RF MEMS TUNABLE INDUCTOR

Imed Zine-El-Abidine
Michal Okoniewski
John G. McRory
Electrical and Computer Eng. Dept., University of Calgary / TRLabs Calgary, 3553-31 Street N.W. T2L 2K7, Calgary, Canada

Abstract
We have developed a MEMS inductor that can be integrated in a conventional RFIC device. The inductor uses surface and bulk micromachining to improve the quality factor and the self-resonance frequency (SRF). The inductor achieved a quality factor greater than 9 and a SRF well above 15 GHz. The inductor is tunable and the inductance variation is greater than 8%. Further improvements are underway to get a higher quality factor and a tuning range.

INTRODUCTION
RF inductors are needed in any wireless front-end circuitry; the performance of both transceivers and receivers depends heavily on this component. High-Q inductors reduce the phase noise and the power consumption of VCO’s and amplifiers and reduce the return loss of matching networks and filters. The quality factor of inductors can be increased by using a thick metal layer [1], [5] and by isolating the inductor from the substrate [2]-[6]. To isolate the inductor, bulk micromachining [2]-[5] or self-assembly [7], [8] can be used. Further, tunable inductors allow for performance optimization of RF front-end circuits. To date, there has not been a practical implementation of a high-Q tunable inductor. Most of the reported MEMS inductors are static fixed-value inductors. One variable inductor using MEMS switches has been reported [9]. However, it provides only discrete values of inductance depending on the ON/OFF configuration of the switches. A tunable inductor using self-assembly technique [8] has been reported. The drawback of that device is that such inductors, are lifted from the substrate, thus becoming prone to electromagnetic interference in the transceiver system.

DESIGN AND FABRICATION
The inductor reported here is formed of two layers, the bottom layer is silicon nitride and the top layer is gold. To increase the quality factor at the high frequencies, the silicon underneath the inductor is etched away. To achieve the tunability, two inductors are connected in parallel. The outer loop inductor is held to the substrate with nitride beams while the inner loop inductor is left free as shown in Figure1. Since the inductors are made of two layers of different thermal expansion coefficients, they form therefore a thermal bimorph [9]. When a current is drawn through the inductors, it causes the inner inductor to move downwards into the pyramidal pit, while the nitride beams prevent the outer inductor from moving. The inductor was analyzed using an electrothermal simulation [10]. Figure 2 shows the computed deflection of the inner loop. The mutual inductance between the two inductors depends on the angle separating them. By moving the inner inductor, the mutual inductance varies and thus changing the overall inductance.

The fabrication process of the tunable inductor is shown in Figure 3. The process starts with depositing of a 600nm nitride layer on the surface of the silicon wafer. The nitride layer is then etched using RIE (Reactive Ion Etching) to form the bottom layer of the inductor, the beams holding the outer loop and the cavity edges. Then, a 100nm layer of chrome is deposited to serve as an adhesion layer for gold. The gold layer is 1µm thick. Gold
and chrome are etched using iodine and nitric acid respectively. The final step is the bulk anisotropic etching using KOH to release the inductors and form the pyramidal pit. The silicon nitride layer played the role of the mask during the anisotropic etch step. A scanning electron microscopy (SEM) photograph of the tunable inductor structure is shown in Figure 4.

PERFORMANCE AND ANALYSIS

The inductor was measured using 100-µm pitch ground-signal-ground (GSG) microwave probes connected to an HP8510 network analyzer with frequencies ranging from 1 GHz to 15 GHz. Probe calibration was done using Cascade CS-5 calibration substrate. Figure 5 illustrates the quality factor of the tunable inductor. Figure 6 shows the tuning range of the inductor. The maximum value corresponds to the original state where the two inductors are at the same level. When the current flows through the two loops, the inner inductor deflects down. Figure 7 shows the deflection of the inner loop. By increasing the angle between the two loops, the mutual inductance decreases and therefore the overall inductance. The tuning range is 8%.

REFERENCES

Figure 1. (a) Side view (b) Top view of the inductor.

Figure 2. The simulated deflection of the inner inductor.

Figure 3. The fabrication process.

Figure 4. A SEM photograph of the inductor.

Figure 5. Quality factor of the inductor.

Figure 6. The inductance variation.

Figure 7. The deflection of the inner inductor into the pyramidal pit.