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Asymptotically Optimal Anomaly
Detection via Sequential Testing

Kobi Cohen and Qing Zhao, Fellow, IEEE

Abstract—Sequential detection of independent anomalous pro-
cesses among processes is considered. At each time, only

processes can be observed, and the observations from
each chosen process follow two different distributions, depending
on whether the process is normal or abnormal. Each anomalous
process incurs a cost per unit time until its anomaly is identified
and fixed. Switching across processes and state declarations are
allowed at all times, while decisions are based on all past obser-
vations and actions. The objective is a sequential search strategy
that minimizes the total expected cost incurred by all the processes
during the detection process under reliability constraints. We de-
velop index-type algorithms for the case with both known obser-
vation distributions and the case when the observation distribu-
tions have unknown parameters. We show that the proposed algo-
rithms are asymptotically optimal in terms of minimizing the total
expected cost as the error constraints approach zero. Simulation
results demonstrate strong performance in the finite regime.
Index Terms—Anomaly detection, sequential hypothesis testing,

sequential probability ratio test (SPRT), Wald’s approximation.

I. INTRODUCTION

C ONSIDER a system consisting of processes, which
can be components (such as routers and paths) in a cyber

system, channels in a communication network, potential loca-
tions of targets, and sensors monitoring certain events. The state
of each process is either normal or abnormal (e.g., the busy/idle
state of a channel, the presence or absence of a target or event).
Process is abnormal with prior probability , independent of
other processes. Each abnormal process incurs a cost per unit
time until its anomaly is identified and fixed. Normal processes
incur no cost. Due to resource constraints, only

processes can be probed at a time, and the observa-
tions from a probed process follow distributions or
depending on whether the process is normal or abnormal. The
objective is a sequential search strategy that dynamically deter-
mines which processes to probe at each time and when to ter-
minate the search so that the total expected cost incurred to the
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system during the entire detection process is minimized under
reliability constraints.
The problem under study finds applications in intrusion de-

tection in cyber systems, spectrum scanning in cognitive radio
networks (for quickly catching and utilizing idle channels),
target search, and event detection in sensor networks.

A. Main Results

Since observations are drawn in a one-at-a-time manner, the
above anomaly detection problem has a clear connection with
the classic sequential hypothesis testing problem pioneered by
Wald in [1]. The presence of multiple processes and the ob-
jective of minimizing the total cost (rather than the detection
delay), however, give the problem another dimension. In addi-
tion to quickly declaring the state of a process by fully utilizing
past observations, the probing order is crucial in minimizing the
total cost. It is intuitive that processes with a higher probability
of being abnormal and a higher abnormal cost should be probed
first. At the same time, it may be desirable to probe processes
that require more samples to detect their states (determined by
the Kullback-Leibler divergence between and ) toward
the end of the detection process to avoid long delays in catching
other potentially abnormal processes.
This anomaly detection problem was first formulated and

studied in our prior work [2], [3] under the restriction that each
process must be probed continuously until its state is declared.
In other words, switching across processes is allowed only
when the state of the currently probed process is declared.
It was shown in [3] that the optimal probing strategy is an
open-loop strategy that probes processes in a decreasing order
of (referred to as the OL- rule), where is the
expected detection time for process . With the restriction that
the test of the currently chosen process has to be completed
before testing other processes, it is perhaps not surprising that
the optimal probing strategy is open-loop: the probing order is
predetermined based on prior information ,
and uninterrupted sequential tests are carried out, one over
each process.
In this paper we relax the restriction on switching across pro-

cesses during the detection process. We are thus facing a full-
blown dynamic problem where at any given time, the decision
maker can choose any process whose state has not been declared
and the optimal strategy hinges on fully utilizing the entire de-
cision and observation history. In this case, the priority of each
process in probing needs to be dynamically updated based on
each newly obtained observation. In particular, the probability
of each process being abnormal, a key factor in determining the
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probing order as shown in our prior work [3], should be up-
dated from the prior probability to the a posteriori proba-
bility at time based on all past observations from this
process. Consequently, the expected detection time of process
will also dynamically change based on the a posteriori prob-

ability of being abnormal (see (11)). Building upon the insights
obtained in our prior work [3], we thus propose the following
closed-loop rule (referred to as CL- ). Let
be the expected detection time of process based on .
In general, it is difficult to obtain a closed-form expression for

under the finite regime. Therefore, we propose to use
the Wald’s approximation of , denoted by .
At each given time , each process is associated with an index

. At each time (except at a sparse subsequence
of time instants as detailed below), the process with the largest
index is probed, and its state is detected via a sequential test
using all past observations. The index of this process is also
updated (based on the newly obtained observation) for com-
parison with other processes at the next time instant. To ensure
that all processes are sufficiently probed so that the belief
(consequently the index ) is a sufficiently accurate indica-
tion of the process state, processes are probed in a round-robin
fashion at a subsequence of time instants that grows exponen-
tially sparse with time. In other words, a logarithmic order of
time is used to explore the state of all processes to ensure the
accuracy of the indices used in the remaining majority of
time instants. We show that asymptotic (as the error constraints
approach zero) optimality of the CL- strategy holds under

for both known and unknown observation models (i.e.,
whether are known or has unknown parameters).
When , we show that CL- preserves its asymptotic
optimality if processes incur the same cost when abnormal (i.e.,

