment prob-
lem, where each user chooses a single channel. Once a channel
is taken by some user, no other user can access the same
channel, since it has a zero utility.

In the case where N = K any permutation that avoids a
collision is a NEP. For instance, in the case of 3 users and
4 channels (note that channel k = 0 is the virtual zero-rate
channel), the following multi-strategy matrix is a NEP:

P =

⎡⎣ 0 0 1 0
0 1 0 0
0 0 0 1

⎤⎦ ,

since any user that unilaterally modifies its strategy gets a zero
utility (due to collision or no-transmission). In this case we
have N ! NEPs.
In the case where K > N any permutation that avoids a
collision and maximizes every users’ rate (given other users’
strategies) is a NEP. For instance, consider the case of 2 users
and 3 channels and assume that u1(3) ≤ u1(2) and u2(3) ≤
u2(1). The following multi-strategy matrix is a NEP:

P =

[
0 0 1 0
0 1 0 0

]
,

since none of the users can increase its utility by unilaterally
modifying its strategy pn. As a result, there exist at most
(K · (K − 1) · · · (K −N + 1)) NEPs.
In the case where N > K any permutation is a NEP if at least
K users access different channels. For instance, in the case of
3 users and 2 channels, the following multi-strategy matrix is
a NEP:

P =

⎡⎣ 0 0 1
0 1 0
0 1 0

⎤⎦ ,

since any user that unilaterally modifies its strategy gets a zero
utility (due to a collision or accessing the virtual channel).
Note that a better NEP can be obtained if users 2 or 3 access
the virtual channel (i.e., do not transmit). In any practical
system, users that get a zero utility should not transmit to
avoid collisions.

IV. CONSTRAINED RATE MAXIMIZATION

We now discuss the more interesting case, where N > K .
In this case, unconstrained solutions lead to collisions or to
zero utilities for some users. Therefore, constrained solutions
should be used. According to Theorem 1, setting Pmax < 1
is necessary to avoid collisions. First, we show the following
result:

Theorem 2: Assume that N > K in ΓMCA(K,Pmax) and
Pmax < 1. Let k∗ = arg max

k
{rn(k)}, where rn(k) is defined

in (8). Then, each user n plays the strategy:

pn(k) =

⎧⎨⎩
1− Pmax , if k = 0
Pmax , if k = k∗

0 , otherwise
, (12)

with probability 1.

TABLE I
PROPOSED BEST RESPONSE ALGORITHM

- Initialize:
- for n = 1, ..., N users do:
- estimate un(k) for all k = 1, ...,K
- k∗ ← arg max

k
{un(k)}

- pn(k
∗)← Pmax

- end for

- repeat:
- for n = 1, ..., N users do:
- estimate vn(k) for all k = 1, ...,K
- compute rn(k) = un(k)vn(k)

for all k = 1, ...,K
- k∗ ← arg max

k
{rn(k)}

- pn(k
∗)← Pmax

- end for
- until convergence

Proof: Assume that N − 1 users play a multi-strategy
matrix P−n ∈ P−n and user n wants to solve (10) after
estimating rn(k) = un(k)vn(k). Let rn(k∗) = max

k
{rn(k)}.

For any strategy pn ∈ Pn, we have:

Rn =

K∑
k=1

pn(k)rn(k) ≤
K∑

k=1

pn(k)rn(k
∗)

≤ rn(k
∗)

K∑
k=1

pn(k) ≤ rn(k
∗)Pmax

The upper bound is achieved by setting pn(k
∗) = Pmax.

We infer from Theorem 2 that in each iteration each user
will access a single channel with probability Pmax and will
not try to access other channels. However, in contrast to the
unconstrained solutions, other users can still access occupied
channels, since the utility is strictly positive in all channels.
We discuss the convergence in a subsequent section.

As a result of Theorem 2, we obtain a best response
algorithm, given in Table I. A best-response algorithm is a
common method in non-cooperative games to achieve a NEP
[24]–[27]. The proposed algorithm solves the constrained rate
maximization problem (10). In the initialization step, each
user selects the channel with the maximal collision-free rate
un(k). This can be done by all users simultaneously in a single
iteration. Then, each user occasionally monitors the channel
utilization and updates its strategy by selecting the channel
with the maximal achievable rate rn(k) given the utilization
of the channels.

Next, we examine the convergence of the proposed al-
gorithm. Unlike the unconstrained solutions, convergence of
the algorithm is not guaranteed in N iterations. However, in
the following we use the theory of potential games to show
that the distributed constrained rate maximization (10) indeed
converges in finite time.
Remark 3: The convergence of sequential updating across
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users of the proposed algorithm will be proved using the the-
ory of potential games and is based on knowledge of channel
utilization qn(k) = 1 − vn(k), defined in (6). To simplify
the presentation, similar to [19] for a single-channel ALOHA,
we assume that each cognitive user estimates the channel
utilization perfectly (i.e., monitors the channel utilization for
a sufficient time) before it updates its strategy. However, due
to estimation errors in practical systems, users may switch
their strategy, although their actual utilities may be reduced.
Therefore, to stabilize the convergence of the algorithm, users
should look for an ε−NEP, as defined in Definition 7. Hence,
in a practical system, users should update their strategies only
if they improve their utility by more than ε. ε is set, such
that estimation errors will not cause users to switch strategies.
Users or the controller can increase ε dynamically to accelerate
the convergence. Increasing ε accelerates the convergence, but
may cause loss in the utility gain.

