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Abstract
Electroencephalogram (EEG) has evolved to be a well-established tool for imaging brain activity. This progress is mainly 
due to the development of high-resolution (HR) EEG methods. One class of HR-EEG is the cortical potential imaging 
(CPI), which aims to estimate the potential distribution on the cortical surface, which is much more informative than EEG. 
Even though these methods exhibit good performance, most of them have inherent inaccuracies that originate from their 
operating principles that constrain the solution or require a complex calculation process. The back-projection CPI (BP-CPI) 
method is relatively new and has the advantage of being constraint-free and computation inexpensive. The method has shown 
relatively good accuracy, which is necessary to become a clinical tool. However, better performance must be achieved. In 
the present study, two improvements are proposed. Both are embedded as adjacent stages to the BP-CPI and are based on 
the multi-resolution optimization approach (MR-CPI). A series of Monte-Carlo simulations were performed to examine the 
characteristics of the proposed improvements. Additional tests were done, including different EEG noise levels and varia-
tion in electrode-numbers. The results showed highly accurate cortical potential estimations, with a reduction in estimation 
error by a factor of 3.75 relative to the simple BP-CPI estimation error. We also validated these results with true EEG data. 
Analyzing these EEGs, we have demonstrated the MR-CPI competence to correctly localize cortical activations in a real 
environment. The MR-CPI methods were shown to be reliable for estimating cortical potentials, enabling researchers to 
obtain fast and robust high-resolution EEGs.
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Introduction

Over the last decade, tremendous progress in the field of 
electroencephalogram (EEG) imaging has positioned high-
resolution EEG as a well-established tool to image brain 
activity. A specific type of EEG imaging tool is corti-
cal potential imaging (CPI). The aim of CPI is to recover 
the potential distribution on the cortex surface from the 

measured EEG on the scalp, a task is known as the inverse 
problem. Data on the underlying cortical activity is not 
always available from standard EEG. CPI is attractive thanks 
to its variety of applications that improve our understanding 
of the basic mechanisms of cognitive processes (Jousmäki 
2000; Komssi et al. 2004; Gevins et al. 1994) to achieve bet-
ter characterization of pathologies that impair normal func-
tion (Lai et al. 2011; Babiloni et al. 2006), all are connected 
to cortex-level brain activity. CPI and other source imaging 
techniques were previously used to map cortical responses 
underlying attention and consciousness (Sergent et al. 2005), 
visual processing (Roy et al. 2017), object recognition (Bar 
et al. 2006), motor activity (Edelman et al. 2016), and speech 
recognition (Ahissar et al. 2001). Furthermore, in Brodbeck 
et al. (2011), a study of 152 patients with epilepsy showed 
that EEG-based source imaging can provide higher sensitiv-
ity and accuracy than other imaging modalities, even when 
compared to MRI and PET.
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In order to maintain these highly detailed cortical poten-
tials, many effective computational techniques have been 
proposed to solve the inverse problem. These techniques are 
mostly based on some type of error-function minimization. 
Two main approaches are available today. The first is the 
regularization approach (Babiloni et al. 1998; Wang et al. 
1992; Pascual-Marqui et al. 1994). This type of method adds 
constraints to the solution in order to select a single solu-
tion from an infinite number of possibilities. The constraints 
involved are related to the sparsity of the solution (Ding and 
He 2008), the minimum energy (Hämäläinen and Ilmoniemi 
1994), the minimal Laplacian matrix (Ma and Guan 2005), 
or the reference potential (Pascual-Marqui et al. 2011). 
On top of these regularization approaches, more complex 
methods were developed. One example is the variation and 
wavelet-based sparse source imaging (Zhu et al. 2014) that 
enforces sparsity on the solution in other domains, apart 
from the spatial one. Another example is the iteratively 
re-weighted edge sparsity minimization (Sohrabpour et al. 
2016), which employs sources re-weighting to create clear 
edges between sources and background. These methods can 
be computationally efficient, but may have large errors and 
may not reflect the true cortical potentials due to false con-
straints. The second way to address such a minimization 
problem is to recast it as an iterative optimization one, which 
solves a multi-dimensional optimization process to find 
the global minimum. This global minimum is the cortical 
potential distribution that excites scalp potentials that best 
fit the measured EEG. Stochastic optimization algorithms, 
such as the genetic algorithm (GA), were found to provide 
sub-centimeter accuracies (McNay et al. 1996; Uutela et al. 
1998), but seem to be computationally expensive due to the 
internal process of the algorithm and high dimensionality 
of the problem, that tend to be larger than 1000 (Fuchs et al. 
2002). Deterministic iterative techniques such as the conju-
gate-gradient (CG) method (Franceries et al. 2012) or the 
gradient-descent (GD) method (Gevins et al. (1994) are less 
attractive due to the long convergence time for high-dimen-
sionality problems. In addition, accurate and reliable results 
can be obtained only if the initial solution is close enough to 
the “actual” CPI solution, i.e., the global minimum.

