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Abstract—There has been a surge of interest in the subwavelength
confinement effects of the electromagnetic fields. Based on these
effects, one can obtain new behaviors of the near- and far-field
radiation. It is well known that in optics, the subwavelength
confinement can be obtained due to surface-plasmon (or electrostatic)
oscillations in metal structures. This paper is a review of recent
studies on the subwavelength confinement in microwaves due to
magnetic-dipolar-mode (MDM) [or magnetostatic (MS)] oscillations
in small ferrite samples. MDM oscillations in a mesoscopic ferrite-
disk particle are quantized oscillations, which are characterized by
energy eigenstates. The field structures are distinguished by power-
flow vortices and non-zero helicity. Also in vacuum, the near
fields originated from MDM particles are designated by topologically
distinctive power-flow vortices, non-zero helicity, and a torsion
degree of freedom. To differentiate such field structures from
regular electromagnetic (EM) field structures, we term them as
magnetoelectric (ME) fields. In a pattern of the microwave field
scattered by a MDM ferrite disk and MDM-disk arrays, one can observe
rotating topological-phase dislocations. This opens a perspective for
creation of engineered electromagnetic fields with unique symmetry
properties. In the near-field applications, we propose novel microwave
sensors for material characterization, biology, and nanotechnology.
Strong energy concentration and unique topological structures of
the near fields originated from the MDM resonators allow effective
measuring chiral properties of materials in microwaves. Generating
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far-field orbital angular momenta from near-field microwave chirality
of MDM structures can be a subject of a great interest. Realization of
such vortex generators opens perspective for novel microwave systems
with topological-phase modulation.

1. INTRODUCTION

In the search of novel communication systems, sensor devices and
metamaterial structures, a strong interest arises in subwavelength
particles as basic building blocks for controlling electromagnetic
radiation. The effects of subwavelength confinement of the
electromagnetic radiation allow engineering of novel field structures
both in the near- and far-field regions. These effects concern
fundamental problems of quasistatic oscillations in small objects:
topological phases, vortex behaviors of the fields, the field chirality
(helicity), and Fano-resonance interferences. Localization of
electromagnetic energy in a subwavelength region presumes breaking
the symmetry relationship between the time-varying electric and
magnetic fields. Symmetry principles play an important role with
respect to the laws of nature. Faraday’s law gives evidence for
existence of a magnetic displacement current. To put into symmetrical
shape the equations coupling together the electric and magnetic fields,
Maxwell introduced an electric displacement current. Such an additive,
introduced for reasons of symmetry, resulted in appearing a unified
field: the electromagnetic field. Dual symmetry between electric
and magnetic fields underlies conservation of energy and momentum
for electromagnetic fields [1]. It is well known, however, that in a
general case of small (compared to the free-space electromagnetic-wave
wavelength) samples made of media with strong temporal dispersion,
the role of displacement currents in Maxwell equations can be
negligibly small and the oscillating fields are quasistationary fields [2].
It is evident that when quasistatic oscillations in small objects occur,
the electric-magnetic field symmetry is broken in Maxwell equations.
What kinds of the time-varying fields can one expect to see when any
(magnetic or electric) of the displacement currents is neglected?

Subwavelength confinement of light via electrostatic plasmonic
resonances [3] has found more demand and has become an
important issue in many research fields including integrated photonics,
optical data storage, spectroscopy, microscopy, lithography, biological
photonics, chemical studies, and so on (see, e.g., [4] and references
therein). In optical plasmonics, different effects of the field symmetry
breaking are used for subwavelength confinement of light. Recently,
a novel concept for subwavelength optical power capture has been
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developed. This concept is based on light recirculation through optical
vortices: the vector fields of the time averaged optical powerflows in
and around plasmonic nanostructures. The powerflow always occurs
in the presence of the topological change. The phase singularities
represent centers of local circulating optical power flows, or simply
optical vortices [5]. On the other hand, it has been demonstrated that a
helically grooved metal wire supports the propagation of chiral surface
plasmon polaritons [6]. This offers the possibility to control both the
chirality and the orbital angular momentum of electromagnetic fields
at the subwavelength scale. Different plasmon chiral nanostructures
draw promising routes for enhancing the optical near field, thus
providing extended control over new functionalities in metamaterial
science, biomimetics engineering and biosensing [6–9]. New results
show unique possibilities for generating far-field optical vortex beams
from near-field optical chirality [10]. Also, short-range interactions
between discrete eigenstates of plasmon oscillations and the continuum
of optical radiation, resulting in Fano resonances, is a subject of
numerous modern investigations [11, 12].

In microwaves, however, the effects of subwavelength confinement
due to quasistatic oscillations have not been studied sufficiently. Can
one use the main ideas and results of the optical subwavelength
plasmonics to create microwave structures with subwavelength
confinement? Since resonance frequencies of electrostatic (plasmon)
oscillations are very far from microwave frequencies, an answer to
this question is negative. Nevertheless, there exists another type
of subwavelength objects with quasistatic oscillations which show
effective resonant interactions with microwave fields. There are small
ferrite particles with magnetic-dipolar-mode (MDM) [or magnetostatic
(MS)] oscillations [13]. In a series of recent publications, it was shown
that small ferrite-disk particles may have unique spectral properties
of MDM oscillations and the near fields originated from such particles
are microwave superchiral fields with strong subwavelength localization
of electromagnetic energy [14–21]. Specific long-distance topological
properties of these fields are exhibited in the effects of path-dependent
interference [22]. It was also shown that interaction of the MDM
ferrite particle with its environment has a deep analogy with the
Fano-resonance interference observed in natural and artificial atomic
structures [23]. A ferrite is a magnetic dielectric with low losses. This
may allow for electromagnetic waves to penetrate the ferrite and results
in an effective interaction between the electromagnetic waves and
magnetization within the ferrite. For MDM oscillations in a ferrite disk,
magnetization dynamics is characterized by spin and orbital angular
momentums and also by space and time symmetry breakings. This
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presumes that the microwave fields near a ferrite disk should also have
spin and orbital angular momentums and should be characterized by
space and time symmetry breakings. To distinguish such fields from
regular electromagnetic (EM) fields, we term them as magnetoelectric
(ME) fields [20, 21].

The purpose of this paper is to review the effects of the near-
and far-field microwave manipulation due to ferrite-disk particles with
quasistatic MDM oscillations. We show that engineering of novel
fields by these particles can open the perspective for unique microwave
applications.

2. QUASISTATIC OSCILLATIONS IN SMALL SAMPLES

We start our studies with consideration of general aspects of
quasistatic oscillations and a comparative analysis of two types of
these oscillations: optical plasmonic (electrostatic) resonances in small
metallic particles and microwave magnetic-dipolar (magnetostatic)
resonances in small ferrite samples [20, 21]. In spite of the fact that
subwavelength confinement of electromagnetic fields via electrostatic
plasmonic resonances and magnetostatic magnon resonances have
much common, there are evident fundamental differences between
these oscillations. We will show why small particles with magnetostatic
resonances can exhibit multiresonance oscillating spectra with ME
properties (specific coupling between the time-varying electric and
magnetic fields in a subwavelength region) and no such properties can
be observed in a case of small particles with electrostatic resonances.

