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Topological properties of microwave magnetoelectric fields
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Collective excitations of electron spins in a ferromagnetic sample dominated by the magnetic dipole-dipole
interaction strongly influence the field structure of microwave radiation. A small quasi-two-dimensional ferrite
disk with magnetic-dipolar-mode (MDM) oscillation spectra can behave as a source of specific fields in vacuum,
termed magnetoelectric (ME) fields. A coupling between the time-varying electric and magnetic fields in the
ME-field structures is different from such a coupling in regular electromagnetic fields. The ME fields are
characterized by strong energy confinement at a subwavelength region of microwave radiation, topologically
distinctive power-flow vortices, and helicity parameters [E. O. Kamenetskii, R. Joffe, and R. Shavit, Phys. Rev.
E 87, 023201 (2013)]. We study topological properties of microwave ME fields by loading a MDM ferrite
particle with different dielectric samples. We establish a close connection between the permittivity parameters
of dielectric environment and the topology of ME fields. We show that the topology of ME fields is strongly
correlated with the Fano-resonance spectra observed at terminals of a microwave structure. We reveal specific
thresholds in the Fano-resonance spectra appearing at certain permittivity parameters of dielectric samples. We
show that ME fields originated from MDM ferrite disks can be distinguished by topological portraits of the
helicity parameters and can have a torsion degree of freedom. Importantly, the ME-field phenomena can be
viewed as implementations of space-time coordinate transformations on waves.
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I. INTRODUCTION

Interaction of electromagnetic radiation with topological
singularities can result in strong transformation of the field
structures. In this paper we report on the fundamentals
of subwavelength confinement and symmetry breakings of
microwave radiation via magnetic oscillations in small ferrite
samples. Ferrite samples with linear dimensions smaller than
the dephasing length of magnetic dipole-dipole interactions,
but much larger than the exchange-interaction scales, are
mesoscopic samples. In such samples one can observe col-
lective excitations—the magnetic-dipolar-mode (MDM) [or
magnetostatic (MS)] oscillations [1–4]. Recently, it was shown
that MDM oscillations in a quasi-two-dimensional (quasi-2D)
ferrite disk can conserve energy and angular momentum [5–8].
Because of these properties, MDMs are strongly coupled to
microwave fields and enable us to confine microwave radiation
energy in subwavelength scales. In a vacuum subwavelength
region abutting a MDM ferrite disk one can observe the
quantized-state power-flow vortices [9,10]. In such a region, a
coupling between the time-varying electric and magnetic fields
is different from such a coupling in regular electromagnetic
(EM) fields. These specific fields, originated from MDM
oscillations, we term magnetoelectric (ME) fields [11]. The
ME-field solutions give evidence for spontaneous symmetry
breakings at the resonant states of MDM oscillations. Because
of rotations of localized field configurations in a fixed observer
inertial frame, the linking between the EM and ME fields
cause violation of the Lorentz symmetry of space-time. In
such a sense, ME fields can be considered as Lorentz-violating
extension of the Maxwell equations [12,13].

To characterize the ME-field singularities, the helicity
parameter was introduced. A time average helicity parameter

for the near fields of a ferrite disk with MDM oscillations is
defined as [11,14,15]

F = 1

16π
Im{ �E · ( �∇ × �E)∗}. (1)

One can also introduce a normalized helicity parameter,
which shows a time-averaged space angle between rotating
vectors �E and �∇ × �E:

cos α = Im{ �E · ( �∇ × �E)∗}
| �E||∇ × �E| . (2)

In the regions where this parameter is not equal to zero, a space
angle between the vectors �E and �∇ × �E is not equal to 90°.
This breaks the field structure of Maxwell electrodynamics.

Topological structure of ME fields results in specific inter-
actions of such fields with external EM fields. With the helicity
properties of the fields, observed in a vacuum or isotropic-
dielectric region abutting a quasi-2D ferrite disk with the MDM
oscillations, one becomes faced with fundamental aspects
akin to the problems of axion electrodynamics. Maxwell’s
equations are invariant when the electric and magnetic fields
mix via rotation by an arbitrary angle ξ . For a real angle ξ , such
a duality symmetry leaves invariant quadratic forms for the
fields. This symmetry can be extended to Maxwell’s equations
in the presence of sources, provided that additional magnetic
charges and currents are introduced [16]. MDM ferrite disks
appear as pseudo-scalar particles [8,11]. The helicity density,
defined by Eq. (1) or Eq. (2), transforms as a pseudo-scalar
under space reflection P and it is odd under time reversal T.
Whenever a pseudo-scalar axionlike field ϑ is introduced in
the theory, the dual symmetry is spontaneously and explicitly
broken. An axion-electrodynamics term, added to the ordinary
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Maxwell Lagrangian [17],

Lϑ = κϑ �E · �B, (3)

where κ is a coupling constant, results in modified electrody-
namics equations with the electric charge and current densities
replaced by [17,18]

ρ(e) → ρ(e) + κ �∇ϑ · �B, (4)

�j (e) → �j (e) − κ

(
∂ϑ

∂t
�B + �∇ϑ × �E

)
. (5)

Integrating Eq. (3) over a closed space-time with periodic
boundary conditions, we obtain the quantization

Sϑ =
∫

Lϑd4x = ϑn, (6)

where n is an integer. It is evident that Sϑ is a topological
term. While Sϑ generically breaks the parity and time-reversal
symmetry, both symmetries are intact at ϑ = 0 and ϑ = π .
The field ϑ itself is gauge dependent.

