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An Efficient and Practical Decoupling Feeding
Network for Antenna Phased Arrays

R. Shavit, Senior Member, IEEE, and E. Rivkin

Abstract—A new approach to design decoupling feeding net-
works for large antenna phased arrays is proposed. The approach
is based on a combination of two existing methods, resulting in
significant hardware savings. The decoupling network allows
matching each of the input ports individually and independently
of the excitation. A genetic algorithm was used to change the
values of the components for optimum performance in case the
decoupling network is lossy.

Index Terms—Antenna arrays, decoupling, impedance matrix.

I. INTRODUCTION

VER the years, the use of antenna arrays increased in var-
O ious areas (such as communication, biomedicine, radars,
etc.). One of the major problems in antenna phased arrays is cou-
pling among the elements, which causes difficulties in matching
the system for different predefined radiation patterns. The active
impedance at each port depends on the input currents, and dif-
ferent matching networks are required for every excitation.

There are two main approaches to deal with the problem. The
first one is based on reducing the mutual coupling using prelim-
inary measures and calculations, leading to compensation for
the mutual coupling effect in the antenna array [1]. The second
one is based on designing a feeding network connected to the
antenna array, such that its input ports are decoupled and can be
matched independently of the excitation [2], [3].

In this letter, the second approach is chosen. The theoret-
ical basis for the proposed solution is the eigenmode theory [2],
leading to a network that excites the eigenmodes of the array and
decouples the ports. Hardware implementation of the decou-
pling network (DN) was examined for an array of 2 x 4 dipoles
above a large ground plane and is based on a combination of
the two methods [2] and [3]. Both methods use directional cou-
plers for implementation. The first method uses symmetries in
the array and performs decoupling in stages. The second method
is a general one, but requires a large number of couplers. The
benefits of the combination between the methods are significant
hardware savings as will be described.

II. PROBLEM FORMULATION

The problem of mutual coupling arises in antenna arrays due
to small distances between the radiating elements, resulting in
dependence between the ports’ currents I; and voltages V;.
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Fig. 1. The geometry of a 2 X 4 dipole array above a large ground plane.

This effect can be described for an M-elements array
through the impedance matrix [Z], with Z; ; representing the
coupling between the 2 and j elements. Accordingly, the active
impedance at the sth port is given by
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As one can notice, the active impedance (and therefore, the
active reflection coefficient) at each port depends on the input
currents, leading to significant power mismatch. The problem
becomes acute for phased arrays, where the phases of the cur-
rents always change. This coupling might produce blind spots
in the phased array radiation pattern.

In this letter, without loss of generality, we chose to examine
the effect of mutual coupling and search for a solution to the
problem for an array of 2 x 4 dipoles above a large ground
plane. Due to its simplicity, the [7] matrix of such an array can
be easily calculated with no need of using advanced numerical
methods. The suggested array geometry is shown in Fig. 1.

Such an array has a full 8 x 8 [7] (and [S]) matrix, where all of
its elements can be calculated using the reciprocity theorem and
the analytical expressions of the near field of a dipole [4]. Mathe-
matically, the main goal is to transform the full [ Z] (or [S]) matrix
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Fig. 2. Schematic drawing of the system, which includes the antenna array [.S]
and the decoupling network [Sp].

to a diagonal [Z,] (or [Ss]) matrix through an additional network
connected to the antenna array, such that [Z,] is the impedance
matrix of the whole system and [S,] is its corresponding scat-
tering matrix. Once the system matrix is diagonal, matching is
possible at each port independently of other ports.

The diagonalization of the impedance matrix [Z] is obtained
using the eigenmode theory, as described in [2]. The 2M port
schematic decoupling network connected to the antenna array
(described also by the scattering matrix [Sp]) is shown in Fig. 2.
One of the design considerations of the decoupling network is
the requirement that its inputs and outputs should be matched
for efficient power transmission to the antenna array elements.

This implies that the structure of [Sp] should be

_( [l [Spax]" )
5= (s 1) @
Applying network relations and using (2) leads to
[Ss] = [Sp,21]" [S][Sp,21]- 3)

As mentioned above, [Ss] should be diagonal, which implies
that [Sp »1] must diagonalize [S]. This can be accomplished if
we choose

[Sp.21] = [Q] = [Ss] = [I'] = diag{v1,72,.--, 7} (4

in which the matrix [Q] is composed from the eigenmodes of the
antenna array arranged in columns. Once [Ss] is diagonal, [Zs]
is diagonal as well, due to the relationship

[Zs] = Zo ([U] - [Ss]) " ([U] + [Ss]) (5)

in which [U] is the identity matrix and Zj is the characteristic
impedance of the ports.

The suggested decoupling network is reciprocal and lossless.
Its input and output ports are matched and decoupled. The power
is transferred according to the matrix of the eigenmodes [Q)].
Each of the input ports excites a different eigenmode such that
every excitation is a superposition of the orthonormal eigen-
modes. The input ports are now independent of each other, and
this allows matching the ports individually with a self-matching
network.