For a case of plasmonic (electrostatic) resonances in small metallic
samples, one neglects a magnetic displacement current and has
quasistationary electric fields. A dual situation is demonstrated for
magnetic-dipolar (magnetostatic) resonances in small ferrite samples,
where one neglects an electric displacement current. As an appropriate
approach for description of quasistatic oscillations in small particles,
one uses a classical formalism where the material linear response
at frequency ω can be described by a local bulk dielectric function
— the permittivity tensor ↔

ε(ω) — or by a local bulk magnetic
function — the permeability tensor ↔

µ(ω). With such an approach
(and in neglect of a corresponding displacement current) one can
introduce a notion of a scalar potential: an electrostatic potential
ϕ for electrostatic oscillations and a magnetostatic potential ψ
for magnetostatic resonances. It is evident that these potentials
do not have the same physical meaning as in the problems of
“pure” (non-time-varying) electrostatic and magnetostatic fields [1, 2].
Because of the resonant behaviors of small dielectric/metallic or small
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magnetic objects [confinement phenomena plus temporal-dispersion
conditions of tensors ↔

ε(ω) or ↔
µ(ω)], one has scalar wave functions:

an electrostatic-potential wave function φ(~r, t) and a magnetostatic-
potential wave function ψ(~r, t), respectively. The main note is that
since we are on a level of the continuum description of media [based
on tensors ↔

ε(ω) or ↔
µ(ω)], the boundary conditions for quasistatic

oscillations should be imposed on scalar wave functions φ(~r, t) or ψ(~r, t)
and their derivatives, but not on the RF functions of polarization
(plasmons) or magnetization (magnons). One has to keep in mind
that in phenomenological models based on the effective-medium [the
↔
ε(ω)- or ↔

µ(ω)-continuum] description, no electron-motion equations
and boundary conditions corresponding to these equations are used.

Fundamentally, subwavelength sizes should eliminate any effects of
the electromagnetic retardation. When one neglects the displacement
currents (magnetic or electric) and considers scalar functions φ(~r, t)
or ψ(~r, t) as the wave functions, one becomes faced with important
questions, whether there could be the propagation behaviors inherent
for the quasistatic wave processes and, if any, what is the nature
of these retardation effects. In a case of electrostatic resonances,
the Ampere-Maxwell law gives the presence of a curl magnetic field.
With this magnetic field, however, one cannot define the power-flow
density of propagating electrostatic-resonance waves. Certainly, from a
classical electrodynamics point of view [1], one does not have a physical
mechanism describing the effects of transformation of a curl magnetic
field to a potential electric field. In like manner, one can see that in a
case of magnetostatic resonances, the Faraday law gives the presence of
a curl electric field. With this electric field one cannot define the power-
flow density of propagating magnetostatic-resonance waves since, from
a classical electrodynamics point of view, one does not have a physical
mechanism describing the effects of transformation of a curl electric
field to a potential magnetic field [1]. So, from Maxwell equations it
follows that in a case of electrostatic resonances, characterizing by a
scalar wave function φ(~r, t), the time-varying electric fields cannot be
accompanied at all with the RF magnetic fields and, similarly, in a case
of magnetostatic resonances, characterizing by scalar wave function
ψ(~r, t), the time-varying magnetic fields cannot be accompanied at
all with the RF electric field. This fact is perceived, in particular,
from the following remarks by McDonald [24, 25]. In frames of the
quasielectrostatic approximation, we introduce electrostatic-potential
function φ(~r, t) excluding completely the magnetic displacement
current: ∂ ~B

∂t = 0. At the same time, from the Maxwell equation

(the Ampere-Maxwell law), ∇ × ~H = 1
c

∂ ~D
∂t , we write that ∇ ×
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∂ ~H
∂t = 1

c
∂2 ~D
∂t2

. If a sample does not posses any magnetic anisotropy,

we have ∂2 ~D
∂t2

= 0. Similarly, in frames of the quasimagnetostatic
approximation, we introduce magnetostatic-potential function ψ(~r, t)
excluding completely the electric displacement current: ∂ ~D

∂t = 0.

From Maxwell equation (the Faraday law), ∇ × ~E = −1
c

∂ ~B
∂t , we

obtain that ∇ × ∂ ~E
∂t = −1

c
∂2 ~B
∂t2

. If a sample does not posses any

dielectric anisotropy, we have ∂2 ~B
∂t2

= 0. From the above equations

on the second derivatives of the fields (∂2 ~D
∂t2

= 0 and ∂2 ~B
∂t2

= 0),
it follows that the electric field in small resonant dielectric/metallic
objects as well as the magnetic field in small resonant magnetic objects
vary linearly with time. This leads, however, to arbitrary large
fields at early and late times, and is excluded on physical grounds.
An evident conclusion suggests itself at once: the electric field (for
electrostatic resonances) and the magnetic field (for magnetostatic
resonances) are constant quantities. Such a conclusion contradicts the
fact of temporally dispersive media and thus any resonant conditions.
Another conclusion is more unexpected: the Ampere-Maxwell law
is not valid for electrostatic resonances and the Faraday law is not
valid for magnetostatic resonances. The above analysis definitely
means that, from classical electrodynamics, the spectral problem
formulated exceptionally for the electrostatic-potential wave function
φ(~r, t) do not presume use of alternative magnetic fields and, similarly,
the spectral problem formulated exceptionally for the magnetostatic-
potential function wave ψ(~r, t) do not presume use of alternative
electric fields. This statement lives open a question on the existence of
propagation-wave behaviors for the quasistatic-resonance processes.

The eigenvalue problem for electrostatic resonances in nanoparti-
cles occurs at optical frequencies when an isotropic dielectric medium
exhibits strong temporal dispersion and its real part assumes a negative
value. The resonant wavelengths are determined by shapes of nanonos-
tructures and dielectric responses of constituents [26, 27]. When the
material linear response is described by a bulk dielectric scalar func-
tion ε(ω), the electrostatic resonances can be found as solutions of the
equation [28]:

~∇ ·
(
ε (~r) ~∇φ

)
= 0. (1)

For homogeneous negative permittivity particles (εp < 0) in a
uniform transparent immersion medium (εs > 0) and with use of
conventional Dirichlet-Neumann boundary conditions for electrostatic-
potential function, this equation acquires a form of a linear generalized
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eigenvalue problem:

~∇ ·
(
θ (~r) ~∇φ

)
= s∇2φ, (2)

where θ(~r) equals 1 inside the particle and zero outside the particle, and
s = 1/(1− εp/εs). The eigenmodes (surface plasmons) are orthogonal
and are assumed to be normalized as [28, 29]

∫
φ∗q (~r)∇2φq′ (~r) d3r = δq,q′ . (3)

It was pointed out that for electrostatic resonances in nanoparticles
one has a non-Hermitian eigenvalue problem with bi-orthogonal
(instead of regular-orthogonal) eigenfunctions [30]. Electrostatic
(plasmonic) resonance excitations, existing for particle sizes much
smaller than the free-space electromagnetic wavelength, are described
by the evanescent-wave electrostatic-potential functions φ(~r, t). No
retardation effects are presumed in such a description. In optics,
the above electrostatic theory applies only to nanoparticles, when
electromagnetic retardation effects are negligible. For a spherical
nanoparticle of arbitrary radius provided that the latter is much
smaller than the free-space wavelength of incident optical radiation,
the resonance permittivity values are consistent with the classical Mie
theory [31]. In an analysis of scattered electromagnetic fields, a small
metal particle with electrostatic oscillations can be treated as a point
electric dipole precisely oriented in space [32, 33]. Importantly, a role
of the magnetic field in plasmonic oscillations becomes appreciable
only when one deviates from the electrostatic approximation to the
full-Maxwell-equation description. So the retardation effects appear
when particle sizes are comparable with the free-space electromagnetic
wavelength. Corrections to electrostatic resonance modes due to
retardation can be found by using series expansions of the solutions to
time harmonic Maxwell equations with respect to the small ratio of the
object size to the free-space wavelength. There is the electromagnetic-
wave process with a coupling between the electric and magnetic
fields [34]. It was shown recently that anomalous light scattering
with quite unusual scattering diagrams and enhanced scattering
cross sections near plasmon (polariton) resonance frequencies is non-
Rayleigh scattering. The observed power-flow patterns cannot be
understood within the frame of a dipole approximation and the terms
of higher orders with respect to size parameter q = 2πa/λ should be
taken into account [35–37].

