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Abstract— A new design method called the array scattering
method for a flat lens made of dielectric cylinders is presented.
The method reconstructs the far-field radiation pattern of a
2-D arbitrary geometrical shape dielectric scatterer. Since the
method has no restrictions on the near field, it allows us to
alter the polarization currents distribution in order to obtain
a better far-field performance for a periodic structure with a
given unit cell size. The method also allows us to perform a
simple parametric study on the limits of the unit cell size,
taking into account the scatterer geometrical dimensions. This
parameter (unit cell size) does not appear in the formulation if
we use a method that assumes an infinite array of cylinders. The
realization is done using the multiple scattering method, which is
one of the most accurate methods to deal with arrays scattering.
Nevertheless, the method is almost entirely analytic, not iterative
and does not require multiple simulations in order to obtain the
required objective.

Index Terms— Artificial dielectrics, dielectric cylinders array,
flat lens, homogenization, multiple scattering method (MSM).

I. INTRODUCTION

LENSES are devices, which transform a plane wave (PW)
to a spherical or a cylindrical wave (CW), and vice versa.

In the optical regime, they are mainly used for magnifying,
holography, and imaging. In the microwave regime, the main
purpose of a lens is to enhance the directivity of an antenna.
Conventional lenses are usually made of a material with
constant permittivity. The contour of the lens (could be a
sphere, cylinder, paraboloid, and so on) determines the focal
point location.

Since the conventional lens is a large structure with some-
what complicated geometry, for some applications, a flat lens
would be more appropriate. A flat lens has a simple structure
of a rectangular bulk. There are some approaches for the
design of a flat lens. The most commonly used are Fresnel
lenses [1], transmission line metamaterials [2], zero index
of refraction design [3], negative index of refraction [4],
metasurfaces [5], and transformation optics (TrO) [6]. In this
paper, we concentrate on TrO methods.

The TrO theory is based on the coordinate invariance of
Maxwell’s equations (see [7], [8]). This allows for control-
ling the wave paths inside a given device by distorting the
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spatial coordinates. The Jacobian of the coordinate transfor-
mation is absorbed in the new media permittivity and perme-
ability, which becomes anisotropic and inhomogeneous. For
these reasons, such devices are very hard to realize. However,
Tang et al. [9] have shown that if the discrete coordinates in
the physical space are near orthogonal, and the corresponding
virtual space coordinates are strictly orthogonal, the lens is all
dielectrics and is very close to be isotropic. This gives rise to
the possibility to realize the lens using artificial dielectrics.

The concept of artificial dielectric materials is a relatively
old concept. It was first proposed by Kock [1] to design a
Fresnel lens. Kock made an artificial dielectric lens, which is
made of metal plates. In 1958, it was shown by Brown [10]
that dielectric materials can exhibit effective refractive index
of less than unity. Since then, countless dielectric devices were
designed for various applications (see [11]–[13]).

The realization of an artificial dielectric material is normally
done using homogenization techniques. The most common
homogenization method is the Lorenz theory (see [14]),
which is a quasi-static method. More general methods, which
do not assume quasi-static approximations, were presented
in [15] and [16]. More accurate methods for complex particle
geometries, based on full wave simulations and integral equa-
tions, also exist (see [17], [18]). For 2-D lenses implemented
by periodic structures, it is convenient to use dielectric or con-
ducting cylinders in the unit cell. Homogenization techniques
for thin wire medium also exist in the literature (see [19]).

The common feature of the homogenization methods is that
they all assume that the unit cell lies in an infinite array
of identical particles. Under this assumption, it is impossible
to account for the effect of the slab’s size on the required
unit cell size. While the methods proved to be useful for
many large-scale applications, for relatively small slabs, such
as flat lens for example, the unit cell has to be very small
in order to obtain good agreement between the realized and
the theoretical design. How small is usually determined by
simulations. Another feature of homogenization is that we
assume a polarization current density, which is a macroscopic
quantity, and implement a discrete microscopic model. In other
words, we design the near field of the lens and expect the far
field to behave accordingly. However, for a radiation directivity
enhancer, the far field is the important factor and not the near
field.

The proposed array scattering method (ASM) is a new
design method for 2-D artificial dielectric flat lenses made of
thin dielectric cylinders. It is actually not a homogenization
method in the sense that the polarization currents on the
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Fig. 1. (a) Model of a flat lens. An inhomogeneous dielectric slab, infinite in
the z-directions, with dimensions of W × D in the xy plane. (b) Realized lens.
An array of dielectric cylinders with relative permittivity εm with interelement
spacing of dx ×dy . The radius of each cylinder is different and denoted by ai
for the ith cylinder.

cylinders correspond to the polarization current density of a
continuous bulk slab. Instead, it is a far-field reconstruction
method. The polarization currents on the cylinders are chosen
such that the far field of the finite array emulates the far field
of the continuous lens. Since an ASM is not a homogeniza-
tion technique, the standard limitation on the unit cell size,
i.e., d � λg , does not apply to it and therefore can be
violated. The design is performed using the multiple scattering
method (MSM) [20]. In this method, we calculate the scattered
field of a scatterer in the vicinity of other scatterers, including
the coupling effects. A parametric study on the limits of the
unit cell size, which also considers the slab’s thickness, is also
conducted. The strength of the method is demonstrated by
designing a flat lens and comparing its performance to similar
lenses designed using standard homogenization methods.

This paper is arranged as follows. In Section II, we present
the ASM. In Section III, we discuss the process of setting
the target polarization currents on the cylinders by the use
of filtering. In Section IV, we perform a parametric study
on the effects of the unit cell size and the cylinder material
permittivity. In Section V, we use the method to design a
flat lens and further emphasize the advantage of this method
over conventional homogenization techniques. Finally, in
Section VI, we draw some conclusions.