). Asymptotic optimality of the algorithms
holds even when the computation of the indices are based on
the Wald’s approximation to the actual expected de-
tection time . It should be noted that the techniques
used in proving the asymptotic optimality under the full-blown
dynamic problem considered in this paper are fundamentally
different from those used in [3] under the switching constraint.
The proof for the optimality of the OL- policy under the
restrictive model in [3] is mainly based on an interchange ar-
gument, which no longer holds in this fully dynamic problem.
In proving the asymptotic optimality of the CL- rule under
the general model, the key is to show that the average time spent
on probing undesired processes (i.e., when noisy observations
lead to an inaccurate indication of the process states) does not
affect the asymptotic expected cost. This is done in two steps.
First, we establish the asymptotic lower bound on the total cost
that can be achieved by any policy. Second, by upper bounding
the tail of the distribution of some ancillary random times, we
show that CL- achieves the lower bound in the asymptotic
regime.

B. Related Work
Sequential hypothesis testing was pioneered by Wald in

[1] where he established the Sequential Probability Ratio Test
(SPRT) for binary hypothesis testing. For simple hypothesis
testing where the observation distributions are known, SPRT is

optimal in terms of minimizing the expected sample size under
given type I and type II error probability constraints. Various
extensions to M-ary hypothesis testing and testing composite
hypotheses have been studied in [4]–[8] for a single process.
In these cases, asymptotically optimal performance can be
obtained in terms of minimizing the expected sample size as
the error probability approaches zero.
There are a number of recent studies on sequential detec-

tion involving multiple independent processes for various ap-
plications (see, for example, [9]–[16] and references therein).
Differing from this work (and our prior work [2], [3]), these
studies focus on minimizing the total detection delay, which
does not translate to minimizing the total system-wide cost in
the anomaly detection problem at hand. The anomaly detec-
tion problem also shares similarities with the optimal search and
target whereabouts problems as studied in [17]–[20] under a se-
quential setting and in [21]–[24] under a fixed sample size set-
ting. The design objectives in these studies again differ from that
in this paper. The problem of universal outlier hypothesis testing
involving a vector of observations containing coordinates with
a single outlier distribution was studied in [25], where at each
time, all the vector is observed. In our model, however, only a
subset of the processes can be observed at a time. Thus, a key
parameter when designing a search strategy in our problem is
the selection rule which determines which processes we should
observe at each given time.
The anomaly detection problem studied in this paper can be

considered as a variation of the sequential design of experiments
problem first studied by Chernoff [26]. In this problem, a deci-
sion maker aims to infer the state of an underlying phenomenon
by sequentially choosing the experiment (thus the observation
model) to be conducted at each time among a set of available ex-
periments. Classic and more recent studies of this problem can
be found in [27]–[34]. The objective is to minimizing the detec-
tion delay in [27]–[29], [31]–[34]. A more general model was
considered in [30], where sampling incurs a known non-uniform
cost across processes and the objective is to minimize the total
cost due to the sampling operation (in contrast to our model,
where at each given time the cost incurred by abnormal pro-
cesses whose states have not been identified and depends on the
unknown system state). However, all these studies assumed dif-
ferent models than the model considered in this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a system consisting of processes, where each
process may be in a normal state (denoted by ) or abnormal
state (denoted by ). Each process is abnormal with a priori
probability , independent of other processes. Each abnormal
process incurs a cost per unit time until it
is tested and identified. Processes in a normal state do not incur
cost. At each given time, only processes can be probed. We
first consider . An extension to is discussed in
Section V.
When process is probed at time , a measurement

is drawn independently in a one-at-a-time manner. If process
is in a normal state, follows density ; if process
is abnormal, follows density . In Section III, we
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examine the case where the densities are known. In
Section IV we extend our results to the case where the densities
have unknown parameters.
Let be a selection rule, indicating

which process is chosen to be tested at time . Let
be the set of all the observations and ac-

tions up to time . The selection rule is a mapping from
to . The vector of selection rules over

the time series is denoted by . Let
be the probing indicator function, where if process
is probed at time and otherwise.
Let be a stopping time (or a stopping rule), which is

the time (counted from the beginning of the entire detection
process) when the decision maker stops taking observations
from process and declares its state. The vector of stopping
times for the processes is denoted by .
The random sample size required to make a decision regarding
the state of process is denoted by . Let be a
decision rule, indicating the state declaration of process at
time . if the decision maker declares that process
is in a normal state, and if the decision maker declares
that process is in an abnormal state. The vector of decision
rules for the processes is denoted by .
Definition 1: An admissible strategy for the sequential

anomaly detection problem is given by the tuple .
Let

be the sets of the normal and abnormal processes. The objective
is to find a strategy that minimizes the total expected cost
incurred by all the abnormal processes subject to type I (false-
alarm) and type II (miss-detection) error constraints for each
process:

(1)

where denote the false-alarm and miss-detect error
probabilities for process , respectively. We point out that the
total expected cost defined in (1) does not include the cost in-
curred by miss-detected abnormal processes. Since the error
constraints are typically required to be small, (1) well approx-
imates the actual loss in practice. For purposes of analysis in
Section III.C we assume that the error constraints have the same
order (for more details see Appendix VIII).