At microwave frequencies, the eigenvalue problem for magneto-
static resonances in small ferrite particles is quite different. The spec-
tral properties of these resonances are analyzed based on the Walker
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equation for MS-potential wave function ψ(~r, t) [38]:

~∇ ·
(
↔
µ · ~∇ψ

)
= 0 (4)

Outside a ferrite this equation becomes the Laplace equation. A
distinctive feature of MDM resonances in small ferrite samples with
certain geometrical forms is the fact that because of the bias-field
induced anisotropy in a ferrite, one may obtain the real-eigenvalue
spectra for scalar wave functions. In microwave experiments with
quasi-2D ferrite disks, regular multiresonance MDM spectra have
been observed [39–43]. A formulation of quasi-Hermitian eigenvalue
problem and analytical spectral solutions for MDMs in these thin-film
ferrite disks were shown recently [14–17]. Solutions are propagating-
wave scalar functions ψ(~r, t). This presumes non-electromagnetic
(magnetostatic) retardation effects in such small ferrite samples. In
solving a spectral problem for MDM oscillations, special aspects
concern properties of the RF electric fields. It is very important
that a role of the electric fields in MDM ferrite particles becomes
evident when one does not deviate from the MS description to the
full-Maxwell-equation description. These electric fields appear due
to magnetic currents with topological-phase nature. Because of
dynamics of the magnetization motion in a ferrite disk, characterizing
by symmetry breakings, small ferrite particles with MDM spectra
originate near fields with unique topological properties. We term
these fields as magnetoelectric (ME) fields [20, 21]. The ME fields are
characterized by helical structures and power-flow vortices. Scattering
of the EM fields from the MDM-vortex particles is purely topological.
For incident EM waves, the vortex topological singularities act as
traps, providing strong subwavelength confinement of the microwave
fields [17, 18]. It appears that a vortex may turn out to generate
a “radius of no return”, beyond which the incident EM fields falls
inevitably towards the vortex singularity. In such a case, the MDM
vortex becomes an EM “black hole” in microwaves [18–22].

We should come back now to the McDonald’s statement [24, 25]
that, from a formal point of view, no RF magnetic fields are available
in a case of electrostatic resonances and no RF electric fields are
available in a case of magnetostatic resonances. As we discussed
in this section, in particles with plasmonic oscillations one has a
non-Hermitian eigenvalue problem and the retardation effects appear
when particle sizes are comparable with the free-space electromagnetic
wavelength. So a role of the magnetic field in plasmonic oscillations
becomes appreciable only when one deviates from the electrostatic
approximation to the full-Maxwell-equation description. In a case
of MDM resonances in small ferrite particles, situation is completely
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different. In these particles one has specific magnetostatic-wave
retardation effects. The electric fields arising from the MDM spectral
solutions are characterized by topological properties. This results
in appearance of peculiar fields — the ME fields. The helicity
parameters of ME fields give evidence for violation of Faraday law
and, consequently, violation of Lorentz invariance [20–23].

3. ENERGY EIGENSTATES OF MDM OSCILLATIONS
IN A QUASI-2D FERRITE DISK

MDM oscillations in a quasi-2D ferrite disk are macroscopically
quantized states. Long range dipole-dipole correlation in position
of electron spins in a ferromagnetic sample can be treated in terms
of collective excitations of the system as a whole. If the sample is
sufficiently small so that the dephasing length Lph of the magnetic
dipole-dipole interaction exceeds the sample size, this interaction is
non-local on the scale of Lph. This is a feature of mesoscopic ferrite
samples, i.e., samples with linear dimensions smaller than Lph but still
much larger than the exchange-interaction scales.

In a case of a quasi-2D ferrite disk, the quantized forms of these
collective matter oscillations — magnetostatic magnons — were found
to be quasiparticles with both wave-like and particle-like behavior, as
expected for quantum excitations. The magnon motion in this system
is quantized in the direction perpendicular to the plane of a ferrite disk.
The MDM oscillations in a ferrite disk, analyzed as spectral solutions
for the MS-potential wave function ψ(~r, t), has evident quantum-like
attributes [14–17, 20, 21]. For disk geometry, the energy-eigenstate
oscillations are described by a two-dimensional (with respect to in-
plane coordinates of a disk) differential operator G:

Ĝ⊥ =
gq

16π
µ∇2

⊥, (5)

where ∇2
⊥ is the two-dimensional Laplace operator, µ is a diagonal

component of the permeability tensor, and gq is a dimensional
normalization coefficient for mode q. Operator Ĝ⊥ is positive definite
for negative quantities µ. The normalized average (on the RF period)
density of accumulated magnetic energy of mode q is determined as

Eq =
gq

16π

(
βzq

)2
, (6)

where βzq is the propagation constant of mode q along the disk axis z.
The energy eigenvalue problem is defined by the differential equation:

Ĝ⊥η̃q = Eqη̃q, (7)
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where η̃q is a dimensionless membrane (“in-plane”) MS-potential wave
function. At a constant frequency, the energy orthonormality for
MDMs in a ferrite disk is written as:

(
Eq −Eq′

) ∫

S

η̃qη̃
∗
q′dS = 0, (8)

where S is a cylindrical cross section of a ferrite disk. One has
different mode energies at different quantities of a bias magnetic
field. From the principle of superposition of states, it follows that
wave functions η̃q (q = 1, 2, . . .), describing our quantum system, are
vectors in an abstract space of an infinite number of dimensions —
the Hilbert space. In quantum mechanics, this is the case of so-
called energetic representation, when the system energy runs through a
discrete sequence of values. In the energetic representation, a square of
a modulus of the wave function defines probability to find a system with
a certain energy value. In our case, scalar-wave membrane function η̃
can be represented as

η̃ =
∑

q

aqη̃q (9)

and the probability to find a system in a certain state q is defined as

|aq|2 =

∣∣∣∣∣∣

∫

S

η̃η̃∗qdS

∣∣∣∣∣∣

2

. (10)

The statement that confinement phenomena for MS oscillations
in a normally magnetized ferrite disk demonstrate typical atomic-like
properties of discrete energy levels can be well illustrated by an analysis
of the experimental absorption spectra in Refs. [39, 40] obtained at a
varying bias magnetic field and a constant operating frequency. The
main feature of the multi-resonance line spectra in Refs. [39, 40] is
the fact that high-order peaks correspond to lower quantities of the
bias magnetic field. Physically, the situation looks as follows. Let
H

(A)
0 and H

(B)
0 be, respectively, the upper and lower values of a

bias magnetic field corresponding to the borders of a spectral region.
We can estimate a total depth of a “potential well” as: ∆UAB =
−4π

∫
M0(H

(A)
0 −H

(B)
0 )dV , where M0 is the saturation magnetization.