These drawbacks and limits are common to all optimiza-
tion schemes. In order to overcome or diminish them, the 
multi-resolution (MR) approach was proposed (Bendsoe 
and Sigmund 2013; Benedetti et al. 2008). The main idea in 
this scheme is to reduce the dimensionality of the problem 
by clustering the solution space into a few of large regions, 
and apply an optimization scheme to solve this problem of 
lower dimensionality. In the next stage, the clusters’ sizes 
are reduced (mostly divided by two) and the process repeats 
itself. The initial condition for each stage is the optimized 
solution from the previous stage. The major advantages 
of the multi-resolution optimization method include: (1) 

topologically simple and close-to-the-global-optimum struc-
tures can be obtained without any explicit constraint, (2) 
a priori information can be simply exploited, and (3) the 
convergence is not sensitive to mathematical programming 
methods and yields a solution faster than regular CG or GD 
methods. All of these advantages make the MR an attractive 
optimization scheme for CPI. The MR method is used in 
many applications to solve the well-known inverse problem. 
Baussard et al. (2004) used this procedure to estimate locali-
zation and characterization of buried objects in the ground. 
This was done by adaptively selecting different scales of 
spline pyramids. Li et al. (2008) used a multi-level approach 
for scatterer shape reconstruction in the electromagnetic far-
field based on the linear sampling method. Johnson and Xie 
(2011) developed a multi-scale approach to improve the seg-
mentation of high spatial resolution images; this was per-
formed using unsupervised techniques to evaluate segmen-
tation quality. In addition, different methods were proposed 
for the optimal resolution level (Miller and Willsky 1996; 
Baussard et al. 2004) and regions’ shapes and sizes (Céa 
et al. 2000; Feijóo et al. 2003). It is noted that even though 
the MR method is not restricted to a certain dimensional-
ity, all of these studies were confined to two-dimensional 
space problems. A literature search did not uncover any prior 
research on the MR method to solve the CPI problem. How-
ever, in Gavit et al. (2001), the MR technique was proposed 
to reduce computational burden in EEG/MEG source imag-
ing, which tries to solve for the source locations and orien-
tations and is not using CPI that solves for the potentials 
within a volume without any sources.

The back projection CPI (BP-CPI) method (Haor et al. 
2017) is a relatively new CPI method. The method finds a 
single-iterative and constraint-free solution to the Laplace 
equation in a realistic head model. The principle of operation 
is based on the fact that the CPI problem has a single solu-
tion (Yamashita 1982) when the Laplace equation has a full 
set of boundary conditions (BCs). The novelty of the BP-
CPI method is that it estimates the inner BC using a surface 
Laplacian (SL) calculation and a back-projection technique, 
which results in a full set of BCs. Then, the Laplace equation 
is solved using a finite elements method (FEM)-based real-
istic head model. The BP-CPI method seems to be a stable 
and accurate method. It was rigorously validated using both 
simulated and experimental data and was superior to other 
CPI methods. The BP-CPI method is limited to the estima-
tion of large cortical activation, due to the fact that it relies 
on the SL and it is very sensitive to electrode noise, which 
may result in large artificial activation and misinterpretation 
of the cortical activity map by a clinician.

In this paper, we present two novel MR-based improve-
ments to the BP-CPI method. These optimization algorithms 
are used as a successive stage to the BP-CPI, and their aim 
is to increase its accuracy and reduce its sensitivity to noise. 
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The two techniques include an adaptive region clustering 
technique that automatically defines the regions’ size and 
location for each optimization stage. The clusters are defined 
with deterministic or random processes, which result in two 
algorithms, denoted as the dMR and rMR, respectively. A 
series of Monte-Carlo simulations were carried out to vali-
date the algorithm’s performance on simulated data. Fur-
thermore, we tested the sensitivity of the proposed methods 
to the change in the number of sampling EEG electrodes and 
different noise levels, measured on the scalp. Experimental 
validation was also carried out, and results for the MR-CPI 
methods are given relative to the BP-CPI, both are validated 
versus brain activity results from the literature.

Materials and Methods

Head Modeling

Van Uitert et al. (2004) have shown that realistic head mod-
eling is crucial to maintain an accurate CPI. Here, we used 
realistic head geometry based on a single T1-weighted MRI 
scan of a subject’s head. A full description of the realistic head 
modeling process is given in Haor et al. (2017) and will not be 
repeated here. In brief, the algorithm automatically segments 
different tissues within the MRI scan and generates a com-
puterized head model, including conductivity values for each 
of the tissues. Two surfaces are of interest here—the cortex 
and the scalp, both are shown in Fig 1. The cortex and scalp 
surfaces contain 3113 and 6320 mesh nodes, denoted as Nc 
and Ns , respectively. In order to test the dMR and rMR as in a 
real clinical environment, we integrated a 128-electrode sys-
tem to our head model (HydroCel Geodesic Sensor Net 128 
by Electrical Geodesic. Inc.), denoted here as EGI128. We 
also aligned the electrodes’ locations onto the scalp surface. 
The electrode-head alignment procedure is also given in Haor 
et al. (2017), and the result is shown in Fig. 1b. The alignment 
procedure discarded four electrodes from the EGI128 system, 
leaving 124 electrodes. In addition to this alignment proce-
dure, we have also segmented the cortical surface to different 
functional regions of interest (ROI). The labeling of the brain 
regions was performed based on the automated anatomical 

labeling (AAL) atlas (Tzourio-Mazoyer et al. 2002). Two 
examples are given in Fig. 1c and d for the auditory and vis-
ual cortices, respectively. There is an overlap between the left 
and right primary visual cortices. This is due to differences 
between the AAL atlas resolution and the resolution of the 
T1 MRI scan used to generate the realistic head model. This 
overlap is minimal and does not affect the analysis.