II. ARRAY SCATTERING METHOD

In this section, we present a new method called the ASM
for a far-field reconstruction of a given structure using an
array of dielectric cylinders. For simplicity, we consider a
dielectric inhomogeneous slab, infinite in the z-direction with
dimensions W × D in the xy plane, as shown in Fig. 1(a).
The slab is excited by a known source with TEz or TMz
polarization. In the following, we will consider the TMz case.

The realized lens is designed for this specific excitation. This
is not a limitation, since the main application of this method
is radiation enhancement for antennas. The antenna we wish
to enhance has a known electric field distribution without
the lens. This structure will be realized using an array of
dielectric cylinders, as shown in Fig. 1(b). Since the cylinders
are very thin, the interactions with electric fields pointing in the
x- and y-directions are very weak, and therefore not in our
scope of interest. The cylinders have relative permittivity εm ,
and the element spacing is dx and dy in the x- and y-directions,
respectively. Each of the cylinders has a different radius. The
radius of the i th cylinder is denoted by ai . The difference in
the radii allows the effective permittivity of the structure to
vary as a function of the spatial coordinates.

A. Obtaining the Target Polarization Currents
for the Cylinders

The ASM has three steps in the design. The first step
is to calculate the exact total electric field in the slab in
the case of the original continuous bulk slab. In some very
simple cases, this can be done analytically, but in most cases,
a numerical method has to be applied. The recommended
method is the method of moments [21], since the results are
obtained in terms of the polarization current density. However,
different methods, such as the finite-element method (FEM),
can be used as well. This step can also be performed using a
commercial software, such as HFSS or CST. The excitation
in this step is the exact excitation that will be applied on
the realized slab. In this paper, we used either a PW or a
CW excitation. But in the general case, one can calculate
numerically the field of any type of feed. The second step
is to obtain the polarization currents we wish to impose on
the cylinders. Once the total electric field is calculated, we
extract the continuous polarization current distribution from it
with

Jp(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

j
k0

η0
(εr (x, y) − 1)Ez(x, y), − W

2
< x <

W

2

− D

2
< y <

D

2
0, elsewhere

(1)

where k0 = ω/c0 is the vacuum wavenumber and η0 =√
μ0/ε0 = 120π is the vacuum wave impedance. This polar-

ization current distribution is now sampled in the locations
of the cylinders. If we choose to sample with a brute force
approach, the sampling period dx and dy has to be determined
so that the aliasing field in the visible region of the spectrum
is beneath a certain threshold. This is a very important part
of the design. As will be shown later, the decision on the
unit cell size depends on the effective permittivity, the relative
permittivity of the cylinders, and also on the slab’s dimensions.
The dependence on the bulk slab’s size cannot be noticed
unless we approach the realization as a sampling problem
in a finite structure. Moreover, we can decrease the required
sampling period by using antialiasing filters. This will be
discussed in detail in Section III. For simplicity, for the rest
of this paper, we use square unit cells, i.e., dx = dy = d .
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The generalization to a rectangular unit cell is trivial. The
third step in the design is to extract the radii of the cylinders
using the MSM, as described in Section II-B.

B. Extracting the Cylinders Radii

At this point, we have determined the target polarization
currents we wish to impose on the cylinders. Next, we use the
MSM (see [20]) in order to extract the radius of each cylinder.
Using the MSM, the incident field upon each cylinder is equal
to the superposition of the scattering from all neighboring
cylinders and the incident field. The MSM was chosen, since
it can handle finite arrays of an arbitrary layout while taking
into account the mutual coupling in an exact manner. However,
for our purpose, we assume that the array is Cartesian with
square unit cell (i.e., dx = dy = d). In general, the MSM can
be applied to large-scale scatterers as well. For our purpose,
it is safe to assume that the radius ai of each cylinder is small
enough such that only zero-order Hankel functions are needed
to compute the scattered field. Accordingly, the scattered field
of the i th cylinder is given by

Esi = vi H (2)
0 (k0ρi ) (2)

where H (2)
0 stands for the zero-order Hankel function of the

second kind, and ρi = √
(x − xi )2 + (y − yi )2 is the distance

between the cylinder and an observation point (x, y). vi is
the CW harmonic amplitude. Let us define the free-space
scattering operator [S] by

vi = [S]i j v j (3)

where vi is the scattered field CW harmonic amplitude of
the i th cylinder, and v j is the cylindrical harmonic amplitude
of the j th cylinder. The scattered field of a cylinder located
at the origin with radius a, illuminated by a unit magnitude
incident TMz PW, is given by [22]

Esc
z = −

∞∑

n=0

j−n Rn(a, εm)e− j nw H (2)
n (k0ρ) (4)

where w is the angle from the x-axis of the incident field wave
vector (can be complex), and Rn(a, εm) is given by

Rn(a, εm) = k0 Jn(kma)J ′
n(k0a) − km Jn(k0a)J ′

n(kma)

k0 Jn(kma)H (2)
n

′
(k0a) − km H (2)

n (k0a)J ′
n(kma)

(5)

where k0 = ω/c, km = k0
√

εm , Jn is the Bessel function
of the first kind of order n, and H (2)

n is the Hankel function
of the second kind of order n. Since our cylinders are small
in diameter, we can assume that any incident field on the
cylinder behaves as a local PW incident on the cylinder.
The magnitude of this PW is the sampled actual incident
field at the center of the cylinder. The scattering operator [S]
accounts for the scattering harmonic as a result of neighboring
cylinder’s scattered field. If we consider the scattered field of
the neighboring cylinder to be the incident field of the cylinder
of interest, one can write the scattering operator [S] with

[S]i j = −R0(ai , εm)H (2)
0 (k0ρi j ) (6)

Fig. 2. Array of three cylinders with relative permittivity εm . The cylinders
are given numbers for identification. The radius of #i is ai .

