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Manipulating microwaves with magnetic-dipolar-mode vortices
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There has been a surge of interest in the subwavelength confinement of electromagnetic fields. It is well
known that, in optics, subwavelength confinement can be obtained from surface plasmon (quasielectrostatic)
oscillations. In this article, we propose to realize subwavelength confinement in microwaves by using dipolar-
mode (quasimagnetostatic) magnon oscillations in ferrite particles. Our studies of interactions between microwave
electromagnetic fields and small ferrite particles with magnetic-dipolar-mode (MDM) oscillations show strong
localization of electromagnetic energy. MDM oscillations in a ferrite disk are at the origin of topological
singularities resulting in Poynting vector vortices and symmetry breakings of the microwave near fields. We
show that new subwavelength microwave structures can be realized based on a system of interacting MDM
ferrite disks. Wave propagation of electromagnetic signals in such structures is characterized by topological
phase variations. Interactions of microwave fields with an MDM ferrite disk and MDM-disk arrays open a
perspective for creating engineered electromagnetic fields with unique symmetry properties.
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I. INTRODUCTION

Recent studies of magnetic-dipolar interactions in a quasi-
two-dimensional (2D) ferrite disk revealed unique proper-
ties of eigenmode oscillations. The magnetic-dipolar modes
(MDMs) are characterized by energy eigenstates [1,2], gauge
electric fluxes, and eigenelectric (anapole) moments [3]. Spe-
cial vortex characteristics of MDMs in thin-film ferrite disks
were found numerically and analytically [4,5]. The results give
deep insight into an explanation of the experimental multireso-
nance absorption spectra shown both in previous [6,7] and new
[8–10] studies. It is well known that MDM [or magnetostatic
(MS)] resonators fabricated with single-crystal yttrium iron
garnet films are open resonators with high Q-factors [11].
In a quasi-2D ferrite disk, one clearly observes regular
multiresonance spectra of high-Q-factor MDMs [6–10]. At the
same time, MDM oscillations in a ferrite disk are characterized
by unique symmetry properties. These symmetry properties
may assume peculiar interactions of a ferrite disk with external
electromagnetic fields. In this article, we show that, due to
the vortex behavior of MDM oscillations, there is strong
three-dimensional (3D) localization of electromagnetic energy
with the Poynting vector vortices.

For a proper analysis of the Poynting vector vortices and
field manipulating in microwaves, one should start with some
references to the known phenomena of the Poynting vector
vortices and field manipulation in optics. It is very important
to note that certain similarities exist between electromagnetic
topological singularities at microwave and optical frequencies.
The Poynting vector topological singularities are well-studied
in optics. It was shown, in particular, that optical beams
with phase singularities are robust structures with respect
to perturbations. In such beams, one has a circulating flow
of energy resulting in 2D confinement of electromagnetic
energy in transversal directions [12]. In near-field optics,
because of phase singularities one obtains subwavelength
transmission through narrow slits [13], novel superlenses [14],
and super-resolution processes in metamaterials [15]. The
possibility of compressing optical fields in space to a degree
much better than predictable by classical diffraction theory
has gained widespread attention. For example, the localization

of electromagnetic energy is considered as a very important
phenomenon for optical sensing and optical data communica-
tion. Use of the optical-near-field characterization technique
should reduce the size gap between optical and electronic
devices [16,17]. It makes it possible to downscale established
antenna design into the optical frequency regime [18–20].
In such optical structures, subwavelength confinement of the
light takes place because of the resonant interaction between
electrostatic oscillations of electrons in metal nanoparticles
and planar films and the electromagnetic field. In an analysis
of scattered optical electromagnetic fields, a small (with sizes
much less than the electromagnetic wavelength) metal particle
with plasmonic (electrostatic) oscillations can be treated as
a point electric dipole precisely oriented in space [21,22].
It was pointed out that, in small particles with plasmonic
resonances, one has anomalous light scattering characterized
by giant optical resonances with enhanced scattering cross
sections [23].

In this article we show that, similarly to manipulating
optical fields by small metal particles with electrostatic
(plasmonic) oscillations, one can manipulate microwave fields
by small ferrite particles with magnetostatic (magneto-dipole)
oscillations. As we show, a small ferrite particle with MDM
(or magnetostatic) oscillations has a property of a rotating
magnetic dipole. Such particles become “harbors” for the
microwave fields. The electromagnetic fields scattered from
the MDM particles have very unique symmetry properties and
topological structures.

