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Abstract. Time-domain inversion of a three-dimensional inhomogeneous medium is
formulated as a time-domain diffraction tomography. The scattered data are expanded into
a spectrum of time-dependent plane waves using the slant-stack transform. It is then shown
that each time-dependent plane-wave constituent in the data is directly related to the Radon
transform of the medium’s inhomogeneity along the direction that bisects the angle between
the plane wave and the incident wave. This new tomographic relation provides the basis
for two inversion approaches: a Radon-space reconstruction and a time-dependent filtered
backpropagation. Finally, the reconstruction errors due to the limited spacetime aperture are
identified via analysis and a numerical example.

1. Introduction

Inversion of an inhomogeneous medium is in general a nonlinear problem. Direct solutions
exist only for a few special configurations, hence this problem is usually addressed
by iterative schemes (e.g. [1–3]) or by linearized models (e.g. [4–8]). This work is
concerned with a three-dimensional short-pulse linearized inversion using a new time-
domain diffraction tomography formulation. Since the main goal in this work is to explore
the new time-domain operations, the theory is formulated here within the weak scattering
Born approximation, but it may readily be extended to the Rytov approximation.

Diffraction tomography involves processing of data from multiple independent
experiments. Typical configurations involve a single frequency with multiple source
locations, or multiple frequencies with a fixed source configuration. The latter provides
a wide-band information that can be obtained instead by a single short pulse experiment
(e.g. [6]). The medium can then be reconstructed by transforming the data to the frequency
domain and then using a conventional diffraction tomography reconstruction of the medium’s
K-space, or by modelling and processing directly in the time domain. Since the scattered
fields are well localized in the spacetime domain, the time domain approach provides a
transparent interpretation of the observed events and direct numerical schemes.

Physically, diffraction tomography can be explained as backpropagation of the data to
the object domain. This could be performed for example using the time-domain Green
function [9]. In this paper we consider a time-domain plane-wave approach that provides a
rigorous setting for spectral reconstruction. A more detailed comparison between these two
alternative time-domain approaches is deferred to section 5.2.

The analytic framework is the theory of the time-dependent plane-wave spectrum [10]
which has been used in the past to solve various time-domain diffraction problems. The

0266-5611/96/060977+17$19.50 c© 1996 IOP Publishing Ltd 977



978 T Melamed et al

time-dependent plane-wave spectrum is obtained from the data through the slant-stack
transform (or τ–p transform, see e.g. [11, 12]), which constitutes a Radon transform in
the spacetime coordinates. Thus, by formulating the time-domain scattering and inverse
scattering problems in the Radon space we shall obtain a direct diffraction-tomography
relation between the time-dependent plane-wave spectrum of the scattered field and the
Radon transform of the medium. The major contributions of this work are thus: the time-
domain Radon-space diffraction tomography mapping and its physical interpretation, the
Radon space resolution and the time-domain filtered backpropagation. Note that for perfectly
conducting objects, a physical-optics relation between the far-field pulsed scattering data
and the objects’ Radon transform has been established in [13].

Concerning the layout, the physical configuration and the conventional frequency
domain formulation of diffraction tomography are briefly described in sections 2 and 3.
The time-dependent plane-wave representation of the field is introduced in section 4. In
the present context of diffraction tomography we consider only the ‘propagating spectrum’,
but a complete plane-wave representation also involves the ‘time-dependent evanescent
spectrum’. This subject requires analytic signal representation and is not addressed here
(see [10]).

The Radon space relations between the medium and the time-dependent plane-wave
expansion of the scattered field are formulated in section 5. This relation also quantifies
the Radon space resolution limit. Two inversion schemes are then considered in section 6:
(a) A Radon-space reconstruction and (b) a time-domain filtered backpropagation. Via a
numerical example in section 7 we then explore these spectral considerations and identify
the sources of error (e.g. the pulse resolution and the aperture truncation).

2. Physical configuration

We are concerned with the reconstruction of an inhomogeneous dispersionless object of
compact support, identified by wave-speed v(r) and embedded in a uniform background
with wave-speed v0. The object is thus described by the so called ‘object function’

O(r) = n2(r) − 1 n(r) ≡ v0/v(r) (1)

where r is a position vector in a 3D coordinate space and n(r) is the refractive index. The
field u(r, t) satisfies the wave equation

[∇2 − v−2(r)∂2
t ]u(r, t) = 0. (2)

The object is located between measurements planes at z = zj , j = 1, 2 (figure 1) and the
time-dependent scattering data there are denoted, accordingly, as uj (x, t) where we use,
conveniently, x = (x1, x2) for the transverse coordinates and r = (x, z). The illumination
is a time-dependent plane wave

ui(r, t) = f (t − v−1
0

◦
κi

· r) (3)

where
◦
κi is a unit vector that defines the direction of propagation and f (t) is a short pulse.