where ρi j =
√

(xi − x j )2 + (yi − y j )2 is the distance between
the cylinders. The next step in the formulation is to apply
the scattering formula to an array. We derive the formulation
here for a case of three scatterers, but the generalization to
any number of scatterers is trivial. Consider an array of three
dielectric cylinders with relative permittivity εm . The cylinders
are given numbers for identification. Each cylinder has a radius
of ai according to the number of identification. The layout is
shown in Fig. 2. The layout is shown to be on a straight line,
but it does not have to be the case. The cylinders can be
arranged in any arbitrary layout, where the center of the i th
cylinder is located at (x, y) = (xi , yi ). The scattering operator
has to be applied for each cylinder due to the field incident
upon it. This field now consists the excitation incident field and
the scattered field from the other cylinders. The CW harmonic
amplitude of the cylinder #1 is given by

v1 = [S]12 v2 + [S]13 v3 + [B]1 . (7)

The operator [B]1 gives the scattering spectrum of the first
cylinder as a result from the incident exciting field. As dis-
cussed before, we can consider the incident field as a local
PW with the magnitude of the sampled value at the center of
the cylinder. In the general case, the operator [B]i is given by

[B]i = −R0(ai , εm)E inc
z (xi , yi ), i = 1, 2, 3. (8)

The same can be written for all three cylinders, and thus we
arrive to the matrix equation
⎛

⎝
v1
v2
v3

⎞

⎠ =
⎛

⎝
0 [S]12 [S]13

[S]21 0 [S]23
[S]31 [S]32 0

⎞

⎠

⎛

⎝
v1
v2
v3

⎞

⎠+
⎛

⎝
[B]1
[B]2
[B]3

⎞

⎠. (9)

Note that the operator [S] is symmetric with respect to i and j ,
i.e., [S]i j = [S] j i .

Up to this point, we derived what is called the forward
problem. This actually means that given the layout of the
scatterers, we can obtain the scattered fields. In this paper, we
are interested in the inverse problem. The fields are known,
and we are interested in the geometry. To this end, first, we
derive the target CW harmonics on the cylinders. The scattered
field by a single infinite line source is given by [22]

Escat
z = −k0η0

4
I H (2)

0 (k0ρ). (10)

Thus

v
target
i = −k0η0

4
Ii = −k0η0

4
Jp(xi , yi )d

2 (11)

where Jp(xi , yi ) was defined in (1). In order to extract the
radii of each cylinder, we write each equation in the matrix
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form (9) for the i th cylinder, assuming the other cylinders
already achieved the target v

target
j in (11). The equation for

the i th cylinder is, therefore

vi = −R0(ai , εm)

⎡

⎣
∑

j �=i

H (2)
0 (k0ρi j )v

target
j + E inc

z (xi , yi )

⎤

⎦.

(12)

Equation (12) with the unknown radius ai as a parameter in
R0 is a nonlinear equation. However, since R0 is a known
analytical function, we can extract ai by demanding

ai = argmin
ai

{∣
∣vi (ai ) − v

target
i

∣
∣
}
. (13)

Using this method, we can emulate that the scattered field of
any nonhomogenous dielectric object using dielectric cylinders
as long as εm is high enough. However, the sampling rate
required in order to achieve low errors in the far field can be
quite high, and as a result, the unit cells have to be very small.
In Section III, we encounter this problem by preprocessing the
polarization currents prior to the radii extraction.

III. PREPROCESSING OF THE POLARIZATION CURRENTS

AND THE MAXIMUM UNIT CELL SIZE

In this section, we concentrate on the sampling process of
the polarization currents. First, we demonstrate the limits of a
brute force sampling in terms of unit cell size. Then, we pro-
pose a preprocessing scheme, which allow us to use relatively
large unit cells with good far-field results. We compare the new
method with a conventional homogenization method based on
the MSM, but assuming infinite array structure.

For the sake of simplicity, the demonstration of the concept
is done on a slab with a constant εr , which is also infinite in the
x-direction. The geometry is shown in Fig. 1. The excitation is
a PW given by Einc = exp{− jk0y }̂z. This is a good example,
since the solution of the fields in the continuous case can be
derived analytically. In fact, this is a 1-D problem, since the
fields are constants in x . The total electric field inside the slab
can be obtained using a simple transmission line theory to be

Ez = 1 + �1

1 + �2
e jk0

D
2

[

e− j k0n
(

y+ D
2

)

+ �2e jk0n
(

y+ D
2

)]

(14)

where

�1 = Z − n

Z + n
; Z = n + j tan(k0nD)

1 + jntan(k0nD)

�2 = n − 1

n + 1
e−2 j k0nD

and n = √
εr is the refraction index. The polarization currents

are obtained using (1) (with W → ∞). In order to determine
the minimum allowed sampling rate, one has to look at the
spatial spectrum [Fourier transform (FT)] of the continuous
polarization current distribution

J̃p(kx , ky) =
∫∫ ∞

∞
Jp(y)e− j (kx x+ky y)dxdy. (15)

The FT of (14) is clearly two shifted Dirac’s delta
functions, and since the distribution is windowed in the

region −D/2 < y < D/2, the delta functions are convolved
with a sinc function. Since Jp does not depend on x , the
integral in x gives a Dirac’s delta as well. The spectrum is
therefore

J̃p(kx , ky) = A

[

Bsinc

(
D

2
(ky − k0n)

)

+ Csinc

(
D

2
(ky + k0n)

)]

× δ(kx) (16)

where

A = j
k0

η0
(εr − 1)

1 + �1

1 + �2
De jk0

D
2

B = e− jk0nD
2

C = �2e
jk0nD

2 .

