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Circular Polarization Microstrip
Antenna on a Conical Surface

Reuven Shavit,Senior Member, IEEE

Abstract—A theoretical model to analyze the performance of
a circular polarization microstrip antenna printed on a conical
surface is presented. The radiation pattern of the antenna is
simulated by the radiation from its four radiating edges (two axial
and two circumferential). The electromagnetic field is expanded
in terms of spherical wave modes and it is shown that the circular
polarization is obtained by exciting in the antenna two spherical
TEr orthogonal modes with 90� phase difference. The impedance
analysis is based on the cavity model. Experimental data fits well
the theoretical predictions of the model.

Index Terms—Microstrip antennas.

I. INTRODUCTION

A NTENNA elements based on microstrip technology are
low profile, conformable, low weight, and low cost.

As such, they are commonly used in many applications.
Lately, extensive effort was devoted to compute the radiation
characteristics of microstrip elements on flat and cylindrical
surfaces [1]–[4] for both linear and circular polarization,
but only minor attention has been given to the analysis
of microstrip elements on a conical surface, which is of a
significant importance in satellite and space communication.
Newham and Morris [5] gave a review on the practical
aspects of designing a conical conformable microstrip-tracking
antenna. The antenna parameters on the conical surface were
approximated by considering an equivalent flat rectangular
patch. Descardeci and Giarola [6] analyzed the performance
of a linear polarization patch antenna on a conical surface
by using dyadic Green’s function and the radiated field was
expanded byvector wave functions. The analysis is general, but
mathematically involved, and does not contain the approxima-
tions usually made for thin patch antennas, which significantly
simplify the computations.

In this paper, we have expanded the radiated field in TM
and TE spherical modes. This approach combined with appli-
cation of Lorentz reciprocity theorem simplified significantly
the radiation pattern mathematical expressions. The computa-
tion of the radiated field by axial and circumferential magnetic
currents was performed in a similar fashion to that described
by Bailin and Silver [7]. We used the cavity model with the
approximations made for a low-height cavity to compute the
internal field under the patch and the input impedance. In the
cavity model we considered the fringing field at the patch
edges. The circular polarization of the microstrip element was
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Fig. 1. The basic geometry of a patch antenna on a conical surface.

obtained by exciting in the cavity two TEorthogonal modes
with 90 phase difference among them. The radiated field from
the antenna was obtained by superposing the radiation from
four equivalent magnetic currents along the edges of the patch
(two axial and two circumferential). We assumed that their
distribution is determined by the two dominant modes excited
in the cavity. Section II describes the theoretical approach
to evaluate the resonant frequencies, the radiation field, and
the input impedance. Section III compares theoretical and
experimental results of the input impedance and illustrates the
radiated field based on the model.

II. THEORY

The basic geometry of a patch antenna on a conical surface
is shown in Fig. 1. The angle between the cone axis and its
surface is , the angular width of the patch is 2, and its
length is . The patch is printed on a dielectric substrate
backed by a ground surface, which is wrapped around the
cone. The substrate thickness isand its dielectric constant is

. The patch is fed by a coaxial cable at and
modeled by a metal strip with effective width.
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Fig. 2. The far-field normalizedE� in the X–Z plane (computed and
measured data).

A. Resonant Frequencies

The region between the patch and the conical surface is
considered as a cavity bounded by electric walls on the top
and bottom and by magnetic walls on the sides, as such it
has resonant frequencies. The cavity radial length is extended
by 2 and its transverse width by 2 to account for the
fringing field at the edges. The approximation of and
can be found in [8]. For a low-height cavity, the field inside can
be expanded only in TEmodes. Accordingly, using spherical
coordinates, the general solution of the electric vector potential

is given by [9]

(1)

in which , are Bessel functions used by
Schelkunoff [9] and , are Legendre
functions of first and second order, respectively. If we impose
the boundary conditions of the electric walls on top and bottom
walls, we obtain the characteristic equation

(2)

in which the prime denotes derivative. In a similar fashion, if
we impose the boundary conditions on the magnetic walls of
the cavity, we obtain two characteristics equations

(3)

and

(4)

In addition, we obtain the general expression of the
spherical mode in the cavity

(5)

Given , we can compute the component of the electric
field in the cavity [9]

(6)

So far, the derivation is general and no simplifications have
been done for our specific case in which . In this case,
the excited field in the cavity is independent of .
This fact leads to the observation that only modes with index

exist in the cavity. One can observe that in this case, (2)
is satisfied for all ’s. If we recall that [9]
and , (3) can be further simplified with
the result that with . This
leads to a simplified expression of the component of the

mode as derived from (6)