It will be assumed later that
◦
κi = ◦

z, where here and henceforth unit vectors are in bold
italic and identified by a small circle over them.

3. Frequency-domain diffraction tomography

The reconstruction in this work is performed within the weak scattering Born approximation,
but it can readily be extended to the Rytov model. For time-harmonic fields, these
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Figure 1. Physical configuration. The unknown medium is located between the measurement
planes z1 and z2 with time-dependent data u1(x, t) and u2(x, t), respectively.

approximations reduce the object–data relation into algebraic relations in the 3D Fourier
space. Our goal is to develop analogue relations directly in the time domain. We start,
however, with a short review of the frequency domain relations.

Fields in the frequency domain, denoted by a circumflex, are defined by their time-
domain counterparts via

û(r, ω) =
∫ ∞

−∞
dt u(r, t)eiωt . (4)

Our starting point is the first Born approximation for the scattered field ûs (see [14, 15])

ûs(r, ω) =
∫

d3r ′ k2O(r′)ûi(r′, ω)Ĝ(r, r′; ω) (5)

where ûi is the incident (unperturbed) field, Ĝ(r, r′; ω) = eik|r−r′|/4π |r − r′| is the free
space Green function and k = ω/v0. This approximation is valid if O(r) � 1 and if the
accumulated phase-error is small [14], i.e.

kL(nmax − 1) < π (6)

where L is a typical dimension of O(r) and nmax is a bound on n(r). The validity of
this condition in the time and frequency domains will be demonstrated in figures 6 and 8,
respectively.

The data–object relation implied by (5), obtains a simple form in the spectral domain.
With ûj (x, ω) being the frequency-domain data on the zj planes, the frequency-domain
plane-wave spectrum of the data is defined by

ˆ̃uj (ξ, ω) =
∫

d2x ûj (x, ω)e−ikξ·x (7)

where, anticipating extension to the time-domain, we have scaled the spectral parameter
ξ = (ξ1, ξ2) by the frequency parameter k. Consequently, ξ has a pure frequency-
independent interpretation in terms of the cosines of the plane-wave angles with respect
to the (x1, x2) axes (see (12)).

Notationally, we use a tilde to define plane-wave spectra. Thus ̂̃ denotes plane-wave
spectrum in the frequency domain, obtained by the Fourier transform (7), whereas˜denotes
time-dependent plane-wave spectrum as obtained by the slant-stack transform (16) (see
table 1).
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Table 1. List of symbols.

r = (x, z) 3D coordinate point; x = (x1, x2)—transverse coordinates
u(r, t) Time-domain field
uj (x, t) Time-dependent data on the z = zj planes, j = 1, 2
ũj (x, τ ) Time-dependent plane-wave spectrum of uj (x, t) (slant-stack transform (18))
û(r, ω) Frequency-domain field
ûj (x, ω) Frequency-domain data
ˆ̃uj (ξ, ω) Frequency-domain plane-wave spectrum of ûj (x, t) (Fourier transform (7))
ξ = (ξ1, ξ2) Spectral coordinates in (7) and (16)
◦
κj Direction of the scattered plane-waves in the zj planes (12)
ub
j (r, t) Backpropagated fields (28)

Ij (r, t) Imaging fields (29)
O(r) The object function
Ǒ(p,

◦
s) The Radon transform of O (24)

Ō(K) Spatial Fourier transform of O (11)

To calculate the plane-wave spectrum of the scattered data ûj (x, ω) we use the plane-
wave expansion of Ĝ [16]

Ĝ(r, r′; ω) =
(

k

2π

)2 ∫
d2ξ

−1
2ikζ

eik(ξ·(x−x′)+ζ |z−z′|) (8)

with

ζ =
√

1 − |ξ|2 Im ζ > 0 (9)

where it is assumed, conveniently, that ω > 0. Substituting (8) in (5) applied for r ∈ zj

planes, using also ûi(r, ω) = f̂ (ω)eik
◦
κi·r as implied by the incident pulse in (3) with f̂ (ω)

being the frequency spectrum of f (t), and performing the r′ integration, we obtain [6, 17]

ˆ̃uj (ξ, ω) = k2f̂ (ω)
−1

2ikζ
e∓ikζzj Ō(K)

∣∣∣∣
K=k(

◦
κj −

◦
κi )

(10)

where here and henceforth upper and lower signs correspond to j = 1 and 2, respectively,

Ō(K) =
∫

d3r O(r)e−iK·r K = (Kx1 , Kx2 , Kz) (11)

is the 3D Fourier transform of O(r) and
◦
κj = (ξ, ∓ζ ), | ◦

xj | = 1. (12)

The unit vectors
◦
κj define the direction of the scattered plane-waves at the zj planes,

respectively.
Equation (10) applies for both the ‘propagating’ and the ‘evanescent’ spectral ranges

(|ξ| < 1 and |ξ| > 1, respectively). In the evanescent range ζ = i
√

|ξ|2 − 1, hence (10)
involves an analytic continuation of Ō to complex Kz. Since the evanescent-spectrum data
is exponentially weak, most diffraction tomography schemes utilize only the propagating-
spectrum data (see [18] for a super resolution scheme where part of the evanescent spectrum
is retained). The time-dependent spectral relations developed in this work utilize, likewise,
only the propagating spectrum range but they may be extended to the evanescent spectrum
regime by employing the analytic signal techniques in [10].

