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Abstract—An analytical method for evaluating pole-residues in
spectral method of moments (MoM) formulations is presented.
Spectral integral formulations for periodic structures involve the
inverse of the MoM matrix, which exhibits a periodic set of
pole singularities, corresponding to the zeros of the matrix’s
determinant. So far, these singularities have not been extracted
and the corresponding pole-residues were calculated directly from the
differential or integral definitions of the residue. In this work, we
consider an analytical expression for the solution to the MoM matrix
equation, which enables the extraction of pole singularities and the
analytical evaluation of pole-residues. We also present a comparison
to previous methods.

1. INTRODUCTION

When applying the spectral domain method of moments (MoM) to
periodic structures, one encounters periodic sets of pole singularities
corresponding to the eigenmodes of the periodic structure [1–3]. In
closed configurations, the solution can be expressed as a discrete sum
of eigenmodes or mathematically as the sum of pole contributions,
whereas in open configurations there is, in addition, a continuous
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spectrum of radiating modes, expressed mathematically by the branch-
cut contributions [4]. Even when the pole contributions are only part
of the solution, they can provide important physical information such
as the power lost to surface waves [2]. This paper addresses the issue
of calculating the pole contributions when the structure is excited by
localized sources.

We consider spectral MoM formulations in which the field is
expressed as a Sommerfeld integral, with the integrand calculated by
solving numerically the MoM matrix equation, using iterative matrix
inversion. The poles of this integrand correspond to zeros of the
determinant of the MoM matrix [2], which location can only be found
numerically using zero searching algorithms.

As is well known, evaluation of pole-residues in closed form is
generally possible with the use of L’Hopital’s rule whenever the singular
expression is represented as a rational function [5–7]. Unfortunately,
this is not the case in MoM formulations, where iterative matrix
inversion is usually used (the exception is the trivial case of a single
basis function, in which the matrix becomes a scalar [6, 7]). This is the
reason why so-far the pole-residues in MoM formulations have been
calculated by a numerical evaluation of the limit which constitutes the
residue [2] or by numerical integration around the pole [8].

In this paper, a new approach is proposed in which the solution
to the MoM matrix equation is expressed as a rational function using
Laplace’s formula [9], instead of using an iterative matrix inversion.
This enables an analytical evaluation of pole-residues using L’Hopital’s
rule. We shall demonstrate that the proposed method is numerically
stable, accurate, and its numerical cost is comparable to previous
methods.

2. SPECTRAL INTEGRAL REPRESENTATION

For simplicity, we shall consider here only 2D configurations including
periodic structures along the x axis with aperiodic excitation. An
example is shown in Fig. 1, where an infinite metal strip grating is
located over a grounded dielectric slab (GDS) and excited by a line
source in the y direction.

The spectral integral is obtained by using the array scanning
method (ASM) [2, 3]. In this approach, the MoM matrix equation
is formulated for an auxiliary periodic problem in which the source is
duplicated to form an infinite linear phased array with phase difference
φ. First, the auxiliary periodic problem is solved using Floquet mode
representation. The solution to the original aperiodic problem is then
obtained by integrating over the 0th Floquet mode of the solution along
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Figure 1. The geometry of a periodic structure excited by a magnetic
line source in the y direction located at the ground plane (representing
slot excitation). The structure consists of a metal strip grating over a
grounded dielectric slab (GDS).

the entire real axis of φ.
The following can be applied to both magnetic and electric

field integral equations (MFIE and EFIE). The EFIE is obtained by
imposing a zero tangential electric field on the metal strips and is
solved for the induced electric currents on the metal strips at z = 0.
The MFIE is obtained by imposing the continuity of the tangential
components of the magnetic fields across the slots at z = 0. In
particular, by applying the equivalence theorem, the aperture is closed
by a conductive sheet, and the continuity of the tangential component
of the electric field is guaranteed by defining two unknown magnetic
current densities (with opposite signs) on the opposite sides of the
conductive sheet. In following part, we write for simplicity only the
EFIE, keeping in mind that the MFIE is obtained by replacing the
electric currents on the strips with the magnetic currents discussed
above and replacing the Green function accordingly (will be used
in Section 4). The incident field here is the electric/magnetic field
due to the magnetic line source (slot excitation) at z = −q for the
EFIE/MFIE, respectively.