III. ANOMALY DETECTION UNDER KNOWN
OBSERVATION MODELS

In this section we derive an asymptotically optimal solution
for the anomaly detection problem (1) under the case where the
densities are known for all . The proposed probing
strategy has a simple closed-loop index form. The index of the
currently probed process is updated based on the newly obtained

measurement, and the process with the highest index is selected
at each given time except a subsequence of time instants that
grows exponentially sparse with time. In Section III.B we dis-
cuss the computation of the index in details. In Section III.C we
show that the proposed algorithm minimizes the total expected
cost as the error constraints approach zero.

A. The CL- Policy

In this section we present the CL- policy. Let

(2)

(3)

be the log-likelihood ratio (LLR) and the observed sum LLRs
at time of process , respectively. Let be the set of pro-
cesses whose states have not been declared up to time . Let

denote the posterior probability of process being ab-
normal at time (see (8) for the update of the belief based
on a newly obtained measurement). Let be the ex-
pected detection time for process at time which dynami-
cally changes due to the changes in the belief (see (11)).
Let be an approximation to based on the
Wald’s approximation (for details see (11) in Section III.B). De-
fine

(4)

Let be a set of time instants that grows
exponentially sparse with time (i.e., the cardinality of grows
at a logarithmic rate with time). The CL- policy selects
the process with the highest index at all times except at
time instants in . During the subsequence , all processes
whose states have not been declared are probed in a round-robin
fashion. Specifically,

(5)

At time instants , the function satisfies:

(6)

where such that ,
mod denotes the modulo operator, and . Note that
processes are no longer probed once their state has been de-
clared. The round-robin probing subsequence is to ensure all
processes are sufficiently explored. We set1 ,
where is a design parameter (for details see Section III.B).
We point out that this idea of introducing an exploration subse-
quence to ensure sufficient learning has also been used in [29],
[35].

1Note that duplicate values in are removed.
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Following the Wald’s SPRT [1], is compared to
boundary values as follows:
• If , then (i.e.,
continue to take observations from process according
to the selection rule (5) at time ).

• If , stop taking observations from
process and declare it as abnormal (i.e.,

and for all ).
• If , stop taking observations from
process and declare it as normal (i.e.,

and for all ).
The boundary values and are determined such that the

error constraints are satisfied. In general, the exact computation
of the boundary values is very laborious under the finite regime.
Nevertheless, Wald’s approximation can be applied to simplify
the computation [1]:

(7)

Wald’s approximation performs well for small and is
asymptotically optimal as the error probability approaches zero.
Since type I and type II errors are typically required to be small,
Wald’s approximation is widely used in practice [1].
Note that CL- is a closed-loop strategy, where the index

is updated at each given time based on past observations
and actions and the next process is selected accordingly. It can
be seen that CL- handles the well-known trade-off between
exploration and exploitation. The decision maker spends a loga-
rithmic order of time by selecting the processes in a round-robin
manner to explore their states and guard against miss-detected
abnormal processes. On the other hand, at times , it
exploits the information gathered so far to select the process ac-
cording to the updated index at time . The index form
under the CL- policy which dynamically updates the pri-
ority of the processes is intuitively satisfying. We should prior-
itize processes that incur higher costs to the system when ab-
normal. Furthermore, the priority of a process should be in-
creased as the updated belief of it being abnormal increases
during the detection process. It is also desirable to place pro-
cesses that require longer testing time toward the end of the
testing process since their detection time contributes to the cost
of every abnormal process that has not been identified. Thus, the
priority of a process increases as the updated expected detection
time decreases. Note that the sequential test uses an SPRT-based
method with memory to minimize the expected sample size
for every process. When switching back to a previously visited
process (say ) at time , the sequential test uses the sum LLRs

in decision making to exploit all past observations ob-
tained during previous visits.

B. Implementation

In this section we discuss the implementation of the proposed
policy. At each time , the decision maker updates the indices
and the sum LLRs for the currently probed processes, and also
sorts the indices for selecting the next process. Sorting the in-
dices can be done in time via a sorting algorithm.
Updating the indices and the sum LLRs (for the general case
where processes are probed at a time) requires time.