First, we formulate the distributed rate maximization prob-
lem (10) in a more convenient form.
Proposition 1 :
Let

1n(k) =

{
1 , if pn(k) = Pmax

0 , otherwise , (13)

be the indicator function, which indicates whether user n tries
to access a channel k.
Let

N(k) =

N∑
n=1

1n(k) (14)

be the number of users that access channel k.
For every user n consider the following optimization problem:

arg max
k

R̃n � log (un(k))−N(k) log

(
1

1− Pmax

)
s.t. pn(k) = Pmax ,

(15)
Then, the solution to (15) solves the optimization problem in
(10).

Proof: The proof follows from the proof of Theorem 7.

Next, we define a modified multi-channel ALOHA game
Γ̃MCA(K,Pmax) as follows:
Definition 4: The modified non-cooperative multi-channel
ALOHA (MCA) game is given by
Γ̃MCA(K,Pmax) =

(
N ,P , R̃

)
, where N = {1, 2, ..., N}

denotes the set of players (or users), P denotes the set of
multi-strategy matrices, such that

∑K
k=1 pn(k) ≤ Pmax for

all n ∈ N . R̃ : P → R
N , given in (15), denotes the payoff

(i.e., modified rate) function.
When considering the modified game Γ̃MCA(K,Pmax), each
user solves the modified optimization problem (15). Since the
solution to (15) solves (10) according to Proposition 1, then
any NEP of Γ̃MCA(K,Pmax) is a NEP of ΓMCA(K,Pmax).

In the following we show that ΓMCA(K,Pmax) and
Γ̃MCA(K,Pmax) are ordinal and exact potential games, re-
spectively. In potential games, the incentive of all players
to change their strategy can be expressed as a single global
function, the potential function. In exact potential games,

the improvement that each player can achieve by unilaterally
changing its strategy equals the improvement in the potential
function. In ordinal potential games, the utility of a player
increases by unilaterally changing its strategy, if and only if
the potential function increases. Hence, in both cases any local
maximum of the potential function is a NEP. The existence of
a bounded potential function corresponding to the constrained
rate maximization problem (10) implies that the convergence
of the proposed algorithm is guaranteed. Furthermore, the
convergence is in finite time, starting from any point and using
any updating dynamics across users2.
Definition 5 [28]: A game Γ =

(
N ,P , R̃

)
is an exact poten-

tial game if there is an exact potential function φ : P → R

such that for every user n ∈ N and for every P−n ∈ P−n

the following holds:

R̃n(p
(2)
n ,P−n)− R̃n(p

(1)
n ,P−n)

= φ(p(2)
n ,P−n)− φ(p(1)

n ,P−n) ,

∀p(1)
n ,p

(2)
n ∈ Pn .

(16)

Definition 6 [28]: A game Γ =
(
N ,P , R̃

)
is an ordinal poten-

tial game if there is an ordinal potential function φ : P → R

such that for every user n ∈ N and for every P−n ∈ P−n

the following holds:

R̃n(p
(2)
n ,P−n)− R̃n(p

(1)
n ,P−n) > 0 ⇐⇒

φ(p(2)
n ,P−n)− φ(p(1)

n ,P−n) > 0 ,

∀p(1)
n ,p

(2)
n ∈ Pn .

(17)

Theorem 3: The non-cooperative multi-channel ALOHA
(MCA) game ΓMCA(K,Pmax) and the modified non-
cooperative MCA game Γ̃MCA(K,Pmax) are ordinal and ex-
act potential games, respectively, with the following bounded
potential function:

φ(P) =
N∑

n=1

K∑
k=1

log (un(k)) 1n(k)

− log

(
1

1− Pmax

) K∑
k=1

N(k) (N(k) + 1)

2
.

(18)

Proof: The proof follows from the proof of Theorem 7.

Corollary 1: Any sequential update dynamics of the
multi-channel ALOHA game ΓMCA(K,Pmax) converges to
a NEP in finite time, starting from any point. Specifically, the
proposed sequential best response algorithm, given in Table I,
converges to a NEP in finite time.

A. Asymptotic Analysis

In this section we characterize the algorithm’s behavior in
the asymptotic regime (i.e., N → ∞ and K is fixed). In the

2Note that the same technique is used in the case of K ≥ N and Pmax <
1, since some of the users may choose the same channel. Hence, in this case
convergence is guaranteed using the theory of potential games, as well.
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asymptotic regime we consider convergence to an ε-NEP. An
ε-NEP for our model is a multi-strategy matrix P, given in (4),
which is stable in the sense that none of the users can increase
its utility by more than ε · Pmax by unilaterally modifying its
strategy pn.
Definition 7: A multi-strategy matrix P is an ε-Nash Equilib-
rium Point (ε-NEP) if:

Rn(pn,P−n) ≥ Rn(p̃n,P−n)− ε · Pmax ∀n , ∀p̃n .
(19)

If ε = 0, ε-NEP is equivalent to a NEP.
In this section we assume some very general conditions on

the distribution of matrix U that are common in cognitive
radio networks: due to path loss attenuation, the rows (i.e.,
users) in the collision-free rate matrix U , defined in (2),
are assumed to be independent but not-necessarily identically
distributed. Due to the frequency selective fading effect, the
columns (i.e., channels) for each row in collision-free rate
matrix U are assumed to be identically distributed but not-
necessarily independent. In this common scenario, we show
in the following theorem that in the asymptotic regime (i.e.
N →∞) the proposed best response algorithm converges to a
unique ε-NEP. Each user selects the channel with the maximal
collision-free rate un(k).