(7)

In addition, the assumption that also simplifies the
free-source wave equation in the cavity

(8)

such that its component in spherical coordinates is

(9)

If we assume that the patch on the conical surface is close
to a rectangular shape such that its transversal width can be
approximated by

(10)

(9) can be further simplified and we obtain the eigenvalues
satisfying the boundary conditions of our cavity

(11)

in which is the effective length of the patch and equals to
. Similarly, is the effective width and

equals to . Accordingly, the expression for the
resonant frequencies is

(12)

where is the velocity of light in free space. Equation (12)
shows that if the dimensions of the patch, i.e., and ,
are fixed, the resonant frequencies of the TEmodes are not
affected by the curvature. This conclusion is valid for thin
substrates.
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B. Radiation Field

The radiated field from the patch can be obtained by
superposing the radiation from four equivalent slots along
its edges (two axial and two circumferential) and located
at a height above the ground plane. The lengths of the
circumferential slots are and and
their width is . The length of the axial slots is
and their width is .

The radiation from the slots is equivalent (by Schelkunoff
principle) to that of equivalent magnetic currents

in which is the electric field at the patch edges
for the two dominant and orthogonal modes ( , and

, ) generated under the patch and . can
be approximated by the electric field on the cavity walls of the
patch, as given by (7). is directed for the circumferential
slots and directed for the axial slots. Accordingly, the
magnetic currents are azimuthal for the circumferential slots
and radial for the axial slots.

The radiated field from a magnetic current on the conical
surface can be expanded in terms of TMand TE spherical
modes [7]. Based on symmetry considerations, the radiation
field by a circumferential slot can be expanded only in TM
modes, while that for an axial magnetic current only in TE
modes.

Thus, the magnetic vector potential generated by an
infinitesimal directed magnetic current located at
on the conical surface can be expressed as (13), shown at
the bottom of the page. Similarly, the electric vector potential

generated by an infinitesimal directed magnetic current
is (14), shown at the bottom of the page. In the expansion,
we have not included the Legendre function and
the Bessel function , since these functions diverge
at and , respectively. For , has
been replaced by to satisfy the radiation condition at
infinity. If we impose the boundary conditions of the tangential
electric field on the conductive conical surface, we obtain for
the TM modes the characteristic equation

(15)

while for the TE modes

(16)

in which are integers , while ,
are not necessarily integers. The prime indicates derivative of
the Legendre function. The relationship between the set of
coefficients , to , and ,
to , is obtained by imposing continuity of the

field at the interface . To determine the coefficients

, , , , we apply the Lorentz reciprocity

theorem in the form

(17)

in which is the actual field, while is any

one of the spherical modes. The surfaceconsists from a

spherical surface with radius bounded by the cone

and the conical surface. If we proceed in this fashion and

follow the derivation in [7], we obtain (after some algebraic

manipulations) the expressions for the far-zone electric field

of the circumferential slot at

(18)

and

(19)

in which is equal to one for and equal to zero

otherwise, is a spherical Bessel function related to
through [9]. is the

area of the slot and equals to . is the electric

field on the cavity wall of the patch at .

For the circumferential slot located at , the index

is replaced with . In a similar fashion, we obtain the radiated

field for the axial slots

(20)

(13)

(14)
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and

(21)

For the purpose of the computation of the total radiation
pattern of the patch, we consider the radiation from an ar-
ray with four radiating elements, which are the equivalent
slots. The center locations of the circumferential slots are
at , , , and , , , while
that of the axial slots are at ,

, . A quality
factor for the circular polarization is the axial ratio [10]. Given
the and components of the total field one can compute the
axial ratio, AR of the radiated field (22), shown at the bottom
of the page, where .