We now consider the computation of the index
. The posterior probability of process

being abnormal can be updated at time based on the
Bayes rule:

(8)

Note that at time , only the index of the process that was
probed at time needs to be updated. The expected sample size

at time depends on the current belief value:

(9)

where is the expected detection time for process
conditioned on its state . In general, it is difficult to ob-

tain a closed-form expression for under the finite
regime. However, Wald’s approximation can be applied to sim-
plify the computation [1]:

(10)

where denotes the Kull-
back-Leibler (KL) divergence between the hypotheses and

, where the expectation is with respect to . This approx-
imation approaches the exact expected sample size for small

. Thus, the approximation to the expected detection time
under CL- is computed as follows:

(11)

We point out that asymptotic optimality of the probing strategy
is preserved as long as the required order of the indices is pre-
served. Therefore, computing the exact expected remaining de-
tection time of a process during a sequential test is not required.
Using the Wald’s approximation to the entire detection time
when computing the indices at each given time is sufficient for
obtaining asymptotic optimality.
Next, we discuss the design parameter used in the

exploration subsequence . Note that as approaches 1, the
round-robin selection rule is executed more frequently. It is
shown in Appendix VIII that asymptotic optimality of CL-
holds when is set sufficiently close to 1 to ensure that the
round-robin probing gathers sufficient information so that the
index is a sufficiently accurate indication of the process
state. In the finite regime, however, must be designed judi-
ciously for better performance. Intuitively speaking, one should
increase as the sample sizes required to declare the process
states decrease to reduce the time spent during the round-robin
selection rule. For instance, consider the extreme case where
only a single observation is required to declare the process states
(i.e., the KL divergences between the observation distributions
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are sufficiently large). Therefore, switching between processes
is done only when the state of the currently probed process is
declared. In this extreme case, the optimal probing strategy is to
test the processes in decreasing order of . Hence, it is de-
sirable to set sufficiently high in that case so that only the first
line in (5) will be executed to obtain optimal performance.

C. Performance Analysis
In this section we analyze the performance of the CL-

policy. Let

(12)

The following theorem shows that CL- is asymptotically
optimal in terms of minimizing the expected cost as the error
constraints approach zero. When deriving asymptotic we as-
sume mild conditions on the error constraints, as discussed in
Appendix VIII.
Theorem 1: Let be the expected costs under

CL- and any other policy , respectively. Then2 ,

(13)

Proof: See Appendix VIII.A.
It should be noted that asymptotic optimality does not require

the exact computation of the detection times of the processes
when evaluating the indices under CL- . Com-

puting the indices as defined in (4) using the Wald’s approxima-
tion in (10), (11) is sufficient to achieve asymptotic optimality
(see Appendix VIII.A for details).

IV. ANOMALY DETECTION UNDER UNKNOWN
OBSERVATION MODELS

In the previous section we focused on the case where the den-
sities under both hypotheses are known. For that case, the sum
LLRs was used by every process to design stopping and deci-
sion rules based onWald’s SPRT which minimizes the expected
sample size for detection. In this section we consider the case
where the densities have unknown parameters. While the SPRT
applies to the latter case as well with minor modifications, it is
highly sub-optimal in general. Therefore, in what follows we
focus on asymptotically optimal tests in terms of minimizing
the sample size as the error probability approaches zero.
Let be an unknown parameter (or a vector of unknown pa-

rameters) of process . The observations are drawn
from a common density , where is the
parameter space of process . If process is in a normal state,
then ; if process is in an abnormal state, then

. Let be disjoint subsets of ,
where is an indifference region3 .
When , the detector is indifferent regarding the state of
process . Hence, there are no constraints on the error probabil-
ities for all . The hypothesis test regarding process is

2The notation as implies

3The assumption of an indifference region is widely used in the theory of se-
quential hypothesis testing to derive asymptotically optimal performance. Nev-
ertheless, in some cases this assumption can be removed. For more details, the
reader is referred to [5].

to test against . Reducing increases the
sample size.
Asymptotically optimal sequential tests for a single process

have been widely studied in the literature, where the key idea is
to use the maximum likelihood estimate (MLE) of the unknown
parameters to perform a one-sided sequential test to reject
and a one-sided sequential test to reject . It is assumed that
regularity conditions on the distribution hold to guarantee con-
sistency of the MLE [36]. One way to perform the sequential
test is to use the Generalized Likelihood Ratio (GLR) statistics.
Let be the vector of observations
for process by time . For and , let

(14)

be the GLR statistics used to declare hypoth-
esis (i.e., reject hypothesis ) at stage ,
where and

are the Max-
imum-Likelihood (ML) estimates of the parameters over the
parameter spaces and at stage , respectively.
Another way is to use the Adaptive Likelihood Ratio (ALR)

statistics. For and , let

(15)

be the ALR statistics used to declare hypothesis at stage .
Let be the chosen statistics and let

(16)

be the stopping rule used to declare hypothesis , where
is the boundary value. For each process , the decision maker
stops the sampling when . If

, process is declared as normal. If , process
is declared as abnormal. The advantage of using the ALR

statistics is that setting satisfies
the error probability constraints in (1). However, such a simple
setting cannot be applied when using the GLR statistics. Thus,
implementing sequential tests using the ALR statistics is much
simpler than using the GLR statistics. The disadvantage of using
the ALR statistics is that poor early estimates (from a small
number of observations) can never be revised even after a large
number of observations have been collected. For more details on
sequential tests involving densities with unknown parameters,
the reader is referred to [4]–[7].