Let H
(1)
0 be a bias magnetic field, corresponding to the main absorption

peak in the experimental spectrum (H(B)
0 < H

(1)
0 < H

(A)
0 ). When

we put a ferrite sample into this field, we supply it with the energy:
−4π

∫
M0H

(1)
0 dV . To some extent, this is a pumping-up energy.

Starting from this level, we can excite the entire spectrum from the
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main mode to the high-order modes. As a value of a bias magnetic field
decreases, the particle obtains higher levels of negative energy. One can
estimate the negative energies necessary for transitions from the main
level to upper levels. For example, to have a transition from the first
level H

(1)
0 to the second level H

(2)
0 (H(B)

0 < H
(2)
0 < H

(1)
0 < H

(A)
0 )

we need the energy surplus: ∆U12 = −4π
∫

M0(H
(1)
0 −H

(2)
0 )dV . The

situation is very resembling the increasing a negative energy of the hole
in semiconductors when it “moves” from the top of a valence band. In
a classical theory, negative-energy solutions are rejected because they
cannot be reached by a continuous loss of energy. But in quantum
theory, a system can jump from one energy level to a discretely lower
one; so the negative-energy solutions cannot be rejected, out of hand.
When, for given frequency ω, one continuously varies the quantity
of the DC field H0, one sees a discrete set of absorption peaks. It
means that one has the discrete-set levels of potential energy. The line
spectra appear due to the quantum-like transitions between energy
levels of a ferrite disk particle. As a quantitative characteristic of
permitted quantum transitions, there is the probability, which define
the intensities of spectral lines. The discrete nature of the MS-magnon
states requires a minimum of energy to excite a MS magnon, which is
equivalent to having an energy gap. There are energy gap scales with
the bias magnetic field at a given operating frequency. In paper [44],
it was shown that because of the discrete energy eigenstates of MDM
oscillations resulting from structural confinement in a ferrite disk, one
can describe the oscillating system as collective motion of quasiparticles
— the “light magnons”.

From Equations (5)–(7) it follows that MDM resonances in a
ferrite disk correspond to discrete quantities of the permeability-tensor
component µ. This component is defined as [13]

µ = 1 +
γ2M0H0

γ2H2
0 − ω2

, (11)

where γ is the gyromagnetic ratio. It is evident that discrete energy
eigenstates of MDM oscillations can be obtained also by variation of
operating frequency at a constant bias magnetic field. So, for given
disk sizes and a given quantity of saturation magnetization M0, there
are two different mechanisms of energy quantization: (i) quantization
by a bias field H0 at a constant signal frequency ω and (ii) quantization
by signal frequency ω at a constant bias field H0. Let us consider a
certain frequency f ′. For observation of energy quantization levels at
this frequency, there exists a specific set of the bias-field quantities:
(H(1)

0 )′, (H(2)
0 )′, (H(3)

0 )′, . . .. On the other hand, for a given bias
magnetic field, there is a specific set of the frequency quantization
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Figure 1. Correlation between two mechanisms of energy
quantization: Quantization by signal frequency and quantization by
a bias magnetic field.

levels. Figure 1 illustrates correlation between the two mechanisms of
energy quantization. It becomes evident that there should be a certain
uncertainty limit stating that

∆f∆H0 ≥ uncertainty limit. (12)

The uncertainty limit is a constant which depends on the disk size
parameters and ferrite material properties. It is evident that beyond
the frames of the uncertainty limit (12), one has continuum of energy.
The fact that there are different mechanisms of energy quantization
gives us possibility to conclude that for MDM oscillations in a quasi-
2D ferrite disk one can have discrete energy eigenstates as well as
continuum of energy. It is worth noting that, in general, for different
types of subwavelength particles, the uncertainty principle may acquire
different forms. An interesting variant of Heisenberg’s uncertainty
principle was shown recently in subwavelength optics [3]. Applied
to the optical field, this principle says that we can only measure
the electric or the magnetic field with accuracy when the volume in
which they are contained is significantly smaller than the wavelength
of light in all three spatial dimensions. As volumes smaller than
the wavelength are probed, measurements of optical energy become
uncertain, highlighting the difficulty with performing measurements in
this regime.

The above analysis of energy eigenstates gives possibility for
deeper understanding of the nature of the experimentally observed
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Figure 2. An experimental multiresonance spectrum of modulus of
the reflection coefficient obtained by varying a bias magnetic field and
at a resonant frequency of f0 = 7.4731GHz. The resonance modes are
designated in succession by numbers n = 1, 2, 3, . . .. The states beyond
resonances are designated with small letters a, b, c, . . .. An insert
shows a TE102-mode rectangular waveguide cavity with a normally
magnetized ferrite-disk sample. Figure reproduced from Ref. [23].

multiresonance spectra of microwave oscillations in a microwave cavity
originated from a MDM ferrite disk [23, 39–43]. These spectra were
obtained by varying a bias magnetic field at a constant operating
frequency, which is a resonant frequency of the cavity. An example
of such a spectrum, studied in Ref. [23], is shown in Figure 2.
The resonance modes are designated in succession by numbers n =
1, 2, 3, . . ., while the states beyond resonances are designated with small
letters a, b, c, . . .. This spectrum is obtained for a normally magnetized
ferrite-disk sample placed in a rectangular waveguide cavity with the
TE102 resonant mode. A resonant frequency is f0 = 7.4731GHz.
The disk axis is oriented along the waveguide E-field and the disk
position is in a maximum of the RF magnetic field of the cavity
(see an insert in Figure 2). In Ref. [23], we used a disk sample of
diameter 2< = 3 mm made of the yttrium iron garnet (YIG) film on the
gadolinium gallium garnet (GGG) substrate (the YIG film thickness
d = 49.6mkm, saturation magnetization 4πM0 = 1880G, linewidth
∆H = 0.8Oe; the GGG substrate thickness is 0.5 mm).

Figures 3 and 4 give explanations why this multiresonance
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(a) (b) (c)

Figure 3. Quantized variations of an input impedance of a cavity at
MDM resonances. (a) An equivalent electric circuit of an experimental
setup. (b) Experimental results of the quantized-state impedances for
modes 1 and 2 plotted on the complex-reflection-coefficient plane. (c)
The entire-spectrum impedances shown schematically as a set of circles
on the complex-reflection-coefficient plane. Red dots show quantized
states with pure active quantities of the cavity impedance. Figures (a),
(b), and (c) reproduced from Ref. [23].

spectrum of microwave oscillations can be related to the energy
eigenstates of MDMs in a ferrite disk. Figure 3(a) shows an equivalent
electric circuit of an experimental setup: a source with internal
impedance Z0 supplies a cavity with an embedded ferrite disk by
microwave energy of frequency f0; a load impedance, ZL, — an input
impedance of a cavity — is varied by an external parameter — a bias
magnetic field H0. Due to MDM resonances in a ferrite particle,
the cavity impedances become quantized states. This can be well
illustrated by a Smith chart — a complex-plane nomogram designed for
graphical display of impedance multiple parameters [45]. Figure 3(b)
shows experimental results of the quantized-state impedances for
modes 1 and 2 plotted on the complex-reflection-coefficient plane. The
entire-spectrum impedances are shown schematically in Figure 3(c)
as a set of circles on the complex-reflection-coefficient plane. Red
dots correspond to quantized states with pure active quantities of
the cavity impedance. Since we have a constant resonant frequency,
the shown resonances are not the modes due to quantization of the
photon wave vector in a cavity. So the question arises: What is the
nature of the modes observed in a cavity at a constant frequency? It is
evident that the discrete variation of the cavity impedances and so the
discrete states of the cavity fields are caused by the discrete variation
of energy of a ferrite disk, appearing due to an external source of
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(a)

