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Circular Polarization Microstrip
Antenna on a Conical Surface

Reuven ShavitSenior Member, IEEE

Abstract—A theoretical model to analyze the performance of z
a circular polarization microstrip antenna printed on a conical
surface is presented. The radiation pattern of the antenna is
simulated by the radiation from its four radiating edges (two axial
and two circumferential). The electromagnetic field is expanded
in terms of spherical wave modes and it is shown that the circular
polarization is obtained by exciting in the antenna two spherical
TE. orthogonal modes with 90 phase difference. The impedance
analysis is based on the cavity model. Experimental data fits well 6
the theoretical predictions of the model. 29y

Index Terms—Microstrip antennas.

I. INTRODUCTION |

NTENNA elements based on microstrip technology are |
low profile, conformable, low weight, and low cost. ||
As such, they are commonly used in many applications. ]
Lately, extensive effort was devoted to compute the radiation
characteristics of microstrip elements on flat and cylindrical
surfaces [1]-[4] for both linear and circular polarization, (r, 6y.9; W
but only minor attention has been given to the analysis
of microstrip elements on a conical surface, which is of a
significant importance in satellite and space communication.
Newham and Morris [5] gave a review on the practical
aspects of designing a conical conformable microstrip-trackimg. 1. The basic geometry of a patch antenna on a conical surface.
antenna. The antenna parameters on the conical surface were
approximated by considering an equivalent flat rectangul
patch. Descardeci and Giarola [6] analyzed the performan
of a linear polarization patch antenna on a conical surfa

Ty

o

tained by exciting in the cavity two T.Eorthogonal modes
éth 90° phase difference among them. The radiated field from

by using dyadic Green’s function and the radiated field w; e antenna was obtained by superposing the radiation from

expanded byector wave functiong he analysis is general, but our eqqlvlalendt magn(_enc cufrrents_, ?Ior\]/?/ the edgesdofhthe |cr)1at_ch
mathematically involved, and does not contain the approxim Wo axial an two cireum erential). We assume that t_elr
istribution is determined by the two dominant modes excited

tions usually made for thin patch antennas, which significan ) : . .
simplify the computations In the cavity. Section Il describes the theoretical approach

In this paper, we have expanded the radiated field in,,TI\)iO e\_/aluate_ the resonant fre_quencies, the radiation f_ield, and
and TE.spherical modesThis approach combined with appli-the |r!put impedance. Sec_tlon ”.I compares thgoretlcal and
cation of Lorentz reciprocity theorem simplified significantl)fe)(p_er'mer.“aI results of the input impedance and illustrates the
the radiation pattern mathematical expressions. The compJﬁq'ated field based on the model.
tion of the radiated field by axial and circumferential magnetic
currents was performed in a similar fashion to that described
by Bailin and Silver [7]. We used the cavity model with the Il. THEORY
approximations made for a low-height cavity to compute the The basic geometry of a patch antenna on a conical surface
internal field under the patch and the input impedance. In tRgshown in Fig. 1. The angle between the cone axis and its
cavity model we considered the fringing field at the patchurface isf,, the angular width of the patch ispg, and its
edges. The circular polarization of the microstrip element wasngth isr, — r,. The patch is printed on a dielectric substrate

backed by a ground surface, which is wrapped around the

Manuscript received June 19, 1995; revised July 26, 1996. ____cone. The substrate thicknesshisind its dielectric constant is
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Given F,., we can compute thé component of the electric
field in the cavity [9]

1 OJF,
— computed Eo = rsind a¢ ©

3 measured

So far, the derivation is general and no simplifications have
been done for our specific case in whieh« A. In this case,
the excited field in the cavity is independent &f2 = 0).
This fact leads to the observation that only modes with index
n = 0 exist in the cavity. One can observe that in this case, (2)
is satisfied for albn’s. If we recall that [9].Jo(k;r) = sin k;r

and No(kyr) = — cos kyr, (3) can be further simplified with
the result thatt; = In/(r, — 7,) With I = 0,1,2,---. This
leads to a simplified expression of ti#& component of the

lg mode as derived from (6)

Fig. 2. The far-field normalized®y in the X-Z plane (computed and

measured data). Ey=— 2¢Oz7;ineclq cos <l7;(b7>__:a)> COS <q7r(§¢;) ) )