A. The CL- Policy

With some modifications, the CL- policy proposed in
Section III can be applied to the case with unknown observation
models. Let be the GLR (14) or ALR (15) statistics used
in the test. Define

(17)
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where denotes the estimated posterior probability of
process being abnormal and the updated expected
detection time for process at time (see Section IV.B for the
computation of the index). Similar to (5), the selection rule is
given by:

(18)

where is given in (6) and . Then, is
compared to boundary values as follows:
• If and , then

(i.e., continue to take observations from process
according to the selection rule (18) at time ).

• If , stop taking observations from
process and declare it as abnormal (i.e.,

and for all ).
• If , stop taking observations from
process and declare it as normal (i.e.,

and for all ).

B. Implementation
In this section we discuss the implementation of the pro-

posed policy when the densities have unknown parameters. At
each time , the decision maker updates the indices and the
GLR/ALR statistics for the currently probed processes (i.e.,
processes in general), and also sorts the indices for selecting the
next process. Sorting the indices can be done by
time via a sorting algorithm. Note that when the densities have
unknown parameters, the updated belief must be computed with
respect to the current MLE. In cases where the unknown param-
eters can take a small number of values, the decision maker
can update and store the beliefs for the values. Thus,
time is required instead of . However, if the support has
infinite values, then the index must be computed at each time
using the past observations, which generally requires
time (unless a quantization on the support is applied). In general,
the estimated belief of process can be updated at time
as follows:

(19)

where and
for all

. Note that computing at time
requires computations with the current ML estimate of the
parameter.
In general, it is difficult to obtain a closed-form expression

for under the finite regime. However, we can use
the asymptotic property of the sequential tests to obtain a
closed-form approximation to based on the ML
estimate of the parameter, which approaches the exact ex-
pected sample size as the error probability approaches zero.
Let be the KL

divergence between and , where
the expectation is taken with respect to and
let . Then, the
estimated expected sample size required to make a decision
regarding the state of process is given by:

(20)

which is guaranteed to be the asymptotic sample size under
various families of distributions with unknown parameters
(e.g., exponential, multi-variate distributions and general distri-
butions when the unknown parameters can take a finite number
of values) as the error probabilities approach zero [5]–[7], [26],
[28].
It should be noted that implementing the open-loop policy

OL- [3] when the densities have unknown parameters re-
quires a priori knowledge of the parameter’s distribution (since
the testing order is predetermined and switching between pro-
cesses is allowed only when the state of the currently probed
process is declared). However, under CL- , the testing order
is updated dynamically depending on all past observations and
actions. As a result, estimating the detection time at time does
not require a priori knowledge of since converges to
its true value.

C. Performance Analysis
The following theorem shows that the proposed policy is

asymptotically optimal in terms of minimizing the expected cost
as the error probability approaches zero. For purposes of anal-
ysis we consider the model in [26], where can take only a
finite number of values.
Theorem 2: Let be the expected costs under

CL- and any other policy , respectively. Then,

(21)

Proof: See Appendix VIII.B.

V. EXTENSION TO MULTI-PROCESS PROBING
In this section we extend the results reported in the previous

sections to the case where more than one process can be probed
simultaneously (i.e., ). For the ease of presentation, we
will focus on the case where the observation models are known.
However, the results apply to the case where the densities have
unknown parameters.
Let be a permutation of

at time such that:

(22)

The CL- policy selects the processes with the highest in-
dices at all times except times at which processes are probed
in a round-robin manner, i.e.,

(23)
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At time instants , the functions select the
processes whose states have not been declared by time in a
around-robin manner and are given recursively by:

(24)

where such that
, mod denotes the modulo operator, and . If

there is no solution to (i.e., when ), then
remains empty. Then, sequential tests with memory are

executed for the selected processes as described in the previous
sections. The following theorem shows that if holds
for all , then CL- is asymptotically optimal.
Theorem 3: Assume that holds for all
. Let be the expected costs under CL-

and any other policy , respectively. Then,

(25)

Proof: See Appendix VIII.C.

VI. NUMERICAL EXAMPLES

In this section we present numerical examples to illustrate the
performance of the proposed CL- policy. We test the fol-
lowing hypotheses: under normal state, the observations from
process follow Poisson distribution , where
under abnormal state the observations follow Poisson distri-
bution . This model applies to cyber-sys-
tems, where the observations from a probed component repre-
sent packet arrival rate under normal state or under reduction of
quality attacks as in [37]. We compare the optimal open-loop
probing strategy OL- developed in [3] with CL- . We
set the following parameters unless otherwise specified:

(i.e., the cost represents the normal expected traffic over
the component). Thus, in this setting minimizing the total ex-
pected cost minimizes the maximal damage to the network in
terms of the expected number of failed packets during a de-
nial of service attack. Only a single component is probed at a
time (i.e., ). The design parameter for the round-robin
exploration is set to . The error constraints are set to

and the a priori probabilities of
the components being abnormal are set to for all .
First, we simulate the case where are equally spaced in

the interval , where with probability 0.5
and with probability 0.5. This models the sit-
uation where both strong and weak deviations from the normal
state may occur. We implemented CL- under densities with
unknown parameters (i.e., the level of deviation from the normal
state in this scenario) as described in Section IV. The perfor-
mance of the algorithms is presented in Fig. 2. It can be seen
that CL- saves roughly 40% of the average total cost as
compared to OL- . Second, we simulate the case where

components are probed at a time. We set for
for

Fig. 1. The average total cost as a function of the number of components. A
case where both strong and weak deviations from the normal state may occur
with equal probability.