The electric field due to the induced currents in the auxiliary
periodic problem can be written as a sum of Floquet modes [10]

EP (x, z; kx) =
∞∑

n=−∞
G̃(z; kxn)J̃s(kxn)e−jkxnx, (1)

where kxn = kx+2πn/d (n = 0,±1,±2, . . .) is the propagation constant
in the x direction of the nth spatial harmonic, d is the period of the
structure, J̃s(kz) is the Fourier transform with respect to x of the



86 Kaganovsky and Shavit

induced surface current at z = 0 in a single unit cell (the electric
current on the strip or the magnetic current on the slot), and G̃ is the
dyadic spectral Green function for the background structure. In the
example of Fig. 1, for the EFIE, G̃ is the Green function for the electric
field at z = 0 due to an electrical line current at z = 0 embedded in a
GDS without the metal strips. For the MFIE, G̃ is the Green function
for the magnetic field at z = 0 due to a magnetic line current at
z = 0 in a closed parallel plate wave-guide (recall that for the MFIE,
the z = 0 plane is covered by a conductive sheet, as mentioned above).
Similarly, the electric field due to the phased array of duplicated sources
(in the example of Fig. 1, the magnetic line source at z = −q should
be duplicated) can be written in the form of (1) with the current and
Green function replaced accordingly.

Next, the auxiliary problem is solved using the MoM. The induced
current is expressed as a sum of N basis functions, their Fourier
transforms denoted by

{
B̃r(kx)

}
. Enforcing the boundary conditions

using a set of weight functions with Fourier transforms
{

W̃p(kx)
}

,
results in a standard MoM matrix equation of the form Z ·A = S with
Z denoting a known N × N matrix with four blocks (corresponding
to the x and y components of the field). The elements of the block
matrixes can be expressed in the following form [2, 10]

Zpr(kx) =
M∑

n=−M

W̃p(−kxn)G̃(kxn)B̃r(kxn) p, r = 1, 2, . . . N, (2)

where G̃ is one of the four components of G̃, and M is the number of
spatial harmonics employed in the numerical calculation. A is a column
vector of size N, containing the coefficients of the basis-functions. A is
determined by inverting the Z matrix, i.e., A = Z−1S, using standard
iterative numerical procedures for matrix inversion such as Gaussian
elimination and etc. S is the “source vector” a known column vector
of size N and its elements can be found in [2].

The scattered field due to the induced surface currents in the
original problem can be expressed in the following form [2]

Escat(x, z) =

∞∫

−∞
AT (kx)G̃(z, kx)B̃(kx)e−jkxxdkx (3)

where the integrand includes only the 0th Floquet mode, and the vector
B̃ includes all basis functions. The spectral integral in (3) can be
evaluated by deforming the integration contour in the complex kx
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plane and expressing (3) using the discrete eigenmodes of the periodic
structure (pole-residues), and in open configurations (such as in Fig. 1),
a set of continuous spectrums (periodic set of branch cuts) [11]. The
continuous spectrum can be evaluated asymptotically in closed-form
in the far-field zone, as in [11], or alternatively, one can eliminate the
continuous spectrum by replacing G̃ in (1) with the Green function
proposed in [5].

We encounter two possible types of poles in (3): (a) poles of A,
representing modes of the periodic structure and their amplitudes are
given by the corresponding pole-residues. (b) poles of G̃, representing
modes of the background structure, which in general differ from poles
of type (a), and do not contribute.

3. POLE-RESIDUE CALCULATION

3.1. Previous Methods

If A in (3) is calculated via A = Z−1S, with the inverse calculated
iteratively, one cannot use L’Hopitals rule in order to evaluate the
pole-residues in (3), since A is not in the form of a rational function.
One way of calculating the pole-residue is using the limit definition

Res {F (kx), kxp} ∆= lim
kx→kxp

F (kx) (kx − kxp) ≡ lim
∆→0

F (kxp + ∆) ∆, (4)

where F is the integrand in (3), kxp is the pole location and ∆ =
kx − kxp. Equation (4) is evaluated numerically as the limit of the
following sequence

Res {F (kx), kxp} ∆= F (kxp + ∆m)(∆m), m = 1, 2, . . . , (5)

where ∆m are increasingly smaller distances from the pole, which are
reduced until convergence is obtained, i.e., the limit is reached.

A second way of evaluating the residue is by numerical integration
around the pole

Res {F (k), kxp} =
1

2πj

∮

Cp

F (kx)dkx ≈ 1
2πj

IP∑

m=1

F (kxm)∆kxm, (6)

where kxm is a point on the integration contour around the pole (in the
counter clockwise direction) and ∆kxm is a segment on the integration
path. IP denotes the number of integration points.

It should be noted that, the numerical cost of both these methods
is O(N3) which is the cost of the matrix inversion. The number of
iterations in the numerical limit method or the number of integration
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points in the integral method are typically small, as the numerical
example in Section 3 shows.