A. Resonant Frequencies (7

Th_e region betwe(_en the patch and the_ conical SuncaCelr|1saddition, the assumption tha(?§ = 0 also simplifies the
considered as a cavity bounded by electric walls on the t o .
and bottom and by magnetic walls on the sides, as such ge-source wave equation in the cavity
has resonant frequencies. The cavity radial length is extended
by 2Ar and its transverse width by to account for the
fringing field at the edges. The approximationA&f and Al
can be found in [8]. For a low-height cavity, the field inside cafuch that its¥ component in spherical coordinates is
be expanded only in TEmodes. Accordingly, using spherical

VXVXxE-KE=0 (8)

coolrdingtes, the general solution of the electric vector potential 1 3_2 (rEs) 1 ! 9’ E, + k2B, = 0. (9)
F, is given by [9] r Or? r2sin® @ O¢p?
Fr = [Andu(kr) + BaNu(kr)] If we assume that the patch on the conical surface is close
X [CnP,’L"(cos 8) + D, Q. (cos 9)] to a rectangular shape such that its transversal width can be
X [Em sinme + F,, cosmd) (1) approximated by
in which J,,(kr), N,(kr) are Bessel functions used by . W TatTy .
Schelkunoff [9] and P (cosf), Q7 (cosf) are Legendre rsinfo2¢o = a = ——— sin o2 (10)

functions of first and second order, respectively. If we impose
the boundary conditions of the electric walls on top and bottof) can be further simplified and we obtain the eigenvalues

walls, we obtain the characteristic equation satisfying the boundary conditions of our cavity
P (cos 8p)Q (cos(by + AB)) 9 9
9 9 Ir qm
— P (cos(fo + AG)Q™ (cos ) =0 2) k* =k, = <b—) + <a—) (11)

in which the prime denotes derivative. In a similar fashion, if ) ) )
we impose the boundary conditions on the magnetic walls & Which b. is the effective length of the patch and equals to

the cavity, we obtain two characteristics equations be =1y — 7o + 2Ar. Similarly, a. is the effective width and
equals toa. = a + 2Al. Accordingly, the expression for the

T (ko) N, (bary) = J) (Rary )N, (Rra) = 0 (3) resonant frequencies is
and

c I 2 2
sin(2meo) =0; m=qn/2¢0; ¢=0,1,2,---. (4) fig = ﬁ [(l?) + <ai> ] (12)
In addition, we obtain the general expression of thel
spherical mode in the cavity wherec is the velocity of light in free space. Equation (12)

_ N $ N VR ) shows that if the dimensions of the patch, i.e., and b.,
b= C"mfr[i\f"(k”“)‘]:l(k”) J"(lfi:“)N"(k”Z]l are fixed, the resonant frequencies of the, Tiiodes are not
x [ (cos o) Py (cos ) — P (cos 60)Q(cosB)]  affected by the curvature. This conclusion is valid for thin
x sinm(¢p — ¢o). (5) substrates.
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B. Radiation Field field at the interfacer = /. To determine the coefficients

The radiated field from the patch can be obtained bfu:m: Bu:m, Co;m: Du, m, We apply the Lorentz reciprocity
superposing the radiation from four equivalent slots alorteorem in the form
its edges (two axial and two circumferential) and located
at a heighth above the ground plane. The lengths of the /(El x Hy) -nds= /(E2 x Hy) nds (17)
circumferential slots are, sinfy2¢y and 7, sin 8920, and s s

their Width ?S A7?. The length of the axial slots i8, — 4 in which (E,,H,) is the actual field, whildE,, H,) is any
and their width isAl. %ne of the spherical modes. The surfaceonsists from a

The radiation from the slots is equivalent (by Schelkuno
principle) to that of equivalent magnetic currenfs, — spherical surface with radius(r — oo) bounded by the cone

—1, x E, in which E, is the electric field at the patch edge@”d the conical surface. If we proceed in this fashion and
for the two dominant and orthogonal modés<(0, ¢ = 1 and follow the derivation in [7], we obtain (after some algebraic
I =1, ¢ = 0) generated under the patch ahd=1,. £, can manipulations) the expressions for the far-zone electric field
be approxir_nated by the glectr@c field on the ca}vity walls qf th§f the circumferential slot at
patch, as given by (7)., is r directed for the circumferential .
slots and ¢ directed for the axial slots. Accordingly, the . e IR

magnetic i)urrents are azimuthal for the circumfere?f]t)i/al slots By = jE“kOAsa ZJW (kora)

= 7‘a

zrn

and radial for the axial slots.

