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Efficient Full-Wave Method of Moments Analysis and
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Abstract—An efficient full-wave MoM analysis and a design
methodology for radial line planar antennas (RLPA) is presented.
The feeding network of the antenna is solved by using the appro-
priate Green’s function defined for the problem. Filling of the
Z-matrices is considerably simplified due to the analytical formu-
lation of the MoM. Also, assumptions made on the minimum size
of the coupling neighborhood for the feeding conductive probes in
the radial line enabled significant time reduction of the time spent
on the matrix inversion. Moreover, exploration of the RLPA sym-
metries leads to several improvements in the overall performance.
The MoM results of the feeding network are combined with the
results of the radiating elements for obtaining the performance of
the feeding network under load conditions. It is shown that the
radial position of the radiating elements in the RLPA resemble
an equilateral triangular array grid. This observation enabled to
perform the analysis of the array external mutual coupling effect
using the equivalent “unit-cell” concept derived from an infinite
phased array analysis. Comparison of the MoM results of the
feeding network to CST commercial software show significant
computational timesavings and the results are found to be in a
good agreement.

Index Terms—Method of moments (MoM), radial line planar an-
tenna (RLPA).

I. INTRODUCTION

T HE increased demand for higher transmission capacity
is driving the research to investigate new ways to operate

in multiple frequencies with orthogonal polarizations. This
requirement motivated the current research to look for a high
gain, dual frequency and dual circular polarization antenna
for two-way Ku-band satellite communication. Although mi-
crostrip array antennas are an attractive candidate in view of
their cost, weight and low profile, they encounter difficulties
in achieving high gain values in excess of 30 dBi. The main
reason resides in conduction and dielectric losses due to the
large length of the microstrip transmission lines forming the
feeding network. In order to overcome the problem associated
with high conduction losses but remain with microstrip radi-
ating elements, an alternative feeding structure in the form of a
radial line has been proposed for planar antennas. A radial line
power distribution network was first conceptualized and built
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by Goebels and Kelly [1] to feed an antenna with annular slots
as radiators, also called radial line slot antenna (RLSA). The
authors provided a general approach to get an arbitrary polar-
ization from the radiating slots by their proper orientation on
the radial line top surface. A derivative from RLSA concept was
studied by Carver [2] and Nakano [3]. They used low profile
helices fed from a radial line through small conductive probes
to obtain circular polarization. The radial line was excited at its
center by a probe and the helices were distributed on concentric
circles on the top surface of the radial line. In 1991, Haneishi
et al. [4] replaced the helices with circular polarized microstrip
elements to obtain a Ku band radial line planar antenna (RLPA)
with high efficiency (90%). The same concept and radiating
elements were used also by Yamamoto et al. [5] to design an
RLPA with shaped beam.

One of the main issues in the RLPA design is the proper se-
lection of the feeding probes lengths in the radial line. This se-
lection directly affects the antenna amplitude distribution and
thus the overall antenna performance. Various attempts to per-
form the analysis of the radial line-feeding network can be found
in the literature. In [6], [7] closed-form expressions for the self
and mutual impedances were computed using the electromotive
force (EMF) method making the assumption of a single term co-
sine current distribution on the probes. An additional assump-
tion made is that all probes are equally matched with a constant
termination neglecting the coupling between radiators out-
side the radial line. In [8]–[10] Pazin and Leviatan suggested a
synthesis procedure for the feeding network that uses an approx-
imate model of monopoles in free space to simulate the feeding
probes in the radial line and takes into account the mutual cou-
pling from neighboring probes according to the same model.
This procedure was used in [11], [12] to design a new type of
Ku-band, dual frequency and dual circular polarization multi-
layer microstrip array antenna with low side-lobes fed from a ra-
dial line through conductive probes. All these analyses have lim-
ited accuracy and result in unsatisfactory comparison between
the required performance of the antenna (side lobe level, aper-
ture efficiency, and matching) and the actual measured results.
An improved and more accurate analysis approach is described
in [13] using a mode matching analysis on each discontinuity
(antenna probe) in order to find the equivalent circuit for the ra-
dial line loaded with the antenna’s probes. The analysis assumes
a rotational symmetry of the system. However, it is impossible
to apply this model to applications with scattering that breaks
this symmetry [11]. Recently in [14], it has been reported on
full wave analysis using the method of moments (MoM) for
the analysis of the RLSA. The major drawback of full wave
analysis of the RLPA, which takes in consideration the internal
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Fig. 1. The geometry of the radial line (a) element layout (b) radial line side
view.

