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Distributed Game-Theoretic Optimization and
Management of Multichannel ALOHA Networks

Kobi Cohen and Amir Leshem, Senior Member, IEEE

Abstract—The problem of distributed rate maximization in
multichannel ALOHA networks is considered. First, we study the
problem of constrained distributed rate maximization, where user
rates are subject to total transmission probability constraints. We
propose a best-response algorithm, where each user updates its
strategy to increase its rate according to the channel state informa-
tion and the current channel utilization. We prove the convergence
of the algorithm to a Nash equilibrium in both homogeneous
and heterogeneous networks using the theory of potential games.
The performance of the best-response dynamic is analyzed and
compared to a simple transmission scheme, where users transmit
over the channel with the highest collision-free utility. Then, we
consider the case where users are not restricted by transmission
probability constraints. Distributed rate maximization under
uncertainty is considered to achieve both efficiency and fairness
among users. We propose a distributed scheme where users adjust
their transmission probability to maximize their rates according
to the current network state, while maintaining the desired load on
the channels. We show that our approach plays an important role
in achieving the Nash bargaining solution among users. Sequential
and parallel algorithms are proposed to achieve the target solution
in a distributed manner. The efficiencies of the algorithms are
demonstrated through both theoretical and simulation results.
Index Terms—Best-response dynamics, collision channels, mul-

tichannel ALOHA, Nash bargaining solution, Nash equilibrium,
potential games.

I. INTRODUCTION

R ANDOM access schemes have been widely used for
data transmission of a large number of users sharing a

common channel. In multichannel systems, the users transmit
over orthogonal channels (i.e., subbands) using orthogonal
frequency division multiple access (OFDMA). Each channel
can be a cluster of multiple carriers. A common way to increase
user rates in multichannel systems is to exploit the channel
diversity using local channel state information (CSI). Recently,
multichannel systems have been studied extensively in wireless
communication [1]–[6].
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In this paper, we examine medium access control (MAC)
schemes used to enable a large number of users to coexist in
a typically low number of shared channels. We investigate
multichannel ALOHA networks, where users access a channel
according to a specific transmission probability. Transmission
is successful if only a single user transmits over a shared
channel in a given time-slot. However, if two or more users
transmit simultaneously over the same channel, a collision
occurs. ALOHA-based protocols are widely used in wireless
communication primarily because of their ease of implementa-
tion and their random nature. Simple transmitters can randomly
access a channel without a carrier sensing operation. Past and
recent works on single- and multichannel ALOHA networks
can be found in [7]–[11] and references therein. In [7], stability
of multichannel networks in which a single channel is chosen
randomly (from a uniform distribution) for transmission among
multiple channels is studied. In [8], a multichannel ALOHA
model, in which a single channel is used for transmissions
of new packets and other channels for retransmissions, was
analyzed. A price of anarchy (PoA) of Nash equilibria in
multichannel ALOHA networks is studied in [9]. Queuing
delay analysis for a single-channel ALOHA is provided in [10].
Analysis of a generalized ALOHA protocol under adversarial
environments is given in [11].
In wireless communication networks, distributed algorithms

are generally preferred over centralized solutions. In this paper,
we mainly focus on distributed algorithms in multichannel
ALOHA networks. We examine distributed algorithms with dy-
namic systems where users make autonomous decisions based
on local information. Such techniques have been presented
in the literature. Related work on distributed optimization
in cognitive radio networks can be found in [12]–[14]. The
problem of distributed learning in cognitive radio networks
using multiarmed bandit technique with distributed multiple
players was investigated in [15], where the number of channels
is greater than the number of users and users implement carrier
sensing operation before transmission. However, in this paper
we adopt the ALOHA protocol for transmissions, and the
number of users is typically greater than the number of chan-
nels. The problem of multiradio multichannel allocation was
investigated in [9] and [16]–[18]. In [17], a distributed learning
algorithm was proposed that converges in some special cases.
In the multiradio multichannel allocation model, the utility of
each channel decreases with the number of radios transmit-
ting over it. This is generally done by a TDMA protocol, for
instance, among users who transmit over the same channel.
As a result, users are encouraged to spread resources over
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channels. In this paper, however, the achievable rate of a user
on a channel increases with the transmission probability (based
on the ALOHA-network model), which results in strategies
that allocate more resources on better channels. In [19], the
multichannel ALOHA protocol in cognitive radio networks
was analyzed, where the focus is on a hierarchical model of pri-
mary and secondary users in the network. The secondary users
choose randomly one of the idle channels for transmission.
In this paper, however, we focus on the open sharing model
among users (e.g., ISM band), in which users exploit local
information to choose better channels for transmissions. In [20]
and [21], the opportunistic multichannel ALOHA scheme was
analyzed for i.i.d. Rayleigh fading channels. In this scheme, a
user transmits over channels with instantaneous gains greater
than some threshold. In this paper, however, long-term rates are
assumed (i.e., mean-rates), and the interference caused by other
users is also taken into consideration when designing effective
algorithms for the spectrum access problem.
There is a significant amount of work in wireless networking

that makes use of game theory. Related works on networking
games can be found in [22]–[24]. Random access games were
studied in [25]–[31]. Game-theoretic techniques were used in
[25], [26], and [28]–[30] to analyze single-channel ALOHA net-
works. In [25], [26], [28], and [30], distributed optimization
algorithms of single-channel ALOHA networks using game-
theoretic tools are studied, where the utility of each user in-
creases with the transmission probability. Here, we consider a
similar model. Specifically, in [26] and [28], energy-efficient
Nash equilibria under user-rate demands have been established.
However, the analysis of the energy-efficient equilibria does not
hold under the multichannel setting. Here, we extend this model
to a multichannel setting and study a distributed optimization of
the user rates under constraints on the transmission probabili-
ties. Another related work considered a noncooperative power
control game in multichannel networks with energy-efficiency
perspectives [27], where the goal is to maximize the number of
reliable bits transmitted per joule of energy consumed in a dis-
tributed fashion. In this paper, however, we focus on efficiency
and fairness with respect to the achievable rates across users.
Cooperative game theory has been widely used to study