Long radiative lifetimes of MDMs combine strong subwa-
velength confinement of electromagnetic energy with a narrow
spectral linewidth. Due to these effects, MDMs may carry
the signature of Fano resonances. An interest in observing
and analyzing Fano profiles is driven by their high sensitivity
to the details of the near-field scattering process. The Fano-
interference effects in microwave scattering by a MDM ferrite
particle were shown in Refs [15,19–21]. It is very important
to note that the observed multiresonance spectrum of MDM
oscillations has an evident analogy with the Fano-interference
spectra in semiconductor quantum dots [22]. The MDM Fano
resonances exhibit very strong sensitivity to changes of the
local environment and so could be very informative in study
of properties of ME fields. As the local environment with
varying parameters, different dielectric samples abutting a
ferrite disk can be used. In the previous studies, it was shown
that there exists strong interaction of MDM oscillations with
dielectric samples. It was found that due to such dielectric
loadings we have widening of the MDM spectrum and shift
the spectrum to lower frequencies. In the former case, the
effect is due to specific electric fluxes, which are created
by topological-phase magnetic currents on a lateral surface
of a ferrite disk [7,8,11,19]. In the latter case, the effect
is due to reduction of the Larmor frequency of a ferrite
structure [11,15]. It was also shown that inside a dielectric
loading, the helicity properties of the fields, originating from
a MDM ferrite disk, are in strong dependence of permittivity
of a dielectric material [11,15].

In the present work we study topological properties of
microwave ME fields based on analyses of interaction of
a MDM ferrite particle with dielectric environment. For
this purpose we load a MDM ferrite particle by dielectric
samples having the same geometry but different permittivity
parameters. Because of strong coupling between the EM and
ME fields in dielectrics, we are able to establish a close
connection between the permittivity parameters of dielectric
samples and topology of ME fields. We show that a character of

the local matter-field interaction is strongly correlated with the
far-field responses observed in the Fano-resonance spectrum.
We reveal that for an entire spectrum, the shape of Fano
resonances is different for MDMs having different azimuth
numbers. We observe strong overlapping of Fano resonances.
Merging of two resonances results in the appearance of so-
called “Fano quadrupoles” [23–25]. The physics of interaction
of a MDM ferrite particle with the environmental microwave
radiation and matter become clearer when one analyzes the
helicity properties of the ME fields. We show that for different
permittivities of dielectric loadings, ME fields originated
from MDM ferrite disks can be distinguished by topological
portraits of the helicity parameters. Also we show that ME
fields can be characterized by helical topological loops and
can have a torsion degree of freedom. In Refs. [7,8,11],
we theoretically predicted that because of the double-helix
resonances of MDM oscillations in a ferrite disk, the near
fields of a particle can have such topology. In the present
paper we numerically reveal these topological characteristics
of the fields.

The paper is organized as follows. In Sec. II we give a
brief theoretical insight into the origin of MDM oscillations
and their interaction with dielectric samples. In Sec. III we
present the results of our studies. We show the effects of
Fano-resonance transformations at variation of permittivity
parameters of dielectric environment and analyze topological
properties of ME fields based on portraits of the helicity
parameters and structures of the electric and magnetic fields.
We show that for ME fields the torsion degree of freedom can
exist. Section IV is devoted to discussions of the observed
nontrivial topological properties of microwave ME fields. The
main aspect of these discussions concerns the issue that helicity
of the ME field is correlated with the space-time curvature.
Section V summarizes our results.

II. THEORETICAL INSIGHT INTO ORIGIN OF MDM
OSCILLATIONS AND THEIR INTERACTION WITH

DIELECTRIC ENVIRONMENT

Studies of the spectrum transformations and field structures
in dielectric samples loading a ferrite disk allow revealing
topological properties of microwave ME fields originated from
MDM oscillations. This is a basic idea, used in the present
paper. From a general consideration it is known, however, that
magnetization dynamics in homogeneous magnetic materials
with structural symmetry cannot influence the dynamics of
electric polarization [1]. Therefore, a brief theoretical insight
into the origin of MDM oscillations and their nontrivial
interaction with dielectric samples is necessary.

For a spectral analysis of MDM oscillations in ferrite
structures, so-called magnetostatic description is used. Phy-
sical justification of this description is based on the fact
that in a small sample of a medium with strong temporal
dispersion of the magnetic susceptibility, variation of electric
energy is negligibly small and so the electric displacement
current is negligibly small as well. In an analysis of such
structures we should use three differential equations instead
of the four-Maxwell-equation analysis of electromagnetic
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fields [1–4,11]:

∇ · �B = 0, (7)

�∇ × �E = −1

c

∂ �B
∂t

, (8)

�∇ × �H = 0. (9)

Taking into account a constitutive relation

�B = �H + 4π �m, (10)

where �m is the magnetization, one obtains from Eq. (7):

�∇ · �H = −4π �∇ · �m. (11)

This presumes an introduction of MS-potential wave
functions ψ(�r,t) for description of a magnetic field:

�H = −�∇ψ. (12)

The spectral problem is formulated for MS-potential wave
functions ψ(�r,t), where a magnetization field is expressed as

�m = −↔
χ · �∇ψ. (13)

Here ↔
χ is the susceptibility tensor [1–4]. Formally, in a system

of Eqs. (7)–(9), a potential magnetic field and a curl electric
field should be considered as completely uncoupled fields. No
sensitivity to dielectric properties of materials is presumed in
this case. It turns out, however, that the magnetic and electric
fields in Eqs. (7)–(9) can be united and also the sensitivity to
dielectric properties of materials can take place. It was found
that in a case of a quasi-2D ferrite disk, the spectral-problem
solution for MDM oscillations shows the presence of the
unified (electric and magnetic) field structure which is different
from the Maxwell-electrodynamics unified-field structure. We
term the fields originated from the MDM oscillations as
magnetoelectric (ME) fields to distinguish them from regular
electromagnetic (EM) fields [11]. It was also shown that MDM
oscillations in a quasi-2D ferrite disk can be sensitive to
dielectric loadings [15,19].