The radiated field from a magnetic current on the conical . Sinmeo (2ui +1)5*
surface can be expanded in terms of ;T&hd TE. spherical meo (1 4 bom )u; (u; + 1) sin by d;;“_f
modes [7]. Based on symmetry considerations, the radiation P B
field by a circumferential slot can be expanded only in, TM X —2L cos e (18)
modes, while that for an axial magnetic current only in,. TE d¢
modes. and
Thus, the magnetic vector potential,. generated by an jkor
infinitesimal ¢ directed magnetic current located @t ¢') B, — —ankoAsa ZJuz (kora)
on the conical surface can be expressed as (13), shown at py
the bottom of the page. Similarly, the electric vector potential sin mao (2u; + 1)j%m
F,. generated by an infinitesimal directed magnetic current x n _
is (14), shown at the bottom of the page. In the expansion, M0 w(1 + Somui(ui + 1) s
we have not included the Legendre functiQ} (cos#) and Pr(cost) 0
the Bessel functionV,, (kyr), since these functions diverge X — g sinmé (19)

at# = 0° andr = 0, respectively. For- > 7/, J,, (kor) has
been replaced bH(Q)(IW) to satisfy the radiation condition at!n Which éo is equal to one forn = 0 and equal to zero
infinity. If we impose the boundary conditions of the tangentiitherwise, j.. (kor) is a spherical Bessel function related to
electric field on the conductive conical surface, we obtain fok.; (kor) through ju, (kor) = Ju, (kor)/kor [9]. As, is the
the TM, modes the characteristic equation area of the slot and equals#t@sin 8,2¢¢Ar. E, is the electric
field on the cavity wall of the patch at= r,.

For the circumferential slot located at= r,, the indexa
is replaced withb. In a similar fashion, we obtain the radiated
field for the axial slots

P (cosp) =0

while for the TE. modes

P"(cosy) =0 (16) o—ikor
Ep = Ey Mg~ > / G, (kor") dr!
in which ¢, m are integergé,m = 0,1,2---), while u;, v; iym T
are not necessarily integers. The prime indicates derivative of (2u; +1)5v Pl (cos®) .
the Legendre function. The relationship between the set of x L+ o) T8 sind sinm(¢ £ o)
coefficientsAy, m, Bu;m 10 A%, 1y By, @A Cy, m, Di;m om) Jedv; 6=6o
to Cy, ,,,, Dy, ,,, iS Obtained by imposing continuity of the (20)
4 - {Eim Ju, (kor) P (cos 0) [Au, m cOSmMp + By, m sinme] ; r <7 (13)
" Dim fAL(LQ) (kor) Py (cos0)[As,, ,, cosme + By ., sinmel; 7> 7'
P {EZ m jbz (kor) P (cos 6) [C’bz m cosme + D, sin md)] ; r <7 (14)
" dim A )(km VP (cos8)[C, ,, cosmp+ D), sinme|; >
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and in which ¢, equals one fo; = 0 and 1/2, otherwise. In (27),
k has been replaced by.¢

—jkor T
Ey = Eyg Apo” . > / Jo: (kor”) dr’
ém 7T ket = kov/er(1 — jtan beg), ko = wy/pogo (28)
(2v; + 1)5" dpr;!

cosm(p £ o). (21)
df in which tan é.¢ accounts for the radiation, dielectric, copper,

and surface wave losses of the cavity and is computed from
For the purpose of the computation of the total radiatidfie expression

pattern of the patch, we consider the radiation from an ar-
ray with four radiating elements, which are the equivalent
slots. The center locations of the circumferential slots are
at (rosinfg, 0, rq cos ), and (ry sin by, 0, 1y, cosby), while
that of the axial slots are glrq + 73)/2 * sinfl * cosdo, wheretan § is the loss tangent of the dielectric material in the
£(ra +73)/2 %8I0 box sin o, (1o +13)/2xcosb)]. A quality  cavity, P, is the radiated powetP, is the power dissipated
factor for the circular polarization is the axial ratio [10]. Giveny, the dielectric materialP, is the power dissipated on top

the # and¢ components of the total field one can compute the,q hottom walls, and,,, is the power dissipated on surface
axial ratio, AR of the radiated field (22), shown at the bottoRyayves. The totalQ quality factor is equal tol/tan Seg.