Fig. 2. The average total cost as a function of the number of components. A
case where components are probed at a time.

and . Note that in that case, asymptotic opti-
mality is an open question due to different costs across the pro-
cesses. The CL- is implemented via multi-process probing
as described in Section V. The performance of the algorithms
is presented in Fig. 1. It can be seen that CL- significantly
outperforms OL- under this setting as well.
Next, we examine the interesting case where any switching

to components adds a delay , while any
switching to components adds a delay
. This models the situation (as in power systems or com-

munication networks for instance) where monitoring different
components requires an initialization process which results
in different delays. Note that for any fixed delay incurred
by switching among components, the CL- preserves its
optimality in the asymptotic regime. This can be verified by
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Fig. 3. The gain as a function of the number of components and the
delay incurred by switching. Switching to components adds delay

time unit, while switching to components adds delay
, which ranges between 0 to 8 time units. The CL- policy outperforms

the OL- policy for all .

Lemmas 3, 4 showing that the time spent until the desired
asymptotic order is preserved (where switching no longer
occurs) is small enough and does not affect the asymptotic
expected cost. In the finite regime, however, one should reduce
the number of switchings as the delay incurred in switching
increases. As discussed in [3], the advantage of OL- is
that only switchings among components are required.
Hence, we expect OL- to outperform CL- in the
finite regime as the delay incurred in switching increases.
We set for for

and . We set
. Let , where , are the average

total costs under CL- and OL- , respectively. The
performance of the algorithms is presented in Fig. 3, where
ranges between 0 to 8 time units. It can be seen that CL-
saves roughly 30%–40% of the average total cost as compared
to OL- when . On the other hand, OL- may be
preferred for .
The next numerical example demonstrates the trade-off

curve between the average total cost and the error prob-
abilities (i.e., a Bayes risk) to quantify the threshold
effects of the sequential tests. We set and

for all .
We assign a cost for a wrong declaration and ex-
amine the following normalized (by ) Bayes risk:

. The log-Bayes risk
is presented in Fig. 4 as a function of , with the cor-
responding error probabilities . As expected, as the cost
for a wrong declaration increases, the error probability
decreases. Note also that the Bayes risk decreases as in-
creases. Intuitively speaking, this result follows from the fact
that the minimal sample size under a sequential testing has the
order of , and has the order of [26]. Thus, the
log-Bayes risk decreases approximately linearly with as

increases.

Fig. 4. The tradeoff curve between the average total cost and the error proba-
bilities (i.e., Bayes risk) as a function of the cost for a wrong declaration.

Fig. 5. The gain as a function of the error probability for
process 1. The CL- policy under outperforms the CL-
policy under for all .

Finally, we demonstrate the loss of optimality in the asymp-
totic regime when the round-robin selection rule is not executed.
We set (i.e.,
small deviations from normal states are required to be detected),

. We simulated CL-
under (i.e., the round-robin scheduling is executed
very frequently) and (i.e., the round-robin scheduling is
not executed). Let , where
and are the average total costs under CL-
with and , respectively. The performance of
the algorithms as a function of the error probability for process
1 is presented in Fig. 5. The error probability for process 2
was set such that holds. It can be seen that
setting outperforms as the error prob-
ability decreases. This result demonstrates the significance of
the round-robin selection rule to guarantee optimality in the
asymptotic regime. It should be noted, however, that the loss
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by removing the round-robin scheduling (i.e., always setting
) is small and CL- may perform well with

under typical error probabilities.

VII. CONCLUSION
The problem of sequential detection of independent anoma-

lous processes among processes was considered. At each
time, only a subset of the processes can be observed, and the
observations from each chosen process follow two different dis-
tributions, depending on whether the process is normal or ab-
normal. Each anomalous process incurs a cost per unit time
until it is identified. The objective is a sequential search strategy
that minimizes the total expected cost incurred by all the pro-
cesses during the entire detection process, under reliability con-
straints. Asymptotically optimal closed-loop policies were de-
veloped and strong performance in finite regime was demon-
strated via simulations as compared to the optimal open-loop
policies when the cost incurred by switching across processes
is not too high.

