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Abstract: This study presents an analytical method for extracting the constitutive parameters of an isotropic two-dimensional
magneto-dielectric thin cylinder (small radius compared with the wavelength). The method is based on the scattered far field
information to a plane wave illumination. Three variations of the method are presented. First, the complex monostatic
scattered fields of two orthogonal polarisations are used to extract the complex constitutive parameters (permittivity and
permeability) of a lossy cylinder. Second, the complex bistatic and monostatic scattered fields for a single polarisation are
used to extract the complex permittivity and permeability. Third, the absolute value of the monostatic radar cross section for
two orthogonal polarisations is used to extract the complex permittivity or permeability. An approximation for a small
argument is used to obtain a simple polynomial expression for the scattered field to extract the constitutive parameters.
Numerical examples to validate the proposed extraction methods are shown and the results are satisfactory.
1 Introduction

Three major methods of extraction the constitutive parameters
of isotropic dielectric and magnetic lossy materials can be
found in the literature.
The first method is based on the measured reflection data

because of the impedance discontinuity caused by the
presence of the unknown material in a transmission line [1–
3] or in free space. The transmission line reflection
measurements are conducted with the sample in a
transmission line ended with short and open loads. In free
space, the measurements are conducted using transmit and
receive antennas side by side with the sample positioned in
front of them. The calibration of the system is performed
using a conductive plate.
The second method to extract the constitutive parameters of

a sample is based on the transmission measurement data [4–
6]. Similarly to the reflection method, the measurements are
performed in a transmission line with the sample inserted in
the transmission line or in free space with the sample
inserted in between the transmit and receive antennas.
The third method is based on the variation of the electrical

characteristics of a resonator with and without the sample in
the resonator [7–10]. The types of resonators used are:
dielectric resonator, coaxial surface wave resonator and split
resonator. In the resonator method, the sensitivity and
accuracy increases, if the resonator energy is mainly
concentrated in the sample.
In this paper, we present a new analytical method for

extracting the constitutive parameters of an isotropic
two-dimensional (2D) magneto-dielectric thin cylinder
(small radius compared with the wavelength), taking
advantage of its scattered far field information. This work is
based on the work presented in [11] for calculating the
scattered fields from a magneto-dielectric cylinder, but goes
beyond. It presents three extraction methods for the
constitutive parameters in case of 2D thin cylinders.

2 Scattered far field calculation for a 2D thin
cylinder

A magneto-dielectric 2D cylinder is shown in Fig. 1. The
radius of the cylinder is a. The cylinder is illuminated by a
normal incident plane wave TM-z or TE-z. We are
interested in the calculation of its scattered far field and its
dependence on the cylinder constitutive parameters. The
cylinder permittivity and permeability constants are given by

11 = 101r = 10 1′ − j1′′
( )

, 0 , r , a
12 = 10 , r . a

{
(1a)

m1 = m0mr = m0 m′ − jm′′( )
, 0 , r , a

m2 = m0 , r . a

{
(1b)

The wavenumber in each medium is given by

k1 = k = k0
�����
1rmr

√
, 0 , r , a

k2 = k0 = v
������
10m0

√
, r . a

{
(2)

In this case, the z component of the electric (TM case) and
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Fig. 1 Geometry of the magneto-dielectric 2D cylinders

a TM-z polarisation
b TE-z polarisation
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magnetic (TE case) scattered far fields can be expressed in
terms of cylindrical harmonics as shown in [11] by

ETM
s,ff ≃ −

������
2j

pk0r

√
e−jk0r

∑1
n=−1

CTM
n ejnw (3a)

HTE
s,ff ≃ −

������
2j

pk0r

√
e−jk0r

∑1
n=−1

CTE
n ejnw (3b)

where ρ and j are the scattered far field cylindrical
coordinates as shown in Fig. 1. The coefficients CTE

n and
CTM
n derived in [11] are repeated here for clarity

CTM
n =

�����
1rmr

√
/mr

( )
Jn k0a
( )

J ′n(ka)− J ′n k0a
( )

Jn(ka)�����
1rmr

√
/mr

( )
H 2( )

n k0a
( )

J ′n(ka)− H 2( )′
n k0a

( )
Jn(ka)

(4a)