Also, sinc(x) = sin(x)/x . The far-field scattered field is
given, up to a constant, by a FT of the polarization currents,
when the wave numbers have to satisfy the dispersion relation
k2

0 = k2
x + k2

y . δ(kx) in (16) implies that kx = 0 is the only
wave vector relevant. This means that the far-field information
is located at ky = ±k0. Indeed, the far field of this problem
consists of two PWs propagating in the ±y directions. It is also
known that the far field of any current distribution is located
on the Ewald’s sphere (see [23]) of the currents spectrum. In a
2-D problem, we get a Ewald’s cylinder. In our case, we have
a 1-D problem such that the Ewald’s sphere gives two points.
Sampling the current distribution in space causes replicas of
the spectrum in the spectral domain. Thus, the sampling rate
can be taken such that the aliasing of the first replica in the
visible range is under a certain threshold.

Fig. 3(a) shows the spectrum of the continuous polarization
currents (blue line) compared with the spectrum of the current
distribution sampled with period d = 0.12λ0. The slab
thickness is D = 0.6λ0 and εr = 9. In this sampling period,
we have five layers of cylinders in the sampled media. Note
the difference in Fig. 3(a) at ky = −k0. This is a significant
error due to aliasing (see [24]). This means that the transmitted
field, which contributes to the far field in the region y > 0,
is different. If we take denser sampling, for example, nine
layers with d = λ0/15 as shown in Fig. 3(b), the aliasing
error reduces. If the slab is infinite in the y-direction, then
the sincs would be very narrow, and the sampling rate would
approach the limit of d = λ0/(2n) or λg/2. We consider this
size as the Nyquist limit of the unit cell size. The Nyquist limit
shows that the unit cell size has to depend on the effective
parameters we try to achieve. In addition, this example shows
that there is another factor besides the effective refractive index
that limits the unit cell size. If the width of the slab is small,
the sinc functions get wider and the aliasing error increases.
Therefore, the decision on the unit cell size also depends on
the slab’s thickness. To the best of our knowledge, this is a new
result. In the above-mentioned example, the Nyquist limit is
dN = λ0/(2

√
9) = 0.16λ0. However, due to aliasing caused by

the finite thickness of the slab, a unit cell size of d = 0.12λ0
is still not sufficient. With this being said, homogenization
techniques usually involve averaging of the fields in the unit
cell. This is some sort of filtering of the spectrum of the
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Fig. 3. (a) Spectrum of the polarization current distribution sampled with
d = 0.12λ0 (red dashed line) compared with the spectrum of the continuous
current distribution of a slab with thickness D = 0.6λ0 and εr = 9.
(b) Similar comparison with sampling period of d = λ0/15.

currents, which means that the sampling rate can somewhat
improve in comparison to the brute force example. However,
it is very hard to quantify by how much.

The previous example also hints at the solution for reducing
the sampling rate. If the reason behind the need for a small
unit cell lies in the aliasing with the spectrum replicas, we can
use an antialiasing filter in the spectral domain. The blue line
in Fig. 3 shows the spatial currents spectrum of a slab with
D = 0.6λ0 and a permittivity of εr = 9. One can notice that
the sinc function peaks are located at ky = ±k0n. The width
of the sinc functions is 4π/D. When the currents are sampled,
the spectrum will be duplicated for each ky = 2πm/d , where
m ∈ Z. In order to avoid altering the visible spectrum, we
apply a filter. Many types of filters can be applied. In this
paper, we use a Hanning type window [25] for demonstration.
The filter has to equal 1 all over the visible spectrum and
vanish at kmax

y = 2π/d − k0. The filter function is therefore

F(ky) =

⎧
⎪⎨

⎪⎩

1, |ky| < k0

1

2

[

1 + cos

(
π

kmax
y − k0

(|ky| − k0)

)]

, |ky| > k0.

(17)

The filter in (17) is applied on the polarization currents
spectrum J̃p. Then, by an inverse FT, we obtain a new
polarization current distribution. The new polarization current
distribution is wider than the original due to the convolution
theorem. This means that the realized slab is thicker as well.
As the sampling distance gets smaller, the width of the filter
gets larger, and the addition to the realized slab decreases.

Fig. 4. (a) Filter used on the polarization current spectrum. (b) Inverse FT
of the filter.

Fig. 5. Polarization current distribution on a slab with D = 0.6λ0 and
εr = 9. The blue line is the original distribution. The red dashed line is the
distribution after filtering. Note that the polarization current distribution after
filtering is wider than the original due to the convolution with the filter.

In order to determine the new width of the slab, one has to
analyze the FT of the filter we used. Fig. 4 shows the filter used
in the example with d = 0.12λ0 in the spectrum domain and
its inverse FT (normalized). In Fig. 4(b), we see that the second
lobe is already below −40 dB, and therefore, the filter effect
beyond this point can be neglected. In this paper, we determine
the slab’s width by the first crossing point of −40 dB. The first
y value, which reaches this value, is at y = 0.21λ0. Therefore,
after convolution, the slab will add about 0.21λ0 thickness on
each side. This is shown in Fig. 5; note that the polarization
currents are negligible beyond y = D/2 + 0.21λ0 = 0.51λ0.
Fig. 6 shows the polarization current spectrum after applying
the filter, compared to that of the continuous slab. One can
see that the visible spectrum is not changed.

If the original slab is 0.6λ0 in thickness, and if the unit cell
size is d = 0.12λ0, we had a total of five layers of cylinders.
In order to add 0.21λ0 thickness, it would be sufficient to add
a single unit cell to each side. The actual thickness of the
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realized slab is the number of layers times the unit cell size.
Here, the actual thickness is 0.84λ0 instead of 0.6λ0. In most
cases, addition of a single layer to each side is quite sufficient.