channel sharing problems in wireless communication networks.
In a noncooperative game, players individually attempt to
maximize their own utility regardless of the utility achieved
by other players. On the other hand, in a cooperative game,
players bargain with each other. If an agreement is reached,
they act according to the agreement. If they disagree, they do
not cooperate [32]. An efficient solution for cooperative games
is the Nash bargaining solution (NBS) [33]. In recent years,
the NBS has been analyzed for the frequency flat interference
channel in the SISO [34], [35], MISO [36], [37], and MIMO
cases [38], as well as for a frequency selective interference
channel [39]–[43]. In this paper, however, we apply cooper-
ative game-theoretic techniques to analyze the efficiency of
our approach for the channel sharing problem over collision
channels in multichannel ALOHA networks.
In our previous work [4], [5], we mainly focused on networks

containing homogeneous users, where all users have the same

transmission probability constraint. However, in this paper we
focus on more general heterogeneous networks, where each
user in the network is allowed to transit with a different proba-
bility. Handling such cases creates additional challenges when
designing effective protocols for the system. First, fairness
should be considered when defining the target solutions for all
users. Second, further refinements of the user dynamics are
required to stabilize the system.
First, we consider the case where heterogeneous users ex-

ploit their own CSI and the channel utilization to increase their
utility, where each user in the network has an individual trans-
mission probability constraint. We present the best-response al-
gorithm that solves the distributed rate maximization. A best-re-
sponse approach is a common method in noncooperative games
to achieve a Nash equilibrium point (NEP) [44]–[46]. The idea
of best-response dynamics is that every user produces its best
response in terms of the current state of all other users. Here,
users need to decide which channels to access to improve their
utility. The proposed best-response dynamics in this paper en-
able users to make autonomous decisions using their local CSI
and by monitoring the load on the channels. We show that users'
dynamic behavior obeys a global potential function [47], which
implies the convergence of the dynamics.
Next, we study a simpler transmission scheme where users

transmit over the channel with the highest collision-free utility
(i.e., the utility that the user receives conditioned on the event
that the channel is free), which is an approximate solution to the
best-response dynamics as increases. The performance of the
best-response dynamic are analyzed as compared to this simple
transmission scheme for a finite , which serves as a bench-
mark of the performance that could be obtained by exploiting
the channel utilization. We also propose a centralized log-con-
cave optimization problem to determine the transmission prob-
abilities of heterogeneous users under this setting.
Finally, we consider the case where users are not restricted by

a transmission probability constraint. Users are required to im-
plement a distributed rate maximization under uncertainty since
the transmission probabilities of the other users are unknown. In
this case, fairness must be taken into consideration when formu-
lating the target solution for all users. We examine the problem
from a cooperative game-theoretic perspective. We suggest a
distributed learning scheme, where users adjust their transmis-
sion probability based on local information only to achieve the
desired load on the channels to maximize their rates. We show
that our approach plays an important role in achieving NBS
among users. We propose sequential and parallel algorithms to
reach the target solution in a distributed manner. The efficien-
cies of the algorithms are demonstrated through both theoret-
ical and simulation results. Specifically, we show that the global
NBS of the network can be achieved by both the sequential and
parallel algorithms under mild conditions on user utilities.
The rest of this paper is organized as follows. In Section II,

we present the network model for the multichannel ALOHA
system. In Section III, we focus on distributed dynamics for the
distributed ratemaximization problem under given transmission
probability constraints. In Section IV, we focus on simpler so-
lutions to rate maximization using CSI alone. In Sections V and
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VI, we discuss cooperative game considerations and distributed
algorithms for the rate maximization problem under uncertainty
of user transmission probabilities. In Section VII, we provide
simulation results to demonstrate the algorithms performance.

II. NETWORK MODEL

We consider a wireless network containing users who
transmit over orthogonal channels, where . The users
transmit over the shared channels using the slotted ALOHA
protocol. In each time-slot, each user is allowed to access a
single channel according to a specific transmission probability.
Transmission is successful if only a single user transmits over
a shared channel in a given time-slot. However, if two or more
users transmit simultaneously over the same channel, a collision
occurs. We assume that users are backlogged, i.e., all users
always have packets to transmit. The achievable rate of user
at channel given that the channel is free, referred to as colli-
sion-free utility, is denoted by and is proportional
to the bandwidth of channel . For convenience, we define

as a virtual zero-rate channel. Transmitting
over channel refers to no-transmission. Throughout the
paper, it is assumed that the collision-free utilities are fixed
during the running-time of the algorithm (i.e., represents
the mean-rate or long-term rate where the channel statistics
change slowly). It is assumed that every user knows its own
collision-free utility, while collision-free utilities of other users
are unknown. The collision-free rate matrix of all users in
all channels is given by

(1)

Let be the probability that user transmits over channel
. Let be the set of all transmission probability vectors of

user in all channels. A transmission probability vector
of user is given by

(2)

Since we are mainly interested in high-loaded systems, where
the number of users is greater (or even much greater) than the
number of channels, it is desirable to limit the congestion level
over the channels. Thus, we consider only single-channel strate-
gies, where every user selects a single channel for transmission

if
if
otherwise

(3)

for some , and for all . We
define as the set of all transmission probability matrices of all

users in all channels. The probability matrix
is given by

(4)

where .