The near-field Poynting vector singularities, appearing due
to the interaction of microwave fields with an MDM ferrite
disk, open a perspective for creating engineered electromag-
netic fields with unique symmetry properties. We show that
based on an array of MDM ferrite particles with evanescent-tail
chiral coupling, one can realize subwavelength microwave
structures with a channeling of topological excitations (chan-
neling of microwave power-flow vortices). The subwavelength
confinement and near-field manipulation of the electromag-
netic fields is one of the main attractive aspects of the concept
of metamaterials, both in optics and in microwaves [24–28].
The unique symmetry properties of a system of interacting
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FIG. 1. (Color online) The effective membrane functions ϕ̃ inside a ferrite disk for the first (n = 1) MDM at different time phases (arbitrary
units).

MDM ferrite disks shown in this article allow a proposition
of a special subwavelength microwave metamaterial—the
singular-microwave metamaterial. The discovered ability to
confine, guide, and manipulate microwaves with topological
charges and symmetry-breaking properties on scales that are
much smaller than the wavelengths involved appears to be
heralding a new field in microwave technology.

Our results presented in this article are mainly based
on a numerical analysis. Such a numerical analysis is well
justified by our previous analytical and experimental studies of
MDM vortices in small ferrite particles [4,5,9,10]. We analyze
the field structures for the case of a single ferrite disk and
ferrite-disk arrays placed inside a rectangular waveguide. We
use a waveguide to properly polarize the external (with respect
to a ferrite disk or an array) electromagnetic fields. Studies
of other types of external electromagnetic fields are beyond
the scope of the present article. One can suppose, however,
that since MDM vortices are eigenoscillations in a ferrite disk
particle, the observed effects of subwavelength confinement
and symmetry breaking will also occur for other types of
microwave configurations.

II. LOCALIZED RESONANT STATES OF MICROWAVE
ENERGY INSPIRED BY MAGNETIC-DIPOLAR-MODE

VORTICES

Symmetry breakings of the localized microwave fields
originate from the peculiar symmetry properties of MDM
oscillations. The vortex topological structures of MDM oscil-
lations in a normally magnetized quasi-2D ferrite disk become
evident from the spectral problem solutions. By assuming
a separation of variables for a magnetostatic-potential (MS-
potential) wave function in a ferrite disk, a spectral problem
in cylindrical coordinates z,r,θ is formulated with respect
to membrane MS functions (described by coordinates r,θ )
and with amplitudes dependable on the z coordinate. For a
dimensionless membrane-MS-potential wave function ϕ̃, the
boundary condition of continuity of a radial component of the
magnetic flux density on a lateral surface of a ferrite disk of
radius � is expressed as [2,3]

µ

(
∂ϕ̃

∂r

)
r=�−

−
(

∂ϕ̃

∂r

)
r=�+

= −i
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�
(
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)
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, (1)

where µ and µa are, respectively, diagonal and off-diagonal
components of the permeability tensor ↔

µ. The term on the
right-hand side (RHS) of Eq. (1) has the off-diagonal compo-
nent of the permeability tensor µa in the first degree. There
is also the first-order derivative of function ϕ̃ with respect to
the azimuth coordinate. This means that for the MS-potential
wave solutions one can distinguish the time direction (given
by the direction of the magnetization precession and correlated
with a sign of µa) and the azimuth rotation direction (given
by a sign of ∂ϕ̃/∂θ ). For a given sign of a parameter µa ,
there are different MS-potential wave functions, ϕ̃(+) and ϕ̃(−),
corresponding to the positive and negative directions of the
phase variations with respect to a given direction of azimuth
coordinates, when 0 � θ � 2π .