APPENDIX

In this Appendix we prove the asymptotic optimality of
the proposed tests as the error constraints approach zero. For
purposes of analysis, we assume that the asymptotic expected
sample sizes have the same order for
all . This condition implies that
is bounded away from zero and infinity for every pair .
Throughout the proof, we use the fact that the round-robin
selection rule (i.e., second line in (5)) observes all the processes
according to a predetermined order at times , for

, where is a design parameter. We will show that
asymptotic optimality holds when is set sufficiently close to 1.
Deriving asymptotic optimality is done in two steps. First,

we establish the asymptotic lower bound on the total cost that
can be achieved by any policy. Second, we show that CL-
achieves the lower bound in the asymptotic regime. The key in
proving the second step is to upper bound the tail of the dis-
tribution of some ancillary random times. Specifically, when
CL- is implemented indefinitely (i.e., CL- probes the
processes indefinitely according to its selection rule, while the
stopping rules and decision rules are disregarded), we can de-
fine an event in which for all , the index is
a sufficient indication to the process state. The event de-
pends on the future and the true state, and is not a stopping time.
The decision maker does not know whether it has arrived. How-
ever, we show that is sufficiently small. As a result, we show
that when CL- is implemented in the asymptotic regime
( and thus the detection time approaches infinity),
the cost incurred by abnormal processes during the first time
units does not affect the asymptotic total expected cost.

A. Proof of Theorem 1

In this section we prove the asymptotic optimality of CL-
under the case where the densities are completely known. Note
that the SPRT’s boundary values (used to test every process)
satisfy in the asymptotic
regime [8]. Let be the expected sample size for

process under the SPRT.Without loss of generality we assume
that and4

(26)

where as . Note that the
Wald‘s approximation to the expected detection time in (10) sat-
isfies as

. Thus, the approximation to the expected detection
time used in CL- in (11) approaches

(27)

as .
Since the indices under CL- are given by

and we are interested in establishing opti-
mality as , it suffices to prove the theorem when the
indices are evaluated as:

(28)

It should be noted that the proof holds under any computation of
the indices that approaches (28) as . Throughout the
paper, we proposed to use theWald’s approximation specifically
since it performs well in the finite regime and approaches (28)
as .
The proof is mainly based on Lemmas 1, 4. In lemma 1, we es-

tablish the asymptotic lower bound on the expected cost that can
be achieved by any policy. Then, Lemma 4 shows that CL-
achieves the lower bound in the asymptotic regime.
Lemma 1: Let be the total expected cost under

policy that satisfies the error constraints in (1). Then,

(29)

where as .
Proof: Note that observing normal processes before

declaring the states of abnormal processes can only increase
the total expected cost. Hence, for establishing the lower bound
on the actual cost we assume that all the abnormal processes
are tested before those in a normal state.
Let be the vector of observations taken from process and

be the collection of the observation vectors.
Let

(30)

4In cases where processes have the same , we can arbitrarily
order them (by computing their index using a modified cost with an additive
small noise ) without affecting the objective function in the asymp-
totic regime.
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be the set of all possible observations collected from the pro-
cesses with sample sizes satisfying
for all under policy . Let be the total cost incurred
by the processes when observations were taken under
policy .
Next, we lower bound . We define a modi-

fied vector of observations for process with length
by removing observations

for all . The set is defined
accordingly as the set of the modified vectors of observa-
tions. Let be the total cost incurred by the modified
vectors of observations, where the selection rule under
skips the time indices that have been removed. As a result,

.
Following the Smith rule [38], minimizing is done

by ordering the processes in decreasing order of . Since
as [1], we have:

(31)

Finally, we apply ([39], Lemma 2.1), where an asymptotic prob-
abilistic lower bound on the sample size achieved by any test
(for a single process) that satisfies specific error constraints was
established. The lemma was originally stated for a more general
case of -ary hypothesis testing and non-i.i.d. observations.
It requires a weaker condition on the convergence of a (varia-
tion of) the average LLR than the strong law of large numbers.
Therefore, it directly applies to the case of binary hypothesis
and i.i.d. observations (i.e., the strong law of large numbers im-
plies the convergence of the average LLR to the corresponding
KL divergence), considered in this paper. Specifically, applying
([39], Lemma 2.1, (2.13)) to our model yields:

(32)

Hence, as for every ,
which completes the proof.
For the next lemmas, we assume that CL- is imple-

mented and show that CL- achieves the asymptotic lower
bound on the expected total cost (29) as .
Definition 2: For every is defined as the

smallest integer such that for all and
for all for all .

In the following lemma we show that is sufficiently
small.
Lemma 2: Assume that CL- is implemented indefinitely.

Then, for every fixed and , there exists
such that for all the following holds:

(33)

Proof: Let and

(34)

By rewriting the update formula in (8), it can be shown that:

(35)

As a result, iff and
iff , where is the sum of i.i.d. r.v (i.e.,
LLR) with mean for all
and for all . Since
the round-robin selection guarantees that for large

samples are taken from every process up to time , (33)
follows for an arbitrarily large following the same argument
as in [29] when is set sufficiently close to 1.
Definition 3: is defined as the smallest integer such that

for all
.
Before presenting the next lemma, we provide an intuition for

the definition of . Assume that no state has been declared by
time . Then, represents the earliest time where the testing
order required to achieve the asymptotic lower bound (i.e., the
order: ) is preserved for all . In the following
lemma we show that is sufficiently small, such that the cost
incurred by abnormal processes during does not affect the
asymptotic expected total cost.
Lemma 3: Assume that CL- is implemented indefinitely.