(b)

(c)

Figure 4. Quantized states of RF energy in a cavity and magnetic
energy in a disk. (a) RF energy accumulated in a cavity. (b) Magnetic
energy of a ferrite disk. (c) Multiresonance spectrum of modulus of
the reflection coefficient. Figures (a), (b), and (c) reproduced from
Ref. [23].

energy — a bias magnetic field. Suppose that we have our microwave
system at a quantity of a bias magnetic field above the 1st peak in
the resonance spectrum. In Figure 2, this state is designated by a
capital letter A. The corresponding bias magnetic field, designated
as H

(A)
0 , supplies a ferrite disk by energy: UA = −4π

∫
M0H

(A)
0 dV .

At this bias magnetic field, a cavity (with an embedded ferrite disk)
has good impedance matching and can accumulate certain microwave
energy. When we consider the state a (the state beyond resonances
1 and 2), a cavity has the same good impedance matching and the
same level of accumulated microwave energy. But the energy supplied
to a ferrite disk by a bias magnetic field is reduced by a quantity
UA − Ua ≡ ∆UAa = −4π

∫
M0(H

(A)
0 −H

(a)
0 )dV . At a very narrow

region of a bias magnetic field corresponding to the 1st resonance-
peak position, H

(1)
0 , RF energy accumulated in the cavity is strongly

reduced because of increasing of the active-quantity cavity impedance
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[see Figure 3(c)]. This reduction of the RF energy (designated as
u

(1)
RF) must be equal in magnitude to quantity ∆UAa. Such kind of

relationship between magnetic energy of a disk and RF energy of a
cavity is exhibited also for other peaks in a spectrum. For the entire
spectrum, in Figure 4 we give qualitative pictures of potential energy
of a ferrite disk and discrete states of the RF energy accumulated in the
cavity with respect to a bias magnetic field. These states are shown in
correlation with the spectral picture for the reflection coefficient. From
peak to peak one has discrete-portion reduction of the disk magnetic
energy. Due to such a discrete-portion reduction of the disk magnetic
energy we observe excitation of the RF resonance peaks.

4. INTERACTION OF MDMs WITH THE
ENVIRONMENTAL MICROWAVE RADIATION

When the above analysis explains why the experimentally observed
multiresonance spectrum of microwave oscillations can be related to
the energy eigenstates of MDMs in a ferrite disk, the question how the
MDMs interact with the environmental microwave radiation remains
open. Analytically, there are two spectral models for the MDM
oscillations in a ferrite disk. These models are based on so-called the G-
and L-mode spectral solutions [14–22]. The G-modes, are associated
with a considered above differential operator G. There are modes with
Hermitian Hamiltonian for MS-potential wave functions ψ(~r, t). The
G-modes are related to the discrete energy states of MDMs. In a case
of the L-modes, one has a complex Hamiltonian for MS-potential wave
functions ψ(~r, t). For eigenfunctions associated with such a complex
Hamiltonian, we have nonzero Berry potential (meaning the presence
of geometric phases). The main difference between the G- and L-mode
solutions becomes evident when one considers the boundary conditions
on a lateral surface of a ferrite disk. In solving the energy-eigenstate
spectral problem for the G-mode states, the boundary condition on a
lateral surface of a ferrite disk, are expressed as

µ

(
∂η̃

∂r

)

r=<−
−

(
∂η̃

∂r

)

r=<+

= 0, (13)

where η̃ is the MS-potential membrane wave function (for the G-mode
solution) and < a radius of a ferrite disk. There is a homogeneous
boundary condition for a differential operator Ĝ⊥ [see Equation (5)].
This boundary condition, however, manifests itself in contradictions
with the electromagnetic boundary condition for a radial component of
magnetic flux density ~B on a lateral surface of a ferrite-disk resonator.
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Such a boundary condition, used in solving the resonant spectral
problem for the L-mode states, is written as

µ(Hr)r=<− − (Hr)r=<+ = −iµa(Hθ)r=<, (14)
where (Hr)r=<− and (Hr)r=<+ are radial components of a magnetic
field on a border circle, and (Hθ)r=< is an azimuth magnetic field on a
border circle. In the magnetostatic description, this equation appears
as

µ

(
∂ϕ̃

∂r

)

r=<−
−

(
∂ϕ̃

∂r

)

r=<+

= −µaν (ϕ̃)r=<− , (15)

where ϕ̃ is the MS-potential membrane wave function (for the L-
mode solution), ν an azimuth wave number, and µa an off-diagonal
component of the permeability tensor. The spectral-problem solutions
based on Equation (13) are single-valued-function solutions. At the
same time, the spectral-problem solutions based on Equation (15)
are nonsingle-valued-function solutions. Because of dependence of the
right-hand side of Equation (15) on a sign of the azimuth wave number,
the two (clock and counterclockwise) types of resonant solutions
may exist at a given direction of a bias magnetic field. In the
microwave measurement, we do not distinguish such clockwise and
counterclockwise types of MDM oscillations. The signals measured
at the ports of a microwave system are single-valued functions. It
was shown [19] that to get real-quantity eigenstates of the L-mode
solutions, a special differential operator acting on the boundary
conditions on a lateral surface of a ferrite disk should be introduced.
As the eigenstates of this operator, there are topological-phase circular
magnetic currents. These magnetic currents result in appearance of
fluxes of gauge electric fields [16, 17, 19–21].

The electric and magnetic fields originated from the L-mode
spectral solutions are the states with specific spin and orbital rotational
motion of the field vectors. These fields, characterizing by eigen
power-flow vortices and helicity parameters, are called magnetoelectric
(ME) fields [20, 21]. The ME field solutions (which can be obtained
by numerical integration with the HFSS-program simulation) give
evidence for spontaneous symmetry breakings of the resonant states.
Because of rotations of localized field configurations in a fixed observer
inertial frame, coupling between EM and ME fields cause violation of
the Lorentz symmetry of spacetime. In such a sense, ME fields can
be considered as Lorentz-violating extension of the Maxwell equations.
To characterize the ME-field singularities, the helicity parameter was
introduced. The helicity parameter for the near fields of a ferrite disk
with MDM oscillations is defined as [20, 21]

F =
ε0

4
Im

{
~E ·

(
~∇× ~E

)∗}
. (16)
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We can also introduce a normalized helicity parameter, which shows a
time-averaged space angle between rotating vectors ~E and ~∇× ~E:

cosα =
Im

{
~E ·

(
~∇× ~E

)∗}
∣∣∣ ~E

∣∣∣
∣∣∣∇× ~E

∣∣∣
, (17)

In the regions where this parameter is not equal to zero, a space angle
between the vectors ~E and ~∇× ~E is not equal to 90◦. This breaks the
field structure of Maxwell electrodynamics.

One becomes evident with the fact that due to properties of MDM
oscillations, the fields of a microwave structure with an embedded
ferrite disk are characterized not only by discrete energy levels, but
also by specific topological eigenstates. This gives possibility for unique
manipulation of microwave radiation.