&zrr
(1 + Som) gga-

=06

(29)

P. P P,
Py Py Py

tan deg :tan6<1+ Srtey

of the page, wherex = tan™" Ey/E,. Usually, for thin patches, the copper and surface wave losses
are negligible compared to the radiation losses. The total
C. Input Impedance radiated power is the superposition of the radiated power from

Consider that the patch is fed by a coaxial cable at; the four equivalent slots around the patch. Each one of them
and ¢ = ¢,. In this case it can be modeled byfadirected Can be computed by integrating the Poynting vector of the

current strip of widthw and angular exten\¢ radiated far field
Jo=J(d—¢1)6(r — 7 (23) 6o p2m
0= J(@=d)br=n) P = 2i / (1Es|? + |Eo|?)r2sin6dbdp  (30)
where mJo Jo
J(b— — Lo f1, |¢p— 1| < AP (24) inwhichn = 1207 and Ey, E; are the far-zone radiated elec-
(¢ = 1) 0, elsewhere i fi i i i i
wY tric fields given by (18)—(21) for the axial and circumferential

I, is the input current to the patch amd= r| sin 69226, slots. The power dissipated in the dielectric can be computed

The electric field,, under the patch can be expanded iy integrating the power in the patch cavity volume
terms of spherical TEmodes as given by (7), such that

1 Ty pdo

1 Py = —wepe, tan 6h/ / |Eg|*rsin@depdr.  (31)
E,=— - ’
o rsiné lzq: C.q cO8 "y — T (r=7a) 2 ro J =0
% COS ql@ — o). (25) Here, E, is the electric field in the cavity and is given by (25).
20 The input impedance is obtained by evaluating the integral [1]
Evaluation of the coefficient§’; , is possible if we substitute
(25) into the wave equation in spherical coordingtés = 0) Z = _% s Eglp=r, - Jg - 7151060 dp (32)
1 0? 1 0B, L5 Jor-a0

+ KBy = jwpds  (26)
in which Ey is given by (25) and/, is given by (23).
multiply both sides byeos £= (¢ — ¢o) cos L2 (r —r,) and ~ The result is

Y E -
7 Or2 (rBo) + r2sin® 6 O¢p?

e —Ta

integrate over the cavity volume under the patch. The result is

h
Zin =—j
Cl:(l quaebe
y Iy €08 5= (ry —rg)cos 35 (%0 — 1) Sinci’%ﬁqb y Z cos? (71 —74) cos? 355 (%0 — ¢1) Siani’%Aoqb
- _qu2¢0be 2 2 2 2 :
el (- @] = e (6 (5]
(27) (33)
1/2
AR = {|E0|2 + 1 Eo|® + (| Eo|* + | Eo|* + 2|Ep || Ep | cos 2@)1/1 / (22)
|Eol? + |Eg|? — (| Eg|* + | Eg|* + 2| Ep|?| Eg|* cos 2a)1/2



1090 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 45, NO. 7, JULY 1997

computed
‘8 measured

—180 —120 —60 0 60 120 180

angle ¢ (degrees)

Fig. 3. The normalized far-fieldty dependence om for § = 75° (peak of radiation pattern).

[ll. NUMERICAL RESULTS (36) and use of the asymptotic expressions for large index

In the computation of the radiation pattern of the patch, WelUes to speed up convergence. _ _
have encountered several mathematical difficulties due to the'S & test case, we examined a microstrip antenna printed on
nonintegral value ofi;, v; in the characteristic equations (15 conical surface witify = 165.2°. The patch was printed on
and (16). The first was in the computation of these values. Ansubstrate witth = 0.075", &, = 10.2, tané = 0.0017, and
approximation foré, close tor (our case) can be found inWith dimensions-, = 7.68 cm,r;, = 10.49 cm, andgp, = 34°.
[11] (34), shown at the bottom of the page, and The antenna was fed by a coaxial line through the ground of
the conical surface. The probe was simulated by a strip with a
I'(2m +i+3) _ <7T - 90>2(m+1) width of 0.15 cm located at; = 9.37 cm, ¢, = 6.7° and the
Fim+ DI(m+2)L'(6E+ 1) 3 operating frequency is 1.59 GHz. Due to practical limitations
m=0,1---; i=1,2--. (35) the patch was assembled on a truncated aluminum conical
. . . _ surface with a length of 30 cm.
!n_\_/vh|ch I'(#) is the Gamma function [12]. Based on these Fig. 2 shows the normalized electric far-field component
initial values the exact values af;, v; have been found by F, (measured and computed) radiated by the patch in the

using a standard root-finding algorithm. The second d|ﬁ|cul%_Z plane(elevation). The peaks of the two radiation patterns

was encountered in the computation of the Legendre function. . :