MDM oscillations in a quasi-2D ferrite disk are mesosco-
pically quantized states. Long-range dipole-dipole correlation
in position of electron spins in a ferromagnetic sample can be
treated in terms of collective excitations of the system as a
whole. If the sample is sufficiently small so that the dephasing
length Lph of the magnetic dipole-dipole interaction exceeds
the sample size, this interaction is nonlocal on the scale of
Lph. This is a feature of mesoscopic ferrite samples, i.e.,
samples with linear dimensions smaller than Lph but still
much larger than the exchange-interaction scales. In a case of
a quasi-2D ferrite disk, the quantized forms of these collective
matter oscillations—magnetostatic magnons—were found to
be quasiparticles with both wavelike and particlelike behavior,
as expected for quantum excitations. The magnon motion
in this system is quantized in the direction perpendicular
to the plane of a ferrite disk. The MDM oscillations in a
quasi-2D ferrite disk, analyzed as spectral solutions for the
MS-potential wave function ψ(�r,t), have evident quantumlike
attributes [5–8,11]. Analytically, there are two spectral models
for the MDM oscillations in a ferrite disk. These models are

based on the so-called G- and L-mode spectral solutions. For
G modes one has the Hermitian Hamiltonian for MS-potential
wave functions ψ(�r,t). These modes are related to the discrete
energy states of MDMs. In a case of the L modes, there
is a complex Hamiltonian for MS-potential wave functions
ψ(�r,t). For eigenfunctions associated with such a complex
Hamiltonian, we have a nonzero Berry potential (meaning the
presence of geometric phases). The main difference between
the G- and L-mode solutions becomes evident when one
considers the boundary conditions on a lateral surface of a
ferrite disk. In solving the energy-eigenstate spectral problem
for the G-mode states, the boundary conditions on a lateral
surface of a ferrite disk are expressed as

μ

(
∂η̃

∂r

)
r=�−

−
(

∂η̃

∂r

)
r=�+

= 0, (14)

where η̃ is the G-mode MS-potential membrane wave function
and � is a radius of a ferrite disk. This boundary condition,
however, manifests itself in contradictions with the electroma-
gnetic boundary condition for a radial component of magnetic
flux density �B on a lateral surface of a ferrite-disk resonator.
Such a boundary condition, used in solving the resonant
spectral problem for the L-mode states, is written as

μ(Hr )r=�− − (Hr )r=�+ = −iμa(Hθ )r=�, (15)

where (Hr )r=�− and (Hr )r=�+ are radial components of
a magnetic field on a border circle, and (Hθ )r=� is an
azimuth magnetic field on a border circle. In the magnetostatic
description, this equation appears as

μ

(
∂ϕ̃

∂r

)
r=�−

−
(

∂ϕ̃

∂r

)
r=�+

= −μaν(ϕ̃)r=�− , (16)

where ϕ̃ is the L-mode MS-potential membrane wave function,
ν is an azimuth wave number, and μa is an off-diagonal compo-
nent of the permeability tensor. The spectral-problem solutions
based on Eq. (14) are single-valued-function solutions. At the
same time, the spectral-problem solutions based on Eq. (16) are
double-valued-function solutions. Because of the dependence
of the right-hand side of Eq. (16) on a sign of the azimuth wave
number, the two (clockwise and counterclockwise) types of
resonant solutions may exist, in general, at a given direction of
a bias magnetic field. As an example for the main MDM,
in Fig. 1 we show the counterclockwise rotation of the
MS-potential membrane wave function ϕ̃ inside a ferrite disk.

On a lateral border of a ferrite disk, the correspondence bet-
ween a double-valued membrane wave function ϕ̃ and a single-
valued function η̃ is expressed as (ϕ̃±)r=�− = δ±(η̃)r=�− ,
where δ± ≡ f±e−iq±θ is a double-valued edge wave function
on contour L = 2π� [7,8,11]. The azimuth number q± is
equal to ± 1

2 l, where l is an odd quantity (l = 1, 3, 5, . . . ).
For amplitudes we have f+ = −f− and |f±| = 1. Function δ±
changes its sign when θ is rotated by 2π so that e−iq±2π = −1.
As a result, one has the energy-eigenstate spectrum of MS-
mode oscillations with topological phases accumulated by the
edge wave function δ. On a lateral surface of a quasi-2D ferrite
disk, one can distinguish two different functions δ±. A line
integral around a singular contour L, 1

�
∮
L (i ∂δ±

∂θ
)(δ±)∗dL =∫ 2π

0 [(i ∂δ±
∂θ

)(δ±)∗]r=�dθ , is an observable quantity. It follows
from the fact that owing to such a quantity one can restore
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FIG. 1. (Color online) Rotating MS-potential membrane functions ϕ̃ inside a ferrite disk (arbitrary units).

single-valuedness (and, therefore, Hermicity) of the G-mode
spectral problem. Because of a geometrical-phase factor on a
lateral boundary of a ferrite disk, G modes are characterized
by a pseudo-electric field (the gauge field) [7,8,11]. We denote
this pseudo-electric field by the letter �€. The geometrical-phase
factor in the G-mode solution is not single valued under
continuation around a contour L and can be correlated with a
certain vector potential ��(m)

€
[7,8,11]:

i�
∫ 2π

0
[( �∇θ δ±)(δ±)∗]r=�dθ ≡ K

∮
L

( ��(m)

€

)
± · d �L

= 2πq±, (17)

where �∇θ δ± = 1
�

∂δ±
∂θ

|r=��eθ and �eθ is a unit vector along an
azimuth coordinate, and K is a normalization coefficient. In
Eq. (17) we inserted a connection which is an analog of the
Berry phase. In our case, the Berry’s phase is generated from
the broken dynamical symmetry. The confinement effect for
magnetic-dipolar oscillations requires proper phase relation-
ships to guarantee single-valuedness of the wave functions.
To compensate for sign ambiguities and thus to make wave
functions single valued we added a vector-potential-type term
��(m)

€
(the Berry connection) to the MS-potential Hamiltonian.