Suppose that for a given direction of a bias magnetic field,
a certain azimuthally running magnetostatic wave acquires
a phase �1 after rotation around a disk. For an oppositely
directed magnetic field such a phase will be �2. It is evident

FIG. 2. Analytically derived power-flow-density distribution
inside a ferrite disk for the first (n = 1) MDM (arbitrary units).
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that |�1| = |�2| ≡ � and we should have �1 + �2 = 2πq

or � = qπ , where the quantities q are odd integers. This
follows from the time-reversal symmetry-breaking effect. A
system comes back to its initial state after a full 2π rotation.
But this 2π rotation can be reached if both partial rotating
processes with phases �1 and �2 are involved. So, minimal
q = 1 and, generally, q is an odd integer. From the above
consideration, one may conclude that for a given direction
of a bias magnetic field, a membrane function ϕ̃ behaves as
a double-valued function. To make the MS-potential wave
functions single-valued and so to make the MDM spectral
problem analytically integrable, two approaches have been
suggested. These approaches, distinguished by the differential
operators and boundary conditions used for solving the spectral
problem, give two types of the MDM oscillation spectra in a
quasi-2D ferrite disk. Conventionally, these two approaches
are named as the G- and L-modes in the magnetic-dipolar
spectra [5,29].

For the L-mode spectra, one has the power-flow density
vortices inside a ferrite disk. Such vortex behaviors are well
justified based on analytical solutions of the MDM spectral
problem in a helical coordinate system [29]. With further
reduction of the helical-system solutions to the cylindrical-
coordinate solutions, one can use separation of variables so

that the MS-potential wave function for L modes can be written
as [4,5,29]

ψν,n = Cξν,n(z)ϕ̃ν,n(r,θ ), (2)

where a dimensionless effective membrane function ϕ̃ν,n(r,θ )
is defined by the Bessel-function orders ν = 1,2,3, . . . and
the numbers of zeros of the Bessel functions corresponding to
different radial variations n = 1,2,3, . . . . In Eq. (2), ξν,n(z) is
an amplitude factor for a normal-axis coordinate z and C is a
dimensional coefficient. Inside a ferrite disk (r � �, −d/2 �
z � d/2) the MS-potential wave function is represented as

ψ(r,θ,z,t)

= CJν

(
βr√−µ

) (
cos βz + 1√−µ

sin βz

)
e−iνθ eiωt , (3)

where β is a propagation constant for MS waves along the
z axis. Solutions in a form of Eq. (3) show the azimuthally-
propagating wave behavior for MS-potential membrane func-
tions. For such an azimuth wave, one has the azimuthal power
flow density [4]

[pn(r,z)]θ = A
ϕ̃n(r)

8π
ω[ξn(z)]2

[
−νϕ̃n(r)

µ

r
− µa

∂ϕ̃n(r)

∂r

]
,

(4)

FIG. 3. Analytically derived gallery of magnetization �m in a ferrite disk at different time phases for the first MDM resonance (arbitrary
units).
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where A is a dimensional coefficient. This is a nonzero
circulation quantity around a circle with circumference 2πr .
The amplitude of an MS-potential function is zero at r = 0.
For a scalar wave function, this presumes the Nye and Berry
phase singularity [30]. Circulating quantities [pn(r,z)]θ are
the MDM power-flow-density vortices with cores at the disk
center. At a vortex center, the amplitude of (pn)θ is equal to
zero.

For analytical studies of the spectral properties, we use a
lossless ferrite disk with the following material parameters:
the saturation magnetization is 4πMs = 1880 G. The disk
diameter is D = 3 mm and the disk thickness is t = 0.05 mm.
The disk is normally magnetized by a bias magnetic field
H0 = 4900 Oe. The z dependence of the MS potential in
a ferrite disk, defined by the function ξ (z) in Eq. (2),
corresponds to the first “thickness” (even) mode, as in our
previous studies [2–5]. For a case of ν = 1, the MDM
resonant frequencies are f = 8.548 GHz for the first MDM
(n = 1) and f = 8.667 GHz for the second MDM (n = 2).
In our calculations, parameters of the permeability tensor of
a ferrite are found for an internal field (Hi = H0 − 4πMs)
based on well-known formulas [31]. At the first reso-
nance frequency (f = 8.548 GHz) there are µ = −26.9869
and µa = −28.2965. At the second resonance frequency

(f = 8.667 GHz) we have µ = −11.2294 and µa =
−12.5368. We analyze the power-flow density distribution
�p inside a ferrite disk and also the magnetization �m. For the
first (ν = 1,n = 1) MDM, Fig. 1 shows, in arbitrary units, the
effective membrane functions ϕ̃(r,θ,t) at different time phases
and Fig. 2 shows, in arbitrary units, the power-flow density
distribution inside a ferrite disk. Figures 3 and 4 show the
analytically derived galleries of magnetization �m in a ferrite
disk in arbitrary units for the first (ν = 1,n = 1) and second
(ν = 1,n = 2) MDM resonances, respectively, at different
time phases. From magnetization pictures it becomes evident
that in an analysis of interaction with external electromagnetic
fields, an MDM ferrite disk can be modeled as a particle with
in-plane rotating magnetic dipoles.

