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The present work is concerned with applying a ray-centered non-orthogonal coordinate system which is a pri-
ori matched to linearly-phased localized aperture field distributions. The resulting beam-waveobjects serve as
the building blocks for beam-type spectral expansions of aperture fields in 2D inhomogeneous media that are
characterized by a generic wave-velocity profile. By applying a rigorous paraxial-asymptotic analysis, a novel
parabolic wave equation is obtained and termed “Non-orthogonal domain parabolic equation”—NoDope. Tilted
Gaussian beams, which are exact solutions to this equation, match Gaussian aperture distributions over a
plane that is tilted with respect to the beam-axes initial directions. A numerical example, which demonstrates
the enhanced accuracy of the tilted Gaussian beams over the conventional ones, is presented as well. © 2010
Optical Society of America

OCIS codes: 070.2580, 350.5500, 080.2720.
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. INTRODUCTION
aussian beams (GBs) have been a subject of intense con-

inuous research mainly due to their joint spectral-spatial
ocalization, which is significantly advantageous for
ropagation and scattering and results in simplified ana-
ytic expressions for the beam fields. Locality consider-
tions have been utilized for solving beam-type waveob-
ects propagation in generic medium profiles such as
nhomogeneous [1–3], anisotropic [4–10], and for time-
ependent pulsed beams, in dispersive media [11–15].
he need for these solutions arises from beam-type ex-
ansions such as the frame-based field expansions
16–18]. These expansion schemes utilize the key feature
f the beam’s continuous spectrum [19–21] and discretize
he spectral representation with no loss of accuracy.

Exact beam-type expansions require beam solutions
hat match localized initial planar distributions. Such so-
utions in inhomogeneous media can be obtained by ap-
lying the parabolic wave equation (PWE), which models
ropagation of linear waves that are predominant in one
irection [22–27]. Important solutions of the PWE include
ts different beam-type waveobjects [28–30]. PWE meth-
ds can also be utilized for solving beam-type waveobjects
ropagation in inhomogeneous media [1–3].
In these solutions as well as in other different propaga-

ion scenarios, the boundary plane over which the initial
eld distribution is given is generally not perpendicular to
he paraxial direction of propagation (the beam-axis).
herefore, in order to use conventional (orthogonal coor-
inates) GBs, apart from asymptotic approximations, an
dditional approximation is carried out to project the ini-
ial field complex curvature matrix on a plane normal to
he beam-axis direction. This additional approximation
educes the accuracy of the resulting beam solutions es-
ecially for large angle departures and, moreover, it be-
omes inconsistent with respect to asymptotic orders.
1084-7529/10/081840-11/$15.00 © 2
The need for the additional approximation can be
voided by applying a non-orthogonal coordinate system
hat is a priori matched to the lineally phased aperture
istribution. This system has been introduced in [31] and
as applied for obtaining beam-type waveobjects in a 3D
omogeneous medium. These waveobjects were termed
tilted GBs.” Application of the scalar tilted GBs to elec-
romagnetic beam-type expansions has been explored as
ell. Different types of tilted GBs were parameterized in

32]. The present investigation extends these results to
nclude propagation in 2D inhomogeneous media that is
dentified by a generic wave-velocity profile. Thus, a novel
orm of PWE in non-orthogonal coordinates is obtained
uch that its beam-type solutions are matched to localized
perture distributions over tilted planes (see Fig. 1).

. STATEMENT OF THE PROBLEM
eam-type expansion schemes can be obtained by project-

ng the planar z=0 aperture field distribution on localized
inearly-phased Gaussian windows. The field in z�0 half-
pace is described by a superposition of tilted beams that
manate from a discrete set of points over the aperture in
discrete set of directions. Each beam propagator is iden-

ified by a spectral wavenumber k̄ that contributes to the
perture distribution a linear phase term of ik̄x [19,21].
his spectral wavenumber is related to the beam-axis
pectral (departure) angle � via cos �=V0k̄ /�, where V0 is
he wave velocity at the departure point (see Fig. 1). Thus
he ability to apply beam-type expansions in inhomoge-
eous media depends on finding accurate beam solutions
hat match linearly-phased Gaussian aperture distribu-
ions.

We are concerned with asymptotically evaluating the
D time-harmonic beam-field u�x ,z� in the z�0 half-
010 Optical Society of America
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pace due to sources in z�0. We assume that the aper-
ure distribution takes the canonical form of beam-type
xpansions propagators,

u0�x� = exp�i��V0
−1x cos � +

1

2
x2�0�� , �1�

here V0=V�0,0� with V�x ,z� being the medium wave-
elocity profile. In Eq. (1) �0 is a frequency-independent
omplex parameter (the beam’s aperture complex curva-
ure) with Im �0�0, and the spectral angle � is identified
s the initial beam-axis angle with respect to the initial
-axis over the z=0 plane. Beam field u�x ,z� satisfies the
D inhomogeneous scalar Helmholtz equation

��2 + �2V−2�x,z��u�x,z� = 0, �2 =
�2

�z2 +
�2

�x2 , �2�

here u�x ,z� is a 2D time-harmonic field with an assumed
nd suppressed time-dependence of exp�−i�t�. Thus we
re aiming at obtaining asymptotically exact paraxial so-
utions to Helmholtz’s equation (2) under boundary condi-
ion (1) and causality condition of an outgoing wave at z
0+.