At this point, we generated a new polarization current dis-
tribution. These polarization currents are sampled and become
the target total currents (Ii = J new

p (xi , yi )d2) we wish to
impose on the cylinders. The lowest possible sampling rate
with filtering happens if the filter is a rectangular window
over |ky| < k0. In this case, the unit cell size is d = λ0/2
(which is above the Nyquist limit). However, in reality, this
is not the case. While we can filter the currents spectrum for
any sampling period, it is not clear whether we can realize the
new distribution with the new method. Note that R0(a, εm)
in (5) is a complex function of a real variable a. We cannot
necessarily set both real and imaginary parts to the desired
value by changing a, and thus, the error in (13) can get quite
large. However, as we get more layers, we have more degrees
of freedom as we can affect the cylinders polarization currents
using both the radius and the scattered field from the other
cylinders. So as the number of layers increases (smaller unit
cell), the error decreases. Also, the material of the cylinders
affects R0. Generally speaking, the effective permittivity is
some sort of averaging between the host permittivity and
the cylinders permittivity. Therefore, the permittivity of the
cylinders has to be larger than the effective permittivity, and
as εm increases, the cylinders radius decreases. If the cylinders’
permittivity is close to the desired effective permittivity, the
radii of the cylinders get larger. At a certain point, they will
overlap, and the boundary conditions change. In the worst
case, we get an entire slab made of εm , which means that
we cannot control the effective permittivity at all. For these
reasons, the radii of the cylinders are limited in this paper to
ai ≤ d/2. In Section IV, we compare the ASM method with
a standard homogenization method based on the MSM for the
case of the infinite slab demonstrated earlier. This simplified
problem can be solved rather fast with little computation
resources, and thus is suitable for performing a comprehensive
parametric study. After the parametric study, we can make
the decisions on the choice of the number of layers for the
realization, and the materials we use.

IV. COMPARISON OF THE ASM FOR

FINITE AND INFINITE CASES

In this section, we compare the performance of the new
method with a conventional homogenization method, which
assumes infinite array structure. Since the slab is infinite
in the x-direction, the extraction method has to be further
elaborated. The complete formulation for semi-infinite arrays
can be found in Appendix A. This method will be referred
to as the semi-infinite ASM. For comparison, we use a
homogenization method based on the MSM as well. This
method will be referred to as the infinite ASM. Although
there are more efficient methods in terms of computational
complexity (see [19]), the MSM results are the most accurate
we can hope for as the method solves a full electrodynamic
problem and considers all of the mutual coupling. Also,
since all of the methods use the MSM, we can attribute the
differences to the finiteness of the array. In the infinite array

Fig. 6. Original polarization current distribution (blue line) against the filtered
current distribution (red dashed line).

Fig. 7. Total electric field on the y-axis for a dielectric slab with εr = 9,
D = 0.6λ, infinite in the x-and z-directions, excited by a PW with TMz
polarization, and propagating in the y-direction. Blue line: analytical solution.
Black dashed line: slab realized using the semi-infinite ASM. Red dotted
line: slab realized using the infinite ASM. In both realizations, εm = 16 and
d = 0.12λ0.

method, the polarization currents are obtained directly from the
permittivity using (1) already in the sampled structure. In this
case, we assume that the near field in the sampled structure
behaves similar to that in the continuous slab. The averaged
total field is calculated from these polarization currents to
obtain a close-form formula from which we can extract the
radii. The full formulation can be found in Appendix B. The
infinite ASM is a standard homogenization method. Since
the currents are obtained from the permittivity, and in our
example, the permittivity is constant, the radius of all the
cylinders is the same. Also, we can use cylinders only where
the permittivity is larger than one. In the semi-infinite ASM,
the polarization currents are obtained from the calculated total
field. The sampled processed distribution does not necessarily
satisfy (1). Thus, the far field will be accurate but the near
field does not have to be. Also, as explained in Section III,
the realized slab is wider than the original.

We compare the methods for a slab with D = 0.6λ0,
excited by a PW with electric field pointing in the z-direction
and propagating in the y-direction. The slab’s permittivity is
εr = 9. Fig. 7 shows the total electric fields on the y-axis.
The field simulations were done using the FEM algorithm with
the commercial software HFSS from ANSYS. The blue line
represents the analytical field calculated for a continuous slab.
The black dashed line is the field obtained with the semi-
infinite ASM for d = 0.12λ0 = 0.36λg . The red dotted line
is the field obtained using the infinite ASM using the same
unit cell size. Note that even though the unit cell dimensions
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TABLE I

RADII OF THE CYLINDERS FOR A HOMOGENOUS
SLAB DESIGNED WITH THE ASM

Fig. 8. Parametric study on a slab with D = 0.6λ0 and εr = 9. The blue line
is the transmission coefficient calculated analytically. The other lines are the
transmission coefficient of an array designed using the semi-infinite ASM as
a function of the permittivity of the cylinders. The red line is for d = 0.15λ0 ,
black dashed line for d = 0.12λ0 , purple dotted line is for d = 0.1λ0, and
green dashed line for d = 0.0857λ0 .

stand within the Nyquist limit, there are substantial errors in
the reflection and transmission field if we make the infinite
array assumption to compute the dielectric cylinders radii.
The material of the cylinders was chosen such that εm = 16.
Table I shows the radii and locations of the cylinders in
the two designs. For the infinite ASM, we have five layers
with the same radii. In the semi-infinite ASM, we have seven
layers where the radius is different for each layer. The radius
is different even though the slab’s effective permittivity is
constant. The change in the radius of the cylinders and the
extra layers enable the improvement in the far field.

In order to make a decision on the materials we use for the
cylinders, and the unit cell size (or alternatively, the number of
layers), we can perform a parametric study on the simplified
problem we demonstrated in this section. Fig. 8 shows the
analytical calculation of the transmission coefficient (blue line)
compared with the transmission coefficient of slabs realized
with the semi-infinite ASM for different unit cell sizes and
different permittivities. In the parametric study, we can see
that a unit cell of d = 0.15λ0 gives unacceptable results,
but from d = 0.12λ0 the error is reasonable. The graph
reaches equilibrium at about εm = 14. In the above-mentioned
example, we chose d = 0.12λ0 and εm = 16. If the application
requires higher accuracy, we can use lower sampling periods.
This kind of test can be performed prior to designing any
practical lens. The permittivity we test has to be the highest
in the structure. From here, we can deduce the lowest possible
permittivity in the material (higher permittivity usually go
along with higher losses) and the unit cell size to use.