coupling between the feeding probes and the external coupling
between the radiating elements, is its numerical and computa-
tional complexity, especially for large arrays with hundreds of
elements, which makes it prohibitive for a design and optimiza-
tion process.

The general geometry of the RLPA is shown in Fig. 1. The
antenna consists of a radial line with a central excitation probe
and probe-fed radiating elements. The inter element spacing be-
tween elements is , the distance between the circles is ,
the height of the radial line is and the probe lengths in the th
circle is .

The radial line is made of perfect electrical conductor (PEC)
and filled with air. The excitation probe is simply an extension
of the central probe of the coaxial feeding line that protrudes into
the radial line. An outward traveling wave excited by the cen-
tral probe couples the electromagnetic energy to the radiating
elements feeding probes. The height dimension of the radial
waveguide is selected to support only the dominant transverse
electromagnetic mode (TEM) and the other, higher modes are
evanescent. The number of the radiating elements determines
the diameter of the parallel plate waveguide. The radial line is
terminated with an absorbing material evenly distributed on its
perimeter. In this case, a non-resonant structure with a traveling
wave nature is obtained. Alternatively, the antenna rim can be
short circuited with a PEC to obtain a resonant structure in the
radial line. In this case, a higher (close to 100%) radiation effi-
ciency can be obtained, but the Green’s functions required are
more involved. The array of radiating elements is made of
identical radiators fed by probes. They are located on concen-
tric circles with elements in circle number . Such place-
ment ensures a more efficient coverage of the radial waveguide
top surface [2].

In this paper, an efficient MoM formulation and a numerical
methodology based on the full wave analysis of the structure of
the radial line feeding network is presented. This procedure can
be used in an optimization design process of the RLPA taking
in consideration both the internal and the external coupling be-
tween the radiating elements. In the proposed analysis, the ap-
propriate Green’s functions for a non-resonant structure are de-
rived and the induced currents on the feeding conductive probes
are found using an efficient MoM procedure.

In Section II, the Green’s functions used in the problem
formulation are introduced and the process of the integration
of the feeding network with the radiating element is explained.

Fig. 2. The geometry of a � directed elementary current between two parallel
plates.

In Section III the design methodology is explained and in
Section IV, a numerical example for the design of 7-circles
RLPA is given and the results are compared to the CST soft-
ware. Finally, in Section V some conclusions are drawn.

II. THEORY

A. Green’s Functions Formulation

Three different dyadic Green’s functions are required for the
solution of the feeding network shown in Fig. 1. The first dyadic
Green’s function is related to the currents flowing in the -direc-
tion on the probe surface. The second dyadic Green’s function
is related to the excitation region at the base of the probe, which
can be represented by an equivalent magnetic current ring. The
third dyadic Green’s function is added due to radial currents,
which develop on the cap of each probe. Adding this function al-
lows us to get results that are more precise in long probes cases,
which are in close proximity to one of the PEC plates of the
RLPA.

The geometry for the first dyadic Green’s function is shown
in Fig. 2.

The parallel plates are made of PEC and separated by the
distance . The magnetic vector potential, due to the electrical
current source, in the parallel plate structure can be written
in the form,

(1)

in which is the dyadic Green’s function for an elec-
trical current source positioned at coordinate and is
the medium permeability. The conductive probe has a radius
and length carrying a current distribution, . Rotational
symmetry is assumed during the solution of the problem so we
have . Solution of the problem in cylindrical coordi-
nates for the -directed magnetic vector potential yields the
dyadic Green’s function component,

(2)



2296 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 59, NO. 6, JUNE 2011

Fig. 3. The geometry of an annular magnetic current between two parallel
plates.

with and

is the Hankel function of second kind and zero order [15].
Knowledge of the directed magnetic vector potential en-

ables to compute the electric fields , and the magnetic
field in the parallel plates as described in [17].