Such a network can be implemented in software at the base-
band layer by connecting the array to a computer, which per-
forms the matrix calculations and fulfills the network’s desig-
nation. However, this implementation is narrowband because of
the time delays involved in the calculations, which become sig-
nificant when working at high frequencies.
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Fig. 3. 180° directional coupler connected to a transmission line with an elec-

trical length ¢.

III. HARDWARE IMPLEMENTATION OF THE
DECOUPLING NETWORK

A wider bandwidth alternative to the software implementa-
tion is hardware implementation of the decoupling network in
the RF layer. The implementation of the decoupling network for
an M -port array is based on the solution for a 2-port array, in
which a 180° directional coupler is connected in tandem with
a transmission line with electrical length ¢ [2]. This can be de-
scribed by the scattering matrix

[Scouplcr] = 6_j9
0 0 k e IP\/1 — k2
y 0 0 V1I—k2  keiletm)
k V1-—k2 0 0
e I\1 = k2 ke iletm) 0 0

(6)

The directional coupler and the transmission line are
schematically represented by Fig. 3.

Such a directional coupler is able to decouple a 2-port array
by choosing proper values for k, ¢, and 6.

A general method to decouple an arbitrary M -port array was
developed by Geren et al. and is described in [3]. It is based
on diagonalizing the imaginary part of [Z], compensating it at
each port with a serial imaginary impedance, followed by the
diagonalization of its real part and matching it. Each of these
diagonalizing matrices is real, and therefore can be factored into
M (M —1)/2 submatrices, using Givens rotations [3]. Each one
of these simple submatrices can be represented by the scattering
matrix of a directional coupler, the parameters of which can be
derived from the comparison between each of the matrices and
the general matrix shown in (6). In our case (M = 8), using
this method would result in two subnetworks of (8 x7)/2 = 28
cascaded couplers, compensating both the real and imaginary
parts of [Z]. This procedure results in 56 couplers for the whole
decoupling network. As one can observe, this implementation
is very complicated and inapplicable for large arrays.

In the present work, a different approach is adopted [5]. It in-
volves a combination of the method mentioned above and the
method described in [2]. The suggested method uses the sym-
metry planes in the array to divide the array elements in sym-
metrical groups, resulting in decoupling between these groups.
In our case, a symmetric rearrangement of the elements (which
is realized by renumbering them) leads to a new indexing as
shown in Fig. 4.

The horizontal symmetry plane divides the array into two
groups so that the element % is symmetric to the element 4 +
i (1 < i < 4) in terms of the same scattering parameters.
Every symmetrical pair of elements needs to be connected by
a 3-dB 180° coupler [the scattering matrix of which is derived
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Fig. 4. Suggested array’s symmetry planes along with the element indexing:
original and new.

by substituting & = 1/v/2, ¢ = 0, and § = 7/2 in (6)]. As a
result of the connection of these four hybrids (which constitutes
the first layer of the decoupling network), there will be no cou-
pling between the elements 1-4 and 5-8.

The vertical symmetry plane divides each of the two groups
mentioned into two subgroups so that the element ¢ is symmetric
totheelement2 4+ 4 (1 < 7 < 2,5 < ¢ < 6). Again, every sym-
metrical pair of elements needs to be connected by a 3-dB 180°
coupler. After the connection of these four couplers (which con-
stitutes the second layer of the decoupling network), there will
be no coupling between the elements 1-2, 3—4, 5-6, and 7-8.

At this point, there are no more symmetry planes left, so this
method is exhausted. In order to continue the process, which
requires the decoupling of the elements of each foursome, the
first method [3] is used. As discussed, the decoupling of two el-
ements requires 2x (2% 1)/2 = 2 cascaded directional couplers.
The connection of all the described layers together produces a
decoupling network, which consists of 16 directional couplers
in comparison to 56 couplers needed if the symmetry planes are
not taken in consideration. The impedance matrix at the input
ports of the network is diagonal and real, which means that
matching can be easily performed at each port independently
(for example, with A/4 transformers, or with real impedances).
The whole network is shown in Fig. 5.

The benefits of working with the decoupling network can be
seen in Fig. 6, which shows the dependence of the reflection
coefficient on the scanning angle at the ports of the lower-right
quartet (ports 1, 2 according to the original indexing in Fig. 4),
for a predefined current distribution (Bayliss- —20 dB sidelobe
level (SLL) and » = 10).