V. APPLICATION: FLAT LENS DESIGN WITH THE ASM

In this section, we implement the ASM in order to design
flat lenses. A conventional 2-D lens is made of a material
with constant permittivity and cylindrical contour (see [26]).
The contour of the lens creates the focusing effect. Obtaining
the same effect with a flat lens requires that the mater-
ial is inhomogeneous. There are several methods to derive
the permittivity function of the flat lens. In this paper,
we use the TrO method. In particularly, we use the method
in [9], since this method gives an isotropic and all-dielectric
(i.e., μr = 1) flat lens design. The main idea in the design is
first to set the grid of the original homogeneous lens as close
as possible to orthogonal. Then, the virtual space (i.e., the flat
lens) is assigned with a strictly orthogonal grid. According
to the results in [9], the permittivity in the virtual space is
given by

εlens
r (x ′, y ′) = εr (x, y)

S

S′ (18)

where S is the area of a surface element in the original space,
and S′ is the area of a surface element in the virtual space. For
further details, see [9]. Fig. 9 compares the total electric fields
of the three lenses excited by a PW with electric field pointing
in the z-direction and propagating in the y-direction. One is a
conventional lens with εr = 3, W = 4.44λ0, D = 0.6λ0, and
Dm = 1.2λ0. The dimensions are described in Fig. 9(a). The
second lens is the equivalent bulk flat lens with W = 4.44λ0
and D = 0.6λ0. The permittivity of the flat lens varies in
the range 3 < εflat

r < 6.08. The third lens is the flat lens
implemented with dielectric cylinders with εm = 16 and a unit
cell size of d = 0.12λ0. The simulations in this section were
performed with the FEM solver of the commercial software
HFSS from ANSYS. Fig. 10 shows the complex magnitude of
the total field on the y-axis for the three structures. The focal
point of all three structures is located around y = 4λ0. Since
the maximum permittivity of the flat lens is higher, we have
higher reflections, which explains the lower magnitude of the
flat lenses at the focal point. Lower reflections can be obtained
if both permittivity and permeability are computed according
to TrO using the Jacobian. For practical reasons, we have
decided to vary only the permittivity and accordingly, there
is some degradation in the reflection level. This effect can be
reduced by using matching layers at the input and output of
the lens.

Next, we set a CW source at the focal point and calculate
the far field of the structures. After performing a parametric
study, we set the unit cell size on d = 0.12λ0, which implies
five layers in the y-direction, and after processing, we get
seven layers. The cylinders have permittivity of εm = 16.
The far-field radiation pattern of the array is shown in Fig. 11
in red dotted line, compared with the far field of the con-
ventional lens and the bulk flat lens in the blue and black
dashed lines, respectively. The results are shown in the region
60° < φ < 120°, since beyond this angle the incident field
does not interact with the lens. For comparison, the slab was
also realized using the infinite ASM described in Appendix B.
In this realization, we calculated in each unit cell the radius of
the cylinder, assuming the cylinder lies in an infinite array of
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Fig. 9. Flat lens designs. (a) Real part of the total electric field of a
conventional lens with εr = 3, W = 4.44λ0, D = 0.6λ0, and Dm = 1.2λ0 .
(b) Real part of the total electric field of the equivalent flat lens with
3 < εflat

r < 6.08. (c) Real part of the total electric field of a lens made
of dielectric cylinders with εm = 16 designed with the ASM. All of the
lenses are excited by a PW with electric field pointing in the z-direction and
propagating in the y-direction.

similar scatterers. The unit cell size and the cylinder’s permit-
tivity are the same as in the finite ASM design. The infinite
ASM design is shown in Fig. 11 in purple dashed line. Even
though we are not too close to the maximum unit cell size in
terms of the Nyquist limit, we can see that the array designed
by a method, which assumes infinite array design, falls short in
comparison to the finite ASM. The first sidelobe is 2 dB higher
than the bulk flat lens and 4 dB higher than in the finite ASM
case. The main lobe of the infinite ASM is 2.5 dB lower than
the other designs as well. The finite ASM design shows good
agreement with the bulk flat lens and the conventional lens.

Fig. 10. Magnitude of the total electric field on the y-axis for the three lenses.
The excitation is a PW Ei = exp{− jk0 y}̂z. The blue line is the conventional
lens. The black dashed line is for the bulk flat lens, and the red dotted line
is for the dielectric cylinders lens.

Fig. 11. Comparison of the far fields for different realization methods. The
excitation is a line source located at the focal point y = −4λ0. The blue line
is the far field of the conventional lens. The black dashed line is for the bulk
flat lens. The red dotted line is for an array of cylinders designed using the
finite ASM. The purple dashed line is an array designed with the infinite
ASM. The unit cell of the arrays designed using the ASM is d = 0.12λ0,
and the cylinders have relative permittivity of εm = 16.

Fig. 12. Far-field radiation patterns of a cylinder array lens designed with
the ASM with a tolerance of 0% in the radii compared with an array lens
with 20% tolerance in the radii (statistical simulation). For each cylinder, the
radius is a random variable with uniform distribution.

The method was formulated to fit any frequency band.
However, it is clear that as we approach shorter wavelengths,
the fabrication becomes very challenging. In these cases,
variations in the radii of the cylinders are inevitable. Fig. 12
compares the far-field radiation patterns of two cylinder arrays.
In the black dotted line we allowed a statistical perturbation
of up to 20% in the radii of each cylinder compared to
the original design shown in blue line. The result shown in
Fig. 12 in black dotted line is a result of a single statistical
simulation. It can be seen that the realization is stable for such
variations.
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The above-mentioned example shows that in the case of
thin flat lenses, the finiteness of the array has to be a factor to
consider. The finite ASM allows us to achieve good agreement
with the bulk flat lens. If one wishes to use a standard
homogenization method instead with the same agreement,
he has to use smaller unit cells. The unit cell size and the
material used for the cylinders can be determined using the
simple parametric study shown in Section IV. This gives a
complete design scheme for a flat lens.