Theorem 4: Assume that the proposed best response algo-
rithm is implemented with Pmax = α/N . Assume that the
rows in matrix U , as defined in (2), are independent but not-
necessarily identically distributed, and the columns for each
row in matrix U are identically distributed but not-necessarily
independent. Fix the number of channels K and let k∗n =
arg maxk {un(k)}.
Then, in the asymptotic regime (N → ∞) the network con-
verges to a unique ε-NEP for any ε > 0. Specifically, each user
n plays the strategy:

pn(k) =

⎧⎨⎩
1− Pmax , if k = 0
Pmax , if k = k∗n
0 , otherwise

, (20)

with probability 1.

Proof:
Let

1̃n(k) =

{
1 , if k = k∗n
0 , otherwise , (21)

be the indicator function, which indicates whether user n tries
to access a channel k at the initialization step.
Let

Ñ(k) =

N∑
n=1

1̃n(k) (22)

be the number of users that access a channel k at the
initialization step.
Since 1̃n(k) are identically distributed across channels, we
have: Pr (un(k) = u∗

n) = 1/K ∀k, where K is fixed. Hence,
E
{
1̃n(k)

}
= 1/K . Since the average estimate of Ñ(k) tends

to its mean according the strong law of large numbers (SLLN),
we obtain:

Ñ(k)
a.s−→ N/K ∀k as N →∞ .

In the next iteration, user n monitors the kth channel uti-
lization after the initialization step is completed and observes
vn(k) = (1− Pmax)

Ñ(k). By the continuous mapping theo-
rem [35], we have:

vn(k) = (1− Pmax)
Ñ(k)

= (1− α/N)
Ñ(k) a.s−→ e−α/K

∀n, k as N →∞ .

Therefore, in the next iteration each user n obtains:

un(k)vn(k)
a.s−→ un(k)e

−α/K ∀k as N →∞ .

Since k∗n = arg maxk {un(k)} and K is fixed, we have:

un(k
∗
n)vn(k

∗
n) > un(k)vn(k)− ε ∀k as N →∞ with

probability 1,

which yields a unique ε-NEP (20).

B. Determining Pmax

We now discuss the selection of Pmax to maximize the
network throughput in the asymptotic regime (i.e., N → ∞
and K is fixed), as is generally assumed in analysis of ALOHA
networks. However, the simulation results show very good
performance for small N , as well. Throughout the analysis in
this section we again assume the general conditions on matrix
U discussed in Section IV-A.

In a single-channel ALOHA systems (i.e., K = 1), it
is well-known that Pmax = 1/N maximizes the network
throughput. In the following theorem we show that Pmax =
K/N maximizes the network throughput (i.e., rate) in the
multi-channel ALOHA game ΓMCA(K,Pmax) using the pro-
posed best-response algorithm presented in Table I. Further-
more, the throughput increases linearly with the number of
channels K .

Theorem 5: Assume that the proposed best response algo-
rithm is implemented. Assume that matrix U , defined in (2),
satisfies the conditions specified in Theorem 4. Fix the number
of channels K and let un(k

∗
n) = maxk {un(k)}.

Then, in the asymptotic regime (N → ∞) setting Pmax =
K/N maximizes the user sum rate,

∑N
n=1 Rn. Specifically, for

Pmax = K/N the user sum rate increases linearly with the
number of channels K:

N∑
n=1

Rn = Ke−1 · 1
N

N∑
n=1

un(k
∗
n). (23)

Proof: From the proof of Theorem 4, the achievable rate
of user n is given by:

Rn = Pmaxun(k
∗
n)vn(k

∗
n) = un(k

∗
n)

α

N
e−α/K as N →∞.

Therefore, the sum rate is given by:
N∑

n=1

Rn = αe−α/K · 1
N

N∑
n=1

un(k
∗
n).

Differentiating with respect to α and equating to zero yields:
α = K .

For K = 1 we obtain the well-known maximal throughput
e−1 of the single-channel ALOHA systems. Using the best-
response dynamics, each user’s strategy converges to selecting
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the best channel. Theorem 5 states that the proposed algorithm
with Pmax = K/N converges to this limit at each channel as
N increases. In Section V-A we show that Pmax = K/N
maximizes the user expected rates for a finite N , as well.