Fast Forward Solution

Let the domain V denote the solution volume, bounded by the 
scalp and cortex surfaces �s and �c , respectively. Solving the 
Laplace equation (LE) for the potentials u(r) in V wrapped by 
a constrained BCs will give the potential distribution within 
the solution volume. The LE formulation can be written in 
the form:

where g is the potential distribution on the cortical sur-
face, �(r) is the inhomogeneous conductivity in V, and (2) 
illustrates the fact that no normal current exits on the scalp 
surface. When applying BCs in (2) and (3), the solution is 
denoted as the forward solution. During the MR-CPI optimi-
zation process, a sequence of forward solutions is produced 
with the same set of finite elements, but with different g 
values. Thus, to perform a fast calculation for this task, the 
relationship between any cortical potential (CP) and its cor-
responding scalp potential (SP) was found. This relationship 
matrix is denoted as the Green’s function matrix of the cor-
tex (GFMc matrix). The relationship is expressed in Eq. (4)

where us and uc are the scalp and cortical potentials vectors, 
having dimensions of Ns and Nc , respectively. GFMc repre-
sents the connectivity matrix between cortical nodes’ poten-
tials and the scalp nodes’ potentials. Thus, its ith column 

(1)∇ ⋅ (�(r)∇u) = 0r ∈ V

(2)
�u

�n
= 0r ∈ �s

(3)u = gr ∈ �c

(4)
[
GFMc

]
uc = us

(a) (b) (c) (d)

Fig. 1  Realistic head model. a Cortex surface, b scalp surface. Gray circles illustrate the locations of the electrodes, c primary left auditory cor-
tex is shown in blue, and d primary right (red) and left (green) visual cortices, marked over the cortex surface. (Color figure online)
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contains the scalp potentials excited by a spatial delta-func-
tion centered at the ith node on the cortical surface.

The GFMc was calculated by a series of forward solutions 
performed using a commercial electro-magnetic (EM) simu-
lation software—Sim4Life 3.0 (Zurich MedTech, Zurich, 
Switzerland). This yields an accurate forward solution due 
to optimal meshing and simulation parameters defined by 
the software. Nc simulations were performed. In each one, 
an electric dipole source was placed at a distance of 5 mm, 
oriented normally to the cortex surface. This yields a CP 
distribution that is an approximation of a spatial delta-func-
tion. For each simulation, we extract the scalp and cortical 
potentials, denoted as usi and uci , respectively. In order to 
correct the error in the scalp potential due to a dipole source 
approximation, we performed a successive second stage that 
transforms the scalp potentials produced by the Sim4Life 
to ones that correctly correspond to Eq. (4). In this second 
stage we built the matrix equation in (5)

where usim
c

 and usim
s

 are matrices that have usi and uci as their 
columns, having dimensions of [NsxNc] and [NcxNc] , respec-
tively. This solution to (5) gives the GFMc matrix. In order 
to find an accurate and stable solution, usim

c
 must be invert-

ible. This is accomplished by maintaining orthogonality 
between the matrix columns, which is the result of using 
superficial dipole sources as excitations for uci.

Back‑Projection Cortical Potential Imaging

The BP-CPI method finds the CP estimation using a phys-
ics-based mechanism. In its essence, the algorithm solves 
the inverse problem by solving the LE with complementary 
BCs. The outer BC is the scalp potentials, which are known 
from the EEG measurements. The inner BC is the normal 
cortical current estimation. These are estimated by calculat-
ing the surface Laplacian of the scalp potentials, which is 
known to accurately estimate the current flowing from the 
skull to the scalp. Then, the algorithm uses the knowledge 
of the realistic head model to project these skull–scalp cur-
rents onto the cortical surface. Finally, the LE is solved using 
FEM, which results in the BP-CPI estimation of the CP.

Adaptive Clustering

Following the BP-CPI estimation, the proposed method per-
forms a successive stage of MR optimization. In each stage 
of the optimization, the cortical surface is divided into N 
groups. This procedure yields an optimization process that 
is operating on the N-dimensional space, for each stage. In 
every stage of the procedure, all nodes of each group are 
optimized (as one) to excite the scalp potentials that will best 

(5)
[
GFMc

]
=
[
usim
s

][
usim
c

]−1

fit the measured EEG. Then, the groups are subdivided and 
the process is repeated.

The initial groups are defined according to the BP-CPI 
as follows. First, the main peaks of the BP-CPI distribution 
are found. This is done by choosing all nodes that have an 
absolute value above a selected threshold. We defined the 
threshold as � ⋅max{||uc0||} , where uc0 is the initial solu-
tion and � is selected to be 0.3. We tested different � values 
varying between 0.2 and 0.5 and did not find a significant 
effect of these variations on the algorithm outcome. Next, a 
k-means clustering algorithm (Jain and Dubes 1988) is used 
to find the clusters’ centroids and their areas. The number of 
clusters is defined automatically by taking the point where 
the percentage of explained variance (i.e., F-test) exceeds 
80%. Then, the entire cortical surface is divided into groups, 
where the total number of groups is defined by the total 
cortical surface area divided by the mean cluster area found 
by the k-means algorithm.

In contrast to the initial grouping stage, in the next stages 
the groups are subdivided. Two directions are implemented 
for subdividing the groups. The first is a deterministic subdi-
vision, where in each optimization stage each group of nodes 
is divided into two. The second direction is a random sub-
division, where in each stage, smaller independent groups 
are created. The number of groups in the next stage is twice 
the number of groups in the current stage. In each stage, the 
regions are uniformly distributed across the cortical surface. 
In the random approach, to ensure better convergence, we 
repeat each sub-division L times and choose the best result 
(i.e., minimum error) before the optimization process. In 
both implementations, following each sub-division, the algo-
rithm converges to the best solution that can be obtained 
with the current group division; then, it proceeds to the next 
stage where another sub-division is performed and so on, 
until the number of groups equals the number of mesh nodes 
on the cortex surface.

Figure 2 illustrates the adaptive clustering process. A 
deterministic and random subdivision is shown for 10, 20, 
and 40 regions. It can be seen that for the deterministic case, 
the parent-regions are the exact composition of its children-
regions, whereas in the random case this is not the case. It is 
also seen that, in the random case, the areas of the children 
regions are half of their corresponding parent region.