On a singular contour L = 2π�, the vector potential ��(m)

€
is related to double-valued functions. It can be observable

only via the circulation integral over contour L, not pointwise.
The field �€ is the Berry curvature. In contrast to the Berry
connection ��(m)

€
, which is physical only after integrating

around a closed path, the Berry curvature �€ is a gauge-invariant
local manifestation of the geometric properties of the MS-
potential wave functions. The corresponding flux of the gauge
field �€ through a circle of radius � is obtained as

K

∫
S

(�€)± · d �S = K

∮
L

( ��(m)

€

)
± · d �L

= K(�(e))± = 2πq±, (18)

where (�(e))± are quantized fluxes of pseudo-electric fields.
There are the positive and negative eigenfluxes. These
different-sign fluxes should be inequivalent to avoid the
cancellation. It is evident that while integration of the Berry
curvature over the regular-coordinate angle θ is quantized
in units of 2π , integration over the spin-coordinate angle θ ′
(θ ′ = 1

2θ ) is quantized in units of π . The physical meaning
of coefficient K in Eqs. (17), (18) concerns the property of a
flux of a pseudo-electric field. It is related to the notion of a
magnetic current used in the G-mode analysis. In Refs. [7,8],
the coefficient K was conventionally taken as equal to unit. In

FIG. 2. (Color online) (a) Illustration of a double-helix resonance of MDM. The resonance appears when two magnetostatic helical modes
[in particular, the modes (1) and (4) shown in the picture] create a closed loop. The dimension d

(1↔4)
eff is equal to a pitch of helices. The azimuth

phase over-running is characterized by the azimuth wave number ν = +1. Arrows show directions of propagation for helical modes and a
direction of rotation of a composition of helices. The helices are described based on the right-handed (b) and left-handed (c) Waldron’s helical
coordinate systems.
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FIG. 3. (Color online) Rectangular waveguide with a MDM fer-
rite disk and loading dielectric cylinders.

our recent study [11], we related quantity K to an elementary
flux of the pseudo-electric field.

Due to the presence of quantized electric fluxes �(e), we
can observe multiresonance Fano-type spectrum of MDM
oscillations. As we noted above, this spectrum strongly
resembles the Fano-interference spectrum in semiconductor
quantum dots [22]. While in Fano-resonance semiconductor
quantum dots one has interference between the localized states
and propagating electrons states via tunneling of discrete
charges—electrons—into a dot, in a case of MDM ferrite disk
this is because of quantized electric fluxes. Such quantized
electric fluxes are well exhibited in an analysis of interaction of
two coupled MDM ferrite disks [14,26]. In the Fano-resonance
effects one has coupling between the quantized electric fluxes
of a MDM ferrite disk and electric fields of EM waves
propagating in a microwave structure.

The experimentally observed widening of the MDM spec-
trum at dielectric loading of a MDM disk is also due to the
presence of quantized electric fluxes �(e) [19]. At the same
time, by virtue of such loading, one has low-frequency shifting
of the MDM spectral peaks [11,15]. When an electrically
polarized (due to the rf electric field of a microwave system)
dielectric sample is placed above a ferrite disk, every separate
dipole in this sample will precess around its own axis.
Due to conservation of the total—spin plus orbital—angular
momentum of varying magnetization at MDM resonances, one
has induced mechanical torque acting on a dielectric body. The
mechanical torque exerted on a given electric dipole is defined
as a cross product of the MDM electric field and the electric
moment of the dipole. In an entire macroscopic structure, com-
plex evolution of magnetization moments (inside a ferrite disk)

FIG. 5. (Color online) Normalized reflection spectra without
dielectric loading (εr = 1). Experimental results.

and electric dipole moments (inside a dielectric sample) should
be at mechanical equilibrium. At MDM resonances, the torque
exerting on the electric polarization in a dielectric should be
equal to reaction torque exerting on the magnetization in a
ferrite disk. Because of this reaction torque, the precessing
magnetic moment density of the ferromagnet will be under
additional mechanical rotation at a certain frequency �. For the
magnetic moment density of the ferromagnet, �M , the motion
equation [1–4] acquires the following form:

d �M
dt

= −γ �M ×
(

�H − �

γ

)
, (19)

The frequency � is defined based on both spin and orbital
momenta of the fields of MDM oscillations. One can see that
at dielectric loadings, the magnetization motion in a ferrite
disk is characterized by an effective magnetic field,

�Heff = �H − �

γ
. (20)

Therefore, the Larmor frequency of a ferrite structure with a
dielectric loading should be lower than such a frequency in an
unloaded ferrite disk.

The L-mode analytical solutions, showing clockwise and
counterclockwise rotations of MS-potential wave function, are
obtained in a cylindrical coordinate system for a quasi-2D
ferrite disk. From these solutions, one gets rotating electric and
magnetic fields, power-flow vortices, and helicity parameters
of MDMs [7,27,28]. Necessary justification of the L-mode
spectrum is made from a general analysis of MS-potential
wave functions ψ(�r,t) in a helical coordinate system [8].

FIG. 4. (Color online) Normalized reflection and transmission spectra without dielectric loading (εr = 1). Numerical results.
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FIG. 6. (Color online) Numerically calculated normalized transmission spectra for different permittivity parameters of dielectric
environment. (a) εr = 10; (b) εr = 30; (c) εr = 50; (d) εr = 70; (e) εr = 100.

This analysis shows that oscillations in a ferrite disk can be
described by four helical modes. A pair of such interacting
modes gives a double-helix resonance [8]. Figure 2 illustrates
a double-helix resonance of MDMs which is described based
on the right- and left-handed Waldron’s helical coordinate
systems [29]. This predetermines topological structures of
ME fields: The magnetic and electric components of ME
fields should have chiral properties. All the above properties
of MDMs (rotating fields, power-flow vortices, and helicity
parameters) are well modeled by numerical simulations when
one considers the regions inside or near-field outside a quasi-
2D ferrite disk [9–11,27,28]. There is difficulty, however, in
showing numerically the helical-mode properties in regions
far from a ferrite disk [10,14]. Thanks to use of dielectric
samples abutting a ferrite disk, one has field localization in
the regions far from a ferrite disk. In such a case, the helical-
mode properties can be well shown numerically. For isotropic
dielectric environment with sufficiently high permittivity, we
observe double-helix resonances with chiral properties of the
fields. This effect is shown in the results of the present studies.