. LOCAL RAY-CENTERED COORDINATE
YSTEM
ollowing the motivation presented in the introduction,
he concept of utilizing non-orthogonal coordinates for
eam solutions which was originally introduced in [31,32]
s applied here for propagation in generic two-
imensional slowly varying inhomogeneous media. We
eek beam solutions that are confined about ray trajecto-
ies (beam-axes) and apply a local (ray-centered) non-
rthogonal coordinate system in which the transverse co-
rdinate axis is tilted with respect to the beam-axis and
aintains a constant angle of � along the curved trajec-

ory.
The conventional (orthogonal) local ray coordinate sys-

em whose origin is located at point ro over the ray tra-
ectory is defined by unit-vectors t̂o and n̂o denoting the
angent and normal of the trajectory at ro, respectively
see Fig. 2). Here and henceforth, subscript “o” denotes

ig. 1. Tilted Gaussian beam waveobject is propagating along a
ay trajectory (beam-axis) in an inhomogeneous medium that is
haracterized by a generic wave-velocity profile V�x ,z�. This wa-
eobject carries Gaussian distributions over transverse lines that
re tilted by angle � with respect to the beam-axis.
uantities that are sampled at the on-axis coordinate ori-
in ro. The unit vectors are related by the Fernet equa-
ions [33]

dro

ds
= t̂o,

dt̂o

ds
= Kon̂o,

dn̂o

ds
= − Kot̂o, �3�

here Ko denotes the curvature of the trajectory at ro,
hich for a ray-trajectory is given by 	Ko=−vn /v	ro

. Here
nd henceforth, (minuscule) v denotes sampling the veloc-
ty profile V�x ,z� on-axis, vn denotes the normal on-axis
erivative of V, and so forth. We choose a notation in
hich n̂o does not change direction with respect to trajec-

ory tangent, i.e., the unit-vector n̂o� t̂o is constant, so
hat Ko is either negative or positive for convex or concave
rajectory intervals, respectively, in accordance with
qs. (3) (see Fig. 2).
Following the discussion in the introduction, we define
novel non-orthogonal coordinate system, in which the

ocal beam coordinate unit-vectors, which are denoted by
ˆ b and ẑb, are obtained from the conventional (orthogo-
al) local coordinate unit vectors, t̂o and n̂o, by the trans-
ormation

x̂b = cos �t̂o + sin �n̂o, ẑb = t̂o. �4�

ere � is the aperture distribution spectral angle in
q. (1). The angle � is assumed to be constant for all ob-
ervation points r. Thus, xb is identified as the distance
long an axis that is tilted by � (with respect to the tan-
ent t̂o), and zb is the arclength along the trajectory up to
he intersection point of the trajectory with the xb axis
see Fig. 2). Note that the conventional (orthogonal sys-
em) tangent parameter s (Eikonal) is a function of both
b and zb, namely, s=s�xb ,zb�. Observation point r can be
ritten in the new coordinates as

r = ro�zb� + xbx̂b, �5�

here ro�zb� is the on-axis location of the origin.
In the present context of beam-type (paraxial) solu-

ions, we assume that the on-axis wave-velocity normal
eviation away from the beam-axis, vn�zb�, is small for ob-
ervation points in the Gaussian domain, i.e.,
vn�zb�xb /v�zb�	�1. Thus, we conclude that the trajectory
adius of curvature is large with respect to the beam-

ig. 2. Observation point r is described by a non-orthogonal co-
rdinate system r= �xb ,zb�, where xb is the distance along the axis
hat is tilted by � with respect to the ray trajectory tangent, t̂o,
nd zb is the arclength along the trajectory up to the intersection
oint of the ray with the xb axis. The (positive) x̂b and n̂o direc-
ions remain constant with respect to the trajectory tangent, and
herefore, the curvature Ko�zb� is negative or positive in convex
left) or concave (right) regions, respectively.
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idth, so that a local (ray-centered) coordinate system
an be defined uniquely for all near-axis observation
oints.

. MAIN RESULTS
btaining beam-type solutions that correspond to the
perture distribution in Eq. (1) involves applying
symptotic approximation of �-terms rigorously over the
ay trajectory. Therefore, for each term in Helmholtz
quation (2), a corresponding asymptotic series needs to
e obtained in the non-orthogonal ray-centered coordinate
ystem in system (4). This coordinate system is inexplic-
tly defined along solutions (ray trajectories) of the Eiko-
al equation. Since this procedure is lengthy, in order to
ain clarity in the presentation we first summarize the
ain results in this section, while full analytic details are

iven in Section 5.

. Non-Orthogonal Domain Parabolic Equation
his work presents a new class of paraxial waveobjects of
he general ray-field form

u�xb,zb� = U�x̄b,zb�exp�i��x̄b,zb��, �6�

here U�x̄b ,zb� denotes the ray-field’s amplitude,

x̄b = xb
� �7�

s the transverse coordinate that is normalized with re-
pect to the frequency �, and the phase

��x̄b,zb� = ��
0

s�x̄b,zb�

v−1�	�d	 �8�

s accumulated along the ray trajectory arclength 	. Note
hat unlike the conventional paraxial ray-field, here
�x̄b ,zb� is described in the local non-orthogonal coordi-
ate system in Eq. (4).
By applying the analytic procedure that is presented

elow in Subsection 5.B, we find that amplitude U satis-
es the novel NoDope in inhomogeneous media,

csc �v3�zb�Ux̄bx̄b
+ 2i sin �v2�zb�Uzb

− �x̄b
2 sin3 �vnn�zb�

+ i sin �v�zb�v��zb��U = 0, �9�

here subscript x̄b, zb, or n denotes the corresponding
artial derivative, such that Uzb

=�U /�zb, etc. By sam-
ling Eq. (4) at z=0, we identify xb=x so that the NoDope
n Eq. (9) is solved with the boundary condition

U�x̄b,0� = 	u�x,0�	x=x̄b/
� exp�− i��x̄b,0��. �10�

ote that by setting �=
 /2, the NoDope in Eq. (9) re-
uces to the familiar orthogonal-coordinates parabolic
quation in [1,27], and that by setting V�r�=Const, we ob-
ain the 2D analog of the homogeneous medium NoDope
n [31,32].

