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Correction to “Scattering by a Lossy Dielectric
Circular Cylindrical Multilayer, Numerical Values”

Salvatore Caorsi and Matteo Pastorino

In implementing the Richmond method for the computation of the
scattering by multilayer lossy dielectric cylinders, we found an error
in the above paper.! More precisely, the elements of the recursive
equation (4) (obtained by enforcing the continuity conditions at
the boundary between each pair of concentric cylinders) should be
rectified as follows
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The corrected formulas provide the right fields both inside and
outside the cylinders, whereas the error affected only the results inside
the cylinders, not outside them.
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Lateral Wave Contribution to the
Radiation from a Dielectric Half Medium

Reuven Shavit and Eitan Rosen

Abstract— Two methods are presented for the computation of the
radiation at microwave frequencies in a thin dielectric medium from a
source located in a dense dielectric medium. One is based on geometrical
optics and the other on physical optics. The geometrical optics approach
encounters some difficulties in the evaluation of the radiation in the thin
dielectric medium near grazing-incidence condition, due to excitation of
a lateral wave, which is not taken in consideration by this approach. The
physical optics method, which considers the lateral wave contribution
approaches this problem successfully and gives a better approximation of
the radiated field near grazing. Numerical results, which compare the two
methods, and experimental data are offered to validate the theoretical
approach.

I. INTRODUCTION

The interest in the radiation from a dense dielectric medium to
a thinner one traces back to Sommerfeld [1], who was the first to
evaluate the radiation from horizontal and vertical elementary dipoles
embedded in a dielectric half medium. The radiation problem was
revisited and investigated in depth by Brekovskikh [2], Banos [3],
‘Wait [4], King and Smith [5], and recently by Chew [6]. The problem
was formulated by matching the boundary conditions of the tangential
electric and magnetic fields at the interface between the mediums
and the Green’s function was computed. The far field radiation was
computed by using asymptotic techniques like the steepest descent
method. If the source is located in the denser medium a lateral wave
is excited in addition to the reflected and transmitted waves. Intensive
research to investigate the nature of the lateral wave have been
conducted by Staiman and Tamir {7}, Felsen [8], and King et al. [9].
Tamir and Dence [10]-[12] characterized the propagation in forest
environments by utilizing ray tracing techniques and the knowledge
gained on the lateral wave nature. Their research and the experimental
results focused in the 2-200 MHz frequency band. Most of the work
published so far considered the radiation field from a horizontal or
vertical dipoles in both mediums for radiation angles far from grazing
and at relatively low frequencies.

For this reason, an investigation has been initiated in order to
evaluate the radiation at grazing angles to the interface in the thin
dielectric medium for a horn antenna and at microwave frequencies.
The radiating antenna is embedded in the dense dielectric medium
and located, relatively close to the interface (Fresnel approximation)
[13]. Two methods for the computation will be presented, one based
on geometrical optics and the other on physical optics.

The main contribution of this study is to show the importance
of the lateral wave to the computation of the radiation at angles
near grazing in the thin dielectric medium at microwave frequencies.
Banos [3] and others showed its significance, if the observation point
is located in the dense dielectric medium and Tamir [11] showed
its importance along mixed paths in forest environments. The lateral
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Fig. 1. The basic configuration of the radiating antenna.

wave contribution is absent in the geometrical optics approach and
accordingly, it affects the accuracy of the computation giving an
edge to the physical optics approach. Experimental results support
the theoretical predictions.

II. THEORY

A. Geometrical Optics Approach

The basic configuration is shown in Fig. 1. The radiating antenna is
a homn with aperture dimensions A * B, embedded in medium 1. The
horn is linearly polarized with the electric field ' directed. Medium 1
is denser than medium 2 (¢; > £2) and is lossy (tan 8; # 0). Without
loss of generality, we will assume that medium 2 is free space. The
radiating antenna is inclined an angle 6o and is located at a distance [
from the interface. The center point of the radiating aperture is at the
origin in (2',%’, z") coordinate system and at (0,0, —{) in (z,y, z)
coordinate system. An incident ray from the antenna making an angle
#, (in medium 1) makes an angle #; (in medium 2) undergoing
refraction (according to Snell’s law).