CTE
n =

�����
1rmr

√
/1r

( )
Jn k0a
( )

J ′n(ka)− J ′n k0a
( )

Jn(ka)�����
1rmr

√
/1r

( )
H 2( )

n k0a
( )

J ′n(ka)− H 2( )′
n k0a

( )
Jn(ka)

(4b)

in which Jn(x) and H (2)
n (x) are the Bessel function and Hankel

function of second type, respectively. The prime denotes
derivative of the function. The terms

�����
1rmr

√
/mr

( )
and�����

1rmr
√

/1r
( )

are not simplified, in order to obtain the correct
sign of these terms, in the cases of εr < 0 or μr < 0.

Normalisation of the fields in (3) by −
�����������
2j/pk0r
( )√

e−jk0r

results in a simplified form of the scattered far fields ETM
s

and HTE
s

ETM
s =

∑1
n=−1

CTM
n ejnw = CTM

0 + 2
∑1
n=1

CTM
n cos(nw) (5a)

HTE
s =

∑1
n=−1

CTE
n ejnw = CTE

0 + 2
∑1
n=1

CTE
n cos(nw) (5b)

For thin cylinders in terms of wavelength, we assume that
ka ≪ 1 and this infers also that k0a ≪ 1. In this case, we
may use small argument approximation for the Bessel and
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Hankel functions [12] in (4), such that

Jn(x) �
1

n!

x

2

( )n
∀ n ≥ 1, J0(x) � 1

H 2( )
n (x) � j

n!

pn

2

x

( )n

∀ n ≥ 1,

H 2( )
0 (x) � 1− j

2

p
ln

gx

2

( )
with g = 1.781

Using the recurrence formulae of the Bessel and Hankel
functions [12], it’s possible to calculate the following small
argument derivatives

J ′n(x) �
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2

( )n1
x
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2
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2
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Substitution of these small argument approximations in (4)
leads for n≥ 1 to
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Similarly, for n = 0, we obtain

CTM
0 = 1− 1r

j(2/p) ln gk0a/2
( )− 1

[ ]
1r + j 4/p k0a

( )2( )

� j
k0a
( )2

p

4
1r − 1
( ) (7a)
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and

CTE
0 � j

k0a
( )2

4
mr − 1
( )

(7b)

To show the convergence of the coefficients CTM
n and CTE

n for

large n, we consider the ratios CTM
n+1/C

TM
n and CTE

n+1/C
TE
n for

n≥ 1. Using (6), we obtain
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As one can observe from (8a) and (8b), the coefficients CTM
n

and CTE
n decrease rapidly as the index n increases. In Fig. 2

the ratios CTE
n+1/C

TE
n

( )
and CTM

n+1/C
TM
n

( )
are plotted for

different n≥ 1, as a function of k0a. One can note that (C2/
C1) < 10−3 for k0a < 0.1 and therefore it will be sufficient to
consider only the first two coefficients in the derivation.
Accordingly, in the following we approximate the scattered
fields for thin cylinders (k0a ≪ 1) in terms of only the
leading terms CTM

0 , CTM
1 , CTE

0 and CTE
1 . Consequently,

substitution into (5) of the approximations in (6) and (7) for
CTM
0 , CTM

1 , CTE
0 and CTE

1 results in the simplified
normalised scattered far fields expressions for a 2D thin
Fig. 2 Ratio of the coefficients CTE
n+1/C

TE
n as a function of k0a
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cylinder

ETM
s = K 1r − 1− 2

1− mr

1+ mr
cos(w)

[ ]
(9a)

HTE
s = K mr − 1− 2

1− 1r
1+ 1r

cos(w)

[ ]
(9b)

where K = j((k0a)
2π/4). One can observe that even though thin

cylinders are considered, we still keep the dependence of the
scattered far fields on the azimuth angle j.
3 Constitutive parameters extraction from
scattered far field measurements

Owing to the symmetry of the problem and without loss of
generality, it is assumed that the incident angle of the
illuminating field is j = 00. Next, we present three
extraction methods of the constitutive parameters based on
the scattered far field

(a) Extraction based on the measurement of the monostatic
complex scattered field for two orthogonal polarisations
(TM-z and TE-z).
(b) Extraction based on the measurement of the monostatic
and a bistatic complex scattered fields for one polarisation
(TM-z or TE-z).
(c) Extraction based on the measurement of the monostatic
radar cross section (RCS) absolute value for two orthogonal
polarisations (TM-z and TE-z).