The geometry for evaluating the second dyadic Green’s func-
tion is shown in Fig. 3.

The excitation describes the radial electric field in the coaxial
opening of the exciting central probe of the parallel plate struc-
ture. The radial electric field can be represented by an equivalent
annular magnetic current source. The magnetic field, due to
this magnetic current source, can be written in the form,

(3)

in which is the dyadic Green’s function and is
the medium permittivity. Rotational symmetry is assumed so
we have . Solution of the problem in cylindrical co-
ordinates for the directed magnetic field [16] for an annular
magnetic current source of radius placed at yields
the dyadic Green’s function component,

(4)

in which is the Hankel function of second kind and
first order and is the Bessel function of first order [15].
Knowledge of magnetic field enables to compute the electric
fields , in the parallel plates as described in [17].

The third dyadic Green’s function is due to radial currents,
which develop on the cap of the conductive probes with radius .
This consideration is significant for long probes cases in which
the probes caps become strongly coupled to the closest PEC
plate of the radial line. This capacitive coupling need to be taken
in consideration to improve the accuracy of the computations
as will be shown in the following. The geometry for the third
dyadic Green’s function is shown in Fig. 4.

Fig. 4. The geometry of an annular radial current between two parallel plates.

The magnetic field, due to these radial electric current
sources, can be written in the form,

(5)

in which is the dyadic Green’s function. Due to
the rotational symmetry of the problem we assume .

Solution of the problem in cylindrical coordinates for the
directed magnetic field [16] for a radial directed annular cur-
rent source of radius placed at yields the dyadic
Green’s function component,

(6)

with the boundary conditions at , . Use
of the separation of variables method results in

(7)

Knowledge of magnetic field enables to compute the electric
fields , in the parallel plates as described in [17].

B. MoM Formulation

Evaluation of the current distribution on the conductive
probes in the radial line is possible either by numerical solution
of a differential equation using methods like finite element
method (FEM) or finite difference time domain (FDTD)
method or by solving an integral equation using MoM. In the
case under consideration the MoM is beneficial because of
its small surface to volume ratio, which translates into less
memory and computational time, therefore it was the chosen
method. The integral equation formulation used in this problem
is the electric field integral equation (EFIE) due to its relative
simplicity. The requirement of the EFIE formulation is that the
total tangential electric fields on the conductive probes surface
vanish. This requirement results into two coupled integral
equations in the following form:
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TABLE I
MOM IMPEDANCE MATRIX ENTRIES

TABLE II
MOM INCIDENT VECTOR ENTRIES

(8)

in which , are the and components of the inci-
dent electrical field due to the coaxial cable opening of the cen-
tral excitation probe and , are the scattered fields
from all probes under investigation. The numerical solution of
the integral equation is based on MoM using Galerkin formula-
tion with basis and testing functions set as polynomial functions
[21], such that the current distribution on the probes, and
the radial current distribution on their cap, can be repre-
sented by

(9)

and

(10)

In the above expressions, is the probe radius and is the
length of the probe. The coefficient, guarantees continuity
of the current at . The MoM formulation results in the
matrix equation:

(11)

in which is an sub-matrix and
is an sub-matrix. is a sub-matrix of

matrix and, in general, it expresses the relation between the
-component of the scattered field and the -directed current.

For the sake of completeness, the entries of the above matrices
are summarized in Tables I and II. All the expressions in the
tables refer to the coupling between the th-basis function of
the current on probe A and th-basis function of the current on
probe B. The distance between the center points of the probes
A and B is denoted by .

In Tables I and II the following abbreviations were used:

(12a)

(12b)

(12c)

(12d)

(12e)

(12f)

(12g)
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In the above expressions (12a)–(12d) are evaluated analyti-
cally, and (12e)–(12g) are evaluated numerically.