One of important features of the L modes is a very good
correspondence between analytical and numerical (based on
the HFSS electromagnetic simulation program, produced by the
ANSOFT Company) results of the mode characterization [4,5].
This allows the numerical analysis of microwave structures
with enclosed MDM ferrite disks. In numerical studies, we
used the same disk parameters as for analytical studies and,
additionally, took into account small losses in a ferrite sample
and dielectric properties of a ferrite. We considered a sample
with a linewidth of �H = 0.8 Oe and a scalar electric

FIG. 4. Analytically derived gallery of magnetization �m in a ferrite disk at different time phases for the second MDM resonance (arbitrary
units).
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FIG. 5. (Color online) Normally magnetized ferrite disk inside a
rectangular waveguide. (a) Geometry of a structure with notations
of power flows of incident ( �Pi), reflected ( �Pr ), and transmitted ( �Pt )
waves. (b) A model of an MDM ferrite disk with an in-plane rotating
magnetic dipole �pm.

permittivity εr = 15. Generally, these data correspond to the
sample parameters used in microwave experiments [6–10].
A disk is placed inside a TE10-mode rectangular X-band
waveguide symmetrically with respect to its walls so that the
disk axis is perpendicular to a wide wall of a waveguide.
The waveguide walls are made of copper. Figure 5(a) shows
geometry of a structure with notations of power flows of
incident ( �Pi), reflected ( �Pr ), and transmitted ( �Pt ) waves.
Figure 5(b) represents an MDM ferrite disk as a magnetic
dipole �pm rotating in a plane perpendicular to the disk normal
axis z [5].

For a waveguide with a ferrite disk, a numerical analysis
gives a multiresonance frequency characteristic of the reflec-
tion (the S11 scattering-matrix parameter) and transmission
(the S21 scattering-matrix parameter) coefficients. These char-
acteristics are represented, respectively, in Figs. 6(a) and 6(b).
The resonance peaks are designated in succession by the
numbers n. From the absorption ratio (1 − |S11|2 − |S21|2),
it can be clearly shown that there are absorption peaks at
the resonance frequencies. The analytically derived spectral
peak positions for the L modes (ν = 1; n = 1,2,3) [4,5]
represented in Fig. 6(c) are in quite good correspondence
with the numerically obtained spectral peak positions shown
in Figs. 6(a) and 6(b).

To observe the effect of field localization, we analyzed
the field structures and the time-average Poynting vector
distributions on the xy vacuum plane inside a waveguide
situated at 150 mkm above an upper plane of a ferrite
disk (Fig. 7). We refer to this vacuum plane as plane A.
The Poynting vector pictures on plane A are shown in
Figs. 8(a), 8(b), and 8(c). The pictures in Figs. 8(a) and 8(c)

are at the frequencies of the first (f = 8.5225 GHz) and the
second (f = 8.6511 GHz) resonances, whereas the picture
in Fig. 8(b) is at the frequency between the resonances
(f = 8.5871 GHz). The corresponding pictures of the in-plane
Poynting vector distributions inside a ferrite disk are shown in
Figs. 7(d), 7(e), and 7(f). In Figs. 9(a), 9(b), and 9(c) we show,
respectively, the magnetic field distributions on plane A at the
first resonance frequency f = 8.5225 GHz, at nonresonance
frequency f = 8.5871 GHz and at the second resonance fre-
quency f = 8.6511 GHz. To watch the dynamics, the fields are
represented for two phases: ωt = 0◦ and ωt = 90◦. As a very
important property of the observed pictures of the magnetic
field distributions, there is an evident rotating-magnetic-dipole
behavior at resonance frequencies [see Figs. 9(a) and 9(c)].