We define as the set of all probability matrices of all
users in all channels, except user . The probability

matrix is given by

(5)
When user perfectly monitors the th channel utilization,1

it observes

(6)

which is the success probability of user on channel . Roughly
speaking, can be viewed as the load that user observes
on channel . Increasing decreases the rate that user can
achieve over channel .
We further define

(7)

which is the probability that channel is not used by the users.
The expected rate of user in the th channel is given by

(8)

Hence, the expected rate of user is given by:

(9)

III. DISTRIBUTED RATE MAXIMIZATION PROBLEM
In this section, we extend the results reported in [4] and [5]

for the special case of a homogeneous network to the general
case of a heterogeneous network, where every user may have
a different probability constraint. Throughout this section, we
consider a noncooperative setting in the sense that every user
maximizes its own rate under a constraint on the allowed trans-
mission probability. Thus, the constraints on the attempt prob-
abilities are used to prioritize users in the network.2 A question
of interest under this setting is whether the system keeps oscil-
lating due to frequent channel switching, or whether the system
converges to a stable operating point (i.e., when no user can in-
crease its rate by unilaterally switching channels). Throughout
this section, we addresses this question. We use the theory of
potential games for purposes of convergence analysis.

1Practically, the number of idle time-slots and busy time-slots can be used
to estimate the success probability. Monitoring the channels can be done by
the receiver (which can sense the spectrum from time to time and send this
information to the transmitter). Another way is to monitor the null period by the
transmitter as in cognitive radio systems. Any attempt to access channel by
one user or more results in identifying channel as busy.

2Similar problems for a single-channel ALOHA system were considered in
[26] and [28], where users adjust their transmission probabilities subject to an
individual rate demand. A similar approach is used in the rate-adaptive problem
over interference channels in OFDM systems in which every user maximizes
its own rate under a constraint on its allowed transmission power [45])



COHEN AND LESHEM: DISTRIBUTED GAME-THEORETIC OPTIMIZATION AND MANAGEMENT OF MULTICHANNEL ALOHA NETWORKS 1721

We are interested in solving the distributed rate maximization
problem, where each user tries to maximize its own expected
rate subject to a total transmission probability constraint

s.t. (10)

Since we are mainly interested in high-loaded systems,
throughout the paper we restrict users to select at most a single
channel for transmission (to reduce the collision level). Thus,

. Note that when user solves (10) given the current
system state, the resulting strategy is given by

if
if
otherwise

(11)

where3 , where is defined in (8).
Thus, denotes the best channel for user when its instanta-
neous -channel utility vector is and the
channel utilization vector is .
Note that in practical systems, is generally estimated from

a pilot signal. On the other hand, complete information on ma-
trix is not required. Knowing the channel utilization to ob-
tain is sufficient to make a decision.
The probability matrix is called the multistrategy matrix

and contains all the users' strategies, whereas is the
multistrategy matrix containing all users' strategies except the
strategy of user .
In the following, we define the noncooperative multichannel

ALOHA game.4
Definition 1: The noncooperative multichannel ALOHA

(MCA) game is given by
, where denotes the set of

players (or users), denotes the set of multistrategy matrices,
such that for all . ,
given in (9), denotes the payoff (i.e., rate) function.
When users cannot increase their rates by unilaterally

changing their strategy, an equilibrium is obtained.
Definition 2: A multistrategy matrix

is an NEP for the distributed rate
maximization problem (10) if

(12)

where denotes the set of transmission probability vectors
that satisfy the constraint .

A. Best-Response Dynamics
Here, we propose a best-response dynamics to solve the dis-

tributed rate maximization problem. We initialize the algorithm
by a simple solution where every user picks the channel with
the highest collision-free utility . In the learning process
step, each user monitors the channel utilization to obtain
for all . Then, the user updates its strategy by selecting the

3For the ease of presentation, we assume continuous random rates to
guarantee a uniqueness of the maximizer. Otherwise, channels with the same
rate can be ordered arbitrarily.

4This definition extends the noncooperative multichannel ALOHA game, de-
fined in [4], [5] for homogeneous users, to the general case of heterogeneous
users.

channel with the maximal achievable rate
based on the estimated load.
In the best-response dynamics, users can change their se-

lected channels according to the dynamic load. In this section,
we show that the dynamics converge. In the following, we use
the theory of potential games to show that any sequential up-
dating dynamics across users of the proposed best-response al-
gorithm converges in finite time, starting from any point. In po-
tential games, users’ encouragement to change their strategy
obeys a global potential function. Any local maximum of the
potential function is a NEP of the game. In Theorem 1, we
show that is an ordinal potential game,
where the utility of a player increases by unilaterally changing
its strategy, if and only if the potential function increases. For
the following definition, are given in Definition 1 and

is a payoff function for the users.
Definition 3 [47]: A game is an ordinal po-

tential game if there is an ordinal potential function
such that for every user and for every the
following holds:

(13)

where denotes the set of transmission probability vectors
that satisfy the constraint .
Theorem 1: TheMCA game is an or-

dinal potential game, with the following bounded ordinal poten-
tial function:

(14)

where

if
otherwise (15)

is the indicator function, which indicates whether user is
trying to access channel , and

(16)

Proof: To prove the theorem, we modify the distributed
rate maximization problem (10). Since every user selects a
single channel for transmission (and ), (10)
is equivalent to the following optimization problem:

s.t.

Note that the constraint implies (and
also implies , ). As
a result, for every , we can multiply the objective by a con-
stant without affecting the
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solution's argument. Hence, using the monotonicity of the loga-
rithm, (10) is equivalent to the following optimization problem:

s.t. (17)

We further define

(18)

where is determined by the chosen channel and
.