If the -matrix is non-singular then its inverse exists and the
unknown coefficients of the impressed currents can be found by

. The size of the -matrix is proportional to the
number of probes multiplied by the number of basis func-
tions, describing the unknown currents ,
in which and represent the number of basis functions
used to represent the and currents on the probes, respec-
tively. Therefore, the number of operations required to com-
pute the matrix is proportional to . In ad-
dition, the number of operations required to invert the ma-
trix is proportional to . Accordingly, the total
computational complexity can be estimated by

. The number of computa-
tions in the case of the RLPA is governed mainly by the second
term therefore, . This term be-
comes prohibitive in terms of required memory and computation
time for medium and large arrays.

III. DESIGN METHODOLOGY

In this study, an alternative approach to the inversion of the
entire matrix is proposed. The approach is based on the phys-
ical assumption that the current distribution on each conductive
probe is mainly determined by its close neighbors enclosed
in a circle with a radius of around the probe under consider-
ation and the rest of the interactions can be neglected. Accord-
ingly, to evaluate the current distribution of a certain conductive
probe, a reduced sized matrix with only elements
is needed. Thus, the computational time required to compute
all the currents could be estimated by

in which the first
term refers to the number of operations required to compute
the elements of all matrices and the second term refers to the
number of operations required to invert all the matrices. This
result indicates that the solution using the proposed approach is
especially significant in the case of antennas with medium and
large number of probes .

Once the currents are known, the self and mutual impedances
at the ports of the probes can be determined using the
EMF method [18]

(13)

in which is the electric field at the location of the
th probe due to the radiation of the th probe with all other

probes open circuited. The size of the probes port impedance
matrix, is . The electric field
is composed from the summation of the incident field from
the th probe and the scattered fields from its neighbors,
making the same assumption discussed above. Evaluation of
the scattered fields requires the computation of the induced cur-
rents on the open circuit probe neighbors of the th probe,
which are illuminated by the incident field of the th probe.
Therefore, the computational complexity required to compute
the elements of the port impedance matrix is equal
to

Fig. 5. The representing sector of the RLPA.

. Additional savings in the computational
complexity can be obtained if one recognizes that the RLPA
under consideration is composed of concentric circles with
probes in the th circle. Thus, the whole antenna can be built
by rotating a sector. Such a “representing sector” is shown
in Fig. 5. One can observe that the port’s mutual impedance

between probes and ( , are not located in the “repre-
senting” sector) can be mapped to a mutual impedance between
probes and , such that probe corresponds to probe in the
“representing” sector and probe is mapped to probe which
its relative position to is identical to the position of relative
to . This mapping reduces the amount of impedance matrix
entries computations from to .

Two additional savings each by a factor of 2, are related to the
filling of the port impedance matrix . The first is related to
the reciprocity of the matrix elements such that .
The second is related to the observation that if probes and
make an angle of between them, exists an additional
probe , which makes a negative angle with probe and is re-
lated to in the same fashion as the probes and are related,
such that . These two type of savings reduce the
total computation complexity of the proposed MoM approach
to in comparison to

using the straightforward matrix
filling.

Initially, the necessity to take in consideration the radial
currents on the probes cap for the simulation accuracy was
tested. Fig. 6 shows the improvement in the accuracy of the
self impedance of a long probe due to the addition of the radial
currents contribution by comparing three models: the CST
simulation, the MoM results without radial currents and the
MoM results with the added radial currents. The probe length
is , its radius is and the height of
the radial line is . As it can be noticed, the addition
of the radial current contribution significantly improves the
accuracy of the self impedance values. For smaller size probes,
the contribution of the radial currents on the probe cap is less
significant and can be neglected.

A computational time comparison between CST and the pro-
posed MoM procedure of the port impedance matrix, for
various cases, is shown in Table III. The computations were per-
formed on a PC with a 2 Xeon Quad core processor with 16 GB
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Fig. 6. Real and imaginary self input impedance of a single probe in the radial
line �� � � ��� � � � ��� � � ����� ��	.