. Tilted GB Solutions
he tilted GBs are localized solutions of NoDope (9) sub-

ect to the aperture distributions in Eq. (10). Following
he procedure in Subsection 5.C, they are given by
U�x̄b,zb� = A�zb�exp�ix̄b
2��zb�/2�, �11�

here the complex curvature

��zb� = sin2 �p�zb�/q�zb� �12�

s obtained by solving along the beam-axis the two linear
DEs

d

dzb
�q

p� = � 0 v�zb�

− vnn�zb�/v2�zb� 0 ��q

p� . �13�

hese equations are solved with the “initial” �z=0� condi-
ions

q�0� = 1, p�0� =
�0

sin2 �
+

V0�

V0
2 cot2 � −

2K0 cot �

V0
, �14�

here K0=Ko�zb=0�. The amplitude A�zb� in Eq. (11) is
iven by

A�zb� =
 q�0�

q�zb�

v�zb�

v�0�
. �15�

he tilted GB waveobjects can be written explicitly by us-
ng Eq. (15) in Eq. (11), and inserting into Eq. (6), giving

u�xb,zb� =
 q�0�

q�zb�

v�zb�

v�0�
exp�i���

0

s�xb,zb� d	

v�	�

+
1

2
xb

2��zb��� . �16�

The tilted GBs in Eq. (16) are a generalization of the
wo well-known special case solutions: first, for a homoge-
eous medium, by setting v=const, Eq. (13) can be solved
xplicitly and the tilted GB takes the form [31]

u�xb,zb� =
��zb�

�0
exp�i��v−1zb +

1

2
xb

2��zb��� , �17�

here ��zb�= �vzb csc2 �+�0
−1�−1. The second special case

f propagation in an inhomogeneous medium with or-
hogonal coordinate system is obtained by setting �

 /2, in Eqs. (16) and (13) and in Eq. (4), giving

u�s,n� =
q�0�

q�s�

v�s�

v�0�
exp�i���

0

s 1

v�	�
d	 +

1

2
n2��s��� .

�18�

ere ��s�=p�s� /q�s�, where p and q are obtained by set-
ing �=
 /2 in Eqs. (13) and (14). Solution (18) is the 2D
B in [1].
The tilted GBs in Eq. (16) have a form similar to the

onventional (orthogonal-coordinate) GBs in Eq. (18). The
ain difference is the complex curvature sampling point;

or a given observation point �x ,z�, the complex curvature
f a tilted GB is sampled at the corresponding non-
rthogonal system origin, i.e., at zb, whereas an orthogo-
al GB requires sampling at the orthogonal system
rigin — s. Therefore, the computational effort in evalu-
ting these solutions is the same, whereas tilted GBs ex-
ibit enhanced accuracy over the conventional ones,
hich is demonstrated in Section 6.
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. Properties of the Tilted GB
he properties of the tilted GB in Eq. (16) are determined
y the complex curvature ��zb�. The tilted GB exhibits a
aussian decay over lines of constant zb that are tilted by
ngle � with respect to the beam-axis. Its e−1 beam-width
n xb coordinates is given by

W�zb� = 
8/
� Im ��zb�, �19�

here ��zb� is obtained by solving Eq. (13) along the
eam-axis.
The phase-front radius of curvature at an on-axis point

b that is denoted here by ��zb� is obtained from the real
art quadratic phase term in Eq. (16), namely, ��zb�
1/Re ��zb�. This term parameterizes the phase in the

ilted transverse coordinate xb, i.e., over tilted lines of
onstant zb (see Fig. 1). In order to relate ��zb� to the ra-
ius of curvature in a canonical paraxial ray-field, we
ample Eq. (16) over perpendicular lines of constant s.
ince over these lines, for different n values both xb and
b vary, we approximate [see Eq. (37)] x=n /sin �+O��−1�,
s well as

��zb� � ��s� − ���zb��s, �s = s − zb. �20�

ater on in Eq. (37), we establish �s=O��−1/2�, so that the
eading asymptotic term of the real part of the quadratic
hase in Eq. (16) reads

Re�1

2
xb

2��zb�� �
1

2
n2 Re���s��/sin2 �. �21�

y inserting Eq. (21) into Eq. (16) we can evaluate the
hase-front radius of curvature normal to the beam-axis
s �N�zb�=sin2 � /Re ��zb�. Note that the beam collimation
ength, which is determined by the complex curvature
long the beam-axis, ��zb�, is frequency independent.
uch beam solutions were termed iso-diffracting [34]. The

so-diffracting feature makes these waveobjects highly
uitable for time-domain analysis [10,16,17,21,35,36].

. ANALYTIC DETAILS
ull analytic details of the derivation of the NoDope in
q. (9) and its tilted GB solutions in Eq. (16) that were
resented in Section 4 are given in detail in this section.
he procedure introduces a rigorous analysis in terms of
symptotic orders in the ray-centered non-orthogonal co-
rdinate system in Eq. (4).

. Metric Coefficients
differential change in r in Eq. (5) due to infinitesimal

isplacement along the coordinates curves can be ex-
ressed by

dr =
�r

�zb
dzb +

�r

�xb
dxb. �22�

y using Eqs. (5) and (3) in Eq. (22) we obtain the two
nitary-vectors of this 2D coordinate system [37]

a1 = �r/�zb = t̂o + xbKo�cos �n̂o − sin �t̂o�,

a = �r/�x = sin �n̂ + cos �t̂ . �23�
2 b o o
s in Eq. (3), subscript o denotes sampling on-axis at the
rigin ro, i.e., Ko=Ko�zb�, etc. The elements gij=ai ·aj of
he 2�2 metric coefficients tensor G are given by

G�xb,zb� = �1 − 2xb sin �Ko + xb
2Ko

2 cos �

cos � 1 � . �24�

he inverse (contravariant) metric-tensor is given by

G−1�xb,zb� = �gzbzb gzbxb

gxbzb gxbxb�
=

1

h2� 1 − cos �

− cos � 1 − 2xb sin �Ko + xb
2Ko

2� ,

�25�

here

h�xb,zb� = 
det�G� = sin � − xbKo�zb�. �26�

. Non-Orthogonal Domain Parabolic Equation
he Laplacian operator in a general 2D non-orthogonal
ystem �x1 ,x2� is given by [37]