Next, assume that user selects channel according to
strategy and changes its strategy by selecting channel
according to strategy . In what follows refer
to with respect to strategy , for .
The difference in the payoff function is given by

We apply the ordinal potential function that was introduced in
[48] to show that the difference in the proposed function (14)

is given by

where .
Hence, (13) follows. Furthermore, is upper-bounded by

.
Due to the monotonicity of the logarithm increasing

increases the actual rate . As a result, (14) is a bounded
ordinal potential function of which
completes the proof.
Corollary 1: The proposed sequential best-response algo-

rithm converges to a NEP in finite time, starting from any point.

IV. COMPETITIVE APPROACH UNDER THE TOTALLY GREEDY
(TG) ACCESS ALGORITHM

In this section, we focus on the simple transmission scheme
where users access the channel with the highest collision-free
utility, without considering the channel utilization. The
users have constraints on the transmission probability, as in
Section III. We refer to this scheme as the Totally Greedy (TG)
access scheme. The disadvantage of this scheme is that users
do not exploit the channel load information to increase their
rate. For instance, consider the case of two channels , .
Assume that an interferer exists on channel ; thus all users
observe . Using the TG scheme, all users
transmit over channel even if the load on this channel is

significantly higher than the load on channel . This scheme
may lead to inefficient exploitation of the spectrum band. On
the other hand, it is simple to implement and only a single
iteration is required. Furthermore, under some mild conditions
on the utility matrix it provides a good solution as the number
of users increases (as will be discussed in subsequent sections).
Thus, it can serve as a benchmark of the performance that
could be obtained by exploiting the channel utilization when
implementing the best-response dynamics. In Section IV-A,
we examine the system performance in terms of user sum rate,
when users exploit the channel utilization to improve their rates
in a distributed fashion as compared to the TG scheme.
Let be the actual utility matrix, which is obtained by re-

moving the first column (i.e., the all-zero vector) from , de-
fined in (1). For purposes of analysis, in this section we assume
some weak conditions on the utility matrix .
A(1) The rows in the matrix are statistically independent.
A(2) The columns in the matrix are identically distributed.
Due to path loss attenuation, the rows in the matrix (which

refer to users) are assumed to be independent but not-necessarily
identically distributed. Due to the frequency selective fading ef-
fect, the columns for each row in the matrix (which refer to
channels) are assumed to be identically distributed but not-nec-
essarily independent. It was shown in [5] that when assumptions

hold, the TG scheme provides an approximate so-
lution to the best-response dynamics discussed in the previous
section as increases. The intuition for this result is that for a
large number of users, the number of users that select channel
approaches . Hence, the load approaches a constant value
and selecting the channel with the highest collision-free utility
is more dominant. Furthermore, setting maximizes
the network throughput since the expected number of users that
select channel is .

A. Totally Greedy Versus Best Response
Here, we examine the loss of the simple TG scheme as com-

pared to the best-response dynamics for a finite number of users
in the case where every user experiences equal rates for all chan-
nels, i.e., for all . We consider the
case where all users set to maximize the network
throughput in terms of sum rate [5], [20]. In this case, the TG
scheme randomly picks a channel.
Let be the number of users that select channel and

assume that . Then, the best-response dynamics con-
verge when for all . The achievable rate of
user is given by

(19)

Hence, the sum rate achieved by the best-response dynamics is
given by

(20)

Next, we compute the expected user sum rate achieved
by the TG scheme. Assume that user transmits over
channel . Note that channel is selected by all other
users with a probability and then every user that picks
channel actually transmits over it with a probability .
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Fig. 1. Gain of the best-response dynamics over the TG scheme as a function
of .

Therefore, the expected rate of user on channel is:
. Since every

channel is selected with an equal probability , the expected
rate of user achieved by the TG scheme is given by

(21)

Hence, the expected sum rate achieved by the TG scheme is
given by

(22)

Note that the sum rate achieved by both schemes approaches
as increases.

The gain of the best response algorithm over the TG scheme
is defined as the ratio between the sum rate achieved by the
best-response dynamics and the sum rate achieved by the TG
scheme. The gain is given by

(23)

It can be shown that and that as increases.
The intuition for this result is that as increases, the number
of users that select channel approaches . Hence, the load
approaches a constant value and the TG selection is more domi-
nant. To illustrate the result, we depict in Fig. 1. It can be seen
that the best-response algorithm outperforms the TG scheme by
roughly 260% when and by 20% when .

B. Determining for Heterogeneous Networks
In this section, we discuss the choice of , .

Assume that . A natural criterion for rate maxi-
mization in communication networks is to maximize the rate
of a specific user (say user 1) subject to the target rate con-
straints of all other users [49]. Note that as long as the de-
mands for users are inside the rate region
(i.e., feasible demands), maximizing the rate of user 1 brings the

system to operate on the boundary of the rate region, which is
a desired operating point. We assume that hold. Let

. Since we assume identically distributed
channels, the probability that is for all and for
all , and the probability. Hence, the expected rate of user is
given by

(24)

We consider the problem of maximizing the rate of a spe-
cific user such
that all other user rates satisfy the target rate demands,

for all .
Let . Since is a constant
independent of , we need to solve the following
optimization problem:

s.t. (25)

We optimize over to maximize user 1's expected
rate, such that target rate demands for all other users are
satisfied.
The optimization problem (25) is log-concave. Complexity

does not depend on the number of channels . Note that re-
ducing increases all the other user rates . Hence, the
optimal solution lies on the boundary of the rate constraints.