TABLE III
COMPUTATION TIME FOR DIFFERENT CASES OF THE PORT IMPEDANCE MATRIX,

� .

RAM. The meshing in the CST simulations was and in
the MoM simulations, 40 parallel modes and 4 basis functions
were used.

The results confirm the efficiency of the proposed MoM.
Time savings with a ratio of 1:47 are obtained for an antenna
with 19 probes. This saving ratio increases with the size of the
antenna as explained above.

The active impedance of the radiating element determines
the port impedance of each probe in the array. Computation of
the active impedance takes in consideration the external mutual
coupling from the element’s neighbors.

This type of computation for all the probes is a very tedious
process and depends largely on the geometrical complexity of
the radiating elements layout.

In this study, a different and more efficient approach to the ac-
tive impedance computation has been adopted. Close inspection
of the array layout reveals that it resembles to a certain extent
the layout of an infinite array with an equilateral triangular lat-
tice grid. In such an infinite array, all its elements have identical
active impedance and it can be computed using the “unit cell”
concept. The computational savings and the accuracy of this as-
sumption increases with the size of the array. The geometrical
equilateral triangular grid parameters have been optimized to be
very “close” to the original geometrical configuration. Fig. 7,
shows such an example of an optimized triangular grid lattice
compared to the RLPA layout with seven circles. The two grid
layouts are very close, an observation, which justifies the “unit

Fig. 7. Comparison between a 7 circles circular array configuration to an opti-
mized equilateral triangular grid lattice.

cell” active impedance approach for the array under investiga-
tion. Moreover, this assumption is further justified for uniform
amplitude distribution of the radiating elements, as is the case
in our study.

IV. DESIGN EXAMPLE

The design methodology proposed was implemented for a
typical RLPA case of seven circles array with a total number of
168 radiating elements and uniform aperture distribution. The
chosen height of the radial line was to allow only
propagation of the TEM mode in the radial line in the required
frequency band 11.5–12.5 GHz. The spacing between adjacent
probes on each circle is and the spacing be-
tween circles is . The radius of all probes is set
equal to and the feeding coax dimensions of the
central excitation probe are: inner radius and
outer radius .

Fig. 8 shows a comparison between the active reflection co-
efficient of a stand-alone radiating element, the center element
in the finite array layout (with all elements excited) and the unit
cell element in an infinite array with equilateral triangular lat-
tice grid.

One can observe a satisfactory agreement between the active
reflection coefficient of the center element in the finite array and
that of the unit cell element in the infinite array. The simulations
were performed with the CST commercial software.

In the next phase of the study, the results obtained from the
MoM calculations of the radial line feeding network and the ac-
tive impedance calculations were combined. Given the -ma-
trix, one can derive the -matrix of the system through the re-
lationship [19]: where is a

diagonal matrix with equal to the
characteristic impedance of port , usually 50 . In case the ac-
tive impedance is connected to the port instead of ,
the incident and reflected waves at port change. The new scat-
tering matrix connecting these new power vectors is dif-
ferent from the original one.
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Fig. 8. Reflection coefficient comparison between the stand-alone radiating el-
ement, the active reflection coefficient of the center element in the finite array
and the active reflection coefficient of the unit cell element in an equilateral tri-
angular grid lattice infinite array.

However, it is expressible in terms of the original and
the power wave reflection coefficient of with respect to

[20], i.e.,

(14)

in which and are diagonal matrices with their th diag-
onal components being and ,
respectively. In (11), indicates the complex conjugate
transposed matrix. The reflection coefficient, is given
by . In this way the
scattering matrix of the feeding network and the active
impedance of the radiating element are combined to repre-
sent the performance of the entire system (feeding network and
radiating elements).