Then, for every fixed , there exists such that for all
the following holds:

(36)

Proof: Note that Lemma 2 holds for any and it
is assumed that
holds, where as .

Since , where
have

the same order by assumption, we can choose a sufficiently
small that satisfies the lemma.
In the following lemma we show that the total expected cost

under CL- approaches the lower bound (29) as .
Lemma 4: Let be the total expected cost under

CL- . Then,

(37)

Proof: Without loss of generality, assume that no state has
been declared by time (otherwise, the resulting cost is even
smaller than the cost computed below). Thus, for all ,
CL- tests the processes in the following order:
and then test the normal ones. Let . Since the total
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cost incurred up to time is upper bounded by , the total
cost under CL- is upper bounded by

(38)

The term upper bounds the total cost incurred up to time
, the term upper bounds the total cost incurred

due to the round-robin scheduling, where is the observation
sample size due to the round-robin selection rule for process
(i.e., in the asymptotic regime since

the error probabilities have the same order by assumption). The
term is the total cost incurred for all

(since by the definition of the processes are tested in
the following order: ), where is the remaining
sample size required to declare the state for process for all

. Therefore, applying Lemma 3 and using the fact that
as

yields:

(39)

where as .
Combining (39) and (29) completes the proof.

B. Proof of Theorem 2

In this section we prove the asymptotic optimality of the pro-
posed policy when the densities have unknown parameters. For
purposes of analysis we consider the model in [26], where
can take only a finite number of values. Throughout the proof
we omit steps that use similar arguments as in the proof under
the case of completely known densities.
Using a similar argument as in Lemma 1, it can be shown that

(40)

Next, we show that CL- achieves this bound.
Definition 4: is defined as the smallest integer such that

for all for all .
In the following lemma we show that is sufficiently

small.
Lemma 5: Assume that CL- is implemented indefinitely.

Then, for every fixed , there exists such that for all
the following holds:

(41)

Proof: Note that when (i.e., all the observations are
taken from a single process), decays exponen-
tially with following the same argument as in [26]. Further-
more, for large , at least samples are taken
from every process by time . Thus, (41) follows when is set
sufficiently close to 1.

Definition 5: For every is defined as the
smallest integer such that for all and

for all for all .
In the following lemma we show that is sufficiently

small.
Lemma 6: Assume that CL- is implemented indefinitely.

Then, for every fixed and , there exists
such that for all the following holds:

(42)

Proof: Note that:

(43)

The term decays polynomially with by ap-
plying Lemma 5. Thus, it suffices to show that

decays polynomially with .
Let and

(44)

By rewriting the update formula in (8), it can be shown that:

(45)

for all for all , and

(46)

for all for all .
As a result, iff for all
and iff for all for

all . Thus, it suffices to show that
for all and

for all decay polynomially with .
Note that when occurs, for all
and for all are sums of i.i.d. r.v. with pos-
itive KL divergence (since for all ). Since
at least samples are taken from every process
by time , the lemma follows.
The rest of the proof follows with minor modifications to the

proof under the case of completely known densities.

C. Proof of Theorem 3

In this Appendix we prove the asymptotic optimality of
CL- under multi-process probing when

. Throughout the proof we omit steps that use similar
arguments as in the proof under single-process probing. We
also use similar notations as in Appendix VIII.A.
First, we establish the asymptotic lower bound on the ex-

pected cost that can be achieved by any policy. Using the same
notations as in the proof of Lemma 1, we aim to lower-bound

using the definition of . Recall that
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is the total cost incurred by the modified vectors of
observations with a fixed sample size.
Next, we apply ([40], Theorem 5.4.2) to minimize .

In [40], the problem of ordering jobs with fixed processing times
over parallel machines was considered. It was shown that
scheduling the jobs in decreasing order of , where is
the processing time for job , minimizes the sum completion
times of the jobs. When applying ([40], Theorem 5.4.2) to our
case, the sum completion times for the modified observation
vectors is when all the abnormal processes incur
the same cost per unit time. Since by
assumption (and in particular for any re-
alization of the true system state), we can apply ([40], Theorem
5.4.2). As a result, minimizing is done by ordering
the processes in decreasing order of . Let

(47)

Note that minimizing by ordering the modified ob-
servation vectors in decreasing order of implies that at
each given time the vectors with the smallest sample sizes
among the remaining vectors contribute to the total cost. As a
result, Similar to (31), for any , we can lower bound the
actual cost by the cost achieved by minimizing :

(48)

, Hence, following the same argument as in Lemma 1, we obtain:

(49)

where as .
Next, we show that CL- achieves the lower bound (49)

in the asymptotic regime. Following the definition of , for
all , CL- tests the processes in the desired order
required to obtain the lower bound as specified in (49). Note
that by applying Lemma 3, we can set sufficiently close
to 1, such that for an arbitrarily large

. Therefore, similar to (38), (39), we have:

(50)

where as .
Combining (49) and (50) completes the proof.
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