�2 =
1

h
i=1

2


j=1

2 �

�xi�gijh
�u

�xj� , �27�

here gij�x1 ,x2� denotes the �i , j�th element of G−1 matrix
hat corresponds to system �x1 ,x2�, and h�x1 ,x2� is defined
n Eq. (26). By inserting Eq. (25) with Eq. (26) into
q. (27), Helmholtz equation (2) in the local non-
rthogonal system reads


k=1

6

Tk�xb,zb� = 0, �28�

here

T1�xb,zb� = M1�xb,zb�uzb
�xb,zb�,

T2�xb,zb� = M2�xb,zb�uxb
�xb,zb�,

T3�xb,zb� = M3�xb,zb�uzbxb
�xb,zb�,

T4�xb,zb� = M4�xb,zb�uzbzb
�xb,zb�,

T5�xb,zb� = M5�xb,zb�uxbxb
�xb,zb�,

T6�xb,zb� = M6�xb,zb�u�xb,zb�, �29�

ith

M1�xb,zb� = �hgzbzb�zb
+ �hgxbzb�xb

,

M2�xb,zb� = �hgxbxb�xb
+ �hgzbxb�zb

,

M3�xb,zb� = h�gzbxb + gxbzb�,

M4�xb,zb� = hgzbzb,

M �x ,z � = hgxbxb,
5 b b
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M6�xb,zb� = h�2V−2�xb,zb�, �30�

n which the g elements are given in Eq. (25). As in Eq. (9)
ubscript xb or zb denotes the corresponding partial de-
ivative. We aim at obtaining asymptotic (paraxial) solu-
ions of Eq. (28) in xb coordinates. Following conventional
araxial ray-theory [1,2,27,31], we assume in the follow-
ng derivation, that the transverse coordinate xb is of the
rder of O�1/
�� [see Eq. (16)]. In the following, we ex-
and Helmholtz’s equation into power series of �. To that
xtent, we introduce the normalized transverse coordi-
ate in Eq. (7), namely x̄b=xb
�. The asymptotic solution

s assumed to have the ray-field form in Eq. (6), where
hase ��x̄b ,zb� in Eq. (8) is accumulated along the beam-
xis arclength Eikonal s�x̄b ,zb� and U�x̄b ,zb� denotes the
ay-field amplitude.

Next we insert ray-field (6) into Helmholtz’s equation
28) and collect elements of similar �-order. The phase �
n Eq. (6) is given inexplicitly by integration along the ray
rajectory. Thus, partial derivatives of the phase include
�xb ,zb�, its derivatives, as well as v�s� and its derivatives,
hich are all �-dependent (via xb). The paraxial equation
rocedure requires the use of the on-axis wave velocity
nd its derivatives at point ro. Therefore, we expand �s
s−zb in � series. For a given point over the ray trajec-

ory r�s�=ro+�r��s� we approximate (see Fig. 3)

�r��s� � �dr

ds�
ro

�s +
1

2�d2r

ds2�
ro

�s2. �31�

he order of this approximation is justified below [after
q. (37)]. By using the ray-trajectory differential relations

n Eq. (3), we evaluate

	d2r/ds2	ro
= 	dt̂/ds	ro

= Kon̂o, �32�

nd by inserting Eq. (32) into Eq. (31), we obtain

�r��s� = �st̂o + Ko�s2n̂o/2. �33�

ecall that subscript o in the above equations denotes
ampling at ro, i.e., at �s=0. Next by using Eq. (33) we
valuate the unit-vector t̂��s� at a trajectory point s near
o by (up to O��s2�)

t̂��s� =
dr

ds
=

d�r��s�

d�s
= t̂o + Ko�sn̂o. �34�

herefore the normal to t̂��s� is given by

ig. 3. �s approximation. The difference between the Eikonal s
nd the beam local coordinate zb, �s=s−zb, is expressed in terms
f on-axis point ro using a Taylor series. Unit-vectors n̂o and t̂o
enote the normal and tangent to the trajectory at ro, respec-
ively, and unit-vectors n̂��s� and t̂��s� denote the normal and
angent to the trajectory at point s.
n̂��s� = n̂o − Ko�st̂o. �35�

or a given point r along the xb axis, we can write xbx̂b
�r+nn̂��s� where n is measured along the normal n̂

rom the trajectory to point r. By substituting n̂ in
q. (35) as well as �r in Eq. (33), we obtain

xbx̂b = t̂o�s�1 − Kon� + n̂o�Ko�s2/2 + n�. �36�

inally, by inserting x̂b in Eq. (4) to the left-hand-side of
q. (36) and comparing the two expressions, we obtain

he desired approximation for �s using a Taylor expan-
ion in xb (recall that xb�O��−1/2�) as

�s = xb cos ��1 + Koxb sin �� + O��−3/2�. �37�

sing Eq. (37), we note that xb and �s are of the same or-
er of �−1/2. The following asymptotic formulation re-
uires approximation of �s up to order �−1 [see Eq. (38)].
herefore, approximation (31) up to O��s2� is justified.
Next we evaluate the asymptotic series of the Eikonal

artial derivatives. By using Eq. (37) we approximate (up
o �−1)

�s

�x̄b
= �−1/2 cos � + Ko�−1x̄b sin 2� + C3/2�−3/2,

�s

�zb
= 1 +

1

2
Ko�x̄b

2�−1 sin 2�, �38�

here the prime denotes an on-axis derivative with re-
pect to zb, i.e., Ko�=dK�zb� / 	dzb	ro

. In order to be consis-
ent in the asymptotic procedure, the coefficient C3/2
eeds to be taken into account. Nevertheless there is no
eed to evaluate it explicitly, since it cancels out upon in-
ertion into Helmholtz’s equation. The on-axis velocity
�s� can now be approximated up to the desired order us-
ng a Taylor expansion:

v�s�xb,zb�� = vo + �dv

ds�
s=zb

�s + �d2v

ds2�
s=zb

�s2 + O��s3�.