From (10), the propagating spectrum of ûj defines Ō(K) only on a sphere of radius k

centred at K = −k
◦
κi , henceforth referred to as the ‘shifted Ewald sphere’ (figure 2). A full



Short-pulse inversion of inhomogeneous media 981

Figure 2. The data–object relation in the K-space. The ˆ̃uj (ξ, ω) planes are the spectral (ξ)
planes of the data. Ō(K) (shaded) is the Fourier transform of O (11). Each data point ξ in ˆ̃uj

reconstructs Ō(K) at point K = k(
◦
κj − ◦

κi) on the ‘shifted Ewald sphere’. The full and broken
semi-spheres correspond to data described by ˆ̃u1,2, respectively.

K-space reconstruction of the object therefore requires additional experiments. One option
is to change the illumination direction (angular diversity). O(r) can then be found either
by spectral reconstruction of Ō(K) via (10) or by filtered backpropagation [5, 6, 17].

An alternative approach to cover the K-space is to change the excitation frequency
(frequency diversity). This can be done either by performing multiple monochromatic
experiments or by performing a single experiment with a short excitation pulse. The data
can then be analysed in the frequency domain or directly in the time domain.

Before proceeding with the time-domain analysis which is our main goal, we consider
certain properties of the frequency diversity approach as implied by (10). Referring to
figure 3 (where, without loss of generality,

◦
κi = ◦

z) we note that at any given frequency, the
data û1,2 define Ō(K) over the left and right halves of the shifted Ewald sphere, respectively
(see the full and shaded circles in figure 3). Considering the frequency band kmin < k < kmax

it follows that the reflection and transmission data reconstruct the horizontally and vertically
shaded K-space zones in figure 3, respectively. These zones can be regarded as K-space
filters for the reconstructed object. The object can then be reconstructed either by K-space
reconstruction or by backpropagating the filtered time-dependent data to the object domain
(see section 6 below).

Figure 3. Frequency diversity experiment. The figure
depicts the K-space regions reconstructed by ˆ̃u1 and ˆ̃u2.
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4. Time-dependent plane-wave representation of wave fields

We briefly present here the time-dependent plane-wave representation which will be used
later on in the time-domain data analysis. Let u0(x, t) be a given field on some constant z

plane, say z = 0 whose sources are at z < 0. Denoting the frequency-domain counterpart
of u0(x, t) as û0(x, ω), the frequency-domain plane wave spectrum is given by (see (7))

ˆ̃u0(ξ, ω) =
∫

d2x û0(x, ω)e−ikξ·x (13)

and the forward propagating field is thus given by

û(r, ω) =
(

k

2π

)2 ∫
d2ξ eik(ξ·x+ζz) ˆ̃u0(ξ, ω) (14)

where ζ is defined in (9). Equation (14) describes the field as a superposition of plane
waves. In the ‘propagating spectrum’ range (|ξ| < 1) they propagate in the directions
◦
κ = (ξ, ζ ) (see (12)). In the ‘evanescent spectrum’ range |ξ| > 1, ζ = i|ζ | (for ω > 0) and
the plane waves decay in the positive z direction.

The ‘time-dependent plane-wave spectrum’ ũ0 may be defined from the frequency-
domain plane wave spectrum via

ũ0(ξ, τ ) = 1
2π

∫ ∞

−∞
dω e−iωτ ˆ̃u0(ξ, ω) (15)

where the notation system is explained after (7) (see table 1).
Alternatively, ũ0 may be defined directly from the time-domain data. Substituting (13)

into (15), inverting the order of integrations and then evaluating the ω-integrations in closed
form using (4) (this procedure is valid if u0(x, t) ∈ L2

x,t , which is the case for scattering of
a finite energy pulse f (t) by a bounded, compact support O(r)), we obtain

ũ0(ξ, τ ) =
∫

d2x u0(x, τ + v−1
0 ξ · x). (16)

This integral constitutes a Radon transform in the three-dimensional (x, t) domain,
consisting of projections of the data u0 along the slanted surfaces t = τ + v−1

0 ξ · x

(figure 4(a)). It is therefore termed a ‘slant-stack transform’. For a given ξ it extracts
time-dependent plane-wave information in the spatial direction

◦
κ = (ξ, ζ ) (figure 4(b)).