Next, we account for the diversity gain from the best-
response dynamics as N increases. Assume that the users
experience Rayleigh fading channels, hn(k), i.i.d across
users and across channels (i.e., |hn(k)|2 is exponentially
distributed). It is shown in [36] that the SNR diversity gain is
given by

∑K
k=1 1/k, and approaches log(K) as K increases.

In [3], two bounds on the users’ rates were obtained, where
each user gets its best channel without collisions.
For low SNR, for some γ, we have:

E {un(k
∗
n)} ≤ SNR · γ · log(K) ,

and for high SNR, where η = γ + 1
SNR log(2) , we have:

E {un(k
∗
n)} ≤ log log(K) + log(SNR · η) .

It was shown in [37] that these bounds are tight in the high
SNR regime and also in the low SNR regime.
Applying these bounds to ΓMCA(K,Pmax), yields that the
sum rate achieved by the proposed best response algorithm
with Pmax = K/N for N →∞ are bounded by:

N∑
n=1

Rn ≤ Ke−1 · SNR · γ · log(K) ,

for low SNR, and
N∑

n=1

Rn ≤ Ke−1 · (log log(K) + log(SNR · η)) ,

for high SNR.
We infer from these bounds that the diversity gain from the
cognitive best response dynamics is largest when users have
low SNR, e.g., when the users are limited by uncoordinated
interference.

C. Network Management: A Stackelberg Game Formulation

In this section we discuss network management in practical
implementations. We consider the case where the network
is designed such that some user is chosen to be the leader
and the rest of the users are the followers that react to the
leader’s strategy. Such a leader-followers scheme is called a
Stackelberg game, and has recently been used in cognitive
radio networks [29]–[31].

In a Stackelberg game, the leader can predict the followers’
best response to its strategy and can control the network by
playing a strategy that optimizes some criterion. In our setup
the control parameter is the transmission probability constraint
Pmax that significantly affects the load in the network and
hence the achievable user rates. Below we show that a single
leader can approximately maximize the user sum rate in the
network for a large number of users. Therefore, there is no
need for multiple leaders in our model. A leader can be the
service provider or the spectrum owner, as suggested in [30],
[31], or can be a user, chosen dynamically from time to time
using a leader-selection mechanism [38], [39]. In our setup, a
simple leader-selection mechanism can be used from time to
time. For instance, during the leader-selection step, each user

can wait a random backoff-time before broadcasting a pilot
signal to the all other users. The first user that broadcasts its
pilot signal is selected as a leader. Below we show that the
leader-followers model can be implemented in a distributed
setting. Complete information on the multi-strategy matrix is
not required, but only monitoring the channel loads.
Let p ∈ [0, 1] be a control parameter and L be the set of
all control parameters determined by the leader. Once the
leader chooses p ∈ L, all users (including the leader itself)
set Pmax = p.
A natural criterion for the leader is to play a strategy that
maximizes the user sum rate in the network. Hence, the leader
solves the following optimization problem:

max
p∈L

N∑
n=1

R∗
n

s.t. R∗
n = max

pn

Rn(pn,P−n, Pmax) ∀n
K∑

k=1

pn(k) ≤ Pmax ∀n

Pmax = p .

(24)

The constraints in (24) denote a sub-game ΓMCA(K,Pmax),
given that Pmax = p was determined by the leader. The NEPs
and ε-NEPs for the sub-game are defined in Definitions 3
and 7, respectively. A Stackelberg equilibrium is defined as
follows:
Definition 8: A pair (p∗,P∗) ∈ L × P is a Stackelberg
equilibrium if (p∗,P∗) solves (24).
The solution to a Stackelberg game is obtained via backward
induction. First, the leader solves the sub-game (i.e., the
constraints) of (24) as a function of p. Then, it maximizes
the user sum rate. Solving (24) exactly is not practical and
is computationally expensive. First, any NEP depends on
the update dynamics and the objective function may have
multiple local maxima points. Second, the solution requires
a centralized setup. However, in the following theorem we
show that for sufficiently large N , the solution can be obtained
simply:

Theorem 6: Assume that the proposed best response
algorithm is implemented. Assume that the matrix U , defined
in (2), satisfies the conditions specified in Theorem 4. Fix the
number of channels K .
Then, in the asymptotic regime (N → ∞) the pair (p∗,P∗) is
a Stackelberg equilibrium, where p∗ = K/N and the entries of
P∗ are given in (20) with probability 1.

Proof: From Theorem 4, the entries of P∗ is given in
(20) as N → ∞ with probability 1. From the proof of
Theorem 5, the sum rate is given by:

∑N
n=1 Rn = αe−α/K ·

1
N

∑N
n=1 un(k

∗
n) for all α. This is the solution to the sub-

game. Maximizing
∑N

n=1 Rn with respect to α yields α = K ,
by Theorem 5.

From Theorem 6, we infer that for sufficiently large N , a
distributed approximate solution can be obtained. The number
of users can be obtained by the leader in a distributed fashion
by monitoring the channel utilization. Assume that the leader
initializes the network by determining a non-optimal Pmax =
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p0. When the leader monitors the kth channel perfectly it
observes v(k) = (1− p0)

N(k), where N(k) is the number
of users that transmit over channel k. Hence, it computes the
asymptotically optimal Pmax by:

Pmax = p∗ = K
N = K

K∑
k=1

log (v(k))

log (1− p0)

.