Optimization Scheme

The entire optimization process for the dMR and rMR is 
shown in Fig. 2c. First, the EEG measurements are pro-
cessed by the BP-CPI to estimate an initial solution. Then, 
the regions’ numbers and their locations are determined 
according to the initial condition. In the next phase, the pro-
cedure divides the cortical surface into separate regions and 
assigns each region with a constant potential value based on 
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the average value in each region. Once the initial CP is deter-
mined, the first optimization stage begins. Each optimization 
stage comprises the following steps: (1) the forward problem 
is solved with the current CP estimation as g in Eq. (3). This 
results in the scalp potentials sampled at the electrodes’ loca-
tions. (2) These calculated EEG values are compared to the 
measured EEG data and an error function is evaluated. (3) The 
error is tested versus a stage-stopping criterion. If this crite-
rion is reached, the process moves to the next stage; if the cri-
terion is not met, a new iteration begins within the same stage. 
For fast convergence, the current solution is updated by an 
optimal step and the process repeats until the stopping crite-
rion is reached and the current stage concludes. For the rMR, 
each stage is composed of L processes of group division and 
optimization. Within each stage of the rMR, the group sizes 
are kept but their centroids are randomly displaced. This helps 
to avoid the local-minima problem. The value of L is empir-
ically-defined to be inversely proportional to the number of 
regions where, for example, for 20 regions, L=20, and for 40 
regions, L=10. In addition, for N > 300, random displacement 
of regions has a minor effect, therefor we keep L=1. When the 
stopping criterion has been met, the minimum-error optimized 
CP is selected for further processing and sub-division. (4) 
When the stopping criterion is reached, the algorithm deter-
mines if another sub-division can be performed. If the num-
ber of regions reached is the maximal number of regions and 
the solution is believed to be the global minimum, the entire 
process stops; otherwise, the regions are again sub-divided 
according to the selected scheme (random/deterministic), and 
another stage begins, repeating the same procedure with the 
current stage optimal CP estimation as input. An elaboration 
on the algorithm components is given next.

Error‑Function

In each iteration, the error function shown in Eq. (6) is 
calculated,

where us is the measured EEG potentials, and ‖⋅‖2 is the L2 
norm. The term [GFMc] ⋅ uc

(i,s) reflects the scalp potential 
excited at the electrodes’ locations by the ith CP on the sth 
stage, and thus this error-function measures the difference 
between the measured EEG and the calculated EEG in the 
current iteration.

Gradient Descent and Solution Update

Within each optimization stage, the GD algorithm is used to 
update the solution in the direction of the global minimum. 
The update is done according to Eq. (7)

where t(i,s) is the update step and J(u(i,s)
c

) is the error-function 
evaluated for the ith estimated CP on the sth stage. We used 
an optimal update step, which is found using the line-search 
technique (Grippo et al. 1986). The optimal step is found 
by evaluating the error-function along a line in the direc-
tion of the error-function gradient ∇J(u(i−1,s)

c
) and taking the 

minimal-error solution along the line, as depicted in Eq. (8).

(6)J(u(i,s)
c

) =
‖‖‖us − [GFMc] ⋅ uc

(i,s)‖‖‖2

(7)u(i,s)
c

= u(i−1,s)
c

− t(i,s) ⋅ ∇J(u(i−1,s)
c

)

(8)t(i,s) = argmin
�≥0

J(u(i−1,s)
c

− �∇J(u(i−1,s)
c

))

Fig. 2  Adaptive clustering and 
subdivision for a deterministic 
clustering and b random cluster-
ing. c The MR-CPI optimization 
block diagram. The dMR pro-
cess is illustrated in the center-
line of the diagram from top to 
bottom. The rMR process builds 
off the initial steps of the dMR 
process after the optimization 
phase through the L repetitions 
of group division and optimiza-
tion stages

N=10 N=20 N=40

(a)

(b)
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For fast convergence, we also implemented the GD algo-
rithm to find the optimal step along that line.

Stopping Criteria

In each stage, the algorithm tries to find the global minimum 
in the current N dimensions. If a close-enough solution is 
reached, there is no need to further converge to a better solu-
tion. Stopping the process at this point will result in a lower 
computation cost and shorter processing time. The MR-CPI 
algorithm uses a stopping criterion to detect the iteration in 
which a sub-division should be performed. This criterion 
is given in Eq. (9) and expresses the absolute directed dif-
ference between the previous iteration error function and 
the current one. The number of electrodes Ne is added as a 
normalization factor to deal with EEG measurements using 
a variable number of electrodes. We used � = 0.0005%

It is emphasized that, in the final stage, where the number of 
regions equals the number of nodes in the mesh, if Eq. (9) is 
reached, the algorithm ends.

Reference Simulated Data

Cortical activation is mostly composed of a number of 
simultaneous activations having different sizes and shapes. 
These can be modeled as Gaussian-pattern cortical poten-
tials (GCP). The GCP is a three-dimensional Gaussian func-
tion as expressed in Eq. (10).

where r denotes the three-dimensional space coordinates, � 
is the GCP peak coordinate and �2

x
, �2

y
, �2

z
 are the variances 

of the Gaussian in the three dimensions. diag(⋅) denotes a 
diagonal matrix formed from its vector arguments, and s 
expresses the sign of the GCP. As part of the validation pro-
cess, a simulated reference dataset was created. 1000 GCPs 
were generated by using randomized values for �,� and s. 
� was constrained to be on the cortical surface, � was kept 
smaller than one quarter of the cortex size in each dimen-
sion (< 30 mm), and s was randomly chosen to be 1 or − 1 
to maintain a normalized GCP. Following the generation 
of these single cortical activations, we randomly selected a 
combination of M GCPs from the aforementioned GCP set 
and combined them to generate a more complex and realistic 
potential distribution. 1000 combined-GCPs were generated 

(9)J(u(i−1)
c

) − J(u(i)
c
) < 𝜀 ⋅ Ne

(10)

GCP(r) = s ⋅ exp
�
(r − �)T�−1(r − �)

�

r =

⎛⎜⎜⎝

x

y

z

⎞⎟⎟⎠
,� =

⎛⎜⎜⎝

�x

�y

�z

⎞⎟⎟⎠
,� = diag

�
�2
x
, �2

y
, �2

z

�

for each selected M, where M varied between 2 and 10 com-
bined Gaussian distributions. Thus ,when joining the single 
and combined cortical activations, we obtained a total of 
10,000 GCPs, denoted as the GCPs dataset. These GCPs 
were multiplied by the GFMc matrix to generate the Gauss-
ian-pattern scalp potentials (GSPs) dataset, which are the 
scalp potentials excited by the corresponding GCPs dataset.