5. MANIPULATING MICROWAVES WITH MDM
FERRITE PARTICLES

MDM oscillations in a quasi-2D ferrite disk show dynamical symmetry
properties resulting in appearance of topologically distinct structures
of the fields. For the first time, the rotating field configurations and
power-flow vortices inside a ferrite disk were shown for the L-mode

Figure 5. A perspective view for the numerically modeled magnetic
field distributions on the upper plane of a ferrite disk for the for the
1st resonance state (f = 8.52GHz) at different time phases. Figure
reproduced from Ref. [46] @2009 IOP Publ. and Ref. [47] @2009 AIP.
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Figure 6. A top view for the numerically modeled electric field
distributions on the upper plane of a ferrite disk for the for the 1st
resonance state (f = 8.52GHz) at different time phases. Figure
reproduced from Ref. [46] @2009 IOP Publ. and Ref. [47] @2009 AIP.

Figure 7. The power flow density distribution for the 1st mode
(f = 8.52GHz) in a quasi-2D ferrite disk. Figure reproduced from
Ref. [46] @2009 IOP Publ.

spectra in Refs. [46, 47]. Figures 5 and 6 show a typical configuration
of rotating electrical and magnetic fields inside a ferrite disk for the
1st MDM. This field configuration results in appearance of a power-
flow-density vortex (see Figure 7). Similar configurations of rotating
fields and a power-flow-density vortex for the 2nd MDM are shown
in Figures 8–10. In the vicinity of a ferrite disk with a MDM
resonance, one has a power-flow whirlpool. For an incident EM wave,
such a vortex topological singularity acts as a trap, providing strong
subwavelength confinement and symmetry breakings of the microwave



70 Kamenetskii et al.

Figure 8. A top view for the numerically modeled magnetic field
distributions on the upper plane of a ferrite disk for the for the 2nd
resonance state (f = 8.66GHz) at different time phases. Figure
reproduced from Ref. [46] @2009 IOP Publ. and Ref. [47] @2009 AIP.

Figure 9. A top view for the numerically modeled electric field
distributions on the upper plane of a ferrite disk for the for the 2nd
resonance state (f = 8.66GHz) at different time phases. Figure
reproduced from Ref. [46] @2009 IOP Publ. and Ref. [47] @2009 AIP.
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Figure 10. The power flow
density distribution for the 2nd
mode (f = 8.66 GHz) in a
quasi-2D ferrite disk. Figure
reproduced from Ref. [46] @2009
IOP Publ.

Figure 11. Schematic picture
of the power-flow whirlpool in
vacuum in the vicinity of a ferrite
disk with MDM resonances.

Figure 12. TE10-mode rectangular waveguide with a normally
magnetized ferrite disk. The xy vacuum plane (designated as plane
A) inside a waveguide is situated at the distance of 150µm above an
upper plane of a ferrite disk.

field. Schematically, this is illustrated in Figure 11.
Detailed studies of power-flow whirlpools in the near-field region

of a MDM ferrite disk were made in Ref. [18]. In these studies, a
ferrite disk was placed in a rectangular waveguide (see Figure 12).
The spectrum was obtained at a constant bias field with variation of
a signal frequency. Figure 13 shows the field confinement originated
from the MDM vortices on a vacuum plane in a waveguide above a
ferrite disk. No such a field confinement is observed at non-resonant
frequencies. Because of symmetry breakings at MDM resonances, a
ferrite disk strongly transforms the field structure of microwaves in an
entire guiding system. Figure 14 shows the results obtained in Ref. [22].
As the time-phase changes, one observes strong transformations of
the wavefront geometry. The wave front corresponds to a localized
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(a) (b) (c)

(d) (e) (f)

Figure 13. The field confinement originated from the MDM vortices
in a ferrite disk. (a) The Poynting vector distributions for the fields on
a vacuum plane (plane A) at the frequency (f = 8.5225GHz) of the
1st MDM resonance. (b) The same at the frequency (f = 8.5871GHz)
between the MDM resonances. (c) The same at the frequency (f =
8.6511GHz) of the 2nd MDM resonance. (d) The Poynting vector
distributions inside a ferrite disk at the frequency of the 1st resonance.
(e) The same at the frequency between resonances. (f) The same at
the frequency of the 2nd resonance. Figures reproduced from Ref. [18],
@2010 APS.

region where the electric field of a waveguide mode changes its sign.
The inserts show enlarged pictures of the electric-field distributions
immediately above a ferrite disk. It is very important to note that
a geometrical structure of the shown fronts restores twice during a
time period of the microwave radiation. For two next-coming fronts
of incident waveguide-mode fields with the time-phase difference of
π, one can see the same configuration of the wave fronts distorted
due to scattering from a MDM particle. Very unique manipulation
of microwave fields one observes in a case of interacting MDM
particles [22]. Figure 15 shows the reflection coefficient of a waveguide
with embedded coupled disks. The frequency region is related to the
1st MDM. It is worth noting that the frequency split in the resonance
characteristics is extremely small. Its width is about 0.1%–0.2% of
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Figure 14. Transformations of the wave front of the electric field in a
waveguide at the 1st resonance frequency on a vacuum above a ferrite
disk at different time-phases. The inserts show enlarged pictures of
the electric-field distributions immediately above a ferrite disk. Figure
reproduced from Ref. [22], @2012 IOP Publ.

Figure 15. Reflection coefficient for two coupled disks at the
frequency region of the 1st MDM. Figure reproduced from Ref. [22],
@2012 IOP Publ.
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(a)

(b)

(c)

(d)

Figure 16. Positions of the wave fronts (localized regions where the
electric field of a waveguide mode changes its sign) for coupled disks on
a vacuum plane above ferrite disks. (a) At frequency of the 1st peak
of the splitted resonance in a coupled-disk structure. (b) Enlarged
pictures of the same distributions. (c) At frequency of the 2nd peak
of the splitted resonance in a coupled-disk structure. (d) Enlarged
pictures of the same distributions. Figures reproduced from Ref. [22],
@2012 IOP Publ.

frequency of an incident wave [22]. It was found also that the split-
resonance response for coupled MDM particles is weakly dependent on
distances between disks. One can observe almost the same response
at short distances and at distances, which are very long in comparison
with sizes of interacting particles. The shown characteristics could be
important for development unique microwave filters. Figure 16 shows
positions of the wave fronts of a waveguide mode for coupled MDM
disks. There are two sets of pictures corresponding to even and odd
modes of the coupled-disk structure.

In an array of MDM ferrite disks one can observe very peculiar
behaviors of the near-field interactions [18]. The fact that every
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disk acts as a structure with rotating fields and is characterized by
a power-flow vortex, makes the problem solution non-trivial. Very
unique properties of the MDM-vortex-particle arrays become apparent,
when a structure has a center of symmetry. Figures 17 and 18 show,

Figure 17. The power-flow-density distribution on a vacuum plane
(plane A) for a structure of the in-plane nine-particle array with
a center of symmetry. An insert shows a TE10-mode rectangular
waveguide with a ferrite-disk array. Figure reproduced from Ref. [18],
@2010 APS.