3.1 Extraction based on the measurement of the
Monostatic complex scattered far field data for two
orthogonal polarisations

The goal is to extract the complex permittivity and
permeability of the unknown material. Substituting j = 180°
(the monostatic case) in (9a) and (9b) leads to

ETM
s 180◦

( )
K

= 1r − 1+ 2
1− mr

1+ mr
(10a)

HTE
s 180◦
( )
K

= mr − 1+ 2
1− 1r
1+ 1r

(10b)

Extraction of εr from (10a) results into

1r = 1′ − j1′′ = ETM
s 180◦

( )
K

+ 1− 2
1− mr

1+ mr
(11)

Back substitution of (11) into (10b) results into a quadratic
equation of μr, such that

m2
r − mrB+ C = 0 (12)

where

B = BR + jBI W − HTE
s 180◦
( )
K

+ 2

( )
(13)
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and

C = CR + jCI

W
4− 3 ETM

s 180◦
( )

/K
( )− ETM

s 180◦
( )

HTE
s 180◦
( )( )

/K2( )
ETM
s 180◦( )/K( )+ 4

(14)

Substitution of μr = μ′− jμ″ in (12) and separation of the real
and imaginary parts leads to

m′( )2− m′′( )2+BRm
′ + BIm

′′ + CR = 0 (15a)

−2m′m′′ − BRm
′′ + BIm

′ + CI = 0 (15b)

Equations (15a) and (15b) can be rearranged in the following
short form

m′ + BR/2
( )( )2

(1/4) B2
R − B2

I

( )− CR

− m′′ − BI/2
( )( )2

(1/4) B2
R − B2

I

( )− CR

= 1 (16a)

m′′ = BIm
′ + CI

2m′ + BR
(16b)

Equation (16a) describes an hyperbola in the complex μ-plane
with the origin at (μ′ = −(BR/2), μ″ = (BI/2)). The graphical
interpretation of the sign of 1/4

( )
B2
R − B2

I

( )− CR is the
rotation of the hyperbola in the μ-plane by 90°. Moreover,
(16b) has two asymptotes: a vertical one (μ″→∞) at the
singular point μ′ =−(BR/2) and a horizontal one (μ′→∞) at
μ″ = (BI/2). The intersection of the two functions in (16)
determines the the solutions of μr. Given μr, the permittivity
εr can be computed through (11).
Fig. 3 shows a graphical representation of equations (16a)

and (16b) for a typical cylinder with radius a = 0.5 mm at
3 GHz. The scattering fields used for the parameters
extraction were computed by the finite element method
(FEM) commercial software HFSS from ANSYS. The
cylinder parameters used for this simulation were: εr =
2.0− j1.0, μr = 3− j3.5 Inspection of the plots in Fig. 3
reveal two solutions for μr, which is a clear indication of
Fig. 3 Graphical solution for method 1- complex monostatic
measurements for two polarizations, f = 3 GHz, a = 0.5 mm, εr =
2.0− j1.0, μr = 3− j3.5
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the ambiguity in the solution. The correct solution based on
physical considerations is that with μ″ > 0. In case that both
solutions satisfy this condition on μ″, we may need to resort
to scattering data from another azimuth angle j to resolve
the ambiguity as explained in the next section.
For validation purposes of the approximations made in the

analytical computation of the scattered fields, a comparison
was made between the TM and TE polarised scattering
patterns of the cylinder computed through the analytical
representation (5) with thirty elements in the summation,
the approximated analytical representation for thin cylinders
(ka < 0.1) (9) with only two elements in the summation and
the scattering pattern computed using HFSS. Fig. 4 shows
the cylinder geometry used for the HFSS simulation. To
obtain in HFSS simulations the effect of an infinite
cylinder, Master and Slave periodic structure boundary
conditions were used in z direction for a cylinder with a
length h. In addition, the scattered far field simulated by
HFSS for a three-dimensional (3D) cylindrical scatter with
a length h was converted to the scattered far field for a 2D
scatter through the relationship E3D