Throughout the derivation by the geometrical optics approach,
it is assumed that the interface is in the Fraunhofer region (far
field approximation) of the radiating antenna (ro > AKB ). This
assumption, will be refined later on as we apply the Fresnel ap-
proximation to the physical optics approach. Due to the symmetry of
the structure in the zy-plane, the azimuthal radiation pattern of the
antenna in medium 2 (free space) for a given 6, remains unchanged
compared to the azimuthal radiation pattern when both mediums are
free space. Experimental verification proved this assumption to be
valid. Accordingly, our interest will be focused only into:the elevation
radiation pattern in the principal planes z’,z’ and rz (planes of
incidence). In addition, we will assume that the field distribution
in the radiating aperture will not be affected by the presence of the
interface near it. This assumption has been tested by measuring the
VSWR of the radiating antenna with and without medium 1 and no
significant change has been detected.

The radiation pattern in medium 2, computed by geometrical optics
approach, can be completed in two steps:

1) Computation of the incident electric field at the interface be-

tween the two mediums taking in consideration the absorption
loss in medium 1.

2) Computation of the transmitted electric field in medium 2
taking in consideration the reflection and refraction at the
interface of the incident spherical wave electric field (see
Fig. 1).

Given the E-plane radiation pattern, f.(8'), of the source antenna,

we can compute the radiation pattern of the antenna in medium 2 by

geometrical optics approach

2 cos 82
cosf; + ncosfs b

F(8) = f.(6") )}

in which n = \/e1/e2 - Ly represents the absorption loss along a
ray trajectory v’ (see Fig. 1) and can be approximated (for a low-loss
medium) by L, = e~ 1/2k1tan by (k1 is the propagation constant
in medium 1).

In (1) the spherical dependence, , of the electric field
has been suppressed. It is interesting to note that for 6 = 6 =
/2, F(6) = 0. This result of the geometrical optics approach implies
that, at grazing, the electric field is zero.
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=

B. Physical Optics Approach

The computation of the radiation pattern by the physical optics
approach is completed in two steps:

1) Computation of the electric field distribution just above the

interface at z = 01 (see Fig. 1).
2) Computation of the radiation pattern from the aperture field
distribution on the interface at z = 0%.

The computation of the field distribution at the interface is affected
by the lateral wave excitation [2]. Such a contribution is absent in
the geometrical optics approach, but is taken in consideration using
the physical optics approach. Throughout the computation we assume
that medium 1 is low loss and it doesn’t affect the field distribution
on the radiating antenna. The radiating antenna in medium 1 is a horn
with dimensions A  B. Upon the computation of the field distribution
at the interface we can improve by using the Fresnel approximation.
Following a well-known procedure outlined in [13], one can derive
the Fresnel zone approximation of the incident 8’ component of the
electric field, on the interface

=1 /7 8
E = B 20(1+C059)

x {C(Bu) — C(BL) = j[S(Bu) = 5(Br)l}

k2 sin? o/ —jkyr’
x el I Ly )
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L, denotes the absorption loss along a ray trajectory in medium 1,
pe is the distance from the horn phase center to its aperture and
C(x), S(z) are Fresnel integrals [13]. To obtain the field distribution
above the interface, we have to impose boundary conditions upon the
tangential electric and magnetic fields at z = 0.

Fig. 2 shows all the contributions to the total electric field (6’
component) at the observation point P(r',6') in medium 1 in the
principal plane 2, z'. These are E;, E,, and F the direct, reflected
and lateral waves, respectively. If we denote by #. = sin~'(1/n)
the critical angle (total reflection angle at the interface), the lateral

wave propagates only for angles #; > 6.. Thus, for radiation angles
61 < 6. only the direct (E;) and reflected waves (E,) contribute

I

B,
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Fig. 2. The electric field contributions to an observation point P in medium
L.

to the total field at P(r’,8’), while for radiation angles #; > 6. an
additional contribution exists due to the lateral wave, Ey, excitation.
Brekovskikh [2], Staiman et al. [7], Felsen [8] and King et al. [9]
investigated, thoroughly the nature of the lateral wave. This wave is
excited only if the radiating antenna is located in the denser medium.
Moreover, once it is excited, it can be characterized by an up-going
ray (lo) at the critical angle, a parallel ray (/1) to the interface in
medium 2, and a down-going ray (/) at the critical angle as shown
in Fig. 2.