Thus, a fully distributed setup can be implemented. The
simulation results show very good performance for small N
as well.

V. A HIERARCHICAL MCA FOR PRIMARY AND
SECONDARY USERS

In the previous sections we focused on the open sharing
model. Hence, we have not discussed the case of primary
(i.e., licensed) and secondary (i.e., unlicensed) users in the
networks. In this section we extend our model to the case
of a hierarchical or exclusive use model, where primary
and secondary users co-exist in the same frequency band.
We consider the case where the primary users have a
transmission probability constraint Pmax,1 (high priority) and
the secondary users have a transmission probability constraint
Pmax,2 (low priority). Typically, Pmax,2 can be sufficiently
small as compared to Pmax,1 to limit interference to primary
users caused by secondary users, such that QoS requirements
are satisfied. The approach of limiting interferences such that
QoS requirements are satisfied was used in [32]–[34]. We
discuss the choice of Pmax,1 and Pmax,2 in Section V-A.
Again, we focus on the more interesting case, where N > K
and Pmax,1 < 1, Pmax,2 < 1 to avoid collisions.
Definition 9: The non-cooperative hierarchical multi-
channel ALOHA (HMCA) game is given by
ΓHMCA(K,Pmax,1, Pmax,2) = (Np,Ns,P , R), where
N = Np

⋃Ns = {1, 2, ..., N} denotes the set of players (or
users), where Np is the set of primary users, Ns is the set
of secondary users, and Np

⋂Ns = ∅. P denotes the set
of multi-strategy matrices, such that

∑K
k=1 pn(k) ≤ Pmax,1

for all n ∈ Np and
∑K

k=1 pn(k) ≤ Pmax,2 for all n ∈ Ns.
R : P → R

N , given in (9), denotes the payoff (i.e., rate)
function.

Again, each user tries to maximize its own expected rate
subject to a total transmission probability constraint:

max
pn

Rn s.t.
K∑

k=1

pn(k) ≤ Pn , (25)

where Pn = Pmax,1 for all n ∈ Np, and Pn = Pmax,2 for all
n ∈ Ns.
Similar to Theorem 2, it can be shown that each user n plays
the following strategy:

pn(k) =

⎧⎨⎩
1− Pn , if k = 0
Pn , if k = k∗

0 , otherwise
, (26)

where Pn = Pmax,1 for all n ∈ Np, and Pn = Pmax,2 for all
n ∈ Ns.
As in Table I, we obtain a best response algorithm, where
each user occasionally monitors the channel utilization and

updates its strategy by selecting the channel with the maximal
achievable rate rn(k) given the utilization of the channels.
A primary user transmits with probability Pmax,1 and the
secondary user transmits with probability Pmax,2.

Next, we examine the convergence of the proposed
best-response algorithm. In the following we show that
ΓHMCA(K,Pmax,1, Pmax,2) is an ordinal potential game,
which implies the convergence of the algorithm.

Theorem 7: The non-cooperative hierarchical multi-channel
ALOHA (HMCA) game
ΓHMCA(K,Pmax,1, Pmax,2) is an ordinal potential game, with
the following bounded ordinal potential function:

φ(P) =

N∑
n=1

K∑
k=1

log

(
1

1− Pn

)
×⎛⎝log (un(k))−
L(k) + log

(
1

1−Pn

)
2

⎞⎠1n(k),

(27)
where L(k) =

∑N
n=1 log

(
1

1−Pn

)
1n(k) denotes the load on

channel k. Pn = Pmax,1 for all n ∈ Np, and Pn = Pmax,2 for
all n ∈ Ns.

Proof: To show that φ(P) is an ordinal potential function
of ΓHMCA(K,Pmax,1, Pmax,2) we need to show that (17)
holds. First, we formulate the distributed rate maximization
problem (25) in a more convenient form. Note that every user
n selects a channel k∗n such that setting pn(k

∗
n) = Pn, where

Pn = Pmax,1 for all n ∈ Np, and Pn = Pmax,2 for all
n ∈ Ns, maximizes Rn in (25). Using the monotonicity of
the logarithm function we have:

k∗n = arg max
k

Rn

= arg max
k

un(k)Pn

∏
i∈Nk , i�=n

(1− Pi)

= arg max
k

log (un(k))− L(k)

= arg max
k

R̃n ,

(28)

where Nk is the set of all users that select channel k and

R̃n � log (un(k))− L(k) . (29)

For each user n consider the following optimization problem:

arg max
k

R̃n s.t. pn(k) = Pn , (30)

where Pn = Pmax,1 for all n ∈ Np, and Pn = Pmax,2 for all
n ∈ Ns.
The solution to (30) solves the optimization problem in (25).
Note that in the case of equal transmission probability Pn =

Pmax for all n, we have: L(k) = log
(

1
1−Pmax

)
N(k). Thus,

the modified optimization problem (15) in Proposition 1 is a
special case of (30).

We apply the ordinal potential function that was introduced
in [40] to ΓHMCA(K,Pmax,1, Pmax,2). Assume that user n0

selects channel k1 according to strategy p
(1)
n0 and changes its

strategy by selecting channel k2 according to strategy p
(2)
n0 .