III. RESULTS

A. MDM Fano resonances and helicity properties of ME fields

The structure of ME fields is strongly correlated with the
Fano-resonance spectra observed at terminals of a micro-
wave structure. Based on an analysis of transformations of
the Fano-resonance spectra at variation of the permittivity
parameters of dielectric samples, one can reveal topological
characteristics of ME fields. In this section we show, both
numerically and experimentally, such transformations of the
Fano resonances. Our numerical studies are based on the
HFSS electromagnetic simulation program (the software based
on the finite-element method (FEM) produced by ANSYS
Company). In a numerical analysis we use the yttrium iron
garnet (YIG) disk of diameter of 3 mm. The disk thickness
is 0.05 mm. The disk is normally magnetized by a bias
magnetic field H0 = 4760 Oe; the saturation magnetization
of a ferrite is 4πMs = 1880 G. A ferrite disk is placed inside
a T E10-mode rectangular x-band waveguide symmetrically to
its walls so that a disk axis is perpendicular to a wide wall
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of a waveguide. The waveguide walls are made of a perfect
electric conductor (PEC). For better understanding the field
structures, in a numerical analysis we use a ferrite disk with a
very small linewidth of �H = 0.1Oe. Two dielectric samples
are cylinders of the same diameter as a ferrite disk—3 mm. The
height of every cylinder corresponds to a distance from a disk
surface to a waveguide wall and is about 6 mm. Figure 3 shows
the structure under investigation. The microwave experiments
are made with a ferrite disk having the same parameters, except
for a parameter of magnetic losses. For a real disk we have
a linewidth of �H = 0.8Oe. A thin dielectric substrate of a
ferrite disk used in an experimental sample [the gadolinium
gallium garnet (GGG) substrate with thickness of 0.5 mm] does
not strongly influence the experimental results. In experiments
we used dielectric cylinders of the same geometry made of
microwave ceramics (TCI Ceramics Inc.): K-50 (εr = 50) and
K-100 (εr = 100).

Figure 4 shows numerical results of the normalized reflec-
tion and transmission spectra for a ferrite without a dielectric
loading (εr = 1). The normalization means that the spectra are
represented with relation to the reflection (transmission) levels
in a structure without a bias magnetic field. The designation
of the resonance peaks is made in accordance with the mode
classification used in Ref. [6]. From the digits n, one can
know variations of MS-potential function in a ferrite disk with
respect to azimuth and radial coordinates. Every odd digit
corresponds to the modes with azimuth number 1. Every even
digit corresponds to the modes with azimuth number 2. The
number of radial variations can be found by the following
scheme. For modes with n = 1 and n = 2, there is one radial
variation (in accordance with Ref. [6], there are modes with
q = 1). For modes with n = 3 and n = 4, one has two radial
variations (in accordance with Ref. [6], there are modes with
q = 2). For modes with n = 5 and n = 6, one has three radial
variation (in accordance with Ref. [6], there are modes with q

= 3), etc. So, the mode with n = 1 is the first radial and the
first azimuthal mode, the mode with n = 2 is the first radial
and the second azimuthal mode, the mode with n = 3 is the
second radial and the first azimuthal mode, the mode with n =
4 is the second radial and the second azimuthal mode, etc. For
a given number n, one prime means the reflection peak and
double primes mean the transmission peak.

Without loading dielectrics (εr = 1), the transmission is
strong and MDM resonances in a ferrite disk slightly interfere
with microwave radiation passing through a waveguide. For
this reason, one observes only the Lorentz-type resonances
in the transmission spectrum. Contrarily, in the reflection
response there is evidence for the Fano interference. The nu-
merically obtained Fano resonances in the reflection spectrum
are also well observed experimentally (see Fig. 5). It is worth
noting here that while the first peak in the numerical reflection
spectrum is a Lorentz-type resonance, such a peak in the
experimental reflection spectrum is a Fano-type resonance.
This difference in the peak forms is due to a specific excitation
structure used in the experiment.

When dielectric samples load a ferrite disk, the reflection
becomes strong and MDM resonances in a ferrite disk slightly
interfere with backscattered microwave radiation. For this
reason, the Fano-resonance effects are predominantly observed
in the transmission spectra, but not in the reflection ones. In

FIG. 7. (Color online) Normalized transmission spectra. Experi-
mental results. (a) εr = 50; (b) εr = 100.

Fig. 6 we show the numerically calculated transmission spectra
for different permittivity parameters of dielectric environment.
Experimental results of the normalized transmission spectra
for particular cases of dielectric samples with εr = 50 and
εr = 100 are shown in Fig. 7. All these spectral pictures are
in obvious correspondence with the above statement: With
increase of permittivity of a dielectric loading, the distances
between MDM spectral peaks increase as well. Also, one
observes the low-frequency shifting of the MDM resonances.
At the same time, very unusual effects of the Fano interference
become evident. Evidently, for modes with different azimuth
numbers (the modes designated, respectively, by odd and even
digits n), the shape of Fano resonances is different. Since every
peak of the Fano resonances in the transmission spectra has a
positive and a negative pole with respect to a transmission

FIG. 8. (Color online) Fano dipoles for the first three resonances
in the transmission spectra. The numbers show threshold quantities
of the permittivity of dielectric samples. There are four regions of
the permittivity parameters designated as A, B, C, and D. In every
one of these regions, one has the same pictures of polarities of Fano
dipoles.
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FIG. 9. (Color online) Lorentz-type resonances observed at thresholds of the permittivity parameters. (a) The threshold at εr = 38; (b) The
threshold at εr = 83.

level in a structure without a bias magnetic field, we can
say that for modes with different azimuth numbers there are
opposite “polarities” of “Fano dipoles.” At the same time, there
are evident overlappings of Fano resonances. Merging of two
resonances with opposite polarities results in the appearance
of “Fano quadrupoles.” These phenomena are similar to those
observed in semiconductor quantum structures: When more
than one resonant state is presented in a one-channel system,
the resonance levels interact each other and result in the
overlapping of resonances [23–25].