The radiated field can then be expressed as an angular superposition of these time-dependent
plane waves (see (17)).

The time-dependent plane-wave representation of the radiated field is obtained by
inverting (14) to the time-domain. Some special care is required when dealing with the

Figure 4. Transient plane-wave spectrum: (a) The slant stack transform of u0(x, t) (16), (b) a
time-dependent plane-wave representation of the field in the configuration space.
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evanescent spectrum range |ξ| > 1 where ζ is complex, hence this range requires an
analytic signal plane-wave representation (see [10]). However, as discussed after (11), the
evanescent spectrum is usually ignored in diffraction tomography, hence we shall consider
below only the contribution of the time-dependent propagating spectrum. Thus restricting
the integration domain in (14) to the spectral region |ξ| < 1 and inverting the result to the
time domain by following the procedure outlined in connection with (16), we obtain

uprop(r, t) = −(2πv0)
−2

∫

|ξ|<1
d2ξ ∂2

t ũ0[ξ, t − v−1
0 (ξ · x + ζz)]. (17)

Equation (17) expresses the field as an angular superposition of ‘time-dependent plane
waves’ ũ0[ξ, t − v−1

0 (ξ · x + ζz)] propagating in the
◦
κ direction (figure 4(b)).

5. Data–object relation in the time-domain

Following (16), the time-dependent spectrum of the data uj (x, t) measured on the zj plane,
j = 1, 2, is defined by

ũj (ξ, τ ) =
∫

d2x uj (x, τ + v−1
0 ξ · x). (18)

ũj (ξ, τ ) are the time-domain counterparts of the frequency domain plane-wave spectra
ˆ̃uj (x, ω) in (7). They describe the scattered field as a superposition of time-dependent
plane waves propagating in the direction

◦
κj of (12).

The time-domain relation between the data and the object will be derived next by
transforming the corresponding frequency-domain relation (10) via (15). Without loss of
generality we assume that

◦
κi = ◦

z. As discussed in connection with (17), we consider
only the propagating spectrum |ξ| < 1 but the analysis can be extended to include the
time-dependent evanescent spectrum.

Substituting (10) with (11), (12) into (15) we obtain

ũj (ξ, τ ) = 1
2π

∫ ∞

−∞
dω

∫
d3r O(r)

−1
2iζ

kf̂ (ω)e−iω(τ+τj ) = −1
2ζv0

∫
d3r O(r)f ′(τ + τj )

(19)

where f ′ is the derivative of the excitation pulse and

τj = [(
◦
κj − ◦

κi) · r ± ζzj ]/v0
◦
κi = ◦

z. (20)

To clarify this expression we introduce new spectral variables (
◦
sj , pj ) instead of (ξ, τ ).

For j = 1, 2,
◦
sj are unit vectors with spherical angles (θsj , φsj ), where θsj is measured with

respect to the negative z-axis. For a given ξ,
◦
sj are defined by

θsj = (π − θj )/2 φsj = φj (21)

where (θj , φj ) are the spherical angles of the propagation vectors
◦
κj (ξ) of (12). Thus

◦
sj

bisect the angles between the incident wave direction and the scattered plane wave
directions

◦
κj (see figure 5). Since

◦
κi = ◦

z here, we find that
◦
sj = (

◦
κj − ◦

κi)/2 cos θsj

◦
κi = ◦

z. (22)

Next, instead of τ we introduce

pj = −1
2 cos θsj

(v0τ + zj cos 2θsj ). (23)
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Figure 5. Time-domain data–object relation (Radon transform mapping). The figure shows the
incident pulsed plane-wave ui and one scattered time-dependent plane wave ũ(ξ, τ ) in the

◦
κ1

direction (the figure considers ũ1 only). This scattered plane wave is described in (24) by
specular ‘plane wave reflections’ due to the Radon transform Ǒ(p,

◦
s) of O where the axis

◦
s

bisects the angle between the directions of incidence and scattering (
◦
κ1), while the distance p

determines the spectral arrival time τ (see the Radon variables mapping in (21) and (23)).

The interpretation of
◦
sj and of pj as the Radon direction and distance variables will be

discussed after (24).
Using these new variables, we obtain in equation (19) f ′(τ +τj ) = f ′[−2v−1

0 cos θs(p−
◦
s · r)]|

p=pj ,
◦
s=◦

sj
, so that equation (19) can be rewritten as

ũj (ξ, τ ) = f (−2v−1
0 cos θsp)

p

⊗ ∂p

4ζ cos θs

∫
d3r O(r)δ(p − ◦

s · r)

∣∣∣∣
p=pj ,

◦
s=◦

sj

= f (−2v−1
0 cos θsp)

p

⊗ ∂p

4ζ cos θs

Ǒ(p,
◦
s)

∣∣∣∣
p=pj ,

◦
s=◦

sj

(24)

where
p

⊗ denotes a convolution with respect to the geometrical coordinate p. Here Ǒ(p,
◦
s)

is the Radon transform of the object function, consisting of projections of O along planes
normal to

◦
s at a distance p from the origin.