The continuity of the tangential electric and magnetic fields de-
termines the boundary conditions to be satisfied at z = 0% in the
principal plane z, z. Since the reflection coefficient, 1, is accounted
for the continuity of the tangential magnetic field, we may have to
impose only continuity of the tangential electric field, ¢, at z = o+,
Thus

Ei(1 ~R)cost 61 < 8.
Ei={ E:(1 -.R)cosb — Er, cosf. 6, =0, 6)
—FEp cosf, 6y > 4.

In the domain #; < 6. the reflection coefficient R is the reflection
coefficient {14} for an incident planar wave with the electric field
linearly polarized in the plane of incidence z',z', which is the
geometrical optics approximation. In the transition domain §; ~ 4.,
however, this approximation is not accurate due to the excitation of
the lateral wave and we need a better approximation. Brekovskikh
[2} computed such an approximation for the reflection coefficient, R
in the vicinity of the critical angle given by *

R=1- dne I=/® T
- T(1/4)(kir1/2)1/4 | sin 26,
2 2\ 2 - 2\ 3
L LY (Y
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where

T(1/4) = 3.6256 7 = V2kir sin b ;

and r; is the distance from the “virtual” source to the observation
point P(r',8'). If the observation point is on the interface r1 = 7',
close scrutiny into (7) reveals that R ~ 1 at the critical angle, as
expected. The lateral wave, E generated by an elementary vertical
dipole in a dielectric half medium has been computed by Brekovskikh
{2]. This expression is valid for the entire range of the lateral wave’s
existence 81 > . . If we multiply this expression by the incident
electric field, E; (6., o) at the critical angle as given by (2), we obtain

the lateral wave generated in the principal plane x, z in medium 2,
along the interface at z = 0. Such an exercise yields

2jn? Iy
ko(n? = 1)  /p13/*

EL = —Ei(be,10) e Fm) )

in which p is the radial distance in cylindrical coordinates (p, ¢, z)
and F(n) is the Fresnel integral [13] with the argument 7 given by
(8). The asymptotic expansion of F'(7), useful in the range ¢; ~ 6.,
in powers of 1 can be found in [2] and is reproduced here

F(y) = re /%y
4 32 T\
X{r(1/4)[1 15 5(7 +

() () ]

(10)

It is interesting to note that as #; — 6. the amplitude of the
lateral wave does not vanish, as it would seem at first glance. In
the vicinity of the critical angle, the lateral wave amplitude, Er, is
highly dependent on the ratio of F(7) and l?/ 2. All other quantities
in (9) behave monotonic; however, this ratio is finite at the limit
61 — 6., as one can observe by studying Fig. 2 and (10). In the
range §; > 6., F(n) as given by (10) is nonconvergent and we need
the asymptotic expansion of F(7) in powers of 1/n° [2]
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(11

The lateral wave significance is in the fact that it extends the existence
of the electric field in medium 2 beyond the critical angle point.
This observation is in contrast to the geometrical optics approach,
which predicts zero field beyond the critical angle point. Inspection
of (9) reveals that beyond the critical angle point the field distribution
decays as 0(p~2) and it has a progressive phase along the interface.

The tangential electric field distribution on the interface, E:, can
be viewed as the source of the radiated field in medium 2 in the
principal plane =, z. Standard procedure [13] transforms the electric
field distribution into equivalent magnetic current distribution on the
interface. Given the equivalent sources, one can show {13] that the
radiation pattern in the x, z plane is given by

f(8) = / E(«)elto™ 50 gy (12)
Sa

where S, is the aperture dimension on the interface. One can notice
that the radiation pattern in medium 2 is actually the Fourier transform
of the field distribution on the interface. Accordingly, a standard FFT
routine can be applied to compute (12) in a fast and efficient way.