. o . caincide and their shapes follow closely. As expected, the peak
and its derivatives. Use of the standard summation formul@; . .
of the radiation pattern of the patch on the conical surface

found in [12] gave nonconvergent value and we had to use . .
curs close to 75from its axis. Moreover, one can observe

Stirling formula [12] to obtain a better convergence. The res peul ) . D
; that in the lower hemisphere there is a significant amount of

v; =1+

is

. radiation, which cannot be predicted by a flat surface patch

Pr(z) = 1 142\72 model. Fig. 3 shows the dependence of the normalized far-field

AT (=)l (1 u)\1 =2 componentF, (measured and computed) @nfor § = 75°
N T(n — w[(1+ u+n)(1 — 2)" (peak of the radiation pattern). The compu'Fed pattern follpws
x Z closely the measured up t6120°. Beyond this angle there is
(1 —m+n)27n! .

n= a discrepancy between the measured and computed data due
i (1-2) measurement error in the alignment of the measurement setup.

+ Z non (36) Fig. 4 shows the dependence of the axial ratio (measured and

n=N+1

computed) in theX—Z plane for¢ = 0°. As expected, the
The derivative ofP"(z) with respect to: has been found by best axial ratio occurs close to 7@nd deteriorates on both
using recurrence formula as shown in [12], while the derivativades of the peak radiation. One can observe a nice agreement
with respect tou has been found by taking the derivative obetween the measured and computed data in the range® of 50

1 % =0: 1 = e
"o { Lr—;?fgr;)f%) 2 S (34)
- m-4e —6 m Lo
R DINGEas acesyil S m#0; i=1,2--
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Fig. 4. The dependence of the patch axial ratio in fieZ plane (¢ = 0°).
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Fig. 5. Amplitude and phase of the input impedarig and Z,y, Zo; of the dominant modes versus frequency.

to 15C¢. The measurement accuracy of the axial ratio dependise can observe a discrepancy due to the approximations made
on the absolute value of the electrical fields components; iasthe measurement prototype such as the truncation of the
such, for low values the accuracy deteriorates and this fact ngnical surface and the dielectric substrate on which the patch
explain the discrepancy between the measured and compugeetched. All that induce additional currents, which affect the
values in the range of°0to 5C°. Fig. 5 shows the amplitude accuracy of the input impedance value of the measured patch.
and phase of the computed input impedautg as well as
the input impedanceg;, and Z,; for each of the dominant

modes TE, and TE,, excited in the cavity. One can observe
that the input impedance has two peaks. This is an indicatorThis paper presents a theoretical approach for the analysis of

that two modes are excited. As one can notice the resonpatch antennas on conical surfaces. For the computation of the
frequency for the Tl mode is 1.58 GHz while that of theinput impedance we used the cavity model. In the derivation,
TE;; mode is 1.60 GHz. At the operating frequency 1.5 made some mathematical simplifications adequate for
GHz, the phase difference between the two modes 5 98ubstrate thickness much smaller than the wavelength and the
as required to generate circular polarization. Fig. 6 showsradius of curvature. Owing to the simplicity of the approach
comparison of the measured and computed data of the inghe input impedance was obtained with relative ease. The
impedance for feeding position, = 9.37 cm, ¢; = 6.7°. circular polarization was obtained by exciting in the antenna
The measured data closely follows the computed data in ttveo orthogonal modes with 9(phase difference. The radiation
vicinity of the resonance frequency. Beyond this close rangmttern was simulated by the radiation from four magnetic

IV. SUMMARY
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- @ -0~ measured
—g—a computed

Fig. 6. Comparison between computed and measured data of the patch ir[g]

impedance(7-a 7.68 cm, ry = 10.49 cm, 2@0 = 68°, r; = 9.37 cm,
¢1 = 6.7° h = 0.075", &, = 10.2).

(3]

(4]

(5]

(6]

(7]

(8]
El

[10]

[12]

currents at the edges of the patch. The radiation from each
magnetic current was computed using Lorentz reciprocity
theorem and expansion of the field in terms of spherical modes.

Some experimental data was presented to validate the the
and good agreement was shown.
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