One of the most interesting effects of interaction of a MDM
ferrite particle with dielectric environment is the presence of
certain threshold quantities of the dielectric permittivity. At
these thresholds, polarities of Fano dipoles alter and the shapes
of Fano quadrupoles change. Figure 8 shows schematically
orientations of Fano dipoles for the first three resonances
in the transmission spectra with respect to the permittivity
axis. The numbers are threshold permittivities of dielectrics.
When crossing these thresholds, the polarity of Fano dipoles
becomes opposite. As is shown in Fig. 8, for the transmission
spectra there are four regions of the permittivity parameters
designated as A, B, C, and D. Inside every one of these regions,
one has the same pictures of polarities of Fano dipoles. The
regions are separated by thresholds. The region A corresponds
to dielectrics with εr < 38, the region B is bounded with
38 < εr < 83, the region C is for 83 < εr < 107, and the
region D corresponds to dielectrics with εr > 107. In Fig. 9
one can see that exactly at the threshold permittivities the
Lorentz-type resonances can appear.

Topology of the fields originated from a MDM particle—the
ME fields—is well characterized by the helicity parameters
described by Eq. (1) or (2). The helicity properties of the
fields near a ferrite disk appear only at resonance frequencies
of MDM oscillations. For different MDMs, one has different
patterns of the helicity-parameter distributions. At nonresonant
frequencies, the helicity parameter is zero [11,15]. Our
preliminary study [11,15] showed that the helicity-parameter
distributions can be very sensitive to the properties of
dielectric environment. In the present paper we show that
with transformation of an entire Fano-resonance spectrum via
different dielectric loadings, one has strong variation of the
helicity-parameter distributions. Moreover, the portraits of the

helicity-parameter distributions may give unique information
on interaction of ME fields with dielectric matter. In Fig. 10,
we show the normalized helicity parameters [calculated based
on Eq. (2)] in correlation with the MDM spectra obtained
at different dielectric loadings. The pictures are shown in
the yz cross section of the structure (see Fig. 3). Analyzing
these pictures one can come to an important conclusion. From
Fig. 10, it appears that within every one of the regions of
permittivity shown in Fig. 8, one has sufficiently similar
portraits of the helicity parameters for MDM resonances
designated by the same mode number n. For example, for
MDMs with the same mode number n, there are very similar
helicity portraits for εr = 10 and εr = 30 (in the permittivity
region A), very similar portraits for εr = 50 and εr = 70
(in the permittivity region B), and very similar portraits for
εr = 100 and εr = 105 (in the permittivity region C). Based
on such a qualitative analysis we can conclude that for a given
geometry of a dielectric sample, the threshold permittivity
not only alters the pictures of polarities of Fano dipoles, but
also changes the helicity portraits for selected resonances. The
helicity portraits for the first and second Fano resonances,
selected from Fig. 10, are shown in Fig. 11 at variation of
the permittivity of the dielectric environment. As we can see,
there is strong symmetry with respect to the disk axis for
all the helicity portraits of the transmission peaks (peaks 1′′
and 2′′). At the same time, for the reflection peaks (peaks
1′ and 2′), the helicity portraits can be nonsymmetrical with
respect to the disk axis. With variation of the permittivity
of dielectric environment, one can observe nonsymmetry for
the helicity factor or in vacuum regions outside dielectric
cylinders, or inside dielectric cylinders. This effect shows us
a “fine structure” of Fano resonances in microwave systems
with embedded MDM ferrite disks. It is worth noting also
that for peaks 2′ and 2′′ we observe strong periodicity of the
helicity parameters along an axis of a dielectric cylinder with
high-quantity permittivities (for εr = 100 and εr = 105 in our
studies). For large values of the permittivity, there is strong
localization of EM energy inside a dielectric cylinder and at
proper sizes of a dielectric sample we have standing EM waves
along a cylinder axis. At the same time, the helicity property of
ME fields is also essentially more exhibited in such dielectric
loadings. As a result, we can observe a standing-wave behavior
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of the ME and EM field interactions. A dielectric rod behaves
as a torsion resonator with strong hybridization of the ME and
EM states. The torsion degree of freedom for ME fields is well
illustrated below by our numerical analysis. Figure 12 gives
examples of distributions of the normalized helicity parameters
on axis z (the cylinder axis) above and below the disk in
vacuum and in a dielectric cylinder with εr = 100 for different
MDM resonances. There is evident periodicity of the helicity
parameter for the peak 2′ at a dielectric load of εr = 100.

B. Torsion degree of freedom for ME fields

The properties of ME fields can be related to a so-
called torsion degree of freedom—a subject of heightened
interest in modern literature of the field structures. Torsion
of space-time—coupling the time and the angular coordinates
of the field—might be connected with the intrinsic angular
momentum of matter. The torsion-structure fields can be
created by ferromagnet structures with their intrinsic ordered
spin motion. In the case of a ferromagnet, the spin motion

FIG. 10. (Color online) (Continued.)
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FIG. 10. (Color online) The normalized helicity parameters represented in correlation with the MDM spectra obtained for different dielectric
loadings. The pictures are shown in the yz cross section. (a) εr = 1; (b) εr = 10; (c) εr = 30; (d) εr = 50; (e) εr = 70; (f) εr = 100; (g) εr = 105.

originates from fermions (“spinor matter”). It is not possible
to eliminate this motion through transition to a suitable
rotating frame of reference. The spin angular momentum
can be considered as the source of the fields which are
inseparably coupled to the geometry of space-time [30–32].
However, the effects of torsion in a gravitational context are
very negligible, experimentally [31,32]. At the same time, it
is shown that condensed matter systems can provide useful

laboratories for the study of torsion. Solid and liquid crystals
with topological defects in the continuum limit can also be
described by a manifold where the curvature and torsion
fields are proportional to the topological charge densities of
the defects [33,34]. In uniform plasmas one can observe a
torsional Alfvén mode. There is a twisting of magnetic field
lines forming a concentric flux shell [35]. One of important
aspects of the torsion degree of freedom concerns a torsion

FIG. 11. (Color online) The helicity portraits for the first and second Fano resonances at variation of the permittivity of the dielectric
environment. The pictures are shown in the yz cross section. (a) Reflection peak for the first Fano resonance (peaks 1′); (b) transmission peak
for the first Fano resonance (peak 1′′); (c) reflection peak for the second Fano resonance (peak 2′); (d) transmission peak for the second Fano
resonance (peak 2′′).
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FIG. 12. (Color online) Distributions of the normalized helicity parameters on axis z (the cylinder axis) above and below a ferrite disk in
vacuum and in a dielectric cylinder (εr = 100) for different MDM resonances.