VI. CONCLUSION

A new design method—the ASM—for 2-D inhomogeneous
all dielectric slab realization using dielectric cylinders was
suggested. The method is unique in that it does not assume
that the array of cylinders is infinite for the computation of
the cylinder’s radius. This advantage has added value when
flat lens is designed, since these lenses usually have low
profiles. The method is based on the MSM, therefore, the
new method is very accurate, and can be generalized for
other aspects. For example, we can design a non-Cartesian
array. Also, the method is not a homogenization method but
a far-field reconstruction method. Thus, we allow ourselves to
preprocess the polarization currents distribution as we are not
interested in the near field of the lens. In addition, a parametric
study on the material and the unit cell size was performed.
By testing the largest permittivity of the lens in a semi-infinite
structure using the semi-infinite ASM, one can make a skillful
decision about the permittivity of the cylinders and the unit cell
size. While we could use the same parameters in a standard
homogenization scheme with acceptable results, the use of the
finite ASM as a complete design scheme gives better results
and show a very good agreement with the continuous bulk flat
lens far-field radiation patterns.

APPENDIX A
SEMI-INFINITE ASM

In this appendix, we formulate the method for a semi-
infinite array. The geometry is the same as in Fig. 1(b); how-
ever, this time, we assume that the array is composed of a finite
number N of layers of 1-D cylinder arrays with infinite number
of cylinders in the x-direction (for a single layer demonstra-
tion, see Fig. 2). We assume that the polarization current dis-
tribution is known. The structure is excited with a PW Einc =
exp{− jk0y }̂z. Since the array is infinite in the x-direction,
and the excitation is a PW with no phase progression in the
x-direction, the spectrum amplitude of the scatterers in the
same layer is the same for all the cylinders. Therefore, if
the slab is realized with N layers, we have only N radii to
extract. Let us consider a single layer of cylinders first. Again,
since the excitation is a PW propagating in the y-direction,
the physical problem in each unit cell is the same. The CW
zero harmonic amplitude is v [see in (2)]. We start with (9),
however, that all of the equations in the matrix system are

v = 2
∞∑

m=1

[S]m v + [B] v (19)

Fig. 13. Integration contour for the Sommerfeld representation of the
Hankel function. The red line is the standard contour for observation angle
−π < φ < π . The black dashed line is a deformed contour used to ensure
convergence of the sum in (22). The shaded areas are the valleys of the
integrand.

where the [B] v term equals −R0(a, εr )Ei (x, y = 0) =
−R0(a, εr ) from the same considerations as in Section II-B.
[S]m = −R0(a, εm)H (2)

0 (k0md), with d being the interelement
distance. The sum is multiplied by 2, since the same
summation has to be done to the right of the center cylinder
and to its left. Using (6) in (19), we obtain

v = −2R0(a, εm)v

∞∑

m=1

H (2)
0 (k0md) − R0(a, εm). (20)

In order to simplify the summation, one can use the
Sommerfeld integral given by [27]

H (2)
0 (k0ρ) = 1

π

∫

Cw

e− j k0ρ cos(w−φ)dw. (21)

The contour Cw can be chosen with some arbitrariness;
however, for our purpose, we use the red contour in Fig. 13.
φ is the angle between the x-axis and the observation point
given that the origin of the Hankel function is at the axis origin.

In the summation, φ takes on the value 0 if the cylinder we
are summing is located to the left of the middle cylinder, or π
if it is to the right. Similarly, in the summation, ρ = md . For
convenience, let us sum the effect of the cylinders from the
left. The summation becomes

∞∑

m=1

H (2)
0 (k0md) =

∞∑

m=1

1

π

∫

Cw

e− j k0md cos wdw

= 1

π

∫

Cw

e− j k0d cos w
∞∑

m=0

e− j k0md cos wdw.

(22)

Now, we have a geometric series inside the integral. Since the
geometric series does not converge when w is on the real axis,
we use the Cauchy theorem and deform the integration contour
to the black dashed line in Fig. 13. On the new contour, the
exponent obeys |e− j k0md cos ω| < 1 for all ω values except
ω = 0. However, this point is a removable singularity and can
be defined by the limit at that point. We define

L0
�= 1

π

∫

Cw

e− j k0d cos w

1 − e− j k0d cos w
dw (23)

which can be calculated numerically apriori to the calcula-
tion, since the unit cell size is well known.

In the layered structure, for each scatterer, there are layers
above and/or below it. In order to add the effect of these layers,
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first, we find the field of a layer where each of its scatterers
has zero harmonics vl

E layer
z =

∞∑

n=−∞
vl H (2)

0 (k0ρn) (24)

where ρn = √
(x − xn)2 + (y − yn)2, and yn = yl is the

constant over the entire layer. Next, we use the Sommerfeld
representation of the Hankel function on the red contour
in Fig. 13. Set k2

0 = k2
x + k2

y (alternatively, kx = k0 cos w and
ky = k0 sin w), the red contour ensures that Re {ky} > 0 and
Im {kx} < 0. Therefore. the PW representation of the Hankel
is accurate for the half-plane y > yn . We could set a contour to
obtain the field in y < yn by choosing an alternative contour,
and the results would be the same. We obtain

E layer
z =

∞∑

n=−∞
vl

1

π

∫

Cw

e− j k0ρn cos(w−φ)dw

=
∞∑

n=−∞
vl

1

π

∫ ∞

−∞
1

ky
e− j kx (x−xn)e− j ky(y−yl)dkx

= 1

π

∫ ∞

−∞
vl

e− j ky(y−yl )e− j kx x

ky

∞∑

n=−∞
e jkx xn dkx . (25)