V. COOPERATIVE GAME-THEORETIC LEARNING
In previous sections, we examined the dynamics of mul-

tichannel ALOHA networks, when users try to maximize
their rates under given transmission probability constraints.
In this section, we consider a different problem in multi-
channel ALOHA networks, where the transmission probability
constraints are not given. As a result, a self control on the
transmission probability is mandatory to avoid high load on the
channels and consequently a significant loss in data rate.
Unlike the homogeneous users scenario, here we do not con-

sider the sum rate as a performance measure of the network due
to fairness considerations. Note that the optimal solution for the
sum rate maximization is when a single user with the highest
collision-free utility on every channel transmits with probability
1, while all the other users do not transmit. This operating point
is clearly very bad from a fairness perspective. Therefore, in this
section the sum log rate is considered to be a performance mea-
sure of the network, which is a common measure to evaluate the
tradeoff between efficiency and fairness among users [50], [51].
We show that our approach plays an important role in achieving
NBS among users [32], [33].
First, in Section V-A we motivate our approach by analyzing

the performance among users that transmit over the same
channel. Roughly speaking, we show that is
essential to achieve both efficiency and fairness among users
that transmit over channel . Based on this observation, we
formulate the distributed rate maximization for a multichannel
network in Section V-B. In Section VI-D, we analyze the
performance for the entire network. We show that when as-
sumptions hold, our approach achieves the target
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solution among all the users in the multichannel network (and
not just for each channel separately).

A. Rationale

Let be the set of users that transmit over
channel and its cardinality, respectively. In this section, we
show that is essential to achieving both efficiency
and fairness among users in .
1) Fairness in Channel Sharing:
Definition 4: A transmission scheme is called an equal share

transmission scheme over channel if for some
for all .

Applying the equal share transmission scheme is reasonable
from a fairness perspective, where users that transmit over the
same channel are required to equally share the expected number
of successful time-slots. Thus, in Proposition 1 we consider
the case where users that transmit over channel are restricted
to using the equal share transmission scheme. It is shown that

is a necessary condition to maximize the user rates
under this setting as the number of users increases.
Proposition 1: Assume that the equal share transmis-

sion scheme over channel is implemented. Then, setting
for all maximizes the user rate for

all .
Proposition 1 follows from standard results on a single-

channel ALOHA network [52].
Corollary 2: Maximizing the user rate for all

under the equal share transmission scheme implies
as .

Proof: Setting for all yields

as (26)

2) Efficiency and Fairness Tradeoff: Next, to further
strengthen the rationale, we examine the case when the
transmission probability may be different for every user
and users may transmit with a probability close to 1. Note
that the sum rate is maximized by setting for

, and for all ,
which obviously does not maintain fairness. On the other hand,
Theorem 2 shows that the equal share transmission scheme
still maximizes the user sum log rate over channel (i.e., the
tradeoff between efficiency and fairness among users that share
channel is good).
Theorem 2: The unique solution that maximizes the sum

log rate over channel , is
given by for all .

Proof: The achievable rate of user is given by

(27)

Taking log on both sides yields

(28)

Let be the sum log rate on channel .
Hence, for we obtain

(29)

and for we have

By the monotonicity of the logarithm, it is clear that for
, maximizing yields for all .
Next, we focus on the case where . Note that is
a strictly concave function of . Therefore, it has
a unique global maximum. Differentiating with respect to

, and equating to zero yields a unique solution
for all .

As a result, we obtain the following corollary, as was done
in (26).
Corollary 3: Maximizing the sum log rate on channel im-

plies as .
3) Bargaining Over the Collision Channel: Here, we pro-

vide an interpretation of our approach from a cooperative
game theory perspective. In a noncooperative game, players
(i.e., users) individually attempt to maximize their own utility
regardless of the utility achieved by other players. On the other
hand, in a cooperative game, players bargain with each other. If
an agreement is reached, they act according to the agreement.
If they disagree, they do not cooperate. For more details on
cooperative game theory and applications to network games,
the reader is referred to [32]–[41].
Let be the set of players. The underlying

structure for Nash bargaining in an players scenario is a
set of outcomes of the bargaining process (which
in our model represents the set of achievable rates that the users
can get by cooperating) and a designated disagreement outcome

(where in our model represents
the minimal rate that user would expect to achieve. Other-
wise, it will not cooperate). Cooperative game theories prove
that there exists a unique and efficient solution under intuitive
axioms of fairness, symmetry and scaling-invariant and this so-
lution is given by [32]

(30)

dubbed the NBS among players in .
Next, we show that maximizing the sum log rate (i.e., ap-

plying the equal share transmission scheme) over channel is
also an NBS among users in .
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Theorem 3: Let in (30). Setting for
all achieves the NBS among users in .

Proof: Note that by noncooperating all the users in will
increase their transmission probabilities to 1 to increase their
rates. Thus, every user in (say ) expects to obtain
by noncooperating. Thus, substituting for all
in (30) yields the sum log rate maximization. The rest of the
proof follows from the proof of Theorem 2.
Corollary 4: Applying the NBS among users that share

channel implies as .
In Section VI-D, we show that when assumptions

hold, our approach achieves the global NBS of the network.