One can observe that, without the decoupling network, the
reflection coefficient varies significantly at each port, producing
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Fig.5. Decoupling network (antennas: #1-8; input ports: #1'’/~8’""). Each rec-
tangle represents a directional coupler. More about the scattering matrices of the
couplers and the way they are connected can be found in [2] and [3], along with
the theory leading to it. The impedance matrix at the input ports [ Zs] is diagonal,
while the impedance matrix [Z] at the antennas terminals is a full 8 X 8 matrix.
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Fig. 6. Dependence of the reflection coefficient |T'| on the scanning angle ¢
for Bayliss distribution with SLL. = —20 dB and @ = 10 at ports (a) #1 and
(b) #2; (—) without the decoupling network; (----) with the decoupling
network.

different return losses as a function of the scanning angle. A sim-
ilar dependence occurs for other current distributions as well.
On the other hand, when the decoupling network is used, a con-
stant reflection coefficient is obtained at each port, which allows
independent matching with respect to other ports. This is the
significance of the decoupling network, and it demonstrates the
necessity of such a network for antenna arrays.

Inreality, the directional couplers used for the decoupling net-
work implementation are lossy. In such an instance, the coupler
scattering matrix described in (6) changes to reflect finite return
loss at all input ports and finite coupling between the isolated
ports. Given that the coupler is symmetrical, we can assume
without loss of generality that S1; = S = S33 = Sy4 and
S12 = So1 = S34 = S43 = D. Accordingly, the new coupler
scattering matrix is

[Scoupler] = e_j9

S11 D k eij(’o\/ 1— k2
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TABLE 1
COMPARISON OF THE COUPLING VALUES OF THE COUPLERS IN THE DECOUPLING NETWORK BEFORE AND AFTER THE GA OPTIMIZATION

Ci C CAy CA> CA3 CA4 CB; CB2 CB3 CB4
before 0.707 0.707 0.924 0.71 0.896 0.765 0.958 -0.968 -0.921 0.979
GA
after 0.732 0.654 0.972 0.884 0.954 0.961 -0.975 -0.95 -0.975 -0.783
GA

Consequently, the new structure of the decoupling network
described in (2) transforms to

_ ([SpullSp,z]*
[5p] = ( (SpratllSmaa] ) ®

and the total system scattering matrix given in (3) changes to

[Ss] = [Sp.11] + [Sp,21) [S] (IU] = [Sp,22][S]) " [Sp,21]-
9

One can easily show that (9) reduces to (3) for a lossless net-
work. Given the scattering matrix of the system, the currents I
at the input ports of the antenna elements can be related to the
incident waves ag of the entire system through

1

T—
Zo

(U] = [SD ([U] = [Sp,ul[S) ™" [Sp,21las.  (10)

To check the effect of a lossy decoupling network on the
decoupling network performance, typical directional couplers
with S11 = =20 dB and D = -24 dB were considered.
The array parameters were the following: operating frequency
10 GHz, dipole length 1.5 cm, dipole radius 0.29 mm, d =
1.5 cm, h = 0.75 cm. For simplicity, the excitation vector ag
for the entire system was chosen to be uniform. To compen-
sate for the errors caused by the assumption of finite S1; and
D, a genetic algorithm (GA) [6] was used to change the cou-
pling parameters (amplitude and phase) of the couplers in the
decoupling network shown in Fig. 5. The cost function goal of
the GA was minimization of all off-diagonal members of the
system impedance matrix [Z5]. The parameters of the GA were
the following: population 200, crossover at 60% and 5% muta-
tion. Table I shows a comparison of the network coupling values
of the network directional couplers before and after the GA opti-
mization. Cq, Cy, CA;, CB; (i = 1+4) are the coupling values
of the couplers shown in Fig. 5.

Fig. 7 shows a comparison in the H-plane (§ = 7 /2) radi-
ation patterns of an ideal 2 x 4 array (no coupling among el-
ements), an array with coupled elements, an array with a lossy
decoupling network, and an array with a GA optimized lossy de-
coupling network. In the cases of the lossy and optimized lossy
decoupling networks, the scattering matrices [Sp] and [S,] have
been computed using (8) and (9), respectively, and validated by
simulation of the decoupling network shown in Fig. 5 using the
commercial software ADS. Given [Sp], the currents of the array
elements were computed using (10) and the corresponding array
radiation patterns as described in [4]. One can observe a signif-
icant degradation in the radiation pattern for a lossy decoupling
network compared to a lossless network and the significance of
the optimization procedure to compensate it.
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Fig. 7. H-plane (§ = w/2) radiation patterns of a 2 X 4 array without cou-
pling (ideal patt.), array with coupling (coup. patt.), array with real components
decoupling network (pract_DN_patt.), and an array with optimized real decou-
pling network (opt_DN_patt.).

IV. CONCLUSION

This letter has demonstrated a new approach for designing
and implementing a decoupling network for a large antenna
array based on a combination of two existing methods, which
results in significant hardware savings: 16 couplers instead of
56 in the general method (a ratio of 1:4) described in [3]. Such
savings increase for large arrays. A GA was used to change the
elements to compensate for the degradation in performance in a
lossy decoupling network.

The suggested approach can be generalized for other cases
as well—different array elements, different geometric structures
(such as triangular, rectangular, or circular grids).
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