�39�

y inserting �s in Eq. (37), we obtain v�s�=vapp�x̄b ,zb�
O��−3/2�, in which

vapp�x̄b,zb� = vo + �−1/2x̄bvo� cos � + �−1x̄b
2�vo�Ko sin 2�

+ vo� cos2 ��/2. �40�

Next we evaluate the partial derivatives in Eq. (30) for
ay-field (6). By applying � /�zb to Eq. (6) and using
q. (38), we obtain

uzb
= Uzb�x̄b,zb�exp�i��x̄b,zb��, �41�

here

Uzb = i�v−1�zb�U�x̄b,zb� + O��0�. �42�

ere and henceforth, we denote Uzb as the amplitude
unction corresponding to uzb

with respect to the expo-
ent, and so forth. Using this definition, we can evaluate

n a similar manner
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Uxb =
i� cos �

vo
U�x̄b,zb� + O��1/2�,

Uzbzb = − � �2

vapp
2 +

��Ko�x̄b
2 sin 2� + ivo��

vo
2 �U

+
2i�

v�zb�
Uzb

+ O��1/2�,

Uxbxb = − �� �s

�x̄b
�2 �3

vapp
2

+
i��vo� cos2 � − Kovo sin 2��

vo
2 �U

+ �2i�Kox̄b sin 2�

vo
+

2i�3/2 cos �

vapp
�Ux̄b

+ �Ux̄bx̄b
+ O��1/2�,

Uzbxb = − ��5/2

vapp
2

�s

�zb

�s

�x̄b
+

i�vo� cos �

vo
2 �U

+
i� cos �

vo
Uzb

+ � i�3/2

vapp

−
i�vo�x̄b cos �

vo
2 �Ux̄b

+ O��1/2�, �43�

s well as the M1–5 coefficients in Eq. (30):

M1 = − cot � csc �Ko + O��−1/2�,

M2 = �csc2 � − 2�Ko + O��−1/2�,

M3 = − 2 cot ��1 + csc �Kox̄b�−1/2

+ csc2 �Ko
2x̄b

2�−1� + O��−3/2�,

M4 = csc ��1 + csc �Kox̄b�−1/2

+ csc2 �Ko
2x̄b

2�−1� + O��−3/2�,

M5 = csc � + �csc2 � − 2�Kox̄b�−1/2

+ cot2 � csc �Ko
2x̄b

2�−1 + O��−3/2�. �44�

By inserting ray-field (6) with Eqs. (42)–(44) into Helm-
oltz’s equation (28), we obtain a partial differential equa-
ion for amplitude U�x̄b ,zb�.

Next we expand each element in the resulting equation
nto power series of 
� up to order of � [see discussion be-
ow following Eq. (50)]. For simplicity, we normalize the
1–6 elements in Eq. (28) by the phase exponent exp�i��,

.e., the normalized T1, which is denoted by (an overbar)

1, is defined as

T̄1 � T1 exp�− i�� = M1�x̄b,zb�Uzb, �45�

nd so forth, so that Helmholtz’s equation (28) reads

k=1

6

T̄k�xb,zb� = 0. �46�

y inserting Eqs. (42) and (44) into Eq. (45) and collecting
erms of �-orders, we obtain

T̄1 = − i� cot � csc �Kovo
−1U + O��1/2�. �47�

he same procedure is applied for T̄2− T̄5 terms in
q. (46), and the resulting expressions are given in Ap-
endix A.
Finally we evaluate the leading �-components in the

ast term of the Helmholtz equation (28), namely, T̄6. By
xpending V−2�xb ,zb� in Taylor series in the normalized
ransverse coordinate, x̄b, about the trajectory point ro,
e obtain

V−2 =
1

vo
2 − �−1/2

2x̄b

vo
3 vxb

− �−1x̄b
2�vxbxb

vo
3 − 3

vxb

2

vo
4 � + O��−3/2�,

�48�

here (see details in Appendix B)

vxb
� 	�V/�xb	ro

= − sin �voKo + cos �vo�,

vxbxbo
= sin2 �vnn + cos2 ��vo� + Ko

2vo� − sin 2�voKo�.

�49�

y inserting Eq. (48) with Eqs. (49) and (26) into the last
erm of Eq. (28) and then expanding into power series of
, we obtain

T̄6 = vo
−3��2 sin �vo − �3/2x̄b�cos 2�Kovo + sin 2�vo��

− �x̄b
2�sin3 �vnn + sin 3�Ko

2vo −
1

2
�cos �

+ 3 cos 3��Kovo� − 2 cos � sin2 �Ko�vo

− 3 cos2 � sin �vo�
2vo

−1 + cos2 � sin �vo���U + O��1/2�.

�50�

By inserting series (47), (A.1)–(A.4), as well as Eq. (50),
nto Helmholtz’s equation (46) and collecting coefficients
f the same order in �, we find that the coefficients of �2

nd �3/2 cancel out. By setting the highest term, the � co-
fficient, to zero we obtain the novel NoDope in inhomo-
eneous media in Eq. (9).

. Tilted GB solutions
ollowing the motivation in the introduction we explore

n this subsection solutions of the NoDope in Eq. (9) that
re suitable for beam-type expansions. These wave solu-
ions are identified by the aperture distributions in
q. (1). Thus, we assume that the GBs are of the form in
q. (11). By inserting U�zb , x̄b� in Eq. (11) into the NoDope

n Eq. (9), and setting the resulting two coefficients of x̄b
2

nd of x̄0 to zero, we obtain
b
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2
dA

dzb
+ A�zb��csc2 �v�zb���zb� −

v��zb�

v�zb� � = 0, �51�

s well as the Ricatti-type equation

���zb� + csc2 �v�zb��2�zb� + sin2 �v−2�zb�vnn�zb� = 0.