Experimental Data

Tasks and Stimuli

We selected the visual and auditory Go-Nogo (GNG) event 
related potentials (ERP) tasks to validate the MR-CPI per-
formance. These tasks are known to involve visual and audi-
tory processing related to specific regions of the cortex : the 
visual and temporal cortices, respectively. In the GNG task, 
subjects are exposed to a series of cues and are required to 
react accordingly. The different cues are the ‘Go’ cue, in 
which the subjects are requested to respond as quickly as 
possible by pressing a keypad, and the ‘Nogo’ cue where the 
subjects are requested to inhibit their response. 80% percent 
of the cues are ‘Go’, and all others are the ‘Nogo’ cues, 
which are distributed randomly within the experiment. In 
the visual GNG (VGNG), the ‘Go’ cue stimuli are English 
alphabetic letters (‘B’, ‘C’, ‘D’, etc.) while the ‘Nogo’ cue 
stimuli is the letter ‘X’. In the auditory GNG (AGNG), the 
‘Go’ and ‘Nogo’ stimuli are 1000 Hz and 2000 Hz sound 
tones, respectively. Further description of the AGNG experi-
mental data, experimental validation results and their inter-
pretation are given in the supplementary materials of this 
article.

Subjects, Recording System and Data Preprocessing

Six participants were included in the MR-CPI experimen-
tal validation study. All subjects were healthy males, aged 
25–34 years (mean = 29 years). Three participants per-
formed a visual ERP task (VGNG) and three performed an 
auditory ERP task (AGNG). Scalp potentials were recorded 
using the 64 electrode system (BioSemi, Amsterdam, Neth-
erlands) (10–20 layout). Basic filtering, artifact removal and 
trial rejection procedures were performed on the EEG raw 
data before averaging the ERP. In order to maintain the sig-
nal as faithfully as possible, limited filtering was performed 
on the signal (0.5–30 Hz BPF). This resulted in noisy sig-
nals. We quantized the noise of the signal as in Eq. (11)

where STDBL
s

 is the standard deviation of the EEG recording 
in the 50 ms baseline period before the onset, and uscalp is the 
measured potential on the EEG electrodes at the component 

(11)nexp = STDBL
s
∕RMS{uscalp}
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peak time. We found that the VGNG ERPs are measured in 
the presence of mean noise of 12%.

ERP Components

The first negative peak, visible in the occipital electrodes 
of the VGNG ERPs, is denoted here as the N1v component 
(Fig. 3). This component’s latency ranges from 100 to 200 
ms and is known to be related to visual processing and detec-
tion of a visual stimulus (Luck 2014). Different studies have 
shown that the origin of N1v activation is the primary visual 
cortex (Hopf et al. 2002). The N1v wave is also sensitive to 
the direction of spatial attention (Hillyard and Anllo-Vento 
1998), where the cortical potentials will exhibit higher acti-
vation on the contralateral side of the primary visual cortex 
relative to the subject attention to the stimuli. ERP signals 
for the subjects who performed the VGNG are denoted as 
ERPs1, ERPs2 and ERPs3.

The ERP of the AGNG was also investigated. Here, we 
tested the processing component which is the first negative 
peak of the AGNG ERP, present in the fronto-central elec-
trodes at latencies that ranged from 80 to 120 ms. This com-
ponent is denoted here as N1a. More information is given in 
the supplementary materials of this paper.

Cortical Potential Estimation

To validate the accuracy of the MR-CPI method, the corti-
cal locations of the N1v and N1a were estimated. As a first 
step, the N1v and N1a component latencies were selected 
manually from the ERP. Then, potentials from 64 electrodes 
were used to generate CP estimations. For the visual task, 
the primary visual cortex is expected to be active and, for 
the auditory task, the primary auditory cortex is expected to 
be active as a bipolar (tangential) activation.

Quantitative Measures

Two measures were developed to quantitatively compare the 
MR-CPI improvement relative to the BP-CPI. The first meas-
ure is the mean spread of activation (mSOA, in mm) which is 
defined as the mean distance between the activation peak (A) 
and the contour of half amplitude (A/2). The second measure 
is the relative energy (relEN, in %) which is defined as the 
energy in some region relative to its surrounding regions. 
The mSOA is used to measure the activation focality, and 
the relEN quantifies the amount of activation-surrounding 
spatial artifacts, known to be a disadvantage of the BP-CPI.

Results

Three validation stages were applied to test the MR-CPI per-
formance. The first included a noiseless simulation study 
based on Monte Carlo simulations; the second set comprised 
two tests, examining the effect of a noisy environment and 
a limited number of measurement electrodes on the algo-
rithm’s performance. The third validation stage include 
experimental results.