B. Optimization Problem
In this section, we formulate the distributed rate maximiza-

tion for a multichannel network aimed to achieve both efficiency
and fairness on every channel. In subsequent sections, we ex-
amine two schemes used to solve the proposed optimization
problem in a distributed fashion. Moreover, in Section VI-D we
show that when hold, not just the sum log rate on
every channel is maximized, but also the global sum log rate
of the network is maximized as increases
(which is also the global NBS of the network as shown in The-
orem 7).
Based on the observation that for a large number of users
should approach , the goal in this section is to cause

the system to operate with the desired load on each channel in
a distributed fashion. Let be the estimate of at user
by monitoring the channel utilizations. Hence, each user is

required to maximize its rate, but maintain a desired load on the
channels (which is affected by ):

(31)

We refer to this formulation as the adaptive rate maximization
problem, since the transmission probabilities are adapted to the
channel loads.
Note that solving this problem may lead to undesirable solu-

tions depending on the dynamic updating of the transmission
probabilities across users (note that is a neces-
sary but not a sufficient condition to maximize the sum log
rate). For instance, assume that user monitors and wants
to force its transmission probability to satisfy the constraint:

. In this case, the update of
yields

(32)

As a result, if user detects channel as a free channel, i.e.,
, it maximizes its probability to get

which satisfies the constraint. Then, in the next iteration, any
other user that accesses this channel will detect
and will force its probability to zero to satisfy the constraint (as a
result, ). Hence, in Section VI we propose
two schemes to obtain the target solutions for all users.

VI. DISTRIBUTED ALGORITHMS FOR THE ADAPTIVE RATE
MAXIMIZATION PROBLEM

In this section, we propose parallel and sequential mecha-
nisms to solve (31) efficiently. The proposed mechanisms are

executed from time to time until convergence. It should be noted
that the proposed algorithms apply for all and perform
well as can be seen via simulation results. Performance analysis,
however, will be presented under the asymptotic regime (i.e., as

approaches infinity) and an accurate estimate of .

A. Sequential Updating
In the sequential updating mechanism, users adjust their

transmission probability until they get the desired channel load.
Let . The users' goal is to reduce
sequentially until convergence.
In the initialization step, all users select the channels with the

highest collision-free utility and set their transmission proba-
bility to .
Next, in the learning step, each user occasionally monitors the

channel utilization of all channels. After the user has esti-
mated it does the following. First, it computes the highest
transmission probability allowed on each channel based on the
estimated load

(33)

This operation will encourage users to move to channels with
low loads.
Next, the user computes the potential achievable rates on all

the channels

(34)

If there is a channel with a higher potential rate than its current
channel, the user switches to this channel; i.e., it updates as
follows:

(35)

Next, the user reduces to obtain the desired load. If
, user increases its

transmission probability to increase the load on the channel:
. Otherwise, it reduces its transmission prob-

ability to reduce the load on the channel: .
Note that as approaches for all , the potential

transmission probability that user computes for all other
channels approaches zero to maintain the desired load.
Hence, users are encouraged to remain in their channels as the
load approaches the desired load.
To stabilize the algorithm, we allow user to switch to

channel from only if it gains at least percents
of its current rate: . Users
may update dynamically to speed up convergence (i.e.,
by increasing ) or to increase their data rate (i.e., by
reducing ) from time to time.5 The algorithm stops when

for all . The sequential updating mechanism is
given in Table I. For users play their best response,
while for users select the channel with the highest
collision-free utility.
Remark 1: Note that setting leads to the simple

TG scheme discussed in Section IV. If hold, the TG
scheme performs well for a large number of users and

5Practically, simulation results show convergence of the sequential updating
algorithm for very small values of .
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TABLE I
SEQUENTIAL UPDATING ALGORITHM

is a good choice. On the other hand, setting
may lead to undesirable solutions in non-i.i.d. utility matrix sce-
narios. For instance, consider the case of channels,
where all users detect for all . This case is
commonplace in communication networks when there is signif-
icant interference on channel . In this case, by using the
TG scheme, all users transmit over channel , which may cause
a very high load on this channel.

B. Parallel Updating

The parallel algorithm is based on the observation that
for a large number of users (and when hold) the
maximal network throughput in multichannel ALOHA net-
works approaches , where users transmit with probability

[5], [20]. The parallel algorithm is described as follows.
In the initialization step, all users set their transmission proba-
bility to . In the learning step, all users monitor the
channel utilization for all and compute

. Hence, all users can estimate the
number of users by

(36)

Then, all users set their transmission probability

(37)

TABLE II
PARALLEL UPDATING ALGORITHM

and implement the best-response dynamics, discussed in
Section III-A, with a given transmission probability .
Theorem 6 shows that under , for all
as . The parallel updating mechanism is given in

Table II.
Remark 2: Distributed algorithms for single-channel

ALOHA networks under the fixed throughput demand of
each user were proposed in [26] and [28]. In each update step,
the user sets , until the algorithm converges.
However, convergence is guaranteed only if the throughput de-
mands are in the feasible region .
Hence, the parallel mechanism can be used to guarantee that
the throughput demands are in the feasible region, by adjusting
the throughput demands when the user population is changed
randomly.

C. Convergence of the Sequential and Parallel Updating
Algorithms
When applying the sequential and parallel updating algo-

rithms, users can change their selected channels according to
the dynamic load. In this section, we show that the dynamics
converge in finite time, starting from any point.
The following theorem establishes the convergence of the se-

quential updating algorithm. For purposes of analysis, we as-
sume that users do not reduce their transmission probability to
zero (thus, users with a high transmission probability should re-
duce their rates). Therefore, we assume that the transmission
probability of every user is lower-bounded by for some

.
Theorem 4: The sequential updating algorithm given in

Table I converges to a NEP in finite time, starting from any
point.

Proof: Assume that users play a multistrategymatrix
. Assume that user has computed the potential
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rates and wants to update its strategy.
User will switch to a different channel only if

holds.
Note that for all . Thus

and

Let

(38)

Then

As a result, user will not switch strategy in the next iterations
for any multistrategy of the other users once
(which occurs in finite time by increasing from time to
time). Once for all occurs, the entire system
is in equilibrium.
It should be noted that practically, simulation results show

fast convergence of the sequential updating algorithm for very
small values of .
The following theorem establishes the convergence of the

parallel updating algorithm.
Theorem 5: The parallel updating algorithm given in

Table II converges to a NEP in finite time, starting from any
point.