As a result, we have:
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1
(1)
n0 (k1) = 1 , 1

(1)
n0 (k2) = 0 ,

1
(2)
n0 (k1) = 0 , 1

(2)
n0 (k2) = 1 ,

1
(2)
n0 (k) = 1

(1)
n0 (k) = 0 , ∀k �= k1, k2 ,

1
(2)
n (k) = 1

(1)
n (k) , ∀k ∀n �= n0 ,

and

L(2)(k2) = L(1)(k2) + log
(

1
1−Pn0

)
,

L(2)(k1) = L(1)(k1)− log
(

1
1−Pn0

)
,

L(2)(k) = L(1)(k) , ∀k �= k1, k2 .

Let

p̃n � log

(
1

1− Pn

)
,

and let

ũn(k) � log (un(k)).

The difference in the payoff function ΔR̃n0 is given by:

ΔR̃n0 = R̃n0(p
(2)
n0

,P−n0)− R̃n0(p
(1)
n0

,P−n0)

=
[
ũn0(k2)− L(2)(k2)

]− [ũn0(k1)− L(1)(k1)
]
.

The difference in the proposed function (27) Δφ is given by:

Δφ = φ(p(2)
n0

,P−n0)− φ(p(1)
n0

,P−n0)

=
N∑

n=1

K∑
k=1

p̃n

(
ũn(k)− L(2)(k) + p̃n

2

)
1(2)
n (k)

−
N∑

n=1

K∑
k=1

p̃n

(
ũn(k)− L(1)(k) + p̃n

2

)
1(1)
n (k)

=

N∑
n=1

∑
k=k1,k2

p̃n

(
ũn(k)− L(2)(k) + p̃n

2

)
1(2)
n (k)

−
N∑

n=1

∑
k=k1,k2

p̃n

(
ũn(k)− L(1)(k) + p̃n

2

)
1(1)
n (k)

=

[
p̃n0 ũn0(k2)−

N∑
n=1

p̃n
L(1)(k1)− p̃n0 + p̃n

2
1(2)
n (k1)

−
N∑

n=1

p̃n
L(2)(k2) + p̃n

2
1(2)
n (k2)

]

−
[
p̃n0 ũn0(k1)−

N∑
n=1

p̃n
L(1)(k1) + p̃n

2
1(1)
n (k1)

−
N∑

n=1

p̃n
L(2)(k2)− p̃n0 + p̃n

2
1(1)
n (k2)

]

=

[
p̃n0 ũn0(k2)−

L(1)(k1)L
(2)(k1)

2
+

p̃n0L
(2)(k1)

2

−
N∑

n=1

p̃2n
2
1(2)
n (k1)−

(
L(2)(k2)

)2
2

−
N∑

n=1

p̃2n
2
1(2)
n (k2)

]

−
[
p̃n0 ũn0(k1)−

(
L(1)(k1)

)2
2

−
N∑

n=1

p̃2n
2
1(1)
n (k1)

−L(2)(k2)L
(1)(k2)

2
+

p̃n0L
(1)(k2)

2
−

N∑
n=1

p̃2n
2
1(1)
n (k2)

]

Note that:
N∑

n=1

p̃2n
2
1(1)
n (k1)−

N∑
n=1

p̃2n
2
1(2)
n (k1) =

p̃2n0

2
,

N∑
n=1

p̃2n
2
1(1)
n (k2)−

N∑
n=1

p̃2n
2
1(2)
n (k2) = −

p̃2n0

2
.

and L(2)(k1) = L(1)(k1) − p̃n0 , L(1)(k2) = L(2)(k2) − p̃n0 .
As a result, we have:

Δφ = p̃n0

([
ũn0(k2)− L(2)(k2)

]
−
[
ũn0(k1)− L(1)(k1)

])
= log

(
1

1− Pn0

)
ΔR̃n0 .

Hence,

ΔRn0 = Rn0(p
(2)
n0

,P−n0)−Rn0(p
(1)
n0

,P−n0) > 0

⇐⇒ ΔR̃n0 = R̃n0(p
(2)
n0

,P−n0)− R̃n0(p
(1)
n0

,P−n0) > 0

⇐⇒ Δφ = φ(p(2)
n0

,P−n0)− φ(p(1)
n0

,P−n0) > 0 .

Furthermore, φ(P) is upper bounded by φ(P) <∑N
n=1 maxk log

(
1

1−Pn

)
log (un(k)).

Hence, the proposed function φ(P) (27) is a bounded ordinal
potential function of
ΓHMCA(K,Pmax,1, Pmax,2) and the theorem follows. Note
that in the case of equal transmission probability Pn =
Pmax for all n, Theorem 3 follows by dividing φ(P) by
log
(

1
1−Pmax

)
.

Corollary 2: Any sequential update dynamics of
the hierarchical multi-channel ALOHA (HMCA) game
ΓHMCA(K,Pmax,1, Pmax,2) converges to a NEP in finite
time, starting from any point. Specifically, the proposed
sequential best response algorithm converges to a NEP in
finite time.