FIG. 13. (Color online) The field structure outside a ferrite disk for the first MDM resonance (resonance peak 1′) at vacuum environment
(εr = 1). (a) Normalized helicity parameter shown on the yz cross-section plane and on a lateral surface of a vacuum cylinder (εr = 1) having
the same geometry as loading dielectric cylinders. (b) Power-flow distributions on vacuum planes A-A, B-B, and immediately above a ferrite
disk. (c) Circulation and divergence of the power flow shown on a surface of a vacuum sphere and on a surface of a solid angle.
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FIG. 14. (Color online) Structures of the electric and magnetic fields on a lateral surface of a vacuum cylinder (εr = 1) above and below a
ferrite disk for the first reflection peak (peak 1′). (a) Field vectors; (b) field magnitudes.

contribution to helicity [36]. Due to the intrinsic angular
momentum of spinor matter and long-range phase coherence
in magnetic dipole-dipole interactions between a pair of spins,
a quasy-2D ferrite disk with MDM oscillations can behave as
a torsional defect for propagating-wave EM fields. Existence
of a torsion degree of freedom can be considered as one of the
most important distinctive features of the ME fields created by
MDM particles. A question on a torsion degree of freedom of
ME fields may arise from the double-helix resonances of MS-
potential wave functions ψ(�r,t) [8]. Also the presence of spin
and orbital angular momenta of the MDM fields (and so, the
presence of power-flow vortices) inside a ferrite disk [27,28]
makes evident the necessity for external varying fields of a
microwave structure to behave with certain angular momenta
and power-flow vortices. Otherwise, the system will be out
of an equilibrium state. In a case of vacuum environment,
these external-field angular momenta and power-flow vortices
are distributed around the entire microwave system. However,
for dielectric loads, the external-field angular momenta and

power-flow vortices can be mostly localized inside a dielectric.
In this case, one can observe unique pictures of the fields with
a torsion degree of freedom.

We start with an illustration of a structure of ME fields for
vacuum environment. Then, we will show that with use of a
dielectric loading cylinder, good verification of the double-
helix-resonance behavior and the torsion degree of freedom of
ME fields can be obtained. Figure 13 shows power flows of the
ME fields on different surfaces in vacuum for the first reflection
peak (peak 1′). These pictures are correlated with the helicity
portraits, which are shown on the yz cross-section plane and on
a lateral surface of a vacuum cylinder (εr = 1) having the same
geometry as loading dielectric cylinders. There is a strong
power-flow vortex on a vacuum plane immediately above a
ferrite disk. Declination of the power flow from a regular
power-flow way in a waveguide without a ferrite disk is in
evident correlation with declinations in the helicity-parameter
distribution. One observes circulation and divergence of the
power flow far from a ferrite disk. A topological structure

FIG. 15. (Color online) Structures of the electric and magnetic fields for the first reflection peak (peak 1′) on the yz cross-sectional plane.
A vacuum cylinder (εr = 1) is shown as a highlighted area. A helical structure of a ME field is evident in regions A at phases when an electric
field of incident microwave radiation is zero.

023207-12



TOPOLOGICAL PROPERTIES OF MICROWAVE . . . PHYSICAL REVIEW E 89, 023207 (2014)

FIG. 16. (Color online) Structures of the electric and magnetic fields on a lateral surface of a dielectric cylinder (εr = 100) above and
below a ferrite disk for the second transmission peak (peak 2′′). (a) Field vectors; (b) field magnitudes.

of the field in vacuum environment is also well illustrated
by distribution of power flow on a surface of a vacuum sphere
surrounding a ferrite disk and inside a solid angle in this sphere.
In Fig. 14, we show structures of the electric and magnetic
fields on a lateral surface of a vacuum cylinder (εr = 1) for
different time phases. Both the electric and magnetic fields are
strongly concentrated in the vicinity of a ferrite disk. The fields
have the azimuth and axial phase variations. The fields rotate
and the direction of rotation depends on the direction of a
bias magnetic field. In the field-vector pictures one can see the
rotating crests. Obviously, the fields have a helical structure.
Moreover, there is evidence for double-helix resonances [8].
Figure 15 shows the electric and magnetic fields on the yz
cross-sectional plane. A vacuum cylinder (εr = 1) is shown as
a highlighted area. In regions where the phases of an electric
field of incident microwave radiation is zero, one can clearly
see helical structures of a ME field. In Fig. 15, these regions
are denoted by a capital letter A.

Because of exponential decay of ME fields along the z

axis, above and below a ferrite disk, the helical structures of
the fields in vacuum are exhibited very slightly. This behavior
becomes more evident when dielectric cylinders load a ferrite
disk. Figure 16 shows structures of the electric and magnetic
fields on a lateral surface of a dielectric cylinder (εr = 100)
for the second transmission peak (peak 2′′). In double-helix
resonances, there are interactions of two helical modes (one
is a right-handed helix and the other is a left-handed helix)
resulting in the appearance of rotating helical crests. These
helical crests are clearly seen in Fig. 16(a). Figure 17 shows
a distribution of the power-flow vortices along a dielectric
cylinder. These distributions are correlated with the helicity

portraits, which are shown on the yz cross-section plane and
on a lateral surface of the loading dielectric cylinder. In
comparison with a picture of the power-flow distribution in
vacuum environment (see Fig. 13), in the case of a dielectric
load with a high value of permittivity, the power-flow vortices
are strongly localized inside a dielectric cylinder. One can
see that, for the second transmission peak (peak 2′′), all the
vortices have the same direction of rotation along a cylinder
axis. This situation can be different for another resonance.
Figure 18 shows an axial distribution of the power flow on
a lateral surface of a dielectric cylinder (εr = 100) for the
first transmission peak (peak 1′′). In this case, the power-flow
vortices have different directions of rotations along a cylinder
axis. This is an additional evidence for a torsion degree of
freedom of ME fields.