The radiating element used in the simulations is a microstrip
circular patch. In the patch metallization, there are two indents,
which are optimized to give circular polarization. The necessary
feature of the proposed element is its capability to control the
phase of the radiated field by turning the radiating patch around
its feeding probe. This is a desirable feature for this type of
antenna because it enables to correct the phase of the radiated
fields on each circle. CST simulations of the stand-alone patch
provide the rotation angle of the elements in a certain circle in
the same manner as discussed in [12].

Using the procedure outlined in [10] the plots in Fig. 9 were
generated and have been used to determine the initial values
of the probes. Table IV outlines the required probes coupling
coefficients to obtain uniform distribution, the initial probes
lengths extracted from Fig. 9, the corresponding coupling
coefficients computed with the proposed MoM procedure, the
final probe lengths after an iterative optimization process and
the corresponding computed coupling coefficients for these
probe lengths.

The length of the central excitation probe is 5.65 mm and was
obtained from the requirement of matching considerations of the
RLPA at the design frequency. Fig. 10 shows the dependence of
the coupling coefficient of various probes on the third circle.

The comparison is made between CST and MoM results for
several frequencies. One can observe a fluctuation in the cou-

Fig. 9. Coupling vs. probe length on different circles based on the procedure
described in [10].

TABLE IV
COUPLING AND PROBE LENGTHS AT THE INITIAL AND FINAL STAGES OF THE

DESIGN

Fig. 10. Comparison between CST and MoM results for the coupling coeffi-
cient on the third circle as a function of the probe index for different frequencies.

pling coefficients for different probes. This fluctuation is due to
a “shadowing” effect to the incident wave caused by probes on
smaller radius circles.

This interesting effect has been observed experimentally in
[3] and validated numerically in this study. Fig. 11 shows the
feeding network reflection coefficient at the feeding network
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Fig. 11. Comparison between CST and MoM results for the reflection coeffi-
cient at the input central probe of the seven circle feeding network.

Fig. 12. Near field distribution (a) amplitude and (b) phase above the simulated
antenna at 12 GHz.

input. The final antenna comprising of the feeding network and
the optimized radiating element was simulated with CST com-
mercial software. Fig. 12 shows the simulated near-field phase
and amplitude distribution at 12 GHz at a distance above
the aperture. The black rings denote the array element rings lo-
cation.

The amplitude distribution shows the absolute value of the
field strength and the phase distribution shows the phase differ-
ence of the two orthogonal field components relative to .

One can observe the uniformity of the phase and amplitude
distribution. Figs. 13 and 14 show the radiation patterns (copol
and xpol) and the axial ratio of the RLPA obtained at 12 GHz
in the two cardinal planes . The axial ratio on
the antenna boresight is less then 1 dB. The antenna aperture
efficiency is 82%.

The results show a good agreement with the theoretical pre-
dictions, which in turn demonstrates the accuracy of the pro-
posed design methodology.

V. CONCLUSION

An efficient full wave analysis and a new design method-
ology for the RLPA was presented. The analysis of the feeding
network is based on MoM solution of EFIE formulation with
corresponding Green’s functions. It has been demonstrated that

Fig. 13. RLPA radiation patterns (co-pol and x-pol components) at 12 GHz in
two cardinal planes �� � � � � � �� �.

Fig. 14. Axial ratio at 12 GHz in two cardinal planes �� � � � � � �� �.

taking in consideration the radial currents on the probes cap is
significant for long probes. Assumptions made on the minimum
radius size of the coupling neighborhood for the feeding con-
ductive probes in the radial line enabled significant time reduc-
tion of the computational time spent on the matrix inversion.
Explorations of the RLPA symmetries lead to a considerable
simplification to the computation and the filling process of the
port impedance matrix. The MoM results of the feeding net-
work were combined with the results of the radiating elements
for obtaining the performance of the entire antenna taking in
consideration the external (outside the radial line) coupling by
approximating the array lattice by an equilateral triangular lat-
tice of an infinite array. Finally, a seven circles antenna array
with 168 radiating elements with uniform aperture distribution
operating at 12 GHz was designed. Comparison of the computa-
tional time using the proposed MoM formalism and CST show
significant savings and the computed results are found to be in
a good agreement.
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