ωt = 0
o

ωt = 90
o

Figure 18. The magnetic-field picture on on a vacuum plane (plane
A) for a structure of a nine-particle array with a center of symmetry.
Magnetic dipoles of the disks are shown conventionally by black arrows.
Figure reproduced from Ref. [18], @2010 APS.
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respectively, the power-flow-density distribution and the magnetic-
field picture for a structure of an in-plane nine-particle array with
a center of symmetry. A peculiar property of a structure with a
center of symmetry is a rotating wave running around the entire
array. The power-flow-density distribution on a vacuum plane in a
waveguide above a ferrite-disk array, shown in Figure 17, gives evidence
for the Poynting-vector rotations in regions above every ferrite disk
except the region above a central disk. There is also a resulting
counterclockwise rotation of the Poynting vector around the entire
array. For this array, the magnetic-field picture on the vacuum plane
is the field of rotating magnetic dipoles. These magnetic dipoles are
conventionally shown by black arrows in Figure 18. Every magnetic
dipole has the counterclockwise rotation in time. For a certain phase
of time, a circulation around the entire array shows a dynamics process
in correlation with cyclic geometrical phase evolution of the disk-
magnetic-dipole moments. For 2π circulation, the magnetic-dipole
vector accomplishes the 2π geometric-phase rotation. It is worth noting
that direction of the geometric-phase rotation is opposite to direction of
circulation of an individual magnetic dipole. The results give evidence
for a unique property of circulation of topological excitations around
a center of symmetry of an array. A special attention should be
paid for novel axial-symmetry metamaterial structures with rotational
channeling of Skyrmion-like topological excitations. Unique symmetry
properties of a system of interacting MDM ferrite disks allow make a
proposition of a new-type subwavelength microwave metamaterial —
the singular-microwaves metamaterials [17, 18].

Together with power-flow vortices, the near fields at the MDM
resonances are characterized by the helicity properties. The near-
field helicity parameters of a ferrite disk placed in a waveguide were

(a) (b) (c)

Figure 19. The near-field helicity parameters. (a) Near-field helicity
at the resonance of the 1st MDM. (b) Near-field helicity at the
resonance of the 2nd MDM. (c) Absence of the near-field helicity for
non-resonant frequencies. Figures reproduced from Ref. [21], @2013
APS and Ref. [50], @2013 AIP.
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calculated in Ref. [21] based on Equation (16). These results are shown
in Figure 19. One can see distinctive properties of the near-field helicity
at frequencies of the MDM resonances. At the same time, no helicity
characteristics are observed at the non-resonant frequencies.

6. ENGINEERING OF NOVEL MICROWAVE FIELDS
BY MDM FERRITE PARTICLES: THE NEAR- AND
FAR-FIELD APPLICATIONS

Unique topological properties of the fields originated from MDM ferrite
particles open perspective for novel microwave near- and far-field
applications.

6.1. Novel Microwave Near-field Sensors for Material
Characterization, Biology and Nanotechnology

Implementation of imaging in microwave frequencies gives the
opportunity for electrodynamics experiments with natural materials
and artificial structures. For subwavelength characterization of
microwave material parameters, special metallic probes are mostly
used. The near fields of such metallic probes are well known
evanescent-mode fields [48, 49]. It becomes clear that new perfect
lenses that can focus beyond the diffraction limit could revolutionize
near-field microwave microscopy. In Ref. [50], a novel microwave near-
field sensor with application to material characterization, biology, and
nanotechnology has been proposed. This sensor is realized based on
a small ferrite-disk resonator with MDM oscillations. The wavelength
of the MDM oscillations in ferrite resonators is two-four orders of the
magnitude less than the free-space electromagnetic-wave wavelength at
the same microwave frequency [13]. Application of these properties in
near-field microwave microscopy allows achieving submicron resolution
much easier than in the existing microwave microscopes with standard
resonant structures. Moreover, the near fields originated from a
MDM ferrite disk have intrinsic chiral topology. It is sufficiently
apparent that the problem of effective characterization of chemical
and biological objects in microwaves can be solved when one develops
special sensing devices with chiral probing fields. Another important
aspect concerns spectral properties of MDM oscillations: a complete-
set mode spectrum of MDM oscillations can be used to get a complete
Fourier image (in the frequency or ~k-space domain).

In Refs. [21, 43, 50] it was shown that dielectric samples loading
a ferrite disk can cause strong transformations of the MDM spectra.
These transformations are exhibited by two factors for an entire MDM
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spectrum: (a) the frequency shift of the spectrum and (b) broadening
of the spectrum. Moreover, due to dielectric loadings the Lorentzian-
form resonant peaks of MDM oscillations can be transformed to the
Fano-type resonances. The following consideration may explain, in
particular, the frequency shift of the entire MDM spectrum. As we
can see from Figures 6 and 9, an electric field inside a ferrite disk
has both orbital and spin angular momentums. When an electrically
polarized (due to the RF electric field of a microwave system) dielectric
sample is placed above a ferrite disk, every separate dipole in a sample
will precess around its own axis. For all the precessing electric dipoles,
there is also an orbital phase running. Figure 20 represents a schematic
picture of this effect. The mechanical torque exerted on a given electric
dipole is defined as a cross product of the MDM electric field and the
electric moment of the dipole. The torque exerting on the electric
polarization due to the MDM electric field should be equal to reaction
torque exerting on the magnetization in a ferrite disk. Because of
this reaction torque, the precessing magnetic moment density of the

Figure 20. An electric field inside a ferrite disk has both orbital and
spin angular momentums. When an electrically polarized dielectric
sample is placed above a ferrite disk, electric dipoles in a dielectric
sample precess and accomplish an orbital geometric-phase rotation. A
bias magnetic field ~H0 is directed normally to a disk plane. For an
opposite direction of ~H0, one has an opposite rotation of an electric
field and an opposite direction of precession of electric dipoles.
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ferromagnet will be under additional mechanical rotation at a certain
frequency Ω. For the magnetic moment density of the ferromagnet,
~M , the motion equation acquires the following form [2, 13]:

d ~M

dt
= −γ ~M ×

(
~H − Ω

γ

)
, (18)

The frequency Ω is defined based on both, spin and orbital,
momentums of the fields of MDM oscillations. One can see that
at dielectric loadings, the magnetization motion in a ferrite disk is
characterized by an effective magnetic field

~Heff = ~H − Ω
γ

. (19)

So, the Larmor frequency of a ferrite structure with a dielectric loading
should be lower than such a frequency in an unloaded ferrite disk.
Figure 21 gives an example of transformation of the MDM spectrum
due to dielectric loadings with different permittivity parameters. An
insert shows a microwave microstrip structure (sensor) with a MDM
ferrite disk and a sample under investigation [50]. In this figure, one
can observe the shift of the MDM spectrum to lower frequencies.

Figure 21. Transformation of the MDM spectrum due to dielectric
loadings with different permittivity parameters. One observes the
shift of the MDM spectrum to lower frequencies. An insert shows
a microwave microstrip structure (sensor) with a MDM ferrite disk
and a sample under investigation. Figure reproduced from Ref. [50],
@2013 AIP.
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For effective localization of energy of MDM oscillations at micron
and submicron near-field regions, special field concentrators should be
used. In particular, there can be a thin metal wire placed on a surface
of a ferrite disk [50]. Figure 22 shows a microstrip MDM sensor with a
wire concentrator. A bias magnetic field ~H0 is directed normally to a
disk plane. In a shown structure, the helical waves localized in a ferrite
disk are transmitted to the end of a wire electrode. The electric field
of a microstrip structure causes a linear displacement of charge when
interacting with a short piece of a wire, whereas the magnetic field of a
MDM vortex causes a circulation of charge. Being combined, these two
motions cause a helical motion of electrons, which includes translation
and rotation. Due to such a behavior, one has a chiral surface electric

(a) (b)

Figure 22. A sensor with a wire concentrator for localized material
characterization. (a) Geometry of a microstrip structure. (b) A
magnified picture picture of a MDM ferrite disk with a wire electrode.
Figures reproduced from Ref. [50], @2013 AIP.