Simulation

First, we evaluated the rMR and dMR using simulated data. 
We adopted the Monte Carlo approach to test these algorithms 
for their performance in the general case. In this approach, we 
generated a set of reference randomly simulated inputs for the 
algorithm. Analyzing the distribution of the algorithm output 
for this random input set yielded valuable information on its 
performance for the general case. In our implementation, we 
used the GSPs dataset as the random input set. Each simulated 
GSP was sampled at 124 electrode positions according to the 

Fig. 3  Visual Go-Nogo (Go condition) ERP signals generated for dif-
ferent subjects. N1v component is presented from three electrodes 
(O1, Oz, O2) and is visible in the time range of 100–200 ms marked 
within the figure. Y axis is amplitude with units of [ �V  ], and x axis is 
time with units of [ms]



 Brain Topography

1 3

alignment method mentioned in "Head Modeling". Then, the 
rMR and dMR were applied to these 124 potential values and 
the estimated CP was compared with the corresponding GCP 
(i.e., the correct CP). We used the correlation coefficient (CC) 
and the relative error (RE) as quantitative measures for the 
correctness of the estimation, as defined in Eqs. (12) and (13),
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where uA
i
 and uB

i
 are the potential values at the ith node of 

potential distributions A and B, respectively. The bar sign 
represents the mean of the vector, N is the total number of 
nodes for the potential distributions, and i includes all nodes 
i = 1…N

Figure 4 shows the histogram plot of the CC between 
the correct and estimated CP, for both algorithms and com-
pared to the BP-CPI. Results show that the rMR gives the 
best results (mean = 0.96, SD = 0.04), the dMR shows 
slightly lower accuracy (mean = 0.93, SD = 0.05), but 
both show significant improvement relative to the BP-CPI 
performance (mean = 0.85, SD = 0.05). The rMR has 
improved the mean error of the BP-CPI by a factor of 3.75.

In addition to the Monte Carlo analysis, we have cho-
sen two cases that showed low performance with the 
BP-CPI for visual inspection. Figure 5a and b show the 
results for the two selected distributions, denoted as 
distA and distB. The first includes two proximate inward 
oriented sources (i.e, negative GCPs) in the central part 
of the cortex, and an additional outward directed source 
in the parietal cortex (M = 3). The second case illus-
trates three positive activations, two in the parietal cor-
tex and one on the left prefrontal cortex (M = 3). In both 
cases, the BP-CPI estimates the CP with large spatial 
artifacts, which results in inaccurate localization and 
blurring of the activation map. On the contrary to these 
imprecise results obtained with the BP-CPI method, the 
optimized cortical potentials are much more accurate, 

(13)RE =
1
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Fig. 4  Histogram representation of the Monte Carlo simulation 
results. The correlation coefficients for the two MR techniques are 
compared to the BP-CPI. Means and standard deviations are given in 
the legend. The difference between the groups is highly significant (F 
> 10000, p < 1e-6)

Cortex BP-CPI rMR dMR

(a)

(b)

Fig. 5  Visual inspection results. From left to right: “True” cortex potential distribution, BP-CPI initial solution, rMR and dMR algorithms esti-
mation. First and second rows corresponds to a distA and b distB, respectively. All results share the same scale
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with a slight advantage to the rMR method. Table 1 pro-
vides a quantitative evaluation for the accuracy of these 
three methods.

It is also important to investigate the convergence of 
these two proposed optimization methods. Figure 6a and 
b show the error as a function of iterations for distA 
and distB, respectively. The error is calculated at each 
iteration ( e(i) ) according to Eq. (6). The convergence 
time for each of the proposed optimization methods can 
be seen. It is defined as the number of iterations calcu-
lated before the stopping criteria was achieved. In both 
cases, the rMR convergence time is about twice the con-
vergence time of the dMR, however, the rMR achieves 
better accuracy. In addition, for the rMR, the error value 
spikes whenever a stage stopping criteria was achieved 
and clusters size was lowered. In the case of the dMR, 
the error in the next iteration was always smaller than 
the current iteration, which resulted in faster conver-
gence time.

Sensitivity Study

Effect of Noisy EEG Measurement on MR Estimation

EEG is designed to record electrical brain activity. However, 
EEG measurements also include a noise component that can 
not be neglected. In this test, we investigated the effect of 
noise on the rMR and dMR CP estimation. Noises of differ-
ent powers were added to the electrodes’ potentials acquired 
from the GSP set generated for the Monte Carlo simulation 
presented in "Simulation" section. 500 random cases were 
selected. Each was sampled at 124 sites according to the 
EGI128 electrode set. These sampled potentials were con-
taminated with additive white gaussian noise (AWGN) with 
standard deviation ( STDnoise ), defined in Eq. (14)

where n is the noise level (in [%]), RMS is the root mean 
square operation, and uscalp is the sampled potentials vector. 
Noise levels in the range of 0–30 % were tested for each of 
the 500 cases. Figure 7 shows quantitative measures of the 
effect of different noise contamination on the MR estima-
tion. The results shows that both methods were quite robust 
in noise. Noise levels of 15% and below showed less than 
5% decrease in estimation quality. The rMR was more robust 
and maintained higher mean and lower SD CC values across 
most noise levels. This is the result of the random property 
of the method that automatically finds the best regions fit for 
the measured EEG potentials. Figure 8 presents a visualized 
example of the dMR method for distB. Results with noise 
power of 10, 20 and 30% are presented. As expected, spa-
tial artifacts are visible for higher levels of noise. However, 

(14)STDnoise = n ⋅ RMS{uscalp}

Table 1  Quantitative results for source-Gaussian model

Measures are CC/RE

BP-CPI rMR dMR

distA CC 0.64 0.97 0.91
RE 0.36 0.08 0.11

distB CC 0.53 0.91 0.87
RE 0.26 0.04 0.09
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Fig. 6  Convergence time. The convergence time for a distA and b distB cases. Blue and red curves show the number of iterations for the rMR 
method and dMR methods, respectively. (Color figure online)
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the main activations are still visible even in the presence of 
30% noise. The CC and RE values are also presented and 
show that the estimated CP shows good agreement with the 
original one.