s ≃ E2D
s

hejp/4/
����
l0r

√( )|r=r [13]. This conversion is necessary to
compare the HFSS results to the fields computed through
(5) and (9). The circular cylinder was embedded in free
space and surrounded by a perfect matching layer to avoid
spurious reflections in the simulations as shown in Fig. 4.
Fig. 5 shows a typical comparison between the scattering
patterns (analytical-30 terms, analytical-2 terms and
numerical HFSS) of a cylinder with parameters: a = 0.5 mm
(|ka| = 0.1), εr = 2.0− j1.0, μr = 3− j3.5 at f = 3 GHz and
Fig. 4 Simulation setup for the FEM calculation using HFSS

a Top View
b Side View
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Fig. 5 Comparison of complex bistatic scattering patterns simulations (analytical, analytical approximation for thin cylinders, numerical with
HFSS) for two polarisations TE and TM, f = 3 GHz, a = 0.5 mm, εr = 2.0− j1.0, μr = 3− j3.5

a Magnitude
b Phase
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two orthogonal polarisations. One can observe a very good
agreement between the patterns, which justifies the
approximations made for thin cylinders.
Next, we present two examples and compute the

constitutive parameters of the cylinders based on the
IET Microw. Antennas Propag., 2015, Vol. 9, Iss. 6, pp. 585–592
doi: 10.1049/iet-map.2013.0714
scattering data simulated with HFSS. We use the simulation
with HFSS as an alternative to measured data.

Example 1: Initially, we compute the scattered fields with
HFSS for a cylinder with εr = 2.0− j1.0, μr = 3.0− j3.5,
589
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a = 0.5 mm at the frequency f = 3 GHz (|ka| = 0.1). The
scattering fields computed with HFSS used as alternative to
measured data are shown in Fig. 5

ETM
s 180◦

( ) = 0.52/− 40.5◦
mV

m

[ ]

and HTE
s 180◦
( ) = 2.58/20.5◦

mA

m

[ ]

Using (12) to compute μr = μ′− jμ″, we obtain two solutions
μr1 = 2.967− j3.518 and μr2 = 0.198 + j0.404. μr2 is a
non-physical solution since m′′

r2 , 0. Using (11) with μr1,
we obtain εr = 1.999− j1.011. We can note a good
agreement in the extracted parameters.

Example 2: In this example we consider a material without
losses. Assume, f = 3 GHz, εr =−2, μr = −3, a = 0.5 mm
(|ka| = 0.077). The scattering fields computed with HFSS are

ETM
s 180◦

( ) = 5.40/− 89.98◦
mV

m

[ ]

and HTE
s 180◦
( ) = 7.77/− 89.99◦

mA

m

[ ]

Using (12), we obtain two values of the cylinder permeability
μr1 = −5.003 and μr2 =−3.033. These results mean that we
have ambiguity and to resolve it we need another scattered
field measurement at a different azimuth angle. The
required procedure for this case is explained in the next
section.
3.2 Extraction based on the measurement of a
monostatic and a bistatic complex scattered field
data for one polarisation

This method is derived for TM-z polarisation but is similar for
TE-z polarisation. Without loss of generality, we consider for
simplicity the scattered field at j = 90°. In this case (9a) can
be rewritten in the form

ETM
s 90◦

( )
K

= 1r − 1 (17)

Solving (17) for εr leads to

1r =
ETM
s 90◦

( )
K

+ 1 (18a)

Next, based on (10a), we can express the permeability μr in
terms of the monostatic scattered electric field (j = 180°) by

mr =
1− (1/2) ETM

s 180◦
( )

/K
( )− 1r + 1
[ ]

1+ (1/2) ETM
s 180◦( )/K( )− 1r + 1

[ ] (18b)

For validation purpose we have considered the previous
examples,

Example 3: Instead of measurements, we use simulated
scattered fields with HFSS at j = 90° and j = 180° for a
cylinder with a = 0.5 mm(|ka| = 0.1), εr = 2.0− j1.0, μr = 3.0
− j3.5 at f = 3 GHz. The bistatic and monostatic scattered
590
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fields computed with HFSS and shown in Fig. 5 are,

ETM
s 180◦

( ) = 0.52/− 40.50◦
mV

m

[ ]

and ETM
s 90◦

( ) = 1.09/44.74◦
mV

m

[ ]

Using (18), we obtain the extracted values of εr = 1.999−
j1.007 and μr = 2.989 − j3.505, which is in a very good
agreement with the initial parameters.

Example 4: The HFSS simulated scattered fields at j = 90°
and j = 180° for a cylinder with parameters: a = 0.5 mm,
(|ka| = 0.077), εr =−2, μr =−3 at f = 3 GHz are

ETM
s 180◦

( ) = 5.40/− 89.98◦
mV

m

[ ]

and ETM
s 90◦

( ) = 2.31/− 89.85◦
mV

m

[ ]

Using (18), we obtain εr =−1.989− j0.008 and μr =−3.023−
j0.006. One can recognise a good agreement in the parameter
extraction.

As noted from these examples, using the second method the
correct solution is obtained without any ambiguity. The
drawback of this method lies in the requirement for a
bistatic measurement, which its set-up is more complex for
implementation.
3.3 Extraction based on the measurement of the
monostatic RCS absolute value for two polarisations

Using this method the following assumptions are made:

1. The material is lossy dielectric and isotropic.
2. The extraction is based on the measured RCS monostatic
σTM,TE(180°) absolute values.

In the derivation for practical reasons, the TM or TE RCS,
σTM,TE(j) were used instead of the corresponding scattered
fields. Based on [11] the bistatic RCS for TM and TE
polarisations can be expressed in terms of cylindrical
harmonics by

sTM(w) =
4

k0
CTM
0 + 2

∑1
n=1

CTM
n cos nw

( )∣∣∣∣∣
∣∣∣∣∣
2

(19a)

sTE w
( ) = 4

k0
CTE
0 + 2

∑1
n=1

CTE
n cos nw

( )∣∣∣∣∣
∣∣∣∣∣
2

(19b)

where the coefficients CTE,TM
n are given in (6) and (7) for thin

cylinders. We start with the case of a thin lossy dielectric
cylinder (εr = ε′− jε″, μr = 1) and consider based on the
discussion in chapter 2 only the first two coefficients to
compute σTM,TE(j). Substitution of these coefficients in
(19) results in approximated expressions for the TM and TE
IET Microw. Antennas Propag., 2015, Vol. 9, Iss. 6, pp. 585–592
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Fig. 6 Graphical solution for method 3 using absolute monostatic
RCS measurement for two polarisations, f = 3 GHz, a = 0.5 mm,
εr = 2.0− j1.5, μr = 1
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monostatic RCS

sTM 180◦
( ) � p2 k0a

( )4
4k0

1′ − 1
( )2+ 1′′

( )2[ ]
(20a)

sTE 180◦
( ) � p2 k0a

( )4
k0

1′ − 1
( )2+ 1′′

( )2
1′ + 1( )2+ 1′′( )2 (20b)

Extracting (ε″)2 from (20a) and (20b) yields

1′′
( )2= 4k0sTM 180◦

( )
p2 k0a

( )4 − 1′ − 1
( )2

(21a)

1′′
( )2= 1′ − 1

( )2− 1′ + 1
( )2

k0sTE 180◦
( )

/p2 k0a
( )4( )

k0sTE 180◦( )/p2 k0a
( )4−1

(21b)

Comparison of (21a) and (21b) leads to

1′ =
sTM 180◦

( )
1− sTE 180◦

( )
k0/p

2 k0a
( )4( )( )

sTE 180◦( ) (22)

Given ε′ in (22), one can evaluate ε″ by back substitution into
(21a) to obtain

1′′ =
���������������������������
4sTM 180◦

( )
k30a

4p2
− 1′ − 1

( )2√
(23)

Expressions (22) and (23) give the complex dielectric
constant of the thin cylinder in terms of two orthogonal
polarisations monostatic RCS measurement values. In case
of multiple solutions, note that from physical considerations
ε″ should be positive as a follow-up of the complex
dielectric constant definition εr = ε′− jε″.
An alternative graphical solution can be obtained if one

recognises that (21a) and (21b) can be rewritten in the form

1′′
( )2 + 1′ − 1

( )2= 4k0sTM 180◦
( )

p2 k0a
( )4 (24a)