In an equi-spaced layer, we have xn = nd , and thus, we can
use the Poisson summation formula [28]

∞∑

n=−∞
e jkx nd = 2π

d

∞∑

n=−∞
δ

(

kx − n
2π

d

)

(26)

where δ(kx) is the Dirac’s delta function. The delta function
samples kx at the points kxn = 2πn/d . Since for our purpose,
d < λ0, we conclude that the only propagating contribution

is for n = 0. That renders kyn =
√

k2
0 − k2

xn = k0.
The evanescent contributors can be neglected. Equation (25)
becomes

E layer
z = 2

k0d
vl e

− j k0(y−yl). (27)

From here, we can use (27) to represent the field that is
incident on a specific cylinder as a result of a layer of cylinders
above or below it. Consider that we have N layers above our
scatterer of interest, and M layers below. The equation for this
scatterer becomes

vl = −2R0(al, εm)L0vl

− 2R0(al , εm)

k0d

N∑

n=1

vne− j k0nd

− 2R0(al , εm)

k0d

M∑

m=1

vme− j k0md

− R0(a, εm)e− j k0 yl . (28)

Again, set vn and vm according to the target spectrum, and we
can extract al from the nonlinear equation using (13).

APPENDIX B
STANDARD HOMOGENIZATION TECHNIQUE BASED

ON THE MSM–THE INFINITE ASM

In this appendix, we formulate a conventional homogeniza-
tion technique based on the MSM. It is conventional; in the
sense, we assume that each cylinder is in an infinite array
of cylinders identical to itself. Also, (1) is assumed to be
correct at the macroscopic level. The array is excited by a
PW Einc

z = exp{− jk0y }̂z. Under the previous assumption, the
design does not depend on the excitation. The PW is chosen
for the sake of convenience.

The main hypothesis here is that in any unit cell, the
physical problem looks the same, with the exception of the
phase of the incident field. From linearity, we obtain that any
cylinder has the same zero cylindrical harmonic v0 multiplied
by the phase of the incident field in the location of the
cylinder. In order to formulate the method, we derive two
equations. One connects v0 to the geometrical properties of
the cylinders and referred to as the microscopic equation. The
other connects v0 to the required effective permittivity and is
called the macroscopic equation.

Let us begin with the microscopic equation. To this end,
we use (28) from Appendix A and generalize it with the
hypothesis. For now, assume a finite number L layers of
cylinders above and below the central unit cell. We shall
address the layers in pairs. The pairs are such that the distance
from the central layer is equal. A layer with distance nd above
the middle layer has, according to the hypothesis, a cylindrical
harmonics v0 exp{− jk0nd}. The PW accumulates a phase
of exp{− jk0nd} until it reaches the central unit cell, and
therefore, the field from an upper layer is

Eup
z = 2v0

k0d
e−2 j k0nde jk0 y . (29)

For a layer with distance nd below the middle layer, the
cylindrical harmonics is v0 exp{ jk0nd}, and the phase the PW
accumulates is exp{− jk0nd}. Therefore, the field is

Edown
z = 2v0

k0d
e− j k0 y . (30)

We obtain

v0 = −R0(a, εm)

1+2R0(a, εm)L0 + 2
k0d R0(a, εm)

∑L
n=1[1 + e−2 j k0nd ] .

(31)

The summation does not converge when L goes to infinity,
but it would not matter as we will see later on. Next, we
derive the macroscopic equation, and its starting point is (1).
The field Ez is averaged inside the unit cell. This average is
composed from the averaged incident field and the average
of the scattered field from all of the elements. The scattered
field itself can be composed from the scattered field of the
elements in the same layer and the field from the other layers.
The averaged field of the incident field is

〈
E inc

z
〉 = 1

d2

∫ d/2

−d/2
dx

∫ d/2

−d/2
e− j k0 ydy = sinc

(
k0d

2

)

. (32)
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Next, we calculate the scattered field as a result of the
entire layer the element belongs to. From (25) with (26), and
including the evanescent modes, the field is

Eself
z = 2v0

d

∞∑

n=−∞

e− j kxn xe− j kyn |y|

kyn
(33)

where kxn = 2πn/d and kyn =
√

k2
0 − k2

xn . The average of
this term is

〈
Eself

z
〉 = 2v0

d

∞∑

n=−∞

sinc
(

kxn d
2

)
sinc

(
kyn d

4

)

kyn
e− j

kyn d
4 . (34)

Note, that kxnd/2 = nπ , and therefore, sinc (kxnd/2) = 0 for
all n �= 0. We obtain

〈
Eself

z
〉 = 2v0

k0d
sinc

(
k0d

4

)

e− j
k0d

4 . (35)

For the other layers, combining (29) and (30), and averaging,
we obtain for all the layers

〈
Epair

z
〉 = 2v0

k0d
sinc

(
k0d

2

) ∞∑

n=1

[1 + e−2 j k0nd ]. (36)

Next, we set (32)-(36) in (1) to obtain

v0 = A

1 − B − 2
k0d A

∑L
n=1[1 + e−2 j k0nd ] (37)

where

A = (k0d2)

4 j
(εr − 1)sinc

(
k0d

2

)

(38a)

B = k0d

2 j
(εr − 1)sinc

(
k0d

4

)

e− j k0d
4 . (38b)

If we compare (37) to (12), we can take the summation terms
out of the equation. From here, we set a target cylindrical
harmonic with

v
target
0 = A

1 − B
. (39)

The microscopic equation reduces to

v0(a, εm) = −R0(a, εm)

1 + 2R0(a, εm)L0
(40)

which is an analytic function of a. To extract the radius,
we solve (13) as before.

This method is quite simple to apply and also quite
efficient from the computational point of view. It is also
as accurate as any other homogenization technique can get,
as we used the MSM, which is very general. Therefore,
this is a good candidate for comparison with the other
methods.
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