Effect of Number of EEG Electrodes on MR Estimation

An EEG is only recorded at a limited number of electrodes. 
Thus, it is important to understand the role of this number 

on the quality of the estimation. In order to do so, we tested 
both rMR and dMR with four sizes of electrodes sets: 256, 
124, 62 and 32 EEG electrodes, without adding noise. Fig-
ure 9 shows visual inspection results for distA. With 32 and 
62 electrodes, the results are still blurry and do not achieve 
good separation of activation, whereas with 124 or 256 elec-
trodes, the three activations are clearly seen and high CC 
values are achieved. In addition, 500 random cases were 
selected for the Monte Carlo simulation. Each was sampled 
at 256, 124, 64 or 32 scalp sites and the CP was estimated 
using both methods. Quantitative measures of the mean 
and standard deviation (SD) of the distribution are given 
in Table 2. Degradation of the estimation quality is seen for 
both methods, resulting in CC values of 0.86 for the worst 
case. When observing the results found for the 64 electrodes 
system, we see that the rMR method gave slightly better 
results compared to the dMR, reducing the RE by 15% and 
increasing the CC by 5%. From these sensitivity test results, 
we selected the rMR-CPI to be experimentally validated. 
32 electrode systems are increasingly growing popular in 
commercial use, thus it was also interesting to test the pro-
posed methods with this low number of sampling sites. As 
expected, these results show blurry CPs with lower accuracy.
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Fig. 7  MR-CPI sensitivity to electrode noise. Solid and dashed lines 
illustrate the mean-CC value for each noise level, for the rMR and 
dMR, respectively. Green and purple areas mark the CC value stand-
ard deviation for each noise level, for the rMR and dMR, respectively. 
(Color figure online)
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Fig. 8  The effect of noise on the dMR-CPI. From left to right—simulated CP, dMR CP estimation in the presence of 10, 20 and 30% noise lev-
els. (CC/RE) measures are given below each plot. All results share the same scale
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Fig. 9  The effect of EEG electrodes number on the rMR estimation. From left to right—simulated CP, rMR CP estimation using 256, 128 and 
64 EEG electrodes. (CC/RE) measures are given below each plot. All results share the same scale
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Experimental Results

From the rMR-CPI method, estimations of the N1v compo-
nent were found in the expected cortical locations. N1v scalp 
potentials, along with the BP-CPI and MR-CPI estimations, 
are shown in Fig. 10. The “smearing” effect of the scalp 
potentials is clearly visible. Identifying the exact activation 
peak was difficult. The BP-CPI results show more focused 
cortical activations, but contain many spatial artifacts. The 
results of ERPs1 and ERPs3 show extra negative activations 
not located within the visual cortex. The results of ERPs2 
show positive artificial activations surrounding the visual 
cortex-activations. These inaccurate results from the BP-
CPI may corrupt the analysis. When observing the MR-CPI 
estimation of the N1v, symmetric activations were observed 
in all subjects. As expected, the activations were located 
within the primary visual cortex. Note that in ERPs1, the 
right-sided activation is weaker, which can occur when the 
subject is not focused at the center of the screen during the 
performance of the test, and thus generates higher left-sided 
activation. The rMR improved upon the results obtained 
from the BP-CPI by reducing non-true spatial artifacts and 
generating more focal cortical activation maps. We also 

compared the rMR improvement relative to the BP-CPI by 
using the mSOA and relEN measures, where the mSOA is 
given for the activation within the visual cortex region and 
the relEN is taken for the visual cortex relative to its sur-
rounding regions. Results are given in Table 3. The BP-CPI 
does extract the visual cortex activations, although they are 
less focal than the MR-CPI ones. On the other hand, the 
relEN measure clearly shows that the BP-CPI exhibits more 
out-of-region spatial artifacts when compared to the MR-
CPI values. These results indicate that the rMR method can 
localize isolated and focal cortical activation, while main-
taining good spatial artifact suppression.

Note that the AGNG results are given in the supplemen-
tary materials of this manuscript.

Table 2  The effect of number 
of EEG electrodes on MR 
estimation

Number of electrodes

256 124 64 32

rMR  CC 0.98 ± 0.01 0.97 ± 0.03 0.91 ± 0.06 0.85 ± 0.09
 RE 0.04 ± 0.04 0.18 ± 0.07 0.32 ± 0.1 0.45 ± 0.17

dMR  CC 0.95 ± 0.05 0.93 ± 0.05 0.86 ± 0.1 0.82 ± 0.08
 RE 0.07 ± 0.03 0.16 ± 0.09 0.38 ± 0.23 0.53 ± 0.33

Fig. 10  Single subject results 
for the N1v. a Scalp potentials, 
b BP-CPI estimation, and c 
MR-CPI improved estimation 
(c). From top to bottom—results 
are plotted for ERPs1–ERPs3. 
The color axis is amplitude with 
units of [ �V  ]. The primary vis-
ual cortex is marked in dashed 
lines. (Color figure online)
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Table 3  Quantitative comparison between BP-CPI and rMR-CPI

BP-CPI rMR-CPI

mSOA relEN mSOA relEN

ERPs1 21 30 18 352
ERPs2 38 420 12 380
ERPs3 31 76 17 210
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Discussion

Although several high-resolution EEG methods and corti-
cal potential imaging algorithms are available, they exhibit 
several drawbacks. These drawbacks can yield errors due 
to false constraints taken by the method or the well-known 
local minima problem that can damage the solutions. In 
addition, good estimation techniques that maintain con-
straint-free accurate estimations are computationly exhaus-
tive and are not suitable for implementation in many clinical 
applications.