It is obvious that, at the MDM resonant frequencies, there
are vortices of the Poynting vector distributions with strong
subwavelength confinement of the electromagnetic energy. No
such confinement is observed at nonresonance frequencies.
The fact that the MDM vortices are the origins of the 3D
electromagnetic (EM) field confinement is evident both in
the xy plane and in the normal axis z direction. Regarding
confinement in the z direction, one can see from Fig. 8 that
at the resonance frequency, the power-flow density on plane
A is about three orders of magnitude less than the Poynting
vector quantity inside a ferrite disk. It is evident also that, at
MDM resonances, there are strong field concentrations and
symmetry violations. No field enhancement and no symmetry
violation occur at nonresonance frequencies. Resonant-state
localization of microwave energy inspired by MDM vortices
can be revealed from an analysis of the energy densities of
the fields in a hollow waveguide and inside a ferrite disk. We
define the energy density as

w = S/vg, (5)

where S is the power flow density and vg is a group velocity.
A group velocity vw

g of EM waves in a hollow waveguide is
expressed as [32]

vw
g = c

√
1 − (fc/f )2, (6)

where c is the speed of light and fc is the cutoff frequency of
a TE mode. For a TE10-mode rectangular X-band waveguide,
one has fc = 6.562 GHz. This gives for the first-resonance
frequency ( f = 8.5225 GHz) vw

g = 0.638c and for the
second-resonance frequency (f = 8.6511 GHz) vw

g = 0.652c.
Analytical solutions for a group velocity vm

g of azimuthally
propagating modes inside a ferrite disk should be obtained
based on an analysis of the MDM spectral problem in a
helical coordinate system [29]. Such an analytical study of
group velocities in the MDM spectrum is beyond the scope
of the present article. Magnetic-dipolar modes are strongly
dispersive waves [31] and so the group velocity vm

g should
be much less than the phase velocity vm

ph of azimuthally-
propagating MDMs. However, we will use here a phase
velocity vm

ph as an upper limit of a group velocity vm
g . We

will estimate a phase velocity as a linear velocity of a circular
motion of a “magnetic charge” of a rotating magnetic dipole.
Thus, we can write

(
vm

g

)
max = vm

ph = 2π�f. (7)
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FIG. 6. (Color online) MDM resonances of a quasi-2D ferrite disk. (a) The numerically obtained multiresonance frequency characteristic
of the reflection coefficient. (b) The numerically obtained multiresonance frequency characteristic of the transmission coefficient. (c) The
analytically derived spectral peak positions for the first three (ν = 1; n = 1,2,3) MDM resonances.

At the disk diameter 2� = 3 mm, we have for the first and
second resonance frequencies, respectively: (vm

g )max = vm
ph =

0.267c and (vm
g )max = vm

ph = 0.272c. There is an approximate
relationship between the waveguide and the ferrite-disk group
velocities for both resonance frequencies:

vw
g

/(
vm

g

)
max ≈ 2.4. (8)

From pictures of the power-flow-density distributions (Fig. 8)
it follows that at resonance frequencies, the power-flow density
in a hollow waveguide is at least three orders of magnitude
less than the power-flow density inside a ferrite disk. Taking
into account Eqs. (5) and (8), very strong localization of
microwave energy becomes evident [more than three orders of
magnitudes even using the condition (vm

g )max = vm
ph], inspired

by magnetic-dipolar-mode vortices. It is worth noting that
there are discrete states of energy: no effect of the energy
localization takes place at nonresonance frequencies.

Every resonant state is characterized by a strong pro-
nounced eigenfunction pattern with a topologically distinct
vortex structure. The observed Poynting vector distributions
are spiral waves emitted by a scatterer—the MDM ferrite disk.
Such waves appear due to interaction of the MDM vortex
core with the TE-mode wave train. The vortex core, with a

FIG. 7. (Color online) The xy vacuum plane inside a waveguide
situated at the distance of 150 mkm above an upper plane of a ferrite
disk. This vacuum plane is conventionally called plane A.
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FIG. 8. (Color online) Field confinement originating from the MDM vortices in a ferrite disk. (a) The Poynting vector distributions for
the field on plane A at the frequency (f = 8.5225 GHz) of the first resonance. (b) The same at the frequency (f = 8.5871 GHz) between the
resonances. (c) The same at the frequency (f = 8.6511 GHz) of the second resonance. