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Abstract
Unidirectional multi-resonant tunneling of the magnetoelectric (ME) field excitations through a
subwavelength (regarding the scales of regular electromagnetic radiation) vacuum or isotropic-
dielectric regions has been observed in two-port microwave structures having a quasi-2D ferrite
disk with magnetic dipolar mode (MDM) oscillations. The excitations manifest themselves as
Fano-resonance peaks in the scattering-matrix parameters at the stationary states of the MDM
spectrum. The ME near-field excitations are quasimagnetostatic fields ⃗ × ⃗ = H 0 with non-zero

helicity parameter:
⎧⎨⎩

⎫⎬⎭= ⃗ ⋅ ⃗ × ⃗
π

( )F E EIm * .1

16
Topological phase properties of ME fields are

determined by edge chiral currents of MDM oscillations. We show that while for a given
direction of a bias magnetic field (in other words, for a given direction of time), the ME field
excitations are considered as ‘forward’ tunneling processes, in the opposite direction of a bias
magnetic field (the opposite direction of time), there are ‘backward’ tunneling processes.
Unidirectional ME field resonant tunneling is observed due to the distinguishable topology of the
‘forward’ and ‘backward’ ME field excitations. We establish a close connection between the
Fano-resonance unidirectional tunneling and the topology of the ME fields in different
microwave structures.

Keywords: unidirectional power flow, ferromagnetic resonance, magnetic dipolar modes
PACS numbers: 41.20.Jb, 42.25.Fx, 76.50.+g

(Some figures may appear in colour only in the online journal)

1. Introduction

Topological phases have been attracting much attention in
various fields in physics. In condensed matters, this leads to
the foundation of topological isolators. As one of the inter-
esting examples of such structures, there are photonic crystals
with chiral edge states. It was proposed that due to these edge
states there should be unidirectional propagation of electro-
magnetic energy [1–3]. Recently, unidirectional (chiral) edge
modes of magnetostatic (MS) (or magnetic dipolar mode
(MDM)) waves were found in a magnonic crystal [4, 5]. It
was discussed that in such structures, the magnetic dipolar
interaction joins the relative rotational angle between the spin
space and orbital space. It was shown that the chiral edge MS
modes can break both the time-reversal symmetry and

reflection symmetry and can propagate in a direction opposite
to the Damon–Eschbach surface MS modes [6].

Recent studies reveal that unidirectional (chiral) edge
states of magnetization can also be exhibited in another type
of a ferrite structure—a single ferrite-disk particle with an
MDM spectrum [7–13]. At the MDM resonances in a quasi-
2D ferrite disk, together with a spinning rotation of elemen-
tary magnetic dipoles, an orbital rotation of the entire-struc-
ture topological magnetic dipoles (multipoles) occurs. Such
an orbital rotation of the entire structure topological magnetic
dipoles (multipoles) appear due to geometrical phases on a
lateral surface of a ferrite disk at the MDM resonances. It was
shown [9, 10] that such topological (geometrical) phases arise
from the chiral edge states (chiral Majorana edge states) on a
lateral surface of a ferrite disk. The persistent edge currents
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for magnetization appear because of winding properties
essential for the motion of the magnetization in a confined
cylindrical geometry. The chiral transport means one-direc-
tion propagation of excitations at a given direction of time. In
such a structure, a spatial version of the causality principle
emerges. This can lead to a situation in which earlier events
affect only those future events that occur ‘downstream’. So, in
addition to the requirement that future events do not affect the
past, one also expects that the downstream events do not
affect upstream events, even in the future. [14].

MDM oscillations in a quasi-2D ferrite disk can conserve
energy and angular momentum [7–10]. Because of these
properties, MDMs are strongly coupled to microwave fields
and enable the confinement of microwave radiation energy in
subwavelength scales. MDM chiral currents strongly modify
microwave radiation acting on a ferrite disk. In a vacuum
subwavelength region abutting to an MDM ferrite disk, one
can observe the quantized-state power-flow vortices [11, 12].
In such a region, a coupling between the time-varying electric
and magnetic fields is different from such a coupling in reg-
ular electromagnetic (EM) fields. These specific near fields,
originated from MDM oscillations, we term magnetoelectric
(ME) fields [13]. The ME field solutions give evidence for
spontaneous symmetry breaking at the resonant states of
MDM oscillations. In reference [15] it was shown that the ME
field properties are related to the space-time curvature.
Because of rotations of localized field configurations in a
fixed observer inertial frame, the linking between the EM and
ME fields causes violation of the Lorentz symmetry of
spacetime. In such a sense, ME fields can be considered as a
Lorentz-violating extension of the Maxwell equations
[16, 17]. The ME fields have helical (chiral) structures. There
are right-hand (RH) and left-hand (LH) helices [10]. Topo-
logical pictures of the interaction of ME fields with EM fields
well illustrate these helices [15]. If we go through such a
chiral structure, we can ‘worked through’ back geometrical
phases when changing a direction of a bias magnetic field.

In this paper, we show that due to a topological structure
of ME fields, one obtains unidirectional multi-resonant tun-
neling for electromagnetic waves propagating in microwave
devices with embedded quasi-2D ferrite disks. The reso-
nances manifest themselves as peaks in the scattering-matrix
parameters at the stationary states of MDM oscillations in a
ferrite disk. The effect of unidirectional tunneling is exhibited
as Fano-resonance interferences, which are different for
oppositely directed bias magnetic fields. In 1961, Fano pro-
posed [18] that in a system where a discrete energy level is
embedded in a continuum energy state and there is coupling
between these two states, a specific resonance arises around
the discrete level. This quantum mechanical interference
yields a characteristic asymmetric line shape in the transition
probability. Fano-resonance tunneling is a well known effect
in semiconductor quantum well and quantum dot structures
[19, 20]. In reference [21] it was shown that the interaction of
an MDM ferrite particle with its microwave-structure envir-
onment has a deep analogy with the Fano-resonance inter-
ference in natural and artificial atomic structures. It was stated
that MDM particles have the energy-eigenstate spectra and

the tunneling of microwave radiation into an MDM ferrite
disk is due to twisting excitation. All these effects allow us to
establish, in the present studies, a close connection between
the observed Fano-resonance tunneling, the geometry of a
microwave structure, and the topology of ME fields. Our
observations support the model which assigns a special role of
the MDM chiral edge states in the unidirectional ME field
multi-resonant tunneling.

The paper is organized as follows. In section 2, we show
how such general notions as nonreciprocity and uni-
directionality are related to gyromagnetic properties of media.
We analyze the effects of nonreciprocity and unidirectionality
for oscillating modes in resonant structures. In section 3, we
analyze chiral edge states of MDMs in a quasi-2D ferrite disk.
In section 4, we represent our numerical and experimental
results of the unidirectional ME field multi-resonant tunnel-
ing. In section 5 we provide some discussions and summarize
our studies.

2. Nonreciprocity and unidirectionality

In our study we show that Fano-resonance tunnelling is
observed as unidirectional phenomena in microwave struc-
tures with MDM ferrite resonators. For deeper understanding
of these effects, we should dwell initially on such funda-
mental notions as nonreciprocity and unidirectionality in
gyrotropic structures. As a general consideration, we analyze
the scattering-matrix (S-matrix) properties of two-port (input-
output) structures with such field behaviors. We also analyze
the nonreciprocity and unidirectionality properties for oscil-
lating modes in resonant structures.

2.1. Field nonreciprocity and unidirectionality in gyrotropic
structures

The effect of nonreciprocity in the electromagnetic wave
propagation is observed in gyrotropic media. In classical
electromagnetism, Lorentz reciprocity is considered as the
most common and general theorem for time-invariant linear
media. It involves the interchange of time-harmonic sources
and the resulting electromagnetic fields. In isotropic media,
reciprocity can be recognized and exploited even in the pre-
sence of absorption, whilst time-reversal symmetry precludes
absorption. Gyrotropic (gyromagnetic or gyroelectric) media
with nonsymmetrical constitutive tensors caused by an
applied dc magnetic field have been called nonreciprocal
media because the usual reciprocity theorem [22] does not
apply to them. Rumsey has introduced a quantity called the
‘reaction’ and interpreted it as ‘physical observable’ [23].
This made it possible to obtain a modified reciprocity theorem
based on the property of gyrotropic media that non-
symmetrical constitutive tensors of permittivity or perme-
ability are transposed by reversing the dc magnetic field H⃗0

[24]. Based on this property, a widely used formulation is the
following: devices that are nonreciprocal in their electro-
magnetic properties are so because of asymmetry of the
magnetic or dielectric tensors of the linear media they contain.
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This concerns both microwave ferrite-based devices and
magneto-optic-based devices. For the scattering-matrix para-
meters in nonreciprocal devices, one has

⃗ = − ⃗ ≠S H S H i j( ) ( ) , .
ij ji0 0 For a lossless structure with a

gyrotropic medium, the scattering matrix is unitary. On the
microscopic level, the applicability of the reciprocity theorem
for gyrotropic media is based on the time-reversal invariance,
which is described by the Onsager principle [25, 26].

The notion of unidirectionality in gyrotropic structures is
different from the notion of nonreciprocity. To suppress
backscattering, the structure should be lossy for backscattered
propagating waves. So, a scattering matrix should be non-
unitary. The S-matrix for an ideal two-port isolator (the
structure with complete suppression of backscattered energy)

has the form
⎡
⎣⎢

⎤
⎦⎥=S[ ] 0 0

1 0
, indicating that both ports are

matched, but transmission occurs only in the direction from
post 1 to port 2. While the S matrix is not unitary, it is also not
symmetric. The working of an ideal isolator with a gyrotropic
medium is based on the nonreciprocal-absorption properties.

In a general case, we have: ⃗ ≠ ⃗( ) ( )S H S H( ) ( ) ,ij ji0 0 but

⃗ = − ⃗( ) ( )S H S H( ) ( )ij ji0 0 [27]. This analysis on uni-

directionality makes the statement in references [1, 3] ques-
tionable, that in lossless systems with broken time-reversal
symmetry, one-way propagation of electromagnetic-wave
energy leads to suppression of backscattering.

2.2. Nonreciprocity and unidirectionality for oscillating modes in
resonant structures

Some general aspects of nonreciprocity and unidirectionality
in gyrotropic structures are well illustrated in consideration of
oscillating modes in resonant structures. This consideration
will allow better understanding of our analysis of the prop-
erties of MDM oscillations in a ferrite-disk resonator.

For the electric and magnetic fields in isotropic media,

represented in the wave-number space as ∫⃗ = ⃗ ⃗ − ⃗ ⃗E E e d kk
ikr 3

and ∫⃗ = ⃗ ⃗ − ⃗ ⃗H H e d k,k
ikr 3 the reality of the fields means that

⃗ = ⃗− ⃗ ⃗E Ek k
* and ⃗ = ⃗− ⃗ ⃗H H .k k

* This makes it possible to obtain the
orthonormality conditions for electromagnetic waves of
oscillating modes in a lossless distributed-parameter resonator
with an isotropic medium:

∫ ∫
∫ ∫

δ

δ

⃗ ⃗ = ⃗ ⃗ =

⃗ ⃗ = ⃗ ⃗ =

− ⃗ ⃗ ⃗ ⃗

− ⃗ ⃗ ⃗ ⃗

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

E E dV E E dV

H H dV H H dV

,

, (1)

V
k

m
k

n V
k

m
k

n
mn

V
k

m
k

n V
k

m
k

n
mn

*

*

where δmn is the Kronecker delta. Equation (1) show that in
such a resonator one can normalize the field of a given mode
or to the field of a corresponding counter propagating mode,
or to the complex conjugated field of the same mode.

Let us dwell now on a lossless running-wave ring reso-
nator containing an isotropic medium. In this case, the reso-
nance occurs due to a wave running only in one direction
along a circle. Nevertheless, also in such a resonator the
orthonormality conditions, expressed by equation (1), take

place since for every clockwise running mode one may have
the same-type counterclockwise running mode, and
vice versa. It means that for rotary motion of energy in one
direction there exists the counterpart—the rotary motion of
energy in the opposite direction. When an input monochro-
matic signal is not exactly at the resonance frequency, one has
a reflected wave. Now the following question arises: can we
realize a lossless running-wave ring resonator based on a one-
way waveguide with unidirectional propagation of electro-
magnetic energy? More generally speaking, can one create an
electromagnetic-wave resonator with fields which are non-
symmetrical in the ⃗k space? Suppose that based on any of the
structures described in references [1–3] we realized a large in-
plane loop. A radius of this loop is much bigger than the
wavelength of the electromagnetic waves. So, locally, one has
a one-way waveguide with the properties shown in references
[1–3]. It is evident that in a case of one-wave propagation of
energy, a small fluctuation of the field energy in a certain
point of the loop will lead to infinite accumulation of energy
in an entire lossless structure during multi-cyclic processes of
wave propagation. Such a rotary motion of energy in only one
direction, while preventing motion in the opposite direction (a
ratchet device), is beyond the laws of thermodynamics. The
energy of a signal cannot propagate only in one direction in
this travelling-wave loop. The proposed structure must be
lossy. In other words, to realize a waveguide with one-wave
propagation of energy, one has to create certain channels for
energy losses. In such a case, the fields are not real and so the
orthonormality conditions, expressed by equation (1), cannot
be fulfilled.

While realization of a lossless resonator with unidirec-
tional propagation of electromagnetic energy is, physically, a
meaningless problem, the question arises about the possibility
of creating a lossless gyromagnetic electromagnetic-wave
resonator with nonreciprocal wave propagation and real
fields. When a lossless resonator contains a gyromagnetic
medium characterized by a permeability tensor μ ⃡ , the
orthonormality conditions for electromagnetic waves are
expressed as [28]

⎡
⎣⎢

⎤
⎦⎥

∫
∫

δ

μ δ

⃗ ⃗ =

⃗ ⃡ ⃗ =

⃗ ⃗

⃗ ⃗

( ) ( )
( ) ( )

E E dV

H H dV

,

. (2)

V
k

m
k

n
mn

V
k

m
k

n
mn

*

*

The tensor μ ⃡ is a Hermitian tensor: μ μ⃡ = ⃡( ) ( )*.T More-
over, from the Onsager relations for kinetic coefficients, one
has for the components of the tensor μ ⃡ [25, 26, 28]:

μ ω μ ω⃗ = − ⃗( ) ( )H H, , ,ij ji0 0 where H⃗0 is an external bias
magnetic field.

The orthonormality conditions (2) are different from the
orthonormality conditions (1). A general analysis shows that
an electromagnetic-wave resonator containing a gyromag-
netic-medium sample has real eigenfrequencies, but complex
eigenfunctions [28]. It means that no standing-wave beha-
viors of the resonator eigenfunctions exist. Let us consider,
for example, a cylindrical electromagnetic-wave resonator
with a ferrite cylinder of the length l longitudinally
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magnetized in the direction of axis z—the longitudinal axis of
a cavity. When we use separation of variables, we obtain that
at the resonance frequency there will be a standing wave
along the z-axis and, because of the Faraday rotation, an
azimuthally running wave in the plane perpendicular to z-
axis. Evidently, the resonance frequency the phases of the
waves along the z-axis and in the plane perpendicular to the z-
axis should be correlated. But the phase of the azimuthally
running wave is not identified in the cross-sectional plane of a
ferrite cylinder. So, one should conclude that such a repre-
sentation of an eigenfunction as a standing-wave plus run-
ning-wave behavior is incorrect. In a lossless gyromagnetic
electromagnetic-wave resonator with nonreciprocal wave
propagation one cannot identify a certain phase difference
between two given points at a resonance frequency. The main
reason for this is that microwave resonators with ferrite
inclusions are nonintegrable systems because of the time-
reversal symmetry (TRS) breaking effects.

The concept of nonintegrable, i.e. path-dependent, phase
factors is one of the fundamental concepts of electro-
magnetism. A key aspect of the behavior of the ferrite-reso-
nator configuration concerns reflection and refraction of
electromagnetic waves at ferrite-vacuum interfaces. In a
general case of oblique incidence of a wave on a single fer-
rite-vacuum interface, apparently different situations arise by
changing the directions of the incident waves and bias, and
incident side of the interface [29–31]. In a system of a cavity
and a ferrite sample one obtains a TRS-breaking microwave
billiard. Due to the TRS breaking, the ferrite-vacuum
boundary conditions entail the existence of the solutions to
the differential equations which are topologically distinct.
This leads to the creation of topological defects—the Poynt-
ing-vector vortices [30–33].

Can one create a microwave ferrite resonator with real
eigenstates and real eigenfunctions? Yes. But there will be the
resonator with magnetostatic-wave (MS-wave) (or magnetic
dipolar mode (MDM)) oscillations. It is well known that in a
case of small (compared to the free-space electromagnetic-
wave wavelength) samples made of magnetic media with
strong temporal dispersion, the role of an electric displace-
ment current in Maxwell equations can be negligibly small, so
oscillating fields are the quasistationary fields [26]. A mag-
netic field H⃗ is a quasimagnetostatic field ⃗ × ⃗ =( )H 0 ,

which is expressed by a magnetostatic potential: ψ⃗ = −H .
The spectral properties of oscillations in such a small ferrite
sample are analyzed based on the Walker equation for MS-
potential wave function ψ ⃗r t( , ) [34]:

μ ψ⃗ ⋅ ⃡ ⋅ ⃗ = ( ) 0. (3)

Outside a ferrite this equation becomes the Laplace
equation. The MDM oscillations appear because of a pre-
vailing role of long-range dipole-dipole interactions in a small
ferrite sample. Importantly, excitation of the real-eigenstate
multiresonance MDM oscillations in a quasi-2D ferrite disk
by microwave radiation, observed, for the first time, in
reference [35], is possible due to the presence of surface chiral
currents. In the near-field region, these chiral currents create

specific topologically distinctive structures—the ME fields—
resulting in observation of the unidirectional multi-resonant
tunneling, discussed in this paper.

3. MDM Chiral Currents And Their Interaction With
Microwave Radiation

3.1. MDM eigenvalue problems, chiral states, and quantized
electric fluxes

MDM oscillations in a quasi-2D ferrite disk are mesoscopi-
cally quantized states. Long range dipole-dipole correlation in
position of electron spins in a ferrimagnetic sample with
saturation magnetization can be treated in terms of collective
excitations of the system as a whole. If the sample is suffi-
ciently small so that the dephasing length L ph of the magnetic
dipole-dipole interaction exceeds the sample size, this inter-
action is non-local on the scale of L .ph This is a feature of a
mesoscopic ferrite sample, i.e. a sample with linear dimen-
sions smaller than L ph but still much larger than the
exchange-interaction scales. In a case of a quasi-2D ferrite
disk, the quantized forms of these collective matter oscilla-
tions—magnetostatic magnons—were found to be quasi-
particles with both wave-like and particle-like behavior, as
expected for quantum excitations. The magnon motion in this
system is quantized in the direction perpendicular to the plane
of a ferrite disk. The MDM oscillations in a quasi-2D ferrite
disk, analyzed as spectral solutions for the MS-potential wave
function, have evident quantum-like attributes [7–10]. In
microwave experiments with a normally magnetized quasi-2D
ferrite disk, regular multi-resonance MDM spectra have been
observed [21, 35–39]. It was shown that in such a ferrite-disk
resonator, MDM oscillations can be characterized by real
eigenstates and real eigenfunctions. Formulation of quasi-
Hermitian eigenvalue problems and analytical spectral solu-
tions for MDMs in a normally magnetized ferrite disk were
obtained in reference [7, 8]. For the disk geometry, the
energy-eigenstate oscillations are described by a two-dimen-
sional (with respect to in-plane coordinates of a disk) differ-
ential operator ⊥Ĝ . The energy eigenvalue problem is defined
by the differential equation: η η=⊥G Eˆ ˜ ˜ ,q q q where η̃q is a
dimensionless membrane (‘in-plane’) MS-potential wave
function and Eq is the normalized average (on the RF period)
density of accumulated energy of mode q. For the MS-
potential wave functions, one has the orthonormality condi-

tion: ∫ ∫η η η η δ= = ′β β⃗ − ⃗
′ ′

⁎( ) ( ) dS dS˜ ˜ ˜ ˜ ,
S q q S q q qq where S is a

cylindrical cross section of a ferrite disk.
The spectral solutions, based on differential operator ⊥Ĝ ,

we conventionally call the G-mode solutions. In solving the
energy-eigenstate spectral problem for the G-mode states, the
boundary condition on a lateral surface of a ferrite disk, is
expressed as [6–8]

R R

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠μ η η∂

∂
− ∂

∂
=

= =− +r r

˜ ˜
0, (4)

r r

where R is a radius of a ferrite disk. There is a homogeneous
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boundary condition for a differential operator ⊥Ĝ . For the
magnetic field components, equation (4) is written as

R R
μ − == =− +( ) ( )H H 0, (5)r r r r

where R= −H( )r r and R= +H( )r r are the radial components of a
magnetic field on a border circle of a ferrite disk.

The G-mode ferrite disk, which is not connected to the
surrounding, returns to the original situation after a π2 rota-
tion. The G-mode object connected to the microwave sur-
rounding behaves differently. It appears that the G-mode
boundary conditions are different from standard electro-
magnetic boundary conditions. The G-mode spectrum is
obtained based on solution of the Walker equation (3). This
equation is, in fact, the magnetostatic-description repre-
sentation of a differential equation ⋅ ⃗ = B 0. It is evident
that the boundary condition (5) manifests itself in contra-
dictions with the boundary condition for continuity of a radial
component of magnetic flux density ⃗B on a lateral surface of a
ferrite-disk resonator. Such a boundary condition should be
written as

R R R
μ μ− = − θ= = =− +( ) ( ) ( )H H i H , (6)r r r r a r

where Rθ =H( )r is an annular magnetic field on a border circle.
In the MS description, this equation appears as

R R
R⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠μ φ φ μ ν φ∂

∂
− ∂

∂
= −

= =
=

− +
−

r r

˜ ˜
( ˜) , (7)

r r
a r

where φ̃ is the MS-potential membrane wave function, ν is an
azimuth wave number, and μa is an off-diagonal component of
the permeability tensor. Contrary to real wave functions η̃ ,
functions φ̃ are complex wave functions. The term in the
right-hand side of equation (7) has the off-diagonal compo-
nent of the permeability tensor, μ ,a in the first degree. There is
also the first-order derivative of function φ̃ with respect to the
azimuth coordinate. It means that for the MS-wave solutions
one can distinguish the time direction (given by the direction
of the magnetization precession and correlated with a sign of
μ )a and the azimuth rotation direction (given by a sign of
φ θ∂ ∂˜ ). For a given sign of a parameter μ ,a there are different

MS-potential wave functions, φ +˜( ) and φ −˜ ,( ) corresponding to
the positive and negative directions of the phase variations
with respect to a given direction of azimuth coordinates, when

θ π⩽ ⩽0 2 . There is evidence for the path dependence in the
problem solutions.

The G-mode solutions obtained based on the boundary
condition (5) are the stationary-state solutions with single
valued MS-potential wave functions η̃ . Contrarily, the spec-
tral solutions obtained based on the boundary condition (6)
cannot be considered as stationary-state solutions with single
valued MS-potential wave functions. A singular border term
in the right-hand-side of equation (6), which expresses the
discontinuity of a radial component of magnetic flux density
for the G-mode solutions, we represent as effective surface

magnetic charge density:

R
μ πρ− ≡θ =( )i H 4 . (8)a r s

m( )

This equation relates an azimuthal component of the magnetic
field with surface magnetic charge density. In fact, the char-
ges ρs

m( ) are topological magnetic charges.

We can consider surface magnetic charge density ρs
m( ) as

a certain fluctuation. Such magnetic-charge edge states of
MDMs contribute to the appearance of a surface magnetic
current around the border ring. For the time varying G-mode
fields, the surface magnetic charge density ρs

m( ) should be

related to the surface magnetic current density ⃗js

m( )
by a

continuity equation. For monochromatic wave process (~
ωe ),i t we have:

ωρ⃗ ⋅ ⃗ = − j i . (9)s

m

s
m( ) ( )

Both quantities, ρs
m( ) and ⃗j ,s

m( )
have time- and space-depen-

dent phases. Evidently, magnetic charges ρs
m( ) appear in a

form of the magnetic-dipole (magnetic-multipole, in general)
structure on a lateral surface of a ferrite disk. Magnetic cur-

rents ⃗js

m( )
are not linear, but circulating currents. So,

equation (9) can take place only when magnetic charges ρs
m( )

are the charges moving (clockwise or counterclockwise) on a
lateral surface of a ferrite disk. This gives evidence for the
fact that the G-mode picture should rotate in the laboratory
frame when the magnetic charges ρs

m( ) exist. Definitely, sur-

face magnetic charges ρs
m( ) are not ‘free magnetic charges’.

There are topological charges determined by orientation of
the magnetization vectors on a lateral surface of a ferrite disk.

Also, surface magnetic currents ⃗js

m( )
are not caused by motion

of ‘free magnetic charges’. In fact, there are chiral-rotation
surface magnetostatic spin waves.

In figure 1, we show surface magnetic charges and edge
chiral magnetic currents. This is a view on the upper plane of
a ferrite disk. Suppose that there exists a magnetic-dipole
fluctuation on a lateral surface of a ferrite disk and a surface
magnetic current is a clockwise rotating surface wave. At a
given time, let there be a positive magnetic charge +( ) m( ) at
point P on a disk lateral surface and a negative magnetic
charge −( ) m( ) at a diametrically opposite point Q. Let there

be a magnetic current
⎡
⎣⎢

⎤
⎦⎥⃗js

m

A

( )
‘departing’, with a certain

phase τ ,A from a point P. Because of conservation of ‘mag-

netic neutrality’, another current wave
⎡
⎣⎢

⎤
⎦⎥⃗js

m

B

( )
with the same

phase τ τ=B A should ‘depart’ to a point Q. Since, however,
no real magnetic charges physically exist, these magnetic
currents on a lateral surface of a ferrite disk can only be the
topological currents. Topologically, a circulating current
⎡
⎣⎢

⎤
⎦⎥⃗js

m

A

( )
is not the same as a circulating current

⎡
⎣⎢

⎤
⎦⎥⃗j .s

m

B

( )

Every one of these separate currents gets around the orbital
trajectory Rπℒ = 2 during a half of the period of microwave

radiation. The current
⎡
⎣⎢

⎤
⎦⎥⃗js

m

A

( )
‘arrives’ to a point P with the
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phase τ− A when the G-mode rotates at the angle of π2 . A

similar situation is true for the current
⎡
⎣⎢

⎤
⎦⎥⃗j .s

m

B

( )
So, we can

state that for the G-mode regular-coordinate angle θ π= 2 , a
topological surface magnetic current acquires the phase of
θ π′ = . Because of a magnetic-dipole fluctuation on a lateral
surface of a ferrite disk, the domain of the G-mode azimuthal
angle θ, in a laboratory frame, is no longer π[0,2 ] but π[0,4 ].

Circulating currents
⎡
⎣⎢

⎤
⎦⎥⃗js

m

A

( )
and

⎡
⎣⎢

⎤
⎦⎥⃗js

m

B

( )
appear as

topologically distinctive currents due to finite thickness of the
disk. Figure 2 illustrates a two-layer-ring model for surface
magnetic currents. When a magnetic current of the upper
(lower) layer is arriving at terminal P (where a topological
magnetic charge is supposed to be localized), it must continue
its propagation at the lower (upper) layer and this is the one

Figure 1. Surface magnetic charges and edge chiral magnetic currents (a view on the upper plane of a ferrite disk). At the time phase variation
from ω =t 0 to ω π=t , an edge magnetic current acquires the phase of θ π′ = while the G-mode regular-coordinate angle is θ π= 2 . Because
of a magnetic-dipole fluctuation on a lateral surface of a ferrite disk, the domain of the G-mode azimuthal angle θ, in a laboratory frame, is no
longer π[0,2 ] but π[0,4 ]. The MS-potential distribution for the G-mode eigenfunction η̃ is schematically shown as color regions inside a
ferrite disk. In the figure, there is a correspondence between colors used for surface magnetic currents and colors used for topological
magnetic charges.

Figure 2. A two-layer-ring model for edge chiral magnetic currents for different time phases. When a magnetic current of the upper (lower)
layer arrives at terminal P (where a topological magnetic charge is localized), it must continue its propagation at the lower (upper) layer and
this is only one choice. A similar situation takes place at terminal Q. The regions of terminals P and Q are the regions of singularity (the
regions of topological magnetic charges). Topological magnetic charges are distributed on a lateral surface of a ferrite disk. In the figure,
there is a correspondence between colors used for surface magnetic currents and colors used for topological magnetic charges.

6

J. Opt. 17 (2015) 025601 E O Kamenetskii et al



and only choice. A similar situation takes place at terminal Q.
Regions of terminals P and Q are the regions of singularity.
At the same time, we have to note that topological magnetic
charges are not point charges. They are distributed on a lateral
surface of the disk. So, sharp ‘kinks’ of the current lines are
impossible.

Due to the special topology of the two-layer ring, orbital
angular momenta are allowed to be a half-integer. In a quasi-
2D ferrite disk, the two layers are very close to each other and
the above two currents look like a ring magnetic current on a
lateral surface of a ferrite disk. So, the continuity equation (9)
has the form:

ωρ⃗ ⋅ ⃗ = −θ
θ

 ( )j i , (10)s

m

s
m( ) ( )

where
R

⃗ ⋅ ⃗ =θ
θ θ

∂ ⃗

∂
θ ( ) ( )

j .s

m j( ) 1 s
m( )

The closed-loop surface

magnetic current ⃗
θ

( )js

m( )
are clockwise and counterclockwise

edge chiral currents, depending on a direction of a bias
magnetic field (in other words, depending on a direction
of time).

In a quasi-2D ferrite disk, the edge chiral currents

⃗
θ

( )js

m( )
can be described by 1D scalar wave functions, which

are double-valued functions. Such ring magnetic currents can
create electric-field fluxes. This effect was studied in details in
reference [9, 10, 13]. On a lateral border of a ferrite disk, the
correspondence between a double valued membrane wave
function φ̃ and a single valued membrane function η̃ is

expressed as:
R

Rφ δ η=± = ± =−
−( )˜ ( ˜) ,

r
r where δ ≡ θ

± ±
− ±f e iq is a

double valued edge wave function on contour Rπℒ = 2 . The
azimuth number ±q is equal to ± l,1

2
where l is an odd quantity

(l= 1, 3, 5, …). For amplitudes we have = −+ −f f and

=±f    1. Function δ± changes its sign when θ is rotated by π2

so that = −π− ±e 1.iq 2 As a result, one has the eigenstate
spectrum of MDM oscillations with topological phases
accumulated by the edge wave function δ. On a lateral surface
of a quasi-2D ferrite disk, one can distinguish two different
functions δ±, which are the counterclockwise and clockwise
rotating-wave edge functions with respect to a membrane
function η̃ . A line integral around a singular contour ℒ:

R
R

⎡
⎣⎢

⎤
⎦⎥∮ ∫δ δ θℒ =δ

θ
π δ

θℒ
∂
∂ ±

∂
∂ ±

=

± ±( ) ( )i d i d( )* ( )*
r

1

0

2
is an obser-

vable quantity. It follows from the fact that because of such a
quantity one can restore single-valuedness of the spectral
problem. Because of the existing geometrical phase factor on
a lateral boundary of a ferrite disk, MDMs are characterized
by a pseudo-electric field (the gauge field) [9, 13]. We will
denote here this pseudo-electric field by the letter €⃗. The
geometrical phase factor in the G-mode solution is not single-
valued under continuation around a contour ℒ and can be

correlated with a certain vector potential Λ ⃗ .
m

€
( )

We define a
geometrical phase for an MDM as [9, 13]

R R∫ ∮δ δ θ Λ π⃗ ≡ ⃗ ⋅ ℒ⃗ =π
θ ± ± = ℒ ±

± ( )i d K d q[( )( )*] 2 ,r
m

0

2
€
( )

where
R R

δ⃗ = ⃗θ
δ
θ θ±

∂
∂ =

± e
r

1 and θ⃗e is a unit vector along an

azimuth coordinate. Coefficient K is a normalization coeffi-
cient. The physical meaning of coefficient K was discussed in
references [9, 13, 40].

We inserted a connection which is an analogue of the
Berry phase. In our case, the Berry's phase is generated from
the broken dynamical symmetry. The confinement effect for
magnetic-dipolar oscillations requires proper phase relation-
ships to guarantee single-valuedness of the wave functions.
To compensate for sign ambiguities and thus to make wave
functions single-valued we added a vector-potential-type term

Λ ⃗ m
€
( )

(the Berry connection) to the MS-potential Hamiltonian.

On a singular contour Rπℒ = 2 , the vector potential Λ ⃗ m
€
( )

is
related to double-valued functions. It can be observable only
via the circulation integral over contour ℒ, not pointwise.
The pseudo-electric field €⃗ can be found as

Λ⃗ = − ⃗ × ⃗±
±

 ( )€ .
m

€
( )

The field €⃗ is the Berry curvature. In

contrast to the Berry connection Λ ⃗ ,
m

€
( )

which is physical only

after integrating around a closed path, the Berry curvature €⃗ is
a gauge-invariant local manifestation of the geometric prop-
erties of the MS-potential wavefunctions. The corresponding
flux of the gauge field €⃗ through a circle of radius R is
obtained as:

∫ ∮ Λ Ξ π⃗ ⋅ ⃗ = ⃗ ⋅ ℒ⃗ = =± ℒ ± ± ±( ) ( )K dS K d K q(€) 2 ,
S

m e
€
( ) ( )

where Ξ
±( )e( ) are quantized fluxes of pseudo-electric fields.

Each MDM is quantized to a quantum of an emergent electric
flux. There are the positive and negative eigenfluxes. These
different-sign fluxes should be nonequivalent to avoid the
cancellation. It is evident that while integration of the Berry
curvature over the regular-coordinate angle θ is quantized in
units of π2 , integration over the spin-coordinate angle θ′

θ θ′ =( )1

2
is quantized in units of π. The physical meaning of

coefficient K concerns the property of a flux of a pseudo-
electric field.

The edge chiral current ⃗js

m( )
is a persistent magnetic

current in an Aharonov–Bohm-like geometry. On an edge
ring region, we have the magnetization motion pierced by an
electric flux Ξ ±( ) .e The edge magnetic current can be obser-

vable only via its circulation integrals, not pointwise. This
results in the moment oriented along a disk normal. It was
shown experimentally [37] that such a moment has a response
in an external RF electric field and so can be classified as an
electric moment. There is a so called anapole moment ±a e [9].

3.2. Interaction of MDMs with external microwave radiation

Because of the edge chiral currents, interaction of MDMs
with external microwave radiation of MDM oscillations is
manifested by unique topological properties.

In numerous microwave experiments with a quasi-2D
ferrite disk, multi-resonant MDM oscillations were observed
both at a constant signal frequency with scanning of a bias
magnetic field and at a constant bias magnetic field with
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scanning of a signal frequency [21, 35–39]. In initial
experimental studies [35, 36], it was shown that in a micro-
wave structure with an embedded quasi-2D ferrite disk,
multiresonance MDM oscillations are excited by RF magnetic
fields lying in the disk plane. Later, it was shown experi-
mentally that MDMs can also be effectively excited by RF
electric fields of a microwave structure, which is oriented
along a disk axis [37]. One of the main conclusions we can
made from all these experiments is the fact that positions of
the resonance peaks are not dependent on the microwave-
structure environment and are exceptionally determined by
the disk parameters. It means that in all of the experiments we
observe the energy-eigenstate spectra. As we discussed
above, the domain of the G-mode azimuthal angle θ is not

π[0,2 ] but π[0,4 ]. The G-mode object, being connected to the
microwave surrounding, returns to the original situation after
π4 rotation. It means that for a given frequency ω of micro-
wave radiation, the G-mode rotation frequency is ω2 .

When (due to interactions with external microwave
radiation) a macroscopic MS-potential wave function η̃ is set
into rotation, quantized vortex lines appears. At the vortex
center (the center of a ferrite disk) the function η̃ is zero. In
different physical systems, there are many other examples of
such vortices with rotating macroscopic wave functions. In
particular, there are vortices in Bose–Einstein-condensate
systems [41–44]. The operator ⊥Ĝ is a two-dimensional dif-
ferential operator in the absence of rotation. The eigenstate of
this operator is the energy of the ground state with no vor-
tices. In a rotating frame, this differential operator has a form:

Ω′ = −⊥ ⊥G G Lˆ ˆ ˆ . (11)z

The last term in the right-hand side of this equation favors

states with non-zero angular momentum. = −∂
∂

∂
∂( )L i y xˆz x y

is the orbital angular momentum along the rotation axis z, the
disk axis. A rotation frequency is Ω ω= 2 . For a certain
MDM q, the energy of a vortex state in a frame rotating with
angular frequency Ωq is Ω′ = −E E L̂q q q zq.

Microwave radiation can potentially couple to MDM
oscillations if the ferrite sample shows a confined structure to
satisfy conservation of energy and angular momentum. Tun-
neling of microwave radiation into an MDM ferrite disk is
due to twisting excitations. Our studies give evidence for such
near-field twisting excitations. There are subwavelength field
structures with quantized energy and angular momentums. It
is known that photons, like other particles, carry energy and
angular momentum. A circularly polarized photon carries a
spin angular momentum [45]. Also, photons can carry addi-
tional angular momentum, called orbital angular momentum.
Such photons, carrying both spin and orbital angular
momentums are called twisting photons [46]. Twisting pho-
tons are propagating-wave behaviors. These are ‘real pho-
tons’. In the near-field phenomena, which have
subwavelength-range effects and do not radiate through space
with the same range-properties as do electromagnetic wave
photons, the energy is carried by virtual photons, not actual
photons. Virtual particles should also conserve energy and
momentum. The question whether virtual photons can behave

as twisting excitations is a subject of numerous discussions
[47–50]. In particular, in references [47, 49] it was discussed
that vacuum can induce a torque between two uniaxial bire-
fringent dielectric plates. In this case, the fluctuating elec-
tromagnetic fields have boundary conditions that depend on
the relative orientation of the optical axes of the materials.
Hence, the zero-point energy arising from these fields also has
an angular dependence. This leads to a Casimir torque that
tends to align two of the principal axes of the material in order
to minimize the system’s energy. A torque occurs only if
symmetry between the right-hand and left-hand circularly
polarized light is broken (when the media are birefringent). In
our case, a quantum vacuum field takes energy from the
MDM ferrite disk. The electromagnetic mode with frequency
ω interacts with the MDM of frequency ω2 (because the ac
part of the ponderomotive force has frequency ω2 ). This is
the parametric pumping of the energy from magneto-
mechanical (magnetization-precession) oscillations into elec-
tromagnetic oscillations. The energy taken is converted into
real photons. This is the dynamical Casimir effect. The
dynamical Casimir effect is the generation of photons out of
the quantum vacuum induced by an accelerated body.
Rotating MDMs in a ferrite disk cannot rule out a dynamical
Casimir torque even in the case of uniform angular velocity.
This raises the question of the angular momentum coupling
with the quantum vacuum field. Quantized vortices are sen-
sitive probes of the angular momentum coupling of MDMs
with the vacuum field.

The properties of rotating G modes and edge chiral states
in a ferrite disk essentially determine a character of interaction
of MDMs with external microwave radiation. Suppose that a
small ferrite disk is placed in a region of a linearly polarized
(in a plane of a ferrite disk) RF magnetic field. When no
MDM oscillations are assumed, we can state that such a RF
magnetic field excites homogeneous ferromagnetic resonance
oscillations of magnetization in a small ferrite sample [28].
One observes an induced magnetic dipole lying in the disk

plane. The quantity of this dipole ⃗P
m( )

is determined both by

the incident-wave magnetic field H⃗
i( )
and by the scattered-

wave magnetic field H⃗
s( )
:

χ⃗ = ⃗ + ⃗( )P H H , (12)
m e i s( ) ( ) ( ) ( )

where χ e( ) is the ellipsoid external susceptibility [28]. For-
mally, one can describe the magnetic-charge distribution on a
lateral surface of a ferrite disk as an azimuth magnetic-charge
standing wave. There are two equal amplitude azimuth waves
of surface magnetic charges. Also, on a lateral surface of a
ferrite disk, the azimuth component of a magnetic field

⃗ = ⃗ + ⃗θ θ θH H H
ext i s( ) ( ) ( )

can be represented as an azimuth mag-
netic field standing wave. It means that there are two equal
amplitude azimuth waves of a magnetic field:

⃗ = ⃗ + ⃗θ θ θ+ −( )H H H
ext ext ext( ) 1

2

( ) ( )
.

At certain quantization conditions, long range dipole-
dipole correlation in the position of electron spins in a ferrite
disk results in the appearance of collective excitations of the
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system. These quantized excitations are MDMs. Surface
magnetic charges induced by a linearly polarized (in a plane
of a ferrite disk) RF magnetic field can be considered as the
sources for MDM oscillations. In this case, however, the
magnetic charge distribution on a lateral surface of a ferrite
disk is not an azimuth magnetic charge standing wave. There
exists only a clockwise or only counterclockwise (depending
on a direction of a bias magnetic field) azimuth wave of
surface magnetic charges. For excitation of G-modes by
external RF magnetic fields, the right-hand-side term in
equation (6) appears as an external source. Based on a per-
turbation theory analysis, we can assume that the azimuth
component of a time-varying incident magnetic field

Rθ+ =( )H
r

i( )
or

Rθ− =( )H
r

i( )
induces surface magnetic charges:

R
⎡⎣ ⎤⎦μ π ρ∓ ≡θ± = ±

( )i H 4 (13)a r

i
s

m i( ) ( ) ( )

On the other hand, with the energy eigenstate description
based on the singlevalued G-mode MS-potential wave func-
tions η̃ , one has to show that there exists a certain internal
mechanism which removes the perturbation term in a right-
hand side of equation (6). From the above analysis, we can

state that the rotating surface magnetic charge ⎡⎣ ⎤⎦ρ
±s

m i( ) ( )
cre-

ates, on a lateral surface of a ferrite disk, the surface magnetic

current
⎡
⎣⎢

⎤
⎦⎥⃗

θ′
( )js

m
i

( )
( )

and this edge chiral current, in its turn,

originates an incident-wave electric flux Ξ( ) .e i( ) ( )
The G-

mode stationary state solution will take place when a certain
electric flux appears to compensate the incident-wave electric

flux Ξ( ) .e i( ) ( )
We call this flux the scattered-wave electric flux

Ξ( ) .e s( ) ( )
We can characterize this effect as the electric self-

inductance effect. The flux Ξ( )e s( ) ( )
will induce, on a lateral

surface of a ferrite disk, the edge magnetic current
⎡
⎣⎢

⎤
⎦⎥⃗

θ′
( )j ,s

m
s

( )
( )

and this chiral current, in its turn, will create

surface magnetic charge ⎡⎣ ⎤⎦ρs
m s( ) ( )

compensating the incident-

wave magnetic charge ⎡⎣ ⎤⎦ρ .s
m i( ) ( )

Each of these magnetic

currents,
⎡
⎣⎢

⎤
⎦⎥⃗

θ′
( )js

m
i

( )
( )

and
⎡
⎣⎢

⎤
⎦⎥⃗

θ′
( )j ,s

m
s

( )
( )

is composed by two

topologically distinctive current components discussed above.

Both currents,
⎡
⎣⎢

⎤
⎦⎥⃗

θ′
( )js

m
i

( )
( )

and
⎡
⎣⎢

⎤
⎦⎥⃗

θ′
( )j ,s

m
s

( )
( )

have the same

direction along the azimuth coordinate and are mutually time-
phase shifted at ∘180 . Figure 3 shows the edge magnetic

currents
⎡
⎣⎢

⎤
⎦⎥⃗

θ′
( )js

m
i

( )
( )

and
⎡
⎣⎢

⎤
⎦⎥⃗

θ′
( )js

m
s

( )
( )

on a lateral surface of

a ferrite disk and their possible correlation with the G-mode
MS-potential wave functions η̃ of a certain MDM.

What will happen when a ferrite disk is placed in the RF
electric field oriented normally to a ferrite disk? Following the
above model of the electric self-inductance effect, one can

state that in this case the incident-wave electric flux Ξ( )e i( ) ( )

should be compensated by the scattered-wave electric flux

Ξ( ) .e s( ) ( )
A numerical analysis of the electric field structure

clearly proves this statement. In references [11, 50] it was
shown that near an MDM-resonant ferrite disk a normal
component of the RF electric field is zero during all the time
period of microwave radiation.

Physically, the above formal introduction of the quan-
tized fluxes of pseudo-electric fields Ξ

±( )e( ) can be well

justified based on the Thomas precession effect. Rotating
surface-charge magnetic dipoles and edge chiral magnetic
currents on a lateral surface of a ferrite disk interact with the
G-mode oscillations. The underlying physical mechanism is
the spin–orbit interaction, which couples the magnetization
spin degree of freedom to their orbital dynamics. In figure 3,
such a spin–orbit interaction is illustrated by highlighted parts

of the graphs of the edge magnetic currents
⎡
⎣⎢

⎤
⎦⎥⃗

θ′
( )js

m
i

( )
( )

and

⎡
⎣⎢

⎤
⎦⎥⃗

θ′
( )js

m
s

( )
( )

and shaded areas on the graph of the G-mode

MS-potential wave functions η̃ . Because of the spin–orbit
interaction, the spin is directly related to the winding of tra-
jectory. Such degrees of freedom as geometric (Berry) phases
are winding dependent. The Thomas precession talks about
rotation of a spinning particle under the coordinate transfor-
mations. The circular spin current along a ring will inevitably

Figure 3. Edge magnetic currents
⎡
⎣⎢

⎤
⎦⎥⃗

θ′
( )js

m
i

( )
( )

and
⎡
⎣⎢

⎤
⎦⎥⃗

θ′
( )js

m
s

( )
( )

on

a lateral surface of a ferrite disk and their correlation with the G-
mode MS-potential wave functions η̃ of a certain MDM. The spin–
orbit interaction is illustrated by highlighted parts of in the graphs of

the currents
⎡
⎣⎢

⎤
⎦⎥⃗

θ′
( )js

m
i

( )
( )

and
⎡
⎣⎢

⎤
⎦⎥⃗

θ′
( )j ,s

m
s

( )
( )

and shaded areas on the

graph of the wave functions η̃ . Each of the magnetic currents,
⎡
⎣⎢

⎤
⎦⎥⃗

θ′
( )js

m
i

( )
( )

and
⎡
⎣⎢

⎤
⎦⎥⃗

θ′
( )j ,s

m
s

( )
( )

is composed by two topologically

distinctive current components shown in figures 1 and 2.
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produce the Thompson precession. Due to this precession one
has an effective electric field. There is the gauge field, no
gradient of an electrical potential takes place in this case [51].
Importantly, the electric field due to Thomas precession may
exist in any magnetic particle which confines magnetic
moments in motion [51].

Rotating surface-charge magnetic dipoles and edge
chiral magnetic currents strongly transform both magneti-
zation dynamics inside a ferrite-disk particle and topology of
the near-field microwave radiation. As a result of the spin–
orbit interaction, so called L-type MDMs appear. There are
helical MS waves in a quasi-2D ferrite disk [9, 10]. The L
modes are microwave MDM polaritons [12]. These polariton
states create near fields with specific topology: the magne-
toelectric (ME) fields [13]. There are topologically dis-
tinctive virtual photons. As we well know, in a
subwavelength region of regular microwave radiation the
near-field structure is exhibited as a quasi-static electric or
quasi-static magnetic field. These quasi-static electric and
magnetic fields are mutually uncoupled [45]. The near-field
structure of an MDM particle is essentially different. One
can observe strong subwavelength localization of both the
electric and magnetic fields [12, 13, 15, 40].

Topological properties of ME fields (non-zero helicity
factor) arise from the presence of geometric phases on a
border circle of an MDM ferrite disk. Due to geometrical
phases, the in-plane power-flow vortices appear. It is evident
that, in accordance with the thermodynamics laws, power
cannot flow along a closed circle. So we have flat (Archi-
medes) spirals of the power-flow distributions. The incident-
wave power flow goes from peripheral regions to the vortex
center. The scattered-wave power flow goes from the vortex
center to peripheral regions. There are or right-handed, or
left-handed flat spirals. When, for example, the incident-
wave power flow is a right-handed spiral, the scattered-wave
power flow is a left-handed spiral. The L-mode solutions,
being not the energy eigenstate solutions, are well obser-
vable in the HFSS numerical simulation. In a ‘dynamical’
HFSS program, one can observe such geometric phases
indirectly—by topological transformations of the wave
fronts, subwavelength-scaled power flow vortices, and the
helicity factors [11–13, 15, 40].

ME fields are the topological-defect solutions, which
are distinct from Maxwellian vacuum solutions. It can be
proven to exist because the boundary conditions entail the
existence of homotopically distinct solutions; the solutions
to the differential equations are then topologically distinct.
Experiments with a thin-film ferrite disk embedded in a
microwave structure show that quantization of a microwave
energy takes place due to the microwave-photon angular
momentum. The discrete topological states of the microwave
cavity fields are caused by discrete variations of energy of a
ferrite disk appearing because of an external source of
energy, a bias magnetic field [21]. The modes observed in a
microwave cavity with an embedded MDM ferrite disk are
quantum vacuum fluctuations [21].

4. Experimental and numerical results

4.1. Chiral edge magnetic currents

While the L-mode resonances are energetically unstable, there
are topologically stable resonances of rotating fields [11–13].
These solutions are characterized by both the linear and cir-
cular magnetic currents. The two magnetic currents, being
coupled at the MDM resonance, form helical-structure (or
chiral) magnetic currents. It means that all excitations in a
ferrite disk can propagate only clockwise or only counter-
clockwise. When, for a given direction of a bias magnetic
field, we call the chiral-current process a ‘forward’ process in
the formalism of fluctuation relations, and in an opposite
direction of a bias magnetic field we have a ‘backward’
process. The backward process can be described as a forward
process in the time-reversed twin system with the opposite
chirality. Certainly, it should be assumed that the material
characteristics and temperatures are the same in the forward
and backward processes. In quantum-Hall structures, one can
observe chiral excitations on a 2D surface of a 3D system. In
such systems, the electric charge can propagate in both
directions along one of the coordinate axes but only in one
direction along the second axis [14]. A similar situation, but
with ‘magnetic charges’, takes place in our case.

While the positions of the MDM resonance peaks are
exceptionally determined by the disk parameters, the ampli-
tudes and forms of these peaks can be strongly dependent on
the microwave-structure environment. The observed effect of
multi-resonant unidirectional tunneling (UDT) is due to such
a dependence of the MDM spectrum on the microwave-
structure properties. Based on the experimental and numerical
studies, we show that breaking of symmetry in the geometry
of a microwave structure strongly influences the UDT char-
acteristics. The main physical aspect concerns the presence of
chiral magnetic currents in a microwave structure. At the
MDM resonances, these chiral magnetic currents result in a

0 20 40 (mm)

Conductive strips

Ferrite
disk

Y
X

ZPort 1

Port 2

Dielectric
substrate

Ground
plane

H 0

Figure 4. A microstrip structure with an embedded thin-film
ferrite disk.
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unidirectional transfer of quantized angular momenta through
subwavelength vacuum or isotropic-dielectric regions.

We start with a microstrip structure with an embedded
thin-film ferrite disk. Such a microstrip structure is shown in
figure 4. For experimental studies, we use a ferrite disk with
the following parameters. The yttrium iron garnet (YIG) disk
has a diameter of =D 3 mm and a thickness of =t 0.05 mm.
The saturation magnetization of a ferrite is π =M4 1880 G.s

The linewidth of a ferrite is Δ =H 0.8 Oe. The disk is nor-
mally magnetized by a bias magnetic field =H 42100 Oe. An
experimental microstrip structure is realized on a dielectric
substrate (Taconic RF-35, ε = 3.52,r thickness of 1.52 mm).
The characteristic impedance of a microstrip line is 50 Ohm.
The S-matrix parameters were measured by a network ana-
lyzer. With use of a current supply we established a quantity
of a normal bias magnetic field H⃗ ,0 necessary to get the MDM
spectrum in a required frequency range. For numerical stu-
dies, we use a ferrite disk with the same parameters as indi-
cated above. The only difference is that, for better
understanding the field structures, in numerical analyses we

consider a ferrite disk with very small losses: the linewidth of
a ferrite is Δ =H 0.1Oe. In the absence of MDM resonance
peaks, the subwavelength coupling between two microstrip
lines in these structures is extremely small. At the resonance
peaks, one has a strong subwavelength coupling. Taking into
account in-plane geometry, the presence of a ground metallic
plane in a microwave structure, and direction of rotation (at a
given direction of a bias magnetic field) of a power-flow
density in a ferrite disk, one finds that the ways electro-
magnetic waves propagating from port 1 to port 2 and,
oppositely, from port 2 to port 1, are geometrically different.

Figure 5 represents the experimental frequency char-
acteristics of modules of the reflection coefficient (the S11

scattering-matrix parameter) and the transmission coefficients
(the S21 and S12 scattering-matrix parameters) for two opposite
orientations of a normal bias magnetic field H⃗ .0 The classi-
fication of the resonances shown in figure 5 is based on
analytical studies in reference [8]. There are resonances cor-
responding to MDMs with radial and azimuth variations of
the magnetostatic-potential wave functions in a ferrite disk.

Figure 5. Experimental evidence for unidirectional multi-resonant tunneling. Frequency characteristics of modules of the scattering-matrix
parameters for two opposite orientations of a normal bias magnetic field H⃗ .0 (a) The reflection coefficient; (b) and (c) the transmission
coefficients. The resonances are classified based on analytical studies in reference [8]. The first number characterizes a number of radial
variations for the MDM spectral solution. The second number is the number of azimuth variations.
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Figure 6. The reflection and transmission spectra the same as in figure 5, but normalized to the background (when a bias magnetic field is
zero) level of the microwave structure. (a) The reflection coefficient; (b) and (c) the transmission coefficients.

Figure 7. Symmetry properties of the chiral states in a microwave structure with an MDM ferrite disk. There is complete coincidence between
the spectra of the S21 and S12 scattering-matrix parameters for oppositely directed bias magnetic fields. Microwave radiation in two-port
structure can be described by the formula for the scattering-matrix parameters: = =↑ ↓ ↑ ↓S S S S&H H H H

12 21 21 12
0 0 0 0 .
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The azimuth-variation resonances appear because of the azi-
muth nonhomogeneity of a microstrip structure. In the spec-
tra, these resonances are observed between the peaks of
radial-variation resonances. In the mode designation, the first
number characterizes a number of radial variations for the
MDM spectral solution. The second number is a number of
azimuth variations [8, 21]. In figure 5, one can see that the
reflection-coefficient spectrum is characterized by the Lor-
entz-resonance peaks. Contrarily, the transmission-coefficient
excitations manifest themselves as Fano-resonance peaks.
One can also see that a character of Fano interference is
different for radial-variation and azimuth-variation
MDMs [21, 40].

The level of reflection is strong compared to the level of
transmission. At the MDM resonances, a ferrite disk becomes
slightly entangled in the reflected microwave radiation, while
becomes strongly entangled in the transmitted microwave
radiation. For this reason, one observes Lorentz-type reso-
nances in the reflection spectrum and Fano interference in the
transmission response. This also explains why the UDT effect

can be observed only in the transmission spectra. In the
spectra in figure 5, we can see that while the reflection-
coefficient spectrum is the same at two opposite orientations
of a normal bias magnetic field H⃗ ,0 for the transmission-
coefficient excitations there is strong sensitivity of the peak
sizes on the direction of a bias magnetic field. At a very small
transmission level for non-resonant frequencies (about

= −S 25 dB ),21 one clearly observes resonance peaks of the
UDT. For better illustration of this effect, in figure 6 we show
the reflection and transmission spectra normalized to the
background (when a bias magnetic field is zero) level of the
microwave structure. An analysis of the transmission spectra
shows that the observed UDT effect is due to the field chir-
ality in an entire microwave structure. When, for a given
direction of a bias magnetic field, one has a ‘forward’ process,
the ‘backward’ process is exhibited as a ‘forward’ process in
the time-reversed twin system with the opposite chirality. As
the sources of the fields with different chirality, there are edge

magnetic currents
⎡
⎣⎢

⎤
⎦⎥⃗

θ′
( )js

m
i

( )
( )

and
⎡
⎣⎢

⎤
⎦⎥⃗
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( )js

m
s

( )
( )

considered

in the above model. The field chirality results in unidirectional
transfer of angular momenta through a subwavelength
vacuum and isotropic-dielectric regions. Simultaneous
exchange between the ‘forward’ and ‘backward’ processes
together with change of the time direction leaves the system
symmetry unbroken. The symmetry properties of the chiral
states are well illustrated in figure 7. One can see complete
coincidence between the spectra of the S21 and S12 scattering-
matrix parameters for oppositely directed bias magnetic
fields.

The experimental results of the UDT effect shown above
are well verified numerically. In figure 8, one can see the
numerically obtained transmission characteristics for the first
MDM resonance at two opposite orientations of a normal bias
magnetic field H⃗ .0 It is necessary to note here that instead of a
bias magnetic field used in experiments ( =H 42100 Oe), in
the numerical studies we applied a higher-quantity bias
magnetic field: =H 44340 Oe. The use of such a higher

Figure 8. The numerically obtained transmission characteristics for the first MDM resonance at two opposite orientations of a normal bias
magnetic field H⃗ .0 (a) The S21 scattering-matrix parameter; (b) the S12 scattering-matrix parameter.

Port 1

Port 2

H 0

Ferrite
disk

slot

Y
X

Z

0 20 40 (mm)

Figure 9. A microwave structure with increased breaking of
symmetry in geometry. The symmetry breaking is increased by an
inclined slot in one of the conductive strips.
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Figure 10. The experimental S21 and S12 scattering-matrix parameters of the structure shown in figure 9 for two opposite orientations of a
normal bias magnetic field H⃗ .0 (a) and (b) Non-normalized transmission spectra; (c) and (d) transmission spectra normalized to the
background level of the microwave structure.

Figure 11. The numerically obtained transmission characteristics for a microwave structure with increased breaking of symmetry in
geometry. (a) The S21 scattering-matrix parameter; (b) the S12 scattering-matrix parameter.
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quantity (giving us the same position of the resonance peak in
the experiments and numerical studies) is necessary because
of non-homogeneity of an internal dc magnetic field in a real
ferrite disk. A more detailed discussion on the role of non-
homogeneity of an internal dc magnetic field in the MDM
spectral characteristics can be found in reference [8].

To explain the UDT effect in this microstrip structure, we
can use the following model. At the MDM resonance fre-
quency, for a given direction of a bias magnetic field the
incident and scattered waves near a ferrite disk have different
types of flat spirals. While, for example, the incident wave is a
right-handed spiral, the scattered wave should be a left-han-
ded spiral. In an opposite direction of a bias magnetic field,
we have a left-handed spiral for the incident wave and a right-
handed spiral for the scattered wave. The UDT effect appears
for the reason that in a nonsymmetrical microwave structure
the interplay between the right-handed and left-handed spirals
of the incident and scattered waves is different for different
directions of a normal bias magnetic field.

Since the UDT appears due to the distinguishable
topology of the ‘forward’ and ‘backward’ excitations, this
effect should be enhanced for a microwave structure with
increased breaking of symmetry in geometry. Such a micro-
strip structure is shown in figure 9. The symmetry breaking is
increased by an inclined slot in one conductive strip.
Figure 10 shows the experimental S21 and S12 scattering-
matrix parameters of this structure for two opposite orienta-
tions of a normal bias magnetic field H⃗ .0 There the trans-
mission spectra are both non-normalized and normalized to
the background level of the microwave structure. One can
find that, compared to the previous results, the UDT effect is
strongly enhanced in the structure with an inclined slot. These
results are well verified numerically in figure 11.

4.2. Chiral edge electric currents

At MDM resonances, chiral electric currents can be induced
on a thin metal wire placed on a surface of a ferrite disk [52].

In a structure shown in figure 12, the electric field of a
microstrip system causes a linear displacement of electric
charges when interacting with a short piece of a wire. At the
same time, the magnetic field of an MDM vortex causes a
circulation of electric charges. Being combined, these two
motions (which include translation and rotation) cause the
helical motion of electrons on a surface of a metal wire. Such
helical waves result in the observation of very peculiar field
structures. Because of a chiral surface electric current, the
electric and magnetic fields at the butt end of a wire electrode
become not mutually oriented in vacuum at an angle of ∘90 .
While the mutually perpendicular components of the electric
and magnetic fields give the power-flow-density vortex, the
mutually parallel components result in the appearance of

nonzero helicity density
⎧⎨⎩

⎫⎬⎭= ⃗ ⋅ ⃗ × ⃗
π

( )F E EIm *1

16
[52].

Figure 13 shows numerically obtained distributions of the
fields and currents on a wire electrode and also the field
structures near a butt end of a wire electrode.

The field chirality in an MDM microwave structure with
a wire electrode results in unidirectional transfer of angular
momenta through a subwavelength vacuum region. Our
experimental results give evidence for such a tunneling effect.
To enhance experimental observation of the UDT effect due
to chiral electric currents, we use structures with breaking of
symmetry in geometry. There are the right- or left-handed
metallic helices. Figure 14 shows two-port microwave
structures with an MDM ferrite disk and a wire electrode (port
1) and with the right- or left-handed metallic helices (port 2).
In these structures we used a wire electrode with a diameter of
100 um. Metallic helices are made with the same wire. The
diameters of the helices are 2 mm. The pitch is equal to
0.4 mm. Every helix has ten turns. A wire concentrator is
placed near a metallic helix without an electric contact.

Figure 15 shows experimental results of the S21 scatter-
ing-matrix parameter for the right- and left-handed metallic
helices and two opposite directions of a bias magnetic field.

Y X

Z

Port 1

Ground
plane Dielectric

substrate

0 015 30 (mm)  (mm)1 2

Conductive
strip

Ferrite
disk

Wire
electrod

H 0

Figure 12. (a) A microstrip structure with an MDM ferrite disk and a wire electrode. (b) A magnified picture of a ferrite disk and a wire.
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Figure 13. Distributions of the fields and currents on a wire electrode and the field structures near a butt end of a wire electrode. (a) Electric
field on a wire electrode; (b) surface electric chiral current; (c) and (d) electric and magnetic fields near a butt end of a wire electrode; (e) and
(f) power-flow density and helicity density near a butt end of a wire electrode.
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The transmission spectra is normalized to the background
(when a bias magnetic field is zero) level of the microwave
structure. This background level is about = −S 30 dB.21 It is
evident that there is a specific chiral symmetry. The simul-
taneous change of the helix handedness and direction of bias
of the magnetic field keeps the system symmetry unbroken.
Numerical results from the transmission spectra shown in
figure 16 are in good correspondence with experimental
results.

The observed effect of unidirectional tunneling can be
well explained by an analysis of the power-flow-density
distributions in a vacuum region near a wire concentrator and
a metallic helix. Such distributions are shown in figure 17 for
two resonance peaks corresponding to the 1st MDM: the

peaks A and B in the S21 frequency characteristics in
figure 16. One can clearly see that the power transmission in a
two-port microwave structure is maximal when the direction
of the power-flow vortex at a butt end of a wire electrode
corresponds to the handedness of a metallic helix. There is
evidence for the presence of the orbital-angular-momentum
twisting excitations in a subwavelength region of microwave
radiation at the MDM resonances. Due to chiral properties of
the fields near a wire electrode, one has a unidirectional
transfer of quantized angular momenta through a sub-
wavelength vacuum region.

In our previous studies [13, 15, 40, 52], it was shown that
topology of the near fields originated from an MDM ferrite
disk—the ME fields—is characterized both by the power-flow

Y
X

Z

Port 1

H 0

Wire
electrode

Ferrite
disk

Port 2

Helix

0 20 40 (mm)

Figure 14. (a) Two-port microwave structures with an MDM ferrite disk and a wire electrode (port 1) and with the right- or left-handed
metallic helices (port 2). (b) A magnified picture. A wire concentrator is placed near a metallic helix without an electric contact with it.

Figure 15. Experimental evidence for unidirectional multi-resonance tunneling due to chiral edge electric currents. Frequency characteristics
of the S21 scattering-matrix parameter for two opposite orientations of a normal bias magnetic field H⃗ .0 (a) The right- handed metallic helix;
(b) the left-handed metallic helix. The transmission spectra is normalized to the background (when a bias magnetic field is zero) level of the
microwave structure. The background level is about = −S 30 dB.21 The system has chiral symmetry: simultaneous change of the helix
handedness and direction of bias magnetic field keeps the system symmetry unbroken.
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Figure 16. Numerical results of the S21 scattering-matrix parameter for two opposite orientations of a normal bias magnetic field H⃗ .0 (a) The
right-handed metallic helix; (b) the left-handed metallic helix.

Figure 17. The power-flow-density distributions in a vacuum region near a wire concentrator and a metallic helix shown for two resonance
peaks corresponding to the 1st MDM: the peaks A and B in the S21 frequency characteristics in figures 16(a) and (b) the right- and left-handed
metallic helices at a normal bias magnetic field H⃗0 directed upwards; (c) and (d) the right- and left-handed metallic helices at a normal bias
magnetic field H⃗0 directed downwards. The power transmission in a two-port microwave structure is maximal when the direction of the
power-flow vortex at a butt end of a wire electrode corresponds to the handedness of a metallic helix. There is evidence for the presence of
the orbital-angular-momentum twisting excitations in a subwavelength region of microwave radiation at the MDM resonances.
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vortices and the helicity parameters. While the power trans-
mission in a two-port microwave structure is strongly related
to the power-flow vortices of the twisting excitations, the
helicity characteristics of these excitations (being local char-
acteristics of the field geometry) are very slightly correlated
with the power transmission effect. Figure 18 shows dis-
tributions of the normalized helicity factor for the two reso-
nance peaks corresponding to the 1st MDM: the peaks A and
B in the S21 frequency characteristics in figure 16. The nor-
malized helicity parameter is defined as [13, 15, 40, 52]

⎧⎨⎩
⎫⎬⎭

α =

⃗ ⋅ ⃗ × ⃗

⃗ × ⃗





( )E E

E E
cos

Im *

. (14)

In figure 18, one can see the helicity parameter dis-
tributions are mainly related to a direction of a bias magnetic
field and periodicity of the metal-helix turns. There is very
small relation between the helicity parameter distribution and
the helix handedness.

5. Discussion and conclusion

The effects of quantum coherence involving macroscopic
degrees of freedom and occurring in systems far larger than
individual atoms is one of the topical fields in modern physics
[53]. Recently, much progress has been made in demon-
strating the macroscopic quantum behavior of superconductor
systems, where particles form highly correlated electron

Figure 18. Distributions of the normalized helicity factor for the two resonance peaks corresponding to the 1st MDM: the peaks A and B in
the S21 frequency characteristics in figures 16(a) and (b) the right- and left-handed metallic helices at a normal bias magnetic field H⃗0 directed
upwards; (c) and (d) the right- and left-handed metallic helices at a normal bias magnetic field H⃗0 directed downwards.

19

J. Opt. 17 (2015) 025601 E O Kamenetskii et al



systems. The concept of coherent mixtures of electrons and
holes, underlying the BdG-Hamiltonian quasiclassical
approximation, describes the topological super-
conductors well.

In this paper we showed that due to a topological
structure of ME fields one obtains unidirectional multi-reso-
nant tunneling for electromagnetic waves propagating in
microwave structures with embedded quasi-2D ferrite disks.
The resonances manifest themselves as peaks in the scattering
matrix parameters at the stationary states of MDM oscillations
in a ferrite disk. The effect of unidirectional tunneling is
exhibited as Fano-resonance interferences, which are different
for oppositely directed bias magnetic fields. The observed
multi-resonant tunneling is due to the generation of quantized
vortices. The resulting quantum vacuum torque is strong
enough to provide a contactless transfer of angular momen-
tum to the helical-form metallic sample. The MDM twisting
excitations in a subwavelength region of microwave radiation
in two-port structures can be well described by the formula
for the scattering-matrix parameters:

= =↑ ↓ ↑ ↓S S S S& .H H H H
12 21 21 12

0 0 0 0 The observed near fields are
fundamentally different from the fields radiated by usual
microwave antennas with ferrite inclusions. In the last case,
the radiation characteristics do not depend on a direction of a
bias field. So the S-matrix parameters of the two-port (trans-
mitter-receiver) structure do not depend on the direction of a
bias field. In usual microwave antennas with ferrite inclusions
we have symmetry of the S matrix: = ≠S S i j,ij ji .

Interaction of MDMs with external microwave radiation
of MDM oscillations is manifested by unique topology.
Because of the edge chiral currents, the fields originated from
an MDM ferrite disk are characterized by the power-flow
vortices and the helicity properties. Our experiments with a
wire electrode and metallic helices clearly show that the edge
chiral currents can create strongly localized chiral near fields.
Chirality is of fundamental interest in biology and chemistry
as handedness dramatically affects function from the mole-
cular level to the macroscopic. The chiral fields originated
from MDM ferrite particles open perspective for the sensitive
probing of structural characteristics of chemical and biologi-
cal objects. It becomes apparent that in microwaves, the
problem of effective chirality characterization of chemical and
biological objects (as well as chiral-metamaterial structures)
can be solved when one develops sensing devices with
microwave chiral probing fields. The presence of a biological
sample with chiral properties will necessarily alter the near-
field distribution, which in turn will change the spectral
characteristics of an MDM ferrite disk. Microwave lenses that
can focus chiral fields beyond the diffraction limit could
revolutionize near-field microwave microscopy.
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