�52�

he Ricatti equation can be solved by setting

��zb� = sin2 �q�/�qv�, �53�

hich transforms Eq. (52) into the linear equation

v�zb�q��zb� − v��zb�q��zb� + vnn�zb�q�zb� = 0. �54�

y setting q��zb�=v�zb�p�zb�, we obtain ��zb� in Eq. (12), in
hich p and q are evaluated by solving Eq. (13) along the

ay trajectory.
In order to facilitate the “initial” conditions for p and q

n Eq. (13), we approximate the aperture distribution in
qs. (6) and (8) up to the relevant asymptotic orders.
irst we approximate about the beam’s departure point
=0:

v−1�	� � V0
−1 − V0�V0

−2	, �55�

here we denote V0�= 	dv�	� /d			=0. By using Eq. (55) we
valuate

�
0

s�x�

v−1�	�d	 �
s�x�

V0
−

s2�x�V0�

2V0
2 . �56�

he asymptotic terms of s�x� are obtained by substituting
s=0, xb1

=x, and zb=0 in Eq. (37). By inserting Eqs. (56)
nd (37) into Eq. (10) with Eq. (11), we obtain the re-
uired asymptotic approximation of the tilted GB over z
0 plane as

u�x,0� = A�0�exp�i��x cos �

V0

+
1

2
x2���0� +

K0 sin 2�

V0
−

V0� cos2 �

V0
2 ��� .

�57�

y comparing Eq. (1) with Eq. (57), we identify A�zb=0�
1 and

��0� = �0 − K0V0
−1 sin 2� + V0�V0

−2 cos2 �. �58�

quation (13) is solved along the beam-axis with “initial�
onditions q�0� and p�0� such that ��0�=sin2 �p�0� /q�0�,
or example, the ones presented in Eq. (14).

Finally, the amplitude A�zb� is found by inserting
q. (53) into Eq. (51) and evaluating the resulting differ-
ntial equation by separation of variables. The result is
iven in Eq. (15). The new GB waveobjects can now be
ritten explicitly by using Eqs. (15) and (12) in Eq. (11),
nd inserting into Eq. (6). This procedure yields the tilted
B in Eq. (16).
. NUMERICAL EXAMPLE: PLANE-
TRATIFIED MEDIUM
he general solution in Subsection 4.B is applied in this
ection to z plane-stratified medium with linear velocity
rofile of

V�z� = V0 + z, z � 0, �59�

here V0 is the wave-velocity at z=0 and  denotes the
ave-velocity gradient.
By solving the Eikonal equation for velocity profile (59),

ne finds that the beam-axis is a circle that is identified
y center-point �xc ,zc� and radius Ro of

�xc,zc� = �tan �V0/,− V0/�, Ro = V0/ cos �, �60�

o that the beam-axis exhibits a turning point at xt=xc,
nd

zt = − Ro�1 − sec ��. �61�

or a given on-axis point, ro= �xo ,zo�,

xo = xc � �Ro
2 − �zo − zc�2�1/2, �62�

here �xc ,zc� are given in Eq. (60) and � corresponds to
bservation points before or after the turning point, re-
pectively. The arclength 	 along the beam-axis can be
asily obtained from Eq. (60), giving

	 = Ro�sin−1�cos � + zo/Ro� + � − 
/2�. �63�

. Tilted GB Evaluation
et rn0

= �xno
,zno

� be the origin of the conventional or-
hogonal local beam coordinate system �s ,n� over ray tra-
ectory (60). For a given observation point r= �x ,z�

xno
= Ro�x − xc

d
+ sin ��, zno

= Ro� z − zc

d
− cos �� ,

�64�

here

d�x,z� = 
�x − xc�2 + �z − zc�2. �65�

y inserting zno
in Eqs. (64) into Eq. (63), we obtain

n = Ro − d, s = Ro�sin−1�x − xc

d � + �� . �66�

Applying Snell’s law to the plane-stratified medium,
nd using Eq. (63), we observe that the on-axis wave-
elocity is related to the arclength along the ray via

v�	� = V0 cos�� − 	 cos �/V0�/cos �, �67�

o that Eq. (13) with initial condition (14) can be solved
or medium profile (59) explicitly. Thus, using Eq. (12),
�	�=sin2 �p�	� /q�	� where
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p�	� = p�0�,

q�	� = 1 +
V0

2



p�0�

cos2 �
�sin�� − cos �

	

V0
� − sin �� ,

�68�

here p�0� is given in Eq. (14). For observation point r
�x ,z�, the �xb ,zb� coordinates in the local non-orthogonal
ystem, are obtained by using basic trigonometry:

xb = ± Ro�
�1 − n/Ro�2 − cos2 � − sin ��, d � Ro,

zb = s − Ro sin−1�xb cos �/�Ro − n��. �69�

hus, the �xb ,zb� coordinates in terms of �x ,z� coordinates
re obtained by inserting d�x ,y� in Eq. (65) with Eq. (60)
nto Eqs. (69), and the analytic tilted GB at point �x ,z� is
btained by inserting the resulting �xb ,zb� into Eq. (16)
ith 	 in Eq. (63), v�	� in Eq. (67), and p�	� and q�	� in
qs. (68).

. Conventional GB Evaluation
he conventional GB solution in Eq. (18) is obtained by
rojecting the aperture complex curvature, �0, on a plane
ormal to the beam initial direction. Thus the conven-
ional aperture complex curvature is �N0

�0�=�0 /sin2 �,
nd the conventional beam field is obtained by solving
q. (13) along the ray trajectory, with initial condition �N0

that is, by replacing �0 with �N0
in Eq. (18)]. Coordinates

n ,s� are given in Eqs. (66), and p and q are given in
qs. (68) with 	=s and p�0�=�N0

.