Equation (24) (or its approximate form (26) below) is the main result in this section. It
expresses the time-dependent plane-wave field ũj (ξ, τ ) in the direction

◦
κj in terms of the

projections of O along planes normal to
◦
sj . The location of pj of these plane along the

◦
sj

axis is determined by the spectral time τ via (23). Note that ũ1,2 are related to projections
in the spectral ranges θs1 ∈ (0, π

4 ), and θs2 ∈ (π
4 , π

2 ), respectively. Furthermore, due to the

scaling v0 dτ = −2 cos θsj dp implied by (23), Ǒ(p,
◦
s) at a given direction

◦
s is compressed

by an angle dependent factor 2v−1
0 cos θsj when transformed to the time-dependent data ũj

via (24). The physical interpretation of these relations will be discussed below.

5.1. Spectral resolution

Assuming next that the excitation f (t) is a short pulse of length T , it follows that the
p-convolution in (24) resolves details in Ǒ(p,

◦
s) of the order

1p(
◦
s) ' v0T/2 cos θs . (25)
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Recalling (21), the best resolution of Ǒ(p,
◦
s) is obtained for ũ1 with small |ξ| and the worst

is obtained for ũ2 as |ξ| → 0 (where θs → 1
2π ).

For directions
◦
s at which 1p(

◦
s) is much smaller than the details in Ǒ(p,

◦
s), the pulse

f (t) in (24) may be replaced by δ(t), giving

ũj (ξ, τ ) ' v0

8ζ cos2 θs

∂pǑ(p,
◦
s)

∣∣∣∣
p=pj ,

◦
s=◦

sj

. (26)

Condition (25) can be derived from frequency-domain considerations by referring to
figure 3. In view of (22), the shifted Ewald sphere constraint K = k(

◦
κj − ◦

κi) in (10) can be
expressed as K = ◦

s2k cos θs . Thus, changing k for a given ξ describes a K-domain line in
the

◦
s direction. Along such a line O(K) is determined only in the range |K| < 2kmax cos θs

where ωmax is the upper frequency in f̂ (ω). This defines the resolution along any K-space
direction

◦
s. Replacing |K| and kmax by 1/1p(

◦
s) and 1/v0T , respectively, one ends up

with (25).

5.2. Physical interpretation: pseudo plane-interface reflections

Referring to figure 5, the planes normal to
◦
sj may be identified as specular reflection planes

with respect to the incident plane wave that propagates in the z-direction and reflected to the
◦
κj direction. Thus the spectral time-dependent plane wave in the

◦
κj direction is generated

by ‘pseudo plane-interface reflections’ due to the medium variations along the
◦
sj axis as

described by the Radon transform of O(r) along
◦
sj . The location pj of the planes along

the
◦
sj axis is determined by the spectral observation time τ via (23). Rewriting (23) as

τ = −2pj cos θsj − zj cos 2θsj , τ is identified as the arrival time at the z = zj plane of the
plane wave reflected from the pj plane (the plane wave arrival time is defined as the time
when the wavefront passes through the center x = 0 of the z = zj plane; figure 5). The
reflected plane location pj is resolved by τ only up to the incident pulselength T projected
onto the reflection axis

◦
s: this explains expression (25) for the spectral resolution 1p.

It should be noted that a similar local reflection law has been derived asymptotically
in [9]. In that paper the Born-approximated scattered field has been described by the
spacetime Green function propagators along the ray from each point source to the scattering
medium and thereafter to the observation points. The local reflection law has been obtained
locally as a plane-surface approximation of the isochrons associated with the rays from a
given source point to a given observation point (see figure 6 in [9]). In equation (27) there,
this local reflection law has been expressed as a generalized Radon transform while the
resolution limit of (25) has been derived there locally in figure 17 and equation (36).

Unlike the analysis in [9] which relies on local planar approximations of the ray isochron,
the present relation relies on time-dependent plane waves and direct Radon transform
projection of the time-dependent wave equation.

6. Inversion

We shall consider two inversion schemes: a spectral (radon-space) reconstruction and a
filtered backpropagation in the configuration space.
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6.1. Radon space reconstruction

Equation (24) (or (26)) relates the time-dependent plane-wave data ũj (ξ, τ ), obtained from
the measured data uj (x, t) via (16), to the Radon transform of O along the direction

◦
sj .