In this study we proposed two novel improvements to the 
BP-CPI algorithm. These methods are based on the multi-
resolution approach with random and deterministic compo-
nents, denoted as rMR and dMR, respectively. The novelty 
of these techniques is in that they give an accurate CP while 
making no assumption on the number of sources nor the 
potential distribution or noise level. In addition, these itera-
tive techniques adaptively converge to a correct CP estima-
tion due to the flexible mechanism of sub-dividing regions, 
which fits itself to any spatial signal. The methods were 
evaluated using a Monte Carlo simulation approach, which 
gives a better understanding of the algorithm performance 
in the general case and not only in selected cases, as is seen 
in most literature reports. Three validation stages were con-
ducted to characterize the proposed method’s performance. 
First, a noiseless simulative study utilizing a large number of 
random CPs on a realistic head model showed that the mean 
accuracy of the methods are extremely high (CC > 0.96, RE 
< 0.1 for the rMR). These results show that the proposed 
improvements reduce the CP estimation error by a factor of 
3.75 relative to the inaccuracy of the BP-CPI method.

The second simulation study included noisy EEG meas-
urements and a variable number of recording sites. As 
expected, there is a monotonic decrease in the estimation 
accuracy for noisy environments. However, CC values above 
0.9 were observed for noise that was 15% of the signal ampli-
tude. The second test showed that more recording electrodes 
gave a better estimation. However, the difference between 
the results using 124 and 256 sites was negligible. These 
results corresponds to other source imaging and localiza-
tion studies (Sohrabpour et al. 2015; Lantz et al. 2003), that 
showed significant accuracy improvement when sampling 
124 (and more) sites compared to 64 sites. In addition, these 
studies showed a similar plateauing effect as seen in Table 2. 
In both the noise and electrode number tests, we did not find 
any significant advantage for one of the proposed methods 
over the other. Across the first two evaluation stages, the 
rMR had higher accuracy. This is due to the random pro-
cess that is at the heart of the algorithm, which helps to 
maintain a close-to-global-minimum solution. Further con-
sideration should be given for the possibility of over-fitting 

to noisy measurements. This research targets led us to imple-
ment this variant of the MR scheme, which has an internal 
“noise-filtering” process, by taking the average value of all 
the nodes in each region as its constant value in each stage 
of the optimization. Furthermore, during the study we tested 
for different values of � in the stopping criteria. We did not 
find any major over-fitting effect when varying this value. 
It is also important to discuss the trade-off between the two 
proposed methods. As presented, the rMR-CPI method is 
more accurate than the dMR-CPI, in the general case. In 
addition, both methods were shown to be similarly robust 
to noise and the number of sampling scalp electrodes. Fur-
thermore, the dMR calculation is faster due to convergence 
in less iterations, even though our implementation did not 
include parallel-computing, which would improve the effi-
ciency of the rMR estimation.

According to the simulative validation results, we 
selected the rMR for experimental validation. Several CPI 
methods have shown experimental validation in the litera-
ture. He et al. (2002) have shown a good spatial correlation 
between the estimated and measured cortical potential for 
a somatosensory evoked potential (SEP). Subjects’ SEPs 
were recorded before the subdural grid was placed on their 
cortex surface via surgery and compared with postopera-
tive cortical-recorded signals. Gevins et al. (1991) showed 
a similar study on visual and auditory stimulation. In the 
present study, we also validated our method using EEG-
measured signals. Due to the lack of true cortical measure-
ments by means of functional MRI or electrocorticography 
(ECoG), we experimentally tested the rMR using task-based 
ERP signals. Six healthy subjects performed the visual and 
auditory Go-Nogo tasks with the aim of validating the MR-
CPI. Analysis of the rMR-CPI estimation from the subjects’ 
ERPs revealed very localized cortical activations. The visual 
cortex was activated during the N1v components for all sub-
jects performing the VGNG, as expected. Compared to the 
BP-CPI, the MR-CPI improved the activation spread and 
significantly reduced the noisy cortical activation. Using the 
rMR we were able to separate the smeared scalp activation 
into two isolated occipital activations representing the visual 
processing activity. In addition, the location of the ’Go’ cue 
on the subject receptive field could be detected by consider-
ing the offset of the peak activations relative to the V1 area 
of the visual cortex. Future analysis of these results can yield 
valuable information on subject visual impairment. These 
EEG results also emphasize the notion that the proposed 
method not only focuses the existing scalp potentials, but 
also reveals cortical activations that were unavailable when 
observing the scalp alone.

The results presented in this study give rise to many fur-
ther research directions. Further improvements in accuracy 
can be achieved by modifying the initial condition. In this 
manuscript, we aimed at improving the BP-CPI results, 
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and thus used it as an initial condition to the rMR or the 
dMR. We can increase the accuracy or raise the stability of 
the solution by applying the algorithms several times with 
different initial conditions, such as zero or random-valued 
initial CP, and select the minimum-error solution. Another 
direction that may improve the method accuracy, mostly 
in experimental data, is extent imaging as in Sohrabpour 
et al. (2016). Extent imaging determines the active cortical 
region by distinguishing the desired source activity from 
background activity and thus, it can improve the physiologi-
cal accuracy of the rMR-CPI by defining more accurately 
the exact source activity region. In order to generate an even 
more powerful clinical tool, we aim to integrate the MR-CPI 
with single-subject and group analysis algorithms. These can 
be cortical-connectivity algorithms, such as dynamic causal 
modeling (DCM) (David et al. 2006), or group-based scor-
ing algorithms, such brain network activation (BNA) (Stern 
et al. 2016). High level analysis combined with more focused 
cortical potential maps can reveal brain functionality infor-
mation that was not previously available to the clinician.
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