A. Determining Pmax,1 and Pmax,2

Next, we discuss the choice of Pmax,1 and Pmax,2. Assume
again that Pmax,1 = α1/N and Pmax,2 = α2/N . As explained
in the beginning of this section, typically, Pmax,2 has to be
sufficiently small to limit interference to the primary users
caused by secondary users, such that QoS requirements are
satisfied. A natural criterion is to maximize the secondary user
expected rates subject to an expected target rate of a primary
user. To simplify the analysis, we focus on the case where all
users select their best collision-free channels, which is the
optimal solution when the number of users N approaches
infinity (by a straightforward extension of Theorem 4) and
is the initial point of the proposed best-response algorithm.
This simplification provides an approximate solution for large
N . However, the network controller can dynamically update
Pmax,1, Pmax,2 (and inform the users) according to the
channels load to improve performance, while satisfying the
QoS requirements (using a Stackelberg setup, for instance).
We assume again that matrix U , defined in (2), satisfies the
general conditions specified in Theorem 4. Let Np = |Np| and



COHEN et al.: GAME THEORETIC ASPECTS OF THE MULTI-CHANNEL ALOHA PROTOCOL IN COGNITIVE RADIO NETWORKS 2285

Ns = |Ns| be the number of primary and secondary users in
the network, respectively. The achievable rates of primary and
secondary users that select their best collision-free channel k∗

are given by:

Rn = un(k
∗)
α1

N

(
1− α1

N

)Ñp(k
∗) (

1− α2

N

)Ns(k
∗)

,

∀n ∈ Np ,

Rn = un(k
∗)
α2

N

(
1− α1

N

)Np(k
∗) (

1− α2

N

)Ñs(k
∗)

,

∀n ∈ Ns ,

where Np(k
∗) ∼ B (Np, 1/K), Ñp(k

∗) ∼ B (Np − 1, 1/K),
Ns(k

∗) ∼ B (Ns, 1/K), Ñs(k
∗) ∼ B (Ns − 1, 1/K) and

E
{(

1− α
N

)N(k∗)
}

= E
{
eN(k∗) log(1− α

N )
}

=

MN(k∗)
(
log
(
1− α

N

))
, where Mx (t) = (1− p+ pet)

N

is the moment generating function of a Binomial r.v
x ∼ B (N, p) at t [41].
Therefore, the expected rates are given by:

E {Rn} = E {un(k
∗)} α1

N

(
1− α1

NK

)Np−1 (
1− α2

NK

)Ns

,

∀n ∈ Np ,

E {Rn} = E {un(k
∗)} α2

N

(
1− α1

NK

)Np
(
1− α2

NK

)Ns−1

,

∀n ∈ Ns .
(31)

Let

R∗
n = max

α1

{
E {un(k

∗)} α1

N

(
1− α1

NK

)Np−1
}

be the maximal achievable rate of a primary user n ∈ Np

when α2 = 0, i.e., when the secondary users are not allowed
to transmit. Differentiating with respect to α1 and equating to
zero yields α1 = KN/Np and

R∗
n = E {un(k

∗)} K
Np

(
1− 1

Np

)Np−1

.

The normalized expected target rate is set to Rt =
ωR∗

n/E {un(k
∗)}, where 0 ≤ ω ≤ 1. Thus, the primary users

tolerate a decline in performance to allow secondary users
to use the channels. We need to find α1, α2 that maximize
the secondary user expected rate such that the primary user
achieves at least the expected target rate. Thus, we solve the
following optimization problem:

max
α1,α2

α2

N

(
1− α1

NK

)Np
(
1− α2

NK

)Ns−1

s.t.
α1

N

(
1− α1

NK

)Np−1 (
1− α2

NK

)Ns ≥ Rt .

(32)
The optimization problem in (32) is log-concave and can
be simply solved by the network controller over only two
variables α1, α2. Complexity does not depend on the number
of channels K or the number of users N . Note that for the
optimal solution, the rate is achieved on the boundary of
the rate constraint, since reducing α1 increases the objective
function. In addition, the primary users achieve higher rates by
the proposed best-response algorithm. Therefore, the network

controller can further reduce ω dynamically according to the
channel load to improve performance while satisfying the QoS
requirements.
Remark 4: In this section we have discussed the case where
secondary users are allowed to interfere with primary users,
as long as QoS requirements are satisfied. Another possible
scenario is when secondary users are not allowed to interfere
with primary users. In this scenario, an extension of our model
can be made for networks, where the primary users implement
the multi-channel ALOHA protocol while the secondary users
use CSMA to avoid interference to primary users. Such a
model for a single-channel scenario was introduced in [23],
and can be extended to multi-channel systems. Analysis of
this extension is however beyond the scope of this paper.

VI. SIMULATION RESULTS

In this section we provide numerical examples to illustrate
the algorithm’s performance. Here, we focus on the con-
strained rate maximization. We simulated a network with the
following parameters unless otherwise specified: the number
of channels was set to K = 10. The channels were distributed
according to a Rayleigh fading distribution, i.i.d across users
and channels. The bandwidth W of each channel was set
to 10MHz. The entries of the collision-free rate matrix U
were un(k) = W log(1 + SNR)Mbps. We set Pmax = K/N .
We compared three algorithms: a random access algorithm,
where each user selects a channel randomly, a totally greedy
algorithm, in the sense that each user transmits over the
channel that maximizes its collision-free rate un(k) without
considering the channel utilization, and the proposed best
response algorithm given in Table I. We initialized the pro-
posed algorithm by the totally greedy algorithm solution, as
described in Table I.