Using the data uj (x, t) we may therefore recover Ǒ(p,
◦
s) in the spectral regimes θs ∈ (0, π

4 )

and θs ∈ (π
4 , π

2 ), respectively. Taken together, they provide full coverage of the Radon
space, thus O(r) can be reconstructed via an inverse Radon transform [19]

O(r) = −1
4π2

∫

�

d2 ◦
s ∂2

pǑ(p,
◦
s)

∣∣∣∣
p=◦

s·r

(27)

where � is the half sphere 0 < θs < π/2.

6.2. Reconstruction via filtered backpropagation

6.2.1. Filtered backpropagation. Following (17), we define the time-dependent back-
propagated fields corresponding to the data uj (x, t) as

ub
j (r, t) = 1

2π

∫

|ξ|61
d2ξ ũj [ξ, t − v−1

0 (ξ · x ∓ ζ(z − zj ))] (28)

where ũj are calculated from uj via (16) and, as before, upper and lower signs correspond
to j = 1, 2. The integral in (28) consists of time-dependent plane waves that are
backpropagated from the measurement planes zj toward the reconstruction domain. As
discussed earlier, only the propagating spectral range |ξ| < 1 is considered. Note that
in (28) we have omitted the second order time-derivative which appears in (17) so that ub

j

calculated via (28) are, in fact, the second order time-integrals of the actual backpropagated
fields.

Next we define the imaging fields Ij (r, t)

Ij (r, t) = 2v−1
0 ∂z{F(t + v−1

0 z)
t

⊗ ub
j (r, t)} (29)

where

F(t) = 1
2π

∫

|ω|<ωmax

dω e−iωt 1

f̂ (ω)
(30)

deconvolves the excitation signal f (t) from the scattered signal. The Fourier inversion
in (30) has been limited to the range |ω| < ωmax where f̂ is non-negligible. The maximal
resolution that can be obtained in a given direction

◦
s is therefore limited by 1p of (25)

wherein T is replaced by ω−1
max .

6.2.2. Reconstruction. Next we show how the backpropagated fields reconstruct O(r).
We start by rewriting (28), (29) in the form

Ij (r, t) = F(t)
t

⊗ ∂z

v02π2

∫

�j

d2 ◦
s 4ζ cos θs ũj (ξ, t − τj ) (31)

where we have changed the integration variables from ξ to
◦
s using (22) and d2ξ =

4ζ cos θs d2 ◦
s, �j are the integration domains covered by the Radon direction vectors

◦
sj

(i.e. θs ∈ (0, π
4 ) and (π

4 , π
2 ), respectively), and τj are defined in (20).
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Next we substitute the Born-approximated data–object relation (24) into (31). Noting
from (23) that pj |τ=t−τj = ◦

s · r − 1
2v0t/ cos θs we obtain

Ij (r, t) = F(t)
t

⊗ f (t)
t

⊗ ∂z

2π2

∫

�j

d2 ◦
s

∂p

2 cos θs

Ǒ(p,
◦
s)

∣∣∣∣
p=◦

s·r−v0t/2 cos θs

. (32)

In view of (30) we note that

F(t)
t

⊗ f (t) = δT (t) ≡ 1
πT

sin t/T

t/T
T = ω−1

max (33)

where δT is the ‘band limited δ function’. Introducing δT (t)
t

⊗ into the integral and replacing

it by δ1p
(p)

p

⊗, where 1p(
◦
s) is defined in (25), using also ∂p = cos θs∂z, equation (32)

becomes

Ij (r, t) = −1
4π2

∫

�j

d2 ◦
s ∂2

pδ1p
(p)

p

⊗ Ǒ(p,
◦
s)

∣∣∣∣
p=◦

s·r−v0t/2 cos θs

. (34)

Ǒ(T )(p,
◦
s) = δ1p

(p)
p

⊗ Ǒ(p,
◦
s) will be denoted the ‘limited spectrum Radon transform’

of O.
Next we impose the so-called imaging condition t = 0 (see interpretation below) and

obtain

I1(r, 0) + I2(r, 0) = −1
4π2

∫

�

d2 ◦
s ∂2

pǑ(T )(p,
◦
s)

∣∣∣∣
p=◦

s·r

(35)

where � = �1 + �2 is the half sphere 0 < θs < π/2. Identifying (35) as an inverse Radon
transform (27) we obtain the reconstruction formula

O(T )(r) = I1(r, 0) + I2(r, 0). (36)

Thus O
(T )
j (r) ≡ Ij (r, 0) are the limited spectrum partial images due to data on the zj planes.

In view of (34), these partial images correspond to the spectral regions �j in the Radon
domain.