Proof: After the initialization step, all users set their
transmission probability to . Then, all the
users implement the best-response dynamics discussed in
Section III-A with a given transmission probability . As a
result, convergence is guaranteed in finite time, starting from
any point by Corollary 1.

D. Achieving the Global NBS via Best Response

In this section, we examine the performance of the algorithms
in the asymptotic regime (i.e., as , where is fixed).
For purposes of analysis, we assume that and can be arbi-
trarily small when applying the sequential updating algorithm.
Theorem 6 shows that under assumption , both the
sequential and parallel updating algorithmsmaximize the global
sum log rate of the network as increases. Theorem 7 shows
that the global NBS of the network is achieved in this case.
Theorem 6: Assume that hold. Then, applying the

sequential and parallel updating algorithms given in Tables I and
II, respectively, maximizes the sum log rate as

with probability 1.
Proof: We prove the theorem in two steps. First, we estab-

lish the upper bound on the sum log rate that can be achieved
by any algorithm. Then, we show that the proposed algorithms
achieve the bound in the asymptotic regime.

We use the same notation as in the proof of Theorem 2. Sub-
stituting in (29) yields

(39)

where .
Let be the sum log rate of the network. Hence6

(40)

where is a constant independent of
and is a function of .
It can be verified that the second derivative of with

respect to is strictly negative in its domain. Therefore, by
the strict concavity of , for any partition of ,

, , such that , we have:
,

where equality holds iff for all . Therefore, maxi-
mizing the upper bound with respect to ,
yields a solution for all . Substituting
in (40) yields

(41)

Next, to show that the parallel algorithm achieves this bound
(41), it suffices to show the following: 1) The users transmit
with probability for all ; 2) Every user selects the
channel with the highest collision-free utility ; 3) The number
of users that transmit over every channel approaches . In
what follows, we show that these three requirements hold in the
asymptotic regime (i.e., as and is fixed). Note that
once the users have estimated the total number of users in the
network , they set . Assuming that each user
perfectly estimates the load on all the channels, then
for all . Thus, requirement 1 holds. In the next step, the users
perform the best-response dynamics with given for
all until convergence. Note that in the first iteration every user
selects the channel with the highest collision-free utility. Let

and let

if
otherwise (42)

be the indicator function, which indicates whether user tries
to access channel at the first iteration.

6The bound holds for for all . It can be verified that
is not a valid solution to maximize the upper bound as increases.
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Let

(43)

be the number of users that access channel at the first iteration.
Since are identically distributed across channels (due

to assumption ), we have: .
Note that are also independent across users (from as-
sumption ). Therefore, the strong law of large numbers im-
plies that the sample average of converges almost surely
to the expected value . Hence

as

Thus, requirements 2 and 3 hold in the first iteration.
Let be the number of users
that access channel at the first iteration except user .
In the next iterations, every user observes an equal load
on every channel (assuming perfect monitoring) since

as with probability 1. As a result, the users will not
switch in the next iterations and will operate in the desired
operating point with probability 1.
A similar argument applies to the sequential updating algo-

rithm. In the initialization step, let for some
for all . Then, the load on every channel ap-

proaches a constant since
as with probability 1.

Let at time and
set for small . Let , be the time in-
dices when all the users set , , respectively (we as-
sume that during the sequential updating every user waits a
fixed amount of time between adjacent updates). Thus,

for all for all
as . Thus, for any fixed there

exists such that the users will not switch to other chan-
nels. As a result, the sequential updating continues until every
user updates its transmission probability on the channel with the
highest collision-free utility to for all as
with probability 1.
Next, we show that the global NBS is achieved as .

Note that when a selfish user increases its transmission proba-
bility to 1 over its best channel to increase its rate, any other user
will observe a zero rate on this channel. For the next theorem,
we assume that users that observe zero rates on all the channels
transmit over the channel with the weakest interference (which
can be sensed by the transmitter or the receiver, as discussed in
Section II). This assumption is reasonable from a game-theo-
retic perspective since it encourages selfish users to cooperate,
as shown in the proof of Theorem 7. It is also reasonable from
a system perspective. We also assume that the interference gain

that user causes to user on channel is bounded by
for all for all .

Theorem 7: Assume that hold. Let be the set
of all the users in the network in (30). Then, applying the se-
quential and parallel updating algorithms given in Tables I and
II, respectively, achieves the global NBS of the network as

with probability 1.

Proof: When users do not cooperate, every user transmits
over the channel that yields the maximal achievable rate with
a transmission probability equal to 1. Therefore, after iter-
ations, all the channels are occupied by users that always
transmit. As a result, every user that updates its strategy at iter-
ation observes a zero rate over all the channels. Then, it
transmits over the channel with the weakest interference with
a transmission probability equal to 1 (to maximize the inter-
ference to the selfish users to encourage cooperation). Since

, there exists such that
. Let . Then, there exists a

channel (say ) such that . Therefore, the inter-
ference , that the users on channels cause to user , is
lower-bounded by . Hence, if
users transmit on channel and there is a channel which is oc-
cupied solely by a single user, in the next iteration user will
not transmit on channel . The same argument applies until at
least two users transmit on every channel. As a result,
for all (i.e., the global NBS is equivalent to maximizing the
sum log rate of the network) for a sufficiently large . The rest
of the proof follows from Theorem 6.
Remark 3: The advantages of the sequential mechanism are

twofold. First, even if users start the dynamics with different
transmission probabilities, they update their transmission prob-
abilities to approach . Second, in the case of a
non-i.i.d. matrix , the users adjust their transmission proba-
bility according to the channel load. This property is important
in common scenarios, such as when there is a significant inter-
ference on some channels, as discussed in Remark 1. On the
other hand, when users are synchronized and parallel updating
can be applied, the parallel mechanism determines the required
transmission probability in a single iteration. Then, convergence
of the best-response dynamics with a given transmission prob-
ability is much faster. Hence, if hold, this is a good
solution, since it approaches the desired operating point as
increases.