. Reference Field Evaluation
he reference field is obtained by applying the Fourier
ransform in the x direction and propagating the result-
ng local plane-wave spectra via the WKBJ approxima-
ion. Thus the reference field in z�0, which is denoted
ere by uref�x ,z�, is given by the following spectral repre-
entation [38,39]:

ig. 4. Tilted GB (solid curve), the conventional GB (dashed cur
ine perpendicular to the beam-axis. (a) Absolute value, (b) phase
elds parameters are �=5000, � = i /3, �=15o, and s =32� .
0 m 0
uref�x,z� =
1

V0

 i�

2
�0
� d�C���

�� 1 − �2

�2�z,���
1/4

exp�i��̃�x,z;���,

�̃�x,z;�� = ��cos � − ��2

2V0
2�0

+ V0
−1�

0

z

��z�,��dz�

+ V0
−1�x� , �70�

here ��z ,��=
V0
2 /V2�z�−�2, Im ��0, and C��� is given by

C��� = 1 − i exp�2i�

V0
��

0

zt���

��z�,��dz� −�
0

z

��z�,��dz��� .

�71�

n Eqs. (70) and (71), zt��� denotes the turning point of a
ocal plane-wave with spectral variable � where ��zt ,��
0. The second term in Eq. (71) is identified as the caustic
eflection coefficient of the local plane-wave of spectral �.
y applying the saddle-point procedure to the phase inte-
ral in Eqs. (70) one can easily observe that the local
lane-waves in the spectral representation interfere con-
tructively along and in the vicinity of the beam-axis that
manates from the origin with angle � with respect to the
-axis.

The �−� ,�� integration in Eqs. (70) is numerically
mplemented by integration over an effective contribution
nterval around the phase on-axis stationary point, �s
�0=cos �, i.e., ��0−�� ,�0+���. We set the spectral inter-
al ��=
Mc2 /Im��0

−1��, which corresponds to the maxi-
al spectrum attenuation of e−M. The sampling rate �� is

hosen according to ����� /M, so that the sampling rate
s small on the scale of the integrand oscillation period. It
as found that in order to achieve a numerical conver-
ence with a maximal relative error of 10−5 on-axis it is
ufficient to choose M=5 and ��=10−3�� /M.

d the reference field (light gray) curves that are sampled over a
ians. The inhomogeneous parameters are V0=1, =0.01, and the
ve), an
in rad
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. Error Comparison
n Fig. 4 we plot the tilted GB (solid curve), the conven-
ional GB (dashed curve) and the reference field (light
ray) curves that are sampled over a line perpendicular to
he beam-axis (where the conventional GB carries a sym-
etrical Gaussian distribution). The line intersects the

eam-axis at arclength sm=32�0, where �0=2
V0 /� de-
otes the local wavelength at the beam’s departure point.
he inhomogeneous medium is given in Eq. (59) with V0
1, =0.01, and the field parameters are �=5000, �0
i /3, and �=15o. Figures 4(a) and 4(b) presents the field’s
bsolute value and phase (in radians), respectively, as a
unction of xb /�0. The plots reveal good agreement be-
ween the tilted GB and the reference field, whereas the
onventional GB plots exhibit a significant error in the
ff-axis field, especially in the phase (Fig. 4(b)), where the
eference and tilted GBs are not symmetrical with respect
o the xb=0 on-axis point.

In Fig. 5 we compare the tilted GB L2 error norm with
espect to the reference field (70) to the corresponding er-
or of the conventional GB. The error is evaluated along
n observation line that is normal to the beam-axis and is
ocated at an on-axis arclength of sm, according to the
orm definition

L2�u,uref� =
1

L�−L/2

L/2

	u�sm,n� − uref�sm,n�	2dn, �72�

here u denotes either the tilted or the conventional GB
nd n denotes the conventional (orthogonal system) nor-
al coordinate.
The figure plots the relative error with respect to the

n-axis reference field, uref�sm ,0�, in percent as a function
f the on-axis location sm, which is normalized by the
omogeneous medium collimation length Fh
V0 sin2 � Im �0

−1 [31]. The error was evaluated for three
ifferent � values: 10°, 20°, and 30°. Here we set Re �0
0 so that the waists are located on the z=0 plane. The
urves are arranged in pairs with continuous and dashed

ig. 5. L2 error norms of the tilted and approximated GBs in
ercent as a function of the normalized on-axis arclength sm /Fh
re plotted for three different values of �. The curves are ar-
anged in pairs with continuous and dashed lines corresponding
o errors of the tilted GB and the approximated one, respectively.
he medium and field parameters are as in Fig. 4. The figure
emonstrates the enhanced accuracy of tilted GBs within the col-
imated beam domain s �0.7F .
m h
ines, corresponding to errors of the tilted GB and the con-
entional one, respectively. Each of the curve pairs in Fig.
share a common gray shade corresponding to the field’s

pectral angle �.
The figure demonstrates that for sm /Fh�0.7 tilted GBs

xhibit better accuracy over the conventional beams, that
s in the well-collimated regime. Note that beam-type ex-
ansions are used so as to take advantage of the analytic
implicity that is introduced by the spatial and spectral
ocalization of these waveobjects. Thus, these expansion
chemes are tuned such that the GBs remains well-
ollimated within all domains of interest. Similar results
ere obtained for homogeneous media in [32].