For a given image point r, the imaging condition t = 0 defines the trajectories
τ(ξ, r) = −τj = −v−1

0 [ξ · x ∓ ζ(z − zj ) − z] in the (ξ, τ ) plane, along which the data in
(31) is integrated (typical trajectories are plotted in figure 13). The interpretation of this
condition thus follows at once by noting that τj of (20) is the arrival time at the measurement
plane zj of the scattered pulsed plane wave excited as the incident pulse passes through r

(see (20)).
Finally, the definition of Ij in (29) includes a convolution of hb

j with F which
deconvolves the excitation signal f from the data. If, however, f is short enough then
this convolution can be ignored. The reconstructed O

(T )
j in (36) are thus given directly in

terms of the backpropagated fields hb
j ,

O
(T )
j (r) = Ij (r, 0) ' 2v−1

0 ∂zh
b
j (r, t)|t=z/v0. (37)

6.2.3. A summary of the time-domain filtered backpropagation algorithm. In view of the
above analysis, the reconstruction procedure is as follows:

(1) Calculate ũj (ξ, τ ) from the data uj (x, t) via (18).
(2) Calculate the backpropagated fields ub

j (r, t) via (28), and then the image fields
Ij (r, t) via (29) or (37) (for the filtered or the unfiltered backpropagation, respectively).

(3) Identify the partial images O
(T )
j (r) = Ij (r, 0) via (36) or (37).
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7. Numerical example: a homogeneous sphere

We consider a homogeneous sphere with refractive index n0 and radius a = 1. The
background wave speed is v0 = 1. The boundary conditions are the continuity of the
field and its normal derivative. The sphere is centred at the coordinates origin and the
measurement planes are z1,2 = ∓2. The incident pulse in (3) was taken to be a Gaussian,

f (t) = (πT )−1/2e−(t/T )2
↼↽→ f̂ (ω) = e−(T ω/2)2

. (38)

We choose T = 1
8 which justifies the approximation of f (t) by δ(t) in (24), and thus the

approximate reconstruction (37).

7.1. The scattering data

The exact time-harmonic field has been calculated via a Mie series and then transformed
into the time-domain. These exact time-harmonic and time-dependent fields have been
compared with the Born approximation. Figure 6 compares the exact and the Born solutions
as a function of ka for n0 = 1.1. The observation points are on the symmetry (z) axis at
z1,2. The Born solution is seen to be valid for ka < 15 as implied by (6). Note, however,
the relatively large phase error of the Born solution for û1 in that frequency range. This
error is due to interference with internal reflections, and is thus absent in the time domain
signal prior to the arrival of these reflections. This is one advantage of the time-domain
inversion which employs the early time signal.

The exact time-domain signals u1,2(x, t) at various points x in the measurement planes
are shown in figure 7, and then compared with the Born results in figure 8. Note that the
Born solution does not describe the late-time internal reflections in u1. This explains the
phase inaccuracy observed in figure 6. For u2, the contribution of the internal reflections is
weaker since they arrive after two internal reflections, one from the back face followed by
one from the front face.

7.2. Spectral processing and reconstruction

The reconstruction consists of two stages: calculation of ũj (ξ, τ ) and then backpropagation.

7.2.1. Calculation of ũj (ξ, τ ). The time-dependent plane-wave spectra ũj (ξ, τ ), calculated
from the exact data u1,2(x, t) in figure 7 via (16), are depicted in figure 9 for values of
ξρ =

√
ξ 2
x1

+ ξ 2
x2

between 0 and 1. The aperture data used for the procesing was taken for
ρ =

√
x2

1 + x2
2 < 10. This limited aperture effect is observed along a diagonal extending

Figure 6. The exact (full curve) and the Born (broken curve) solutions as a function of ka for
a sphere with n0 = 1.1: (a) û1, (b) û2.
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Figure 7. The exact time-dependent data calculated at various points ρ =
√

x2 + y2 in the
measurement planes: (a) u1(x, t), (b) u2(x, t).

Figure 8. As in figure 7 but for the Born-approximated field.

from (τ, ξρ) ' (9, 0) to (τ, ξρ) ' (3, 1). Thus, it is within the object domain only for large
ξρ . The effect of this error on the reconstruction will be discussed in the next section. Note
also that the contribution of the internal reflections in ũ1 (figure 9(a)) is confined essentially
in the range 4 < τ < 6 for small ξρ , outside the object domain. For u2 (figure 9(b)), the
internal reflections are hardly observed (see discussion in section 7.1).