3.2. The Proposed Method

The solution to the MoM matrix equation can be brought into the form
of a rational function by using Laplace’s formula [9]

Z−1 (kx) =
ZA (kx)
|Z (kx)| , (7)

where |Z| and ZA are the determinant and adjugate of Z, respectively.
The elements of ZA are given by [9]

[
ZA

]
ij

= (−1)(i+j) |Mji(Z)| , (8)

with Mji(Z) denoting the minor of the matrix Z obtained by removing
the jth row and the ith column in Z. The use of (7) enables to write
the solution for the vector A in the following form

A (kx) =
ZA (kx)S (kx)

|Z (kx)| . (9)

Let kxp be a pole of (9) for which |Z(kxp)| = 0, then the corresponding
pole-residue can be calculated using L’Hopital’s rule as

Res {A (kx) , kxp} =
ZA (kxp)S (kxp)

∂|Z|
∂kx

(kxp)
. (10)

The derivative of the determinant in (10) is calculated using Jacobi’s
Law [12]

∂ |Z|
∂kx

(kxp) = tr

{
ZA (kxp)

∂Z
∂kx

(kxp)
}

. (11)

In (11), tr{} denotes the trace of the matrix, and ∂Z/∂kx is
the derivative of matrix Z, which can be calculated numerically.
Alternatively, if the weight and basis functions are given in closed
form, the elements of ∂Z/∂kx can be calculated as

∂

∂kx
Zpr(kx) =

M∑

n=−M

− ∂

∂kx
W̃p(−kxn)G̃(kxn)B̃r(kxn)

+
M∑

n=−M

W̃p(−kxn)
∂

∂kx
G̃(kxn)B̃r(kxn)

+
M∑

n=−M

W̃p(−kxn)G̃(kxn)
∂

∂kx
B̃r(kxn). (12)
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The calculation of ZA in (10)–(11) from its definition in (8)
requires calculation of N2 determinants of minor matrixes of size N−1.
If the determinants are calculated using matrix decomposition such as
LU factorization (costing O((N−1)3)), then the overall numerical cost
of calculating ZA is O(N5). Therefore, at first glance, the proposed
approach is numerically more expensive than calculating Z−1 using
Gaussian elimination with only O(N3) operations. However, there is a
more efficient method for calculating ZA, presented in [13], which costs
only O(N3). According to this method, ZA is calculated as ZA (kx) =
Z−1 (kx) |Z (kx)| (see (7)). Surprisingly, although Z is ill-conditioned
near a pole and Z−1 is calculated with a large error, multiplication
by |Z(kxp)| cancels this error and ZA can be calculated with a very
good accuracy (see [13], for more details). A fast calculation of ZA is
enabled by using singular value decomposition (SVD), Z = UΣVT,
where U and V are N × N orthogonal matrixes and Σ is a diagonal
N ×N matrix. We can now calculate ZA as

ZA = Z−1 |Z| = VΣ−1UT
∣∣UΣVT

∣∣

= VΣ−1UT |U| |Σ| ∣∣VT
∣∣ = VΣ−1UT

N∏

i=1

Σii, (13)

where |U| = ∣∣VT
∣∣ = ±1 (see [13] for details on how to determine the

sign) and Σii are the diagonal elements of Σ. VΣ−1UT is calculated
using only one matrix multiplication, since calculating Σ−1 and
multiplying it by UT is straightforward (Σ is diagonal). The costs of
matrix multiplication and the SVD are O(N3), so this is also the over-
all cost of calculating ZA, which is the same as Z−1 using Gaussian
elimination. It is also possible to use other matrix decompositions for
Z, which are also discussed in [13].

4. NUMERICAL EXAMPLE

4.1. Numerical Details

Next, we present a numerical example, which demonstrates the
advantage of using the proposed method (see (10)–(11)) or the integral
method (see (6)) over using the numerical limit method in (5). In
this example, we calculate the pole-residues corresponding to surface
waves. We used the structure in Fig. 1, which is excited by a magnetic
line source in the y direction (TM to z case) located at the ground
plane. The slot and the strip widths are w = 0.5d, the substrate
height is q = 0.6d and the dielectric constant of the slab is εr = 15.
A magnetic-field integral equation (MFIE) was used for Hy [1] (the Z
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matrix is replaced by the Y matrix but the structures of both matrixes
is exactly the same).

Four basis functions were required in the MoM solution to obtain
a relative error less than 0.01%. Standard weighted Chebyshev
polynomials [10] were chosen as basis and weight functions (Galerkin’s
method). The locations of the poles kxpn were found by searching
the zeros of |Y| using Muller’s algorithm [14]. The results presented
next were calculated using only the poles corresponding to the first
11 spatial harmonics (n = −5÷5). The pole-residues decrease
considerably for higher harmonics and can be neglected. The current
choice of 11 spatial harmonics produces a relative error of less than
0.01%.