(a) (b)

Figure 23. A microstrip structure for localized material
characterization in a dielectric sample. (a) Geometry of a structure.
(b) MDM spectra of the reflection coefficient at a dielectric loading.
Figures reproduced from Ref. [50], @2013 AIP.
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current. The electric and magnetic fields at a butt end of a wire
have mutually parallel components. All this results in appearing of
the power-flow-density vortex and nonzero helicity density F at the
butt end of a wire electrode. Figure 23 shows a microstrip structure
with a field concentrator for localized material characterization and
experimental results of the MDM spectra transformations for different
dielectric samples.

Because of the near-field properties, a microstrip MDM sensor
with a wire concentrator can be used for discrimination of enantiomeric
structures at localized regions. When one changes oppositely an
orientation of a bias magnetic field ~H0, one has an opposite rotation
of the power flow and an opposite sign of the helicity density F . This
allows localized sensing for prediction of samples with “right” and
“left” handedness. Figure 24 shows the setup of the measurement
system with a helical test structure for local determination of material

(a) (b)

Figure 24. Sensor with small helix particles. (a) Left-handed helix
particle. (b) Right-handed helix particle. Figures reproduced from
Ref. [50], @2013 AIP.

(a) (b)

Figure 25. Transmission coefficients for small helix particles. (a)
Left-handed helix particle. (b) Right-handed helix particle. Figures
reproduced from Ref. [50], @2013 AIP.
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(a) (b)

Figure 26. (a) Fano-resonant spectrum obtained in a ridged-
waveguide microwave structure with an embedded MDM ferrite disk.
(b) An enlarged picture of the high-order-peak part of the same
spectrum. Figures (a) and (b) reproduced from Ref. [41], @2004
Elsevier Publ.

chirality [50]. As a localized test structures mimicking objects with
chiral properties, small metallic helices were used. A wire concentrator
is placed near a metallic helix without an electric contact with it.
In Figure 25, one can see numerical results of the transmission
coefficients for the left-handed and right-handed helical test structure,
respectively. The spectral characteristics are obtained for two opposite
orientations of a bias magnetic field ~H0. The results in Figure 25
exhibit very specific symmetry properties: one observes restoration
of an entire transmission spectrum when handedness of a sample is
changed together with change of direction of a bias magnetic field.

6.2. Fano-resonant Interference. Generating Far-field
Angular Momenta from Near-field Microwave Chirality

Nowadays, in optics, we are witnesses of intensive development of
new capabilities of interaction of phase-structured far- and near-field
electromagnetic radiations. Also, interaction of phase-structured light
with matter is a new branch of optics. These studies concern, in
particular, phase analyses of near-field images in subwavelength optical
microscopy [51], Fano-resonant interference for effective biosensing [52],
interaction of far-field optical radiation with plasmonic structures
characterizing by near-field chirality [8, 9], generation of far-field
angular momenta from near-field optical chirality [10], generation of
twisted light (or light beams carrying orbital angular momentum) [53],
etc.. In microwaves, such capabilities of interaction of phase-structured
far- and near-field radiations have not been studied sufficiently.
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(a) (b)

Figure 27. Field structure on a butt end of a wire concentrator: (a)
the power-flow-density vortex and (b) the helicity density F . When
one changes oppositely an orientation of a bias magnetic field ~H0, one
has an opposite rotation of the power flow and an opposite sign of the
helicity density F (red colored instead of blue colored). Figures (a)
and (b) reproduced from Ref. [50], @2013 AIP.

Since the fields originated from a MDM ferrite particle are
distinguished by strong topological phase variations, new capabilities
for application of phase-structured microwave radiation become
evident. Long radiative lifetimes of MDMs combine strong
subwavelength confinement of electromagnetic energy with a narrow
spectral line width and may carry the signature of Fano resonances.
Figures 21 and 25 in this paper give an example of the Fano-resonant
spectra. In some microwave structures, interaction of the MDM ferrite
particle with its environment may have a more pronounced effect
of the Fano-resonance interference [23, 41–43]. Figure 26 shows an
example of such profound Fano-resonant oscillations obtained in a
ridged-waveguide microwave structure [41]. It is worth noting that
there is a strong analogy of this spectrum with the Fano interference
observed in semiconductor quantum dots [54]. Precise quantitative
phase measurements carried out based on such an interference effect,
can change microwave imaging science in fundamental ways. Together
with fundamental properties of this interaction, distinguishing by
the time and space symmetry breakings, novel applications are very
attractive. The observed microwave Fano resonances exhibit very
strong sensitivity to changes of the local environment. Perhaps
the most straightforward application of Fano resonances in MDM
structures may concern the development of microwave sensors for
chemical and biological objects with chiral properties [21, 50].

Another subject of a great interest in microwaves can be
generating far-field orbital angular momenta from near-field chirality
of MDM structures. On a butt end of a wire concentrator, shown
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in Figure 22, one has the power-flow-density vortex and the non-zero
helicity density. Figure 27 shows the field structure on a butt end
of this electrode. When one changes oppositely an orientation of a
bias magnetic field ~H0, one has an opposite rotation of the power
flow and an opposite sign of the helicity density F . Being used in
Ref. [50] as a near-field sensor, this device can also be used as a
small antenna for generation and applications of twisted microwave
radiation. The interaction of such twisted microwave radiation with
material structures will appear as a promising field of research and
technology. This also opens perspective for novel communication
microwave systems with topological-phase modulation.

7. CONCLUSION

Microwave ferrite structures with a reduced dimensionality brings into
play new effects, which should be described based on the quantized
picture and demonstrate the properties of artificial atomic structures.
The subwavelength confinement of the electromagnetic fields due
to ferrite particles with MDM oscillations is related to the field
quantization and symmetry breakings. A distinctive feature of the
near fields originated from MDM ferrite particles — the ME fields —
is the presence of the helicity structure.

Use of subwavelength MDM fields with energy localization and
symmetry breakings opens a perspective for novel near- and far-field
microwave applications. Unique topological properties of these fields
can be used to study specific structural effects in natural and artificial
materials. Presently, direct detection of biological structures in
microwave frequencies and understanding of the molecular mechanisms
of nonthermal microwave effects is a problem of a great importance.
The problem of effective characterization of chemical and biological
objects in microwaves can be solved when one develops special sensing
devices with microwave chiral probing fields. We showed that small
ferrite-disk resonators with magnetic-dipolar-mode (MDM) oscillations
may create microwave superchiral fields with strong subwavelength
localization of electromagnetic energy. Based on such properties of the
fields, we propose a novel near-field microwave sensor with application
to material characterization, biology, and nanotechnology.

Generation of far-field orbital angular momenta from near-field
chirality of MDM structures is another subject of a great interest in
microwaves. This will allow creation of localized microwave radiation
with spin and orbital angular momentums. Such propagating twisted
microwave fields can be used for material studies and communication
systems with topological-phase modulation.
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