. CONCLUDING REMARKS
e have presented the concept of utilizing non-orthogonal

oordinates for tilted GB propagation in 2D inhomoge-
eous media, in order to obtain asymptotically exact
eam type solutions to the wave equation in the time-
armonic regime. By utilizing these novel coordinates, we
ttained in Eq. (9) a novel non-orthogonal generalization
f the paraxial wave equation which was termed NoDope.
hile the procedure of obtaining the NoDope in a homo-

eneous medium [31] is straightforward, the correspond-
ng procedure in inhomogeneous media exhibits an addi-
ional degree of complexity due to the inexplicit
xpressions for the ray-field form in which the phase is
iven by integration along ray trajectories. Applying a
onsistent asymptotic procedure in ray centered non-
rthogonal coordinates was feasible, and a generic novel
arabolic wave equation was obtained.
Asymptotically exact beam-type solutions to the

oDope were presented and termed tilted Gaussian
eams. Comparing the tilted GB fields to the conventional
orthogonal) ones, it was found that the two have essen-
ially the same form. The difference is in the complex cur-
ature � sampling point and in transverse coordinate xb
alues. For a given observation point, r, the complex cur-
ature in the tilted GB solution is sampled on-axis at the
rigin of the non-orthogonal coordinate system zb,
hereas in the conventional solution it is sampled on-axis
t the origin of the orthogonal system.
The present work introduced a new family of

symptotic beam-solutions a priori matched to Gaussian
istributions over planes that are tilted with respect to
he beam-axes. Through numerical example we demon-
trated that tilted GBs exhibit enhanced accuracy over
he conventional ones in the well-collimated regime.
hus, these novel waveobjects whose numerical evalua-

ion is as cost effective as the conventional ones can be
onsidered as another significant contribution to beam-
ype spectral expansion schemes.

PPENDIX A: EXPLICIT EXPRESSIONS FOR
¯

2–5

ollowing the procedure that was introduced in Eqs. (45)
nd (47), we obtain for T̄j, j=2–5:

T̄2 = i�
cot � cos 2� csc �K

vo
U + O��1/2�, �A.1�
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T̄3 =��2
2 cos � cot �

vo
2 + �3/2x̄b cot ��2�cot � + sin 2��K

vo
2 −

4 cos2 �vo�

vo
3 � + ��6x̄b

2
cos3 � cot �vo�

2

vo
4 + 2C3/2

cot �

vo
2

+ 2x̄b
2
�2 cos � cot � + cot2 � csc ��K2

vo
2 + 2x̄b

2
cos3 �K�

vo
2 + 2i

cot � cos �vo�

vo
2 − 2x̄b

2 cos � cot �� �5 − 3 cos 2��cot �Kvo�

vo
3

+
cos2 �vo�

vo
3 ���U − �i�3/2

2 cot �

vo
+ i�x̄b�2 cot � csc �K

vo
−

2 cos � cot �vo�

vo
2 ��Ux̄b

− i�
2 cot � cos �

vo
Uzb

+ O��1/2�,

�A.2�

T̄4 = �− �2
csc �

vo
2 + �3/2x̄b�2 cot �vo�

vo
3 −

csc2 �K

vo
2 � − � csc ��x̄b

2
csc2 �K2

vo
2 +

1

2
x̄b

2
�cos 3� − 5 cos ��csc �Kvo�

vo
3 +

x̄b
2 sin 2�K� + ivo�

vo
2

+ 3x̄b
2
cos2 �vo�

2

vo
4 − x̄b

2
cos2 �vo�

vo
3 ��U + i�

2 csc �

vo
Uzb

+ O��1/2�, �A.3�

T̄5 = �− �2
cos � cot �

vo
2 + �3/2x̄b

cot � csc �

2 � �cos 3� − 3 cos ��K

vo
2 + 4

sin � cos2 �vo�

vo
3 � + ��2i

cos �K

vo
− 3x̄b

2
cos3 � cot �vo�

2

vo
4

− 2C3/2

cot �

vo
2 + x̄b

2
cos � cot3 ��2 cos 2� − 3�K2

vo
2 − i

cos � cot �vo�

vo
2 + x̄b

2 cos � cot �� �5 − 3 cos 2��cot �Kvo�

vo
3 +

cos2 �vo�

vo
3 ���U

+ �i�3/2
2 cot �

vo
+ i�x̄b�2 cot � csc �K

vo
−

2 cos � cot �vo�

vo
2 ��Ux̄b

+ � csc �Ux̄bx̄b
+ O��1/2�. �A.4�
a

B
s

F
fi
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PPENDIX B: DERIVATION OF EQUATION
49)
he gradient operator in terms of the orthogonal ray-
entered coordinates �s ,n� is given by

� = n̂�n + t̂h−1�s, �B.1�

ith

h = 1 − K�s�n, �B.2�

here �1,h� are the orthogonal coordinate metric coeffi-
ients. The derivative in the direction of the unit-vector x̂b
s given by

�xb
= �x̂b · n̂��n + h−1�x̂b · t̂��s. �B.3�

n order to evaluate �xb
on-axis, we set xb=0 (or n=0), h

1, t̂= t̂o, n̂= n̂o, s=zb and �s=�zb
in Eq. (B.3). Thus, on-

xis

�xb
= sin ��n + cos ��zb

. �B.4�

he second directional derivative in the direction of x̂b is
iven by

�xbxb
= x̂b · ��x̂b · �� = ��x̂b · n̂��n � · x̂b + h−1�x̂b · t̂��s � · x̂b�.

�B.5�

ince unit-vectors �t̂ , n̂� are invariant with respect to nor-
al coordinate n, by applying either �n or �s to Eq. (B.1)

nd inserting Eq. (3), we obtain, respectively,
�n � = n̂�nn
2 + t̂�h−1�sn

2 + K�s�h−2�s�, �B.6�

nd

�s � = n̂��sn
2 + K�s�h−1�s� + t̂�h−1�ss

2 − hsh
−2�s − K�s��n�.

�B.7�

y inserting Eqs. (B.6), (B.7), and (3) into Eq. (B.5) and
ampling on-axis at ro, we obtain

�xbxb
= cos2 ��zb

2 + sin 2��nzb

2 + sin2 ��nn
2 + sin 2�Ko�zb

− cos2 �Ko�n. �B.8�

inally, using Ko=−vn�zb� /v�zb� in Eq. (B.8), we obtain the
nal result in Eq. (49).
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