C. Input Impedance

Consider that the patch is fed by a coaxial cable at
and . In this case it can be modeled by adirected
current strip of width and angular extent

(23)

where

elsewhere
(24)

is the input current to the patch and .
The electric field, under the patch can be expanded in

terms of spherical TEmodes as given by (7), such that

(25)

Evaluation of the coefficients is possible if we substitute
(25) into the wave equation in spherical coordinates

(26)

multiply both sides by and
integrate over the cavity volume under the patch. The result is

(27)

in which equals one for and 1/2, otherwise. In (27),
has been replaced by

(28)

in which accounts for the radiation, dielectric, copper,
and surface wave losses of the cavity and is computed from
the expression

(29)

where is the loss tangent of the dielectric material in the
cavity, is the radiated power, is the power dissipated
in the dielectric material, is the power dissipated on top
and bottom walls, and is the power dissipated on surface
waves. The total quality factor is equal to .
Usually, for thin patches, the copper and surface wave losses
are negligible compared to the radiation losses. The total
radiated power is the superposition of the radiated power from
the four equivalent slots around the patch. Each one of them
can be computed by integrating the Poynting vector of the
radiated far field

(30)

in which and , are the far-zone radiated elec-
tric fields given by (18)–(21) for the axial and circumferential
slots. The power dissipated in the dielectric can be computed
by integrating the power in the patch cavity volume

(31)

Here, is the electric field in the cavity and is given by (25).
The input impedance is obtained by evaluating the integral [1]

(32)

in which is given by (25) and is given by (23).
The result is

(33)

(22)
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Fig. 3. The normalized far-fieldE� dependence on� for � = 75� (peak of radiation pattern).

III. N UMERICAL RESULTS

In the computation of the radiation pattern of the patch, we
have encountered several mathematical difficulties due to the
nonintegral value of , in the characteristic equations (15)
and (16). The first was in the computation of these values. An
approximation for close to (our case) can be found in
[11] (34), shown at the bottom of the page, and

(35)

in which is the Gamma function [12]. Based on these
initial values the exact values of , have been found by
using a standard root-finding algorithm. The second difficulty
was encountered in the computation of the Legendre function
and its derivatives. Use of the standard summation formulas
found in [12] gave nonconvergent value and we had to use
Stirling formula [12] to obtain a better convergence. The result
is

(36)

The derivative of with respect to has been found by
using recurrence formula as shown in [12], while the derivative
with respect to has been found by taking the derivative of

(36) and use of the asymptotic expressions for large index
values to speed up convergence.

As a test case, we examined a microstrip antenna printed on
a conical surface with . The patch was printed on
a substrate with , , , and
with dimensions cm, cm, and .
The antenna was fed by a coaxial line through the ground of
the conical surface. The probe was simulated by a strip with a
width of 0.15 cm located at cm, and the
operating frequency is 1.59 GHz. Due to practical limitations
the patch was assembled on a truncated aluminum conical
surface with a length of 30 cm.

Fig. 2 shows the normalized electric far-field component
(measured and computed) radiated by the patch in the

– plane(elevation). The peaks of the two radiation patterns
coincide and their shapes follow closely. As expected, the peak
of the radiation pattern of the patch on the conical surface
occurs close to 75from its axis. Moreover, one can observe
that in the lower hemisphere there is a significant amount of
radiation, which cannot be predicted by a flat surface patch
model. Fig. 3 shows the dependence of the normalized far-field
component (measured and computed) onfor
(peak of the radiation pattern). The computed pattern follows
closely the measured up to120 . Beyond this angle there is
a discrepancy between the measured and computed data due
measurement error in the alignment of the measurement setup.
Fig. 4 shows the dependence of the axial ratio (measured and
computed) in the – plane for . As expected, the
best axial ratio occurs close to 75and deteriorates on both
sides of the peak radiation. One can observe a nice agreement
between the measured and computed data in the range of 50

(34)
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Fig. 4. The dependence of the patch axial ratio in theX–Z plane (� = 0�).

Fig. 5. Amplitude and phase of the input impedanceZin andZ10, Z01 of the dominant modes versus frequency.

to 150 . The measurement accuracy of the axial ratio depends
on the absolute value of the electrical fields components; as
such, for low values the accuracy deteriorates and this fact may
explain the discrepancy between the measured and computed
values in the range of 0to 50 . Fig. 5 shows the amplitude
and phase of the computed input impedance as well as
the input impedances and for each of the dominant
modes TE and TE excited in the cavity. One can observe
that the input impedance has two peaks. This is an indicator
that two modes are excited. As one can notice the resonant
frequency for the TE mode is 1.58 GHz while that of the
TE mode is 1.60 GHz. At the operating frequency 1.59
GHz, the phase difference between the two modes is 90
as required to generate circular polarization. Fig. 6 shows a
comparison of the measured and computed data of the input
impedance for feeding position cm, .
The measured data closely follows the computed data in the
vicinity of the resonance frequency. Beyond this close range,

one can observe a discrepancy due to the approximations made
in the measurement prototype such as the truncation of the
conical surface and the dielectric substrate on which the patch
is etched. All that induce additional currents, which affect the
accuracy of the input impedance value of the measured patch.