In Fig. 1 we present the average rates achieved by the
proposed best response algorithm as a function of Pmax

for N = 30 and SNR= 20dB. It can be seen that setting
Pmax = K/N = 1/3 maximizes the rate for small N , as
well.

In the following simulation results we present the ratio to
the rate of a random access scheme. In Fig. 2 we present the
rate gains of the proposed best response and the totally greedy
algorithms over the random access scheme as a function of the
number of users for SNR= 0dB and SNR= 20dB. We point
out that the rate variance of the proposed algorithm is much
lower than the rate variance of the totally greedy algorithm.
It can be seen that the proposed best response algorithm
significantly outperforms the totally greedy algorithm for
small N . However, it approaches the totally greedy algorithm
as N increases, as discussed in Section IV-A. Furthermore, the
gain over the random access algorithm decreases with SNR.
However, the performance gain of the best response algorithm
over the totally greedy algorithm increases with SNR. In Fig. 3
we present the convergence of the proposed best response
algorithm to the average gain over random access for N = 30
and SNR= 20dB. It can be seen that convergence is achieved
in less than 12 iterations for almost all realizations.

In Table II we compare the algorithms’ performance with
the optimal centralized performance for N = 10, K = 3 and
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Fig. 1. Average rate achieved by the proposed best response algorithm as a
function of Pmax. Simulation parameters: N = 30, SNR=20dB.
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Fig. 2. Rate gain of the proposed best response and the totally greedy
algorithms over the random access scheme as a function of the number of
users.

SNR= 20dB. The rate gains of the proposed best response, the
totally greedy algorithms and the optimal centralized solution
over the random access scheme are presented. It can be seen
that the average rate achieved by the proposed best response
algorithm outperforms the average rate achieved by the other
distributed algorithms and almost achieves the average rate
achieved by the optimal centralized solution.

Finally, we consider the case where 15 primary users and
15 secondary users co-exist in the same frequency band.
In Table III we compare the algorithms performance for
SNR= 20dB. We set the target rate to 0.8R∗

n = 16.4Mbps;
i.e., ω = 0.8, where R∗

n is the maximal achievable rate of
primary users that select their best collision-free channel when
secondary users are not allowed to transmit. As discussed in
Section V-A, the solution to the optimization problem in (32)
is accurate for the totally greedy algorithm and is a good
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Fig. 3. Convergence of the proposed best response algorithm. Simulation
parameters: N = 30, SNR=20dB.

TABLE II
PERFORMANCE COMPARISON FOR N = 10, K = 3 AND SNR= 20dB

Rate gain over random access

Centralized solution 1.36

Proposed algorithm 1.33

Totally greedy 1.23

approximation for the proposed best response algorithm for
sufficiently large N . For the proposed best response algorithm,
the primary users achieved 21.7Mbps with ω = 0.8. Thus, we
further reduce ω to increase the secondary user rates while still
satisfying the primary user rate constraint (practically, this can
be done dynamically by the system controller). It can be seen
that for expected target rate of 16.4Mbps for the primary users,
the proposed best response algorithm achieves roughly a 84%
relative performance gain over the totally greedy algorithm in
terms of the achievable expected rate of the secondary users.

VII. CONCLUSION

In this paper we investigated the problem of distributed rate
maximization of networks applying the multi-channel ALOHA
random access protocol. We characterized the NEPs of the net-
work when users solve the unconstrained rate maximization.
In this case, for any NEP, we obtained that each user tries to
access a single channel with probability 1 and does not try to
access other channels. Next, we limited each user’s total access
probability and solved the problem under a total probability
constraint, to overcome the problem of collisions when the
number of users is much larger than the number of channels.
We characterized the NEPs when user rates are subject to
a total transmission probability constraint. We proposed a
simple best-response algorithm that solves the constrained rate
maximization, where each user updates its strategy using its
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TABLE III
PERFORMANCE COMPARISON FOR N = 30 AND SNR= 20dB

Proposed algorithm Totally greedy

Expected rate of
primary users [Mbps] 16.4 16.4

Expected rate of
secondary users [Mbps] 7.15 3.88

Average number
of iterations 7.4 1

local CSI and by monitoring channel utilization. We used
the theory of potential games to prove convergence of the
proposed algorithm. We formulated the problem of choosing
the access probability as a leader-followers Stackelberg game,
where a single cognitive user is chosen to be the leader to
manage the network. A fully distributed setup has been applied
to approximately optimize the network throughput for a large
number of users. We would like to point out that extending
the Stackelberg model to the case of multiple-leaders multiple-
followers may be examined in other network models that
are not discussed in this paper (for instance, in networks
containing selfish groups of users, where each group of users
follows its own leader). However, this extension is beyond the
scope of this paper.
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