II. RESULTS

A test module made of plywood and internally plated with ab-
sorbing materials (except of the radiating aperture) was constructed.
The module was filled with silica (e, = 2.1,tané = 50 - 10~*
to simulate the radiation conditions from a half dielectric medium.
The module’s dimensions were 1.5 m (L), 0.6 m (W), and 0.7 m
(H). The transmitting antenna was located 30 cm beneath the silica
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Fig. 3. The computed, E;, field distribution on the interface

(8o = 40degrees,! = 30 cm, f = 5.7 GHz).

and the air interface. The module was placed on a azimuth-over-
elevation positioner and rotated to measure azimuth and elevation
patterns. Both transmitting and receiving antennas were chosen to
be standard horns with dimensions 1720 cm and p. = 35 cm.
The distance between the receiving and transmitting antennas was
12 m to fulfill the far field criterion for the operating frequency (5.7
GHz). The system was calibrated with the transmitting and receiving
antennas in free space without the silica.

Fig. 3 shows the dependence of the computed, E;, tangential
electric field distribution on the interface as a function of the
coordinate z. The inclination angle, 8o of the radiating antenna was
40 degrees. As one can notice, the tangential electric field has shallow
nulls and sidelobes, since the interface is located in the Fresnel region
of the radiating antenna. Moreover, the amplitude of the electric
field extends beyond the critical angle point due to the lateral wave
contribution. The decay of the field beyond this point is 0( 7).
In comparison is shown the field distribution without the lateral
wave contribution. One can observe that without the lateral wave
contribution the field amplitude drops rapidly close to the critical
angle point. The fine structure of the field distribution near the critical
angle determines solely the radiation pattern for angles near grazing
and has a cardinal effect upon the radiated field accuracy.

Fig. 4 shows the computed (g.0. and p.o. approaches) and mea-
sured patterns in medium 2 with the geometry parameters 6o =
40 degrees,! = 30 cm:. For comparison, the radiation pattern of
the transmitting horn (oriented at 40 degrees) in free space is
plotted. The system is calibrated to the received signal in free
space. The peak location of the computed (by both methods) and
measured patterns differ slightly and agrees well with*Snell’s law
[14]; however, the slope near grazing is different. The descend of
the radiation pattern computed through physical optics approach
with the lateral wave contribution, shows a better agreement to
the measured data. In addition, one can observe a significant beam
broadening of the pattern through the silica compared to that in free
space. This beam broadening can be attributed to the refraction at
the interface. The agreement between the computed and measured
patterns in the region around O degrees is less satisfactory. This
result may be caused by the diffraction from the edges of the test
module (finite in length). The computation through physical optics
considers an infinite interface length (z-axis in Fig. 1) without any
diffraction effects. This diffraction effect may be negligible in the
main beam as shown in Fig. 4, but significant compared to the
sidelobes.

Fig. 5 shows the dependence of the radiation pattern on the
inclination angle, 8o, of the radiating antenna in the silica. The
theoretical patterns have been computed with the physical optics

1 AVNNE»
Y‘ l/_'\\\ ce space
avat A\
AN LR
AVA W LR x

-25
-15 0 15 30

Amp [dB]

P
/

Angle [deg]

Fig. 4. Measured and computed radiation patterns (fo = 40 degrees, | = 30
cm, f = 5.7 GHz).
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approach. For §o angles close to the critical angle, 6., we can
identify three observations: the slope of the radiated field near grazing
is constant, the peak location of the main beam moves toward
grazing according to Snell’s law, and the level of the main beam
peak decreases due to an increase in the reflection coefficient from
the interface. The difference in the sidelobe levels for the case
o = 0degrees between the measured and theoretical computations
may be caused by parasitic diffraction from the back and sidewalls
of the test module.

IV. CONCLUSION

The purpose of this study was to determine the radiation pattern
in a thin dielectric meédium from an antenna embedded in a dense
dielectric medium. Two methods for computation were presented
and compared to experimental data. The physical optics approach
proved to be more accurate than the geometrical optics approach
for radiation angles close to grazing. The lateral wave contribution
to the field distribution beyond the point of total reflection proved
to be significant for near grazing radiation angles. The theory has
been tested experimentally and the agreement has been found to be
satisfactory.
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