VII. SIMULATION RESULTS
In this section, we provide numerical examples to demon-

strate the performance of the algorithms. First, we simulate the
proposed best-response dynamics discussed in Section III, for
heterogeneous networks, where transmission probabilities are
given. We further simulate the proposed distributed algorithms
discussed in Section VI, for ratemaximization, when usersmon-
itor the channel load to adjust their transmission probabilities.
In all cases, the estimation of is based on a window of 100
packets. We simulated Rayleigh fading channels, i.i.d. across
users and channels. The entries of the collision-free rate matrix
were bps, where the

channels' bandwidth was set to 10 MHz.

A. Simulation of the Rate Maximization Under Given
Transmission Probability Constraints
In this section, we compared three algorithms: a random ac-

cess algorithm where users pick a channel randomly, a totally
greedy (TG) scheme where users pick the channel that maxi-
mizes their collision-free rates , and finally the proposed
best-response dynamics discussed in Section III-A. Transmis-
sion probabilities of the heterogeneous users were uniformly
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Fig. 2. Rate gain of the proposed best-response dynamics and the TG schemes
over the random access scheme as a function of the number of users.

distributed: (note that is the desired
transmission probability for rate maximization in a homoge-
neous network). We initialized the best-response dynamics by
the solution of the TG scheme. The achievable rates are pre-
sented as the ratio of the rate achieved by the random access
algorithm.
In Fig. 2, we present the average user rate gain of the best-

response dynamics and the TG access scheme over the random
access scheme as a function of the number of users for
dB, dB, and channels. It can be seen that

the average user rate achieved by the best-response dynamics
significantly outperforms the average user rate achieved by all
other algorithms. However, it approaches the TG scheme as
increases, as discussed in Section IV. Note that the gain over the
random access scheme decreases as the SNR increases. This is
because the channel diversity gain decreases with SNR [53]. For

and dB, the average number of iterations
until convergence of the proposed best-response dynamics was
14.

B. Simulation of the Adaptive Rate Maximization

In this section, we consider the case where users are not re-
stricted by a transmission probability constraint, as discussed
in Section VI. Users maximize their rate, but still keep the de-
sired load on the channels. In Fig. 3 we present the convergence
of the sequential updating algorithm, as shown in Table I, on
a single channel (i.e., ) to the desired throughput .
We also present the performance of the parallel scheme, given
in Table II in this case. In cases where parallel updating by all
users can be implemented, this scheme is preferred on a single
channel since it only requires a single iteration.
Next, we illustrate the performance of the sequential updating

mechanism given in Table I, in a multichannel system. We sim-
ulated a common scenario where users transmit over channels

with dB, and over channels with
dB, due to significant interference in channels

. We compare the algorithm performance for (i.e.,
users transmit over the channel with the highest collision-free

Fig. 3. Network throughput achieved by the sequential and parallel updating
algorithms, given in Tables I and II, for .

Fig. 4. Average user rate and log-rate achieved by the sequential updating al-
gorithm, given in Table I.

utility) and (i.e., users change channels only if their
rates are improved by at least 10%). We set to be equal for all
users. The average rate and average log-rate as a function of the
number of users are presented in Fig. 4. In Fig. 5, we present the
convergence of the algorithm for as a function of the
number of iterations. In Fig. 6, we present the average number
of users that transmit over the inferior channels . For

, the average number of users that transmit over the in-
ferior channels approaches zero. It can be seen in Fig. 4 that im-
plementing the sequential updating mechanism using
(i.e., approaching the best-response dynamics) significantly out-
performs the TG scheme (i.e., ) in terms of both av-
erage rate (i.e., efficiency) and average log-rate (i.e., balancing
between efficiency and fairness and approaching the NBS). As
discussed in Section VI-A and can be seen in Fig. 6, low
leads the users to use inferior channels when the load on good
channels increases significantly. On the other hand, increasing

leads to a high load on good channels and inefficient ex-
ploitation of the inferior channels.
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Fig. 5. Convergence of the sequential updating for as a function of
the number of iterations.

Fig. 6. Number of users that select the inferior channels by the sequential up-
dating for as a function of the number of iterations.

VIII. CONCLUSION
In this paper, we examined the problem of distributed rate

maximization in multichannel ALOHA networks. We focused
on networks containing a large number of users that transmit
over a typically low number of channels.
First, we proposed a distributed best-response dynamics for

the rate maximization problem. In this scheme, users exploit
both CSI and the channel utilization to increase their rates. The
convergence of the algorithm was proved for general heteroge-
neous networks using the theory of potential games. We com-
pared this scheme to the simple transmission scheme, where
each user transmits over the channel with the highest collision-
free utility.
Then, we considered the case where users can adjust their

transmission probability to increase their rates. Adaptive dis-
tributed rate maximization was formulated to achieve both ef-
ficiency and fairness among users. We show that our approach
plays an important role in achieving the Nash bargaining solu-
tion among users.We propose sequential and parallel algorithms
to solve the optimization problem. The efficiencies of the algo-
rithms were demonstrated through both theoretical and simula-
tion results.

The model in this paper considered the saturated case, where
users always have data to transmit. A future research direction
is to examine more advanced queuing analysis for this model.
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