In order to understand the results in figure 9, we show in figure 10 the synthetic Born-
approximated spectra ũj (ξ, τ ) as calculated via (24) from the Radon transform of O(r). The
Radon transform of the spherical scatterer is given by Ǒ(p,

◦
s) = π(n2

0−1)(1−p2)H(1−|p|),
hence, from (24), the synthetic Born spectrum is

ũj (ξρ, τ ) = f (τ)
τ

⊗ π(n2
0 − 1)

(τ ± zjζ )H(
√

2(1 ± ζ ) − |τ ± zjζ |)
√

8ζ(1 ± ζ )
3
2

(39)

where ζ =
√

1 − ξ 2
ρ . This result is shown in figure 10. Note the angle-dependent

compression of the Radon transform when transformed to ũj as implied by the scaling
v0 dτ = −2 cos θs dp. (Indeed the waveforms become shorter and stronger as ξρ changes
from 0 to 1 for u1 and from 1 to 0 for u2.) This causes a loss of resolution in the forward
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direction (i.e. in ũ2 with small ξρ) when the synthetic Radon transform pulse is convolved
with f (τ), and the pulse-shape there is determined essentially by f (t). The effect of this
finite resolution will be considered in the next section.

7.2.2. Reconstruction. The reconstructed function O has been calculated via (36), (37).
Figure 11 depicts cross sectional cuts of O at various distances ρ from the symmetry axis.
The figure shows the individual contributions of the u1 and u2 data (i.e. O1,2) as well as the
combined result. u1 provides good axial resolution (see (25) for small θs) while u2 provides
the axial average information and poor lateral resolution. The quality of the combined
reconstruction can be assessed from figures 11 and 12.

The main sources of error are the limited aperture of the data uj which affects ũj , and
the finite reclusion of the pulse (see section 7.2.1). The latter affects, essentially, the lateral
resolution of O2 in figure 11. To track the effect of the limited aperture we superimpose
the imaging trajectories τ(ξ, r) in figure 13 on the ũ1,2 plane in figure 9. These trajectories
are plotted in figure 13 for several image points on the z-axis. As noted after (36), the
reconstructed O at a given r is obtained by integrating ũ1,2 along these trajectories. One

Figure 9. Time-dependent plane-wave spectrum of the exact data in figure 7, shown for
1 < ξρ < 1: (a) ũ1(ξ, τ ), (b) ũ2(ξ, τ ). Note the scale difference in the amplitude for ũ1
and ũ2.

Figure 10. Synthetic time-dependent plane-wave spectrum under the Born approximation,
calculated from (39). The figure format is the same as in figure 9.
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Figure 11. Cross sectional cuts of the reconstructed O(r) at various distances ρ from the
symmetry axis. Chain curves: the original scatterer with n0 = 1.1. Broken and dotted
curves: reconstruction with reflection and with transmission data only (i.e. reconstruction of
O1,2, respectively). Full curves: full reconstruction (i.e. O1 + O2).

Figure 12. Grey representation of the reconstruction in
figure 11 for n0 = 1.1. Black: 10% error, dark grey:
25% error, light grey: 60% error.

Figure 13. Imaging integration trajectories (see
discussion after (36)) plotted in the (ξρ , τ ) domain of
ũ1,2 (see figure 9). The curves correspond to image
points on the z axis at z = 0, ±0.5, ±1, ±1.5.

finds that the two ghost images at z ' ±1.2 are essentially due to the error in ũ1,2 at large
ξρ values in figure 9, which has been identified in section 7.2.1 as truncated aperture error.
Finally, as discussed in connection with figure 9, the effect of internal reflections which are
not included in the Born model is minor for the present set of parameters.

8. Summary and conclusions

We presented a time-domain diffraction tomography using a spectral theory of time-
dependent plane waves. The analytical framework is structured about the Radon transform:
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as has been shown in (24), the time-dependent plane-waves spectrum ũj (ξ, τ ), calculated
from the data uj (x, t) via the slant-stack transform (16) is directly related to the Radon
transform of the medium Ǒ(p,

◦
s). The Radon axis

◦
s bisects the angle between the plane-

wave direction
◦
κj (ξ) and the incident wave, while the location p along this axis is related to

the spectral observation time τ via (23). Physically, this relation describes the scattered field
in any spectral direction

◦
κj as specular plane-interface reflections by the Radon transform

of O along the
◦
s axis (see discussion in section 5.2 and figure 5). This interpretation

also clarifies the resolution limit 1p in (25). As noted in section 5.1, the best resolution
is obtained for the axial directions, which are obtained from the reflected field, but it
deteriorates in the cross-range directions which are described by the transmitted field.

Two inversion schemes have then been considered in section 6: a Radon space
reconstruction (section 6.1) and a time-domain filtered backpropagation (see summary in
section 6.2.3). The Radon space formulation has identified the main sources of error to be:
(a) the deterioration of the pulse resolution in the forward u2 direction, that affects the data
in the cross-range Radon directions (see (25)) and (b) the aperture truncation which affects,
essentially, the axial resolution. These theoretical considerations have been established
through the detailed numerical example in section 7, where the emphasis has been placed
on identifying the isolated effects of all sources of error.

In subsequent publications, the spectral relations developed here will be extended to a
local theory wherein collimated wavepackets (pulsed beams), rather than time-dependent
plane-waves, are being used as basis elements for local reconstruction.
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