Compensation of Antenna Mutual Coupling Effect in the DOA Estimation for UWB Waves

Akimasa Hirata and Zen Kawasaki

Dept. of Communication Eng., Osaka University, Osaka 565-0871, Japan.
Fax: +81-6-6879-7690, e-mail: hirata@comm.eng.osaka-u.ac.jp

ABSTRACT: We propose a novel direction-of-arrival estimation technique for ultra-wideband (UWB) electromagnetic waves, which allows for the effect of the antenna mutual coupling. This technique is comprised of a UWB interferometry, a multiple signal classification (MUSIC), and a database. The effectiveness of our scheme is demonstrated through numerical examples.

1. Introduction

Various techniques of direction-of-arrival (DOA) estimation for electromagnetic (EM) waves have been developed in accordance with the spread of wireless communications [1, 2]. As a result, most of the DOA techniques are applicable only for static monochromatic waves. In other words, less attention has been paid to the DOA estimation for ultra-wideband (UWB) EM waves. Impulsive EM waves from electric power equipments [3] and lightning discharges [4] are typical examples of UWB waves. Their DOA estimations are important from the viewpoint of EM compatibility. The frequency spectrum of such EM waves is largely dependent on the kind of sources, temperature, humidity and so forth (e.g., [3, 4]). Therefore, sufficient intensity of EM waves could not be always obtained by using conventional monochromatic approaches.

Recently, much attention has been paid to the compensation of the effect of antenna mutual coupling. It is well known that adaptive nulling is significantly affected by the existence of the mutual coupling effect between the antennas [5, 6]. Note that these attempts have been done for static monochromatic waves. For a class of EM waves with a UWB spectrum, mutual coupling between antennas would be more significant, especially at the lower frequency band, leading to an obvious error in DOA estimations. In [7], we have proposed a DOA estimation technique for UWB EM waves, which is comprised of a UWB interferometry [8], the multiple signal classification (MUSIC) [1], and two databases [9]. In this paper, we propose an improved DOA estimation scheme, which is more efficient than that in our previous paper [7].

2. Signal Processing

The procedure of our signal processing is illustrated in Fig. 1. Note that an antenna array with two antennas is generalized for the DOA estimation of UWB waves. This is because the DOA estimation scheme for multiple sources is not needed unlike monochromatic waves, when we choose a proper time window. However, this procedure can be extended for antenna arrays with more than three elements.

Time-domain signals received by a wideband antenna array is transformed into the frequency domain by the fast Fourier transformation. Note that a signal processing in the frequency domain is needed to compensate the effect of the antenna mutual coupling for UWB waves. Then, the signal in the frequency domain is divided into two on the basis of the relation between the antenna distance \(d \) and the wavelength \(\lambda \). This is because eigenvector-based DOA algorithms, such as MUSIC and ESPRIT [1, 2], are applicable only when the antenna distance \(d \) is less than \(\lambda/2 \). Thus, for the Fourier frequency components which satisfy the above condition, the ROOT-MUSIC is used [10] because of its reasonable computational load. In order to compensate the effect of the mutual coupling of the antennas, the calibration schemes proposed in [11] for the MUSIC is extended to the ROOT-MUSIC. Then, the equation to be solved is given by the following equation.

\[
(C(f_m) a(\theta, f_m))^H E_N(f_m) E_N^H(f_m)(C(f_m) a(\theta, f_m)) = 0 \tag{1}
\]

\[
a(\theta, f_m) = [1, \exp(-j2\pi f_m d \cos \theta/c)]^T \tag{2}
\]

where \(\theta, c, C, \) and \(E_N \) denote the angle of incidence, the speed of light in vacuum, a matrix for the compensation of antenna mutual coupling, and a set of eigenvectors which belong to a noise subspace.
Note also that subscription m corresponds to Fourier components. This calibration scheme modifies not the amplitude of the received signal [5] but the MUSIC spectrum itself, and thus more essential calibration is achieved. Additionally, $C(f_m)$ is little affected by the angle of incidence. Then, the database used in [7] are not needed.

For the other Fourier components, a UWB interferometry is used [8]. It should be noted that a database is used to compensate the error of the phase difference due to the antenna mutual coupling for the DOAs [9]. Note also that this database has the relation of the angle of incidence versus the estimated DOA over the above frequency band.

A proper DOA of a UWB wave should be determined from the DOAs estimated at Fourier frequencies. For this purpose, a weighting function derived on the basis of the intensities of Fourier components is introduced [4]. The accuracy of DOAs estimated by the Root-MUSIC and the UWB interferometry is dependent on the SNR and λ_m/d. Thus, the weighting function at each Fourier frequency is defined in terms of them. The detailed account for this will be presented at the conference, because there is no space for an extended discussion.

3. Numerical Results

Figure 2 illustrates the geometry of the problem. The antenna array on the perfect conductor is comprised of two circular plate antennas. The diameter of the plate is 0.3 m. The distance between the antennas is 2.0 m. The frequency band we pay attention is from 50-150 MHz. The ratio of the bandwidth to the center frequency is 100 %. It should be noted that the antenna distance is determined so that the radiation resistance of the antenna is not so degraded due to the mutual coupling effect.
Note also that the circular plate antenna is commonly used for lightning observation, because of relatively broadband characteristics and omni-directional radiation pattern on the horizontal plane. The return loss of this antenna depends on the frequency of EM waves (mostly better than 3dB over the above frequency band). However, it does not matter since the phase difference between the antennas is essential to DOA estimations. In addition, the geometry without any edge is fairly suitable in the operation under the circumstance with high voltage due to lightning activity. For an incidence of an UWB wave, induced EM fields are calculated by the Finite-Difference Time Domain (FDTD) method. Thus, the effect of the antenna mutual coupling is taken into account.

Figure 3 shows the estimated DOA with the UWB interferometry for incidences of a far-field EM pulse. Note that no compensation has been applied. As seen from this figure, the difference between the angle of incidence and an estimated DOA is larger at lower frequency and for lower angle of incidence. These are caused by the mutual coupling of antennas. Note that these correspondences between the angle of incidence and the estimated DOA are stored as the database. This is used for the compensation of the error in the UWB interferometry (see Fig.1). Also, at the frequency band lower than 75 MHz, the matrix $C(f_m)$ to compensate the mutual coupling is calculated and stored.

Figure 4 demonstrates the effectiveness of our algorithm when white Gaussian noise exists. This figure also shows the signal-to-noise ratio (SNR) for the received signal at each Fourier component. The angle of incidence is 45°. The maximum SNR is 5.5 dB and appears at 140MHz. The estimated DOA with the use of the weighting function was 44.5°.

4. Summary
In this paper, we proposed an improved DOA estimation technique for UWB waves, which allows for the effect of the antenna mutual coupling. This technique was comprised of the UWB interferometry, the ROOT-MUSIC, and the database. The effectiveness of our proposal was demonstrated through numerical examples. It is noteworthy that this algorithm can be accelerated especially when some Fourier components have sufficient SNR. The detailed account for this will be presented at the conference.

Acknowledgment
This work was supported in party by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (A), 14254001.

References