IV. DISCUSSION

In Maxwell electrodynamics, a spatial geometry is the
Euclidian geometry. In Euclidean space the electric-field and
magnetic-field energies are additive (and hence independent)
quantities. We have the energy density for EM field: wEM =

1
8π

(| �E|2 + | �H |2) = const in any point in vacuum. In isotropic

dielectric space, there is wEM = 1
8π

(ε| �E|2 + | �H |2) = const.
Recent metamaterial implementations facilitate space-time

transformations in the electromagnetic-field structure. A phy-
sical means to control electromagnetic waves by using artificial
composites is based on the invariance of Maxwell’s equations
under a general coordinate transformation [37,38]. The ME
field, studied in this paper, is correlated with the space-time
curvature. Normalized helicity of a ME field is a time-averaged
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FIG. 17. (Color online) The field structure outside a ferrite disk for the second transmission peak (peak 2′′) at a dielectric-cylinder load
(εr = 100). (a) Normalized helicity parameter shown on the yz cross-section plane and on a lateral surface of a dielectric cylinder. (b) Power-flow
distributions on planes A-A, B-B, C-C, and D-D, and immediately above a ferrite disk.

FIG. 18. (Color online) (a) An axial distribution of the power
flow on a lateral surface of a dielectric cylinder (εr = 100) for the first
transmission peak (peak 1′′). (b) Schematic picture showing directions
of rotations of the power-flow vortices along a cylinder axis.

parameter showing space angle between rotating vectors �E and
�H . In the regions where this parameter is not equal to zero, a

space angle between the vectors �E and �H is not equal to 90°.
The angle between rotating vectors �E and �H can vary in time,
but remains unequal to 90° during a time period of microwave
radiation. Figure 19 illustrates the ME-field topologies by
schematic pictures of space curvature. There are the field
topologies for the first MDM resonance (resonance peak 1′)
at vacuum environment and for the second transmission peak
(peak 2′′) at a dielectric loading (εr = 100). The grids show
coordinate systems in relation to mutual orientations of the �E
and �H fields at a certain time phase. Suppose that the electric
field �E is directed along a basic vector �e1 and the magnetic
field �H is directed along a basic vector �e2. If the helicity
parameter of the field is zero the dot product �e1 · �e2 is zero
as well. However, in a region where the helicity parameter of
the field is not zero, the dot product �e1 · �e2 does not vanish.
There is a curved-space region. In a curved space, the electric
and magnetic energies become coupled. There should exist a
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FIG. 19. (Color online) The ME-field topology is well illustrated by the space-time curvature. (a) Field topology for the first MDM
resonance (resonance peak 1′) at vacuum environment. A vacuum cylinder (εr = 1) is shown as a highlighted area. (b) Field topology for
the second transmission peak (peak 2′′) at a dielectric loading (εr = 100). The angle between rotating vectors �E and �H can vary in time, but
remains unequal to 90° during a time period of microwave radiation.

certain (magnetoelectric) mechanism of this coupling. In such
a sense, ME fields can be considered as a Lorentz-violating
extension of the Maxwell equations [12,13]. It seems likely
that the Maxwell electrodynamics does not accurately describe
what happens at a localized region of a MDM ferrite disk. A
MDM ferrite disk appears as a real singularity for Maxwell
electrodynamics, not a coordinate singularity. This singularity
suggests that in the vicinity of a MDM ferrite disk the Maxwell
electrodynamics is an incomplete theory.

A MDM vortex is a nonperturbative, nontrivial solution of
the field equations. From Einstein’s theory of general relativity
it is well known that laws of physics that describe acceleration
could also be used to describe gravity. It means that a MDM
ferrite disk with vortex dynamics (in which originates the
space-time curvature of the vacuum fields) can appear as an
inertial mass. The problem of the vortex mass was discussed
extensively over the years. In particular, the vortex inertial
mass is considered as a significant effect in the superconductor
theory [39,40]. At the same time, the concept of the vortex
mass remains a controversial issue [41,42].

V. CONCLUSION

We showed that the spectra of MDM oscillations are
very sensitive to material parameters of dielectric samples
loading a ferrite disk. We found that topology of ME fields is
strongly correlated with the Fano-resonance spectra observed

at terminals of a microwave structure. We observe the Fano-
dipole and Fano-quadrupole spectra and also overlapping of
Fano resonances. There exist specific thresholds in the Fano-
resonance spectra appearing at certain permittivity parameters
of dielectric samples. Importantly, different Fano resonances
have different helicity properties of ME fields. The ME fields
that originated from MDM ferrite disks are distinguished by
topological portraits of the helicity parameters and can have a
torsion degree of freedom.

The ME-field phenomena can be viewed as means of
engineering of unique fields by artificial structures. Presently,
the engineering of these fields by metamaterials is a topical
subject. This concerns, in particular, the space-time coordinate
transformations technique for invisibility cloak [37,38] and
isotropic radiation [43], toroidal-multipole electromagnetic
excitations [44], and optical superchiral fields [45]. The results
obtained in this paper open vistas in the near- and far-field
manipulation of microwave radiation. MDM oscillations,
having both orbital and spin angular momenta, can twist
microwave radiation. Due to a helical structure of ME fields,
the effective cross section for microwave radiation is strongly
increased. In the near-field applications, we propose alternative
microwave sensors for material characterization, biology,
and nanotechnology. Strong energy concentration and unique
topological structures of the near fields originated from the
MDM resonators allow effective measuring of chiral properties
of materials in microwaves [11,15]. Generating far-field orbital
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angular momenta from near-field microwave chirality of MDM
structures can be a subject of great interest. Realization of such

vortex generators opens the perspective for far-field microwave
systems with topological-phase modulation [46].
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