IV. SUMMARY

This paper presents a theoretical approach for the analysis of
patch antennas on conical surfaces. For the computation of the
input impedance we used the cavity model. In the derivation,
we made some mathematical simplifications adequate for
substrate thickness much smaller than the wavelength and the
radius of curvature. Owing to the simplicity of the approach
the input impedance was obtained with relative ease. The
circular polarization was obtained by exciting in the antenna
two orthogonal modes with 90phase difference. The radiation
pattern was simulated by the radiation from four magnetic
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Fig. 6. Comparison between computed and measured data of the patch input
impedance(ra = 7:68 cm, rb = 10:49 cm, 2�0 = 68�, r1 = 9:37 cm,
�1 = 6:7�, h = 0:07500, "r = 10:2).

currents at the edges of the patch. The radiation from each
magnetic current was computed using Lorentz reciprocity
theorem and expansion of the field in terms of spherical modes.
Some experimental data was presented to validate the theory
and good agreement was shown.

ACKNOWLEDGMENT

The author would like to thank A. Lynn, Reshef Technolo-
gies, Tel-Aviv, Israel, for performing the measurements during
the course of this work.

REFERENCES

[1] Y. T. Lo, D. Solomon, and W. F. Richards, “Theory and experiment
on microstrip antennas,”IEEE Trans. Antennas Propagat., vol. AP-27,
pp. 137–145, Feb. 1979.

[2] A. G. Derneryd, “Extended analysis of rectangular disk antenna ele-
ment,” IEEE Trans. Antennas Propagat., vol. AP-27, pp. 846–849, Aug.
1979.

[3] K. M. Luk, K. F. Lee, and J. S. Dahele, “Analysis of the cylindrical-
rectangular patch antenna,”IEEE Trans. Antennas Propagat., vol. 37,
pp. 143–147, Feb. 1989.

[4] J. Ashkenazy, S. Shtrikman, and D. Treves, “Electric surface current
model for the analysis of microstrip antennas on cylindrical bodies,”
IEEE Trans. Antennas Propagat., vol. AP-33, pp. 295–300, Feb. 1985.

[5] P. Newham and G. Morris,Handbook of Microstrip Antennas, J. R.
James and P. S. Hall, Eds. London, U.K.: Peter Peregrinus, 1989, pp.
1153–1191.

[6] J. R. Descardeci and A. J. Giarola, “Microstrip antenna on a conical
surface,”IEEE Trans. Antennas Propagat., vol. 40, pp. 460–463, Apr.
1992.

[7] L. L. Bailin and S. Silver, “Exterior electromagnetic boundary value
problems for spheres and cones,”IRE Trans. Antennas Propagat., vol.
AP-4, no. 1, pp. 5–16, Jan. 1956.

[8] M. Kirschning, R. Jansen, and N. Koster, “Accurate model for open end
effect of microstrip lines,”Electron. Lett., vol. 17, pp. 123–125, 1981.

[9] R. F. Harrington,Time-Harmonic Electromagnetic Fields. New York:
McGraw-Hill, 1961, pp. 264–269.

[10] C. A. Balanis,Antenna Theory Analysis and Design. New York: Harper
& Row, 1982, pp. 48–51.

[11] I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and
Products. New York: Academic, 1980.

[12] M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions.
New York: Dover, 1972.

Reuven Shavit(M’82–SM’90) was born in Roma-
nia on November 14, 1949. He received the B.S.
and M.S. degrees in electrical engineering from the
Technion, Haifa, Israel, in 1971 and 1977, respec-
tively, and the Ph.D. degree in electrical engineering
from the University of California, Los Angeles, in
1982.

From 1971 to 1993, he worked as a Staff Engi-
neer and Antenna Group Leader in the Electronic
Research Laboratories of the Israeli Ministry of
Defense, Tel Aviv, where he was involved in the

design of reflector, microstrip, and slot-antenna arrays. He was also a part-time
Lecturer at Tel Aviv University, teaching various antenna and electromagnetic
courses. From 1988 to 1990 he was associated with ESSCO, Concord, MA,
as a Principal Engineer involved in scattering analysis and tuning techniques
of high-performance ground-based radomes. Currently, he is a Lecturer at
Ben-Gurion University of the Negev, Beer Sheva, Israel, doing research in
microwave components and antennas. His current research interest is in the
areas of tuning techniques for radomes and numerical methods for design
microstrip, slot, and reflector antennas.