The SW power was calculated in a similar fashion to [2], using the
proposed residue calculation method (Eqs. (10)–(12)) and compared
to the numerical limit calculation of the residue (Eq. (5)). Using
the general form of (3) for the magnetic field Hy due to the induced
currents, the SW power is calculated as [2]

Psw =
1

|∂β/∂ω|
µ0

2

5∑

n=−5

∞∫

−q

∣∣∣Res
{
AT (kx)G̃yy(z, kx)B̃y(kx), kxpn

}∣∣∣
2
dz,

(14)
where β is the propagation constant of the surface wave, µ0 is the
permeability constant for the dielectric material and G̃yy is the Green
function for the magnetic field at z = 0 due to the induced magnetic
currents (see discussion after (1)). We have also used in (14) the fact
that the Floquet modes are orthogonal to each other.

4.2. Results

Next, two cases are presented for the computation of the surface
wave (SW) power. In the first case, shown in Fig. 2, the pole
locations were calculated with a relative accuracy of ε = 10−15 and
both methods were compared, showing a good agreement. In the
“numerical limit” method, the relative distance from the pole, δ(¿ 1),
defined by δ = ∆m/kxp (see notation after (5)), was reduced until the
convergence criteria was met. The difference between the two methods
can be seen in the enlarged segment shown in Fig. 2. The results for
δ = 10−8 (dashed line), δ = 10−9 (dotted line) and δ = 10−10 (dashed-
dotted line) demonstrate that while the proposed method calculates the
residue with a single calculation, the numerical limit method requires
repeated calculations until the required relative error is obtained.

In the second case, shown in Fig. 3, the accuracy of the pole
locations was reduced by multiplying the previously found pole
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Figure 2. SW Power vs. frequency. Comparison between the
proposed method and the numerical limit method for different values
of δ with pole location accuracy of 10−15. Legend: solid line-proposed
method; dashed line-num. limit with δ = 10−8; doted line-num. limit
with δ = 10−9; dashed-doted line-num. limit with δ = 10−10.

locations by a factor of (1 + 10−10). One can see that the “numerical
limit” method fails to converge to the correct solution. This behavior is
expected from (5), since the multiplication by ∆m, which includes the
inaccurate postulated pole location, introduces a zero and in addition,
the pole in the integrand F is not canceled. Depending on the relative
distance from the pole δ, the “numerical limit” method can converge
to zero or diverge as a result of the pole. In the example of Fig. 3, it
is clear that the solution converges towards zero. On the other hand,
by comparing Figs. 2 and 3, it is seen that decreasing the accuracy
of the pole location has not affected the proposed method. We note
that despite the fact that the results of the numerical limit method for
δ = 10−8 (Fig. 3) are similar to the proposed method results, there
can be no indication that this is indeed the correct result without
comparing it to the proposed method, since the results diverge when
decreasing δ.
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Figure 3. Re-calculation of the results of Fig. 2 with reduced pole
location accuracy of 10−10. Comparison of the proposed method to
the numerical limit method with different values of δ. Legend: solid
line-proposed method; dashed line-num. limit with δ = 10−8; doted
line-num. limit with δ = 10−9; dashed-doted line-num. limit with
δ = 10−10.

It should be noted that, the surface wave power presented here
has no physical significance since the current of the source is constant
for all frequencies. The surface wave power should be divided by the
total radiated power at each frequency to give the correct indication
of the surface wave power. However, since our purpose was only to
demonstrate the numerical stability of the pole residue calculation, we
did not make this calculation.

The integral method for calculating the residue was also checked.
It was found that this method produces the same results as the
proposed method in both cases of Figs. 2 and 3. When integrating
around the pole one should choose an integration contour, which
is larger than the “uncertainty region” in which the pole can lie.
Considering the dimensionless spectral space ξ = kx/k, the radius of
the “uncertainty region” can be roughly approximated by R = εξxp

(where ε is the relative error in the pole location required in the pole
searching algorithm and ξxp is the found pole location). The number of
sampling points along this contour is typically small since the spectral
period is proportional to (kd)−1, which is much larger than the contour
length C ≈ 2πR = 2πε. In this example ε = 10−15 and only 10 points
were needed. The overall cost of this method in this case is 10× O(N3).
In “large” problems where kd À ε−1 the spectral period is smaller than
the contour length and the number of integration points increases with
kd for a fixed accuracy ε.
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5. CONCLUSION

So far, the evaluation of pole-residues in MoM solutions was done by
approximating numerically the limit, which defines the residue, or by
numerical integration around the pole. In this work, it has been found
that the numerical limit method inherits a large sensitivity to the
accuracy of the pole location and in some cases can produce unstable
results. The integral method on the other hand is stable and accurate.

We presented here another method for calculating pole-residues.
However, as opposed to previous method, this method is based on an
analytical extraction of the pole singularity and can be used to validate
the results, which are sometimes problematic due to the singularity
presence, as seen in the case of the numerical limit method.

In the proposed method, one uses Laplace’s formula to express the
singular integrand as a rational function, enabling the use of L’Hopital
rule and leading to a closed form evaluation of the residue. It was
shown that the numerical cost of the proposed method is comparable
to previous methods.
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