1′′
( )2 + 1′ + sTE 180◦

( )+ k30a
4p2

sTE 180◦( ) − k30a
4p2

[ ]2

= 4p2 k0a
( )4

sTE(180
◦)k0

sTE(180◦)k0 − p2 k0a
( )4[ ]2

(24b)

Equation (24a) describes a circle in the complex ε-plane with
the centre at (ε′ = 1, ε″ = 0) and with a radius

2
��������������
k0sTM 180◦( )√

/p k0a
( )2( )

, whereas (24b) describes a

circle with the centre at

1′ = −sTE 180◦
( )+ k30a

4p2

sTE 180◦( ) − k30a
4p2

, 1′′ = 0

( )
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and with a radius

2p k0a
( )2 ��������������

sTE 180◦( )k0
√

sTE 180◦( )k0 − p2 k0a
( )4∣∣∣ ∣∣∣

The intersection of the two functions in (24) determines the
graphical solutions of εr. Fig. 6 shows a graphical
representation of (24a) and (24b) for a typical cylinder with
radius a = 0.5 mm at 3 GHz. The RCS used for the
parameters extraction were computed using HFSS instead
of using measured data. The cylinder parameters used for
this simulation were: εr = 2.0− j1.5, μr = 1. Inspection of the
plots in Fig. 6 reveals two solutions for εr, which is an
indication of the ambiguity in the solution. The correct
solution based on physical considerations is that with ε″ > 0.
Next for validation purpose, two examples have been

considered

Example 5: Initially the monostatic RCS for TE and TM
polarisations have been simulated using HFSS for a
cylinder with a height h = 10 mm in z direction, which was
extended to an infinite long cylinder using the Master/Slave
boundary conditions as shown in Fig. 4. The conversion of
the RCS from a 3D scatter obtained through HFSS to the
RCS of a 2D scatter with the same cross section was
obtained using the relationship s3D ≃ s2D 2h2/l0

( )
[13].

The cylinder parameters are: a = 0.5 mm (|ka| = 0.05), εr =
2.0− j1.5, μr = 1 at f = 3 GHz. This data have been used
instead of measured data. The simulated RCS results using
HFSS are: 10 log[σTM(180

0)/l] =−59.04 dB and 10 log
[σTE(180

0)/l] =−63.51 dB. Substitution of these RCS
values in (22) and (23) results in εr = 1.984− j1.514. One
can recognize a good agreement in the extracted parameters.

Example 6: In this example a thin cylinder with lossy negative
dielectric constant and a = 0.5 mmat f = 3 GHz was
considered. The simulated RCS with HFSS for a dielectric
591
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constant εr =−2.0− j1.5 are 10 log[σTM(180°)/l] =−53.68 dB
and 10 log[σTE(180°)/l] = −52.69 dB. Substitution of this
data in (22), (23) results in εr = −2.004− j1.475. The
extracted constitutive parameters are in a good agreement
with the initial parameters.

In a similar fashion, it is possible to derive a method in order
to extract the constitutive parameters of a magnetic 2D
isotropic cylinder with losses.

4 Conclusions

Three methods for extracting the constitutive parameters of
thin cylinders based on the measurement of the scattered
fields have been presented.
In the first method, we propose to extract both complex

permittivity and permeability of the 2D magneto-dielectric
thin cylinder using the monostatic complex scattered fields
for both polarisations (TM-z and TE-z). Using this method,
we may encounter ambiguity of the constitutive parameters,
and need more azimuth scattered far field measurements in
order to resolve it. This brings us to the second method.
In the second method, the complex scattered far field

measurements are carried out for one polarisation, but for
two azimuth angles, which makes the process more
complicated. In this method there is no ambiguity and it is
possible to obtain both complex constitutive parameters.
In the third method, we propose to extract the complex

permittivity or the complex permeability by measuring only
the absolute value of the monostatic RCS for both
polarisations. This is the easiest method for practical
implementation, since its experimental set-up is the simplest
including the calibration process. The drawback of this
method is that it does not enable to extract all constitutive
parameters and it evaluates either the complex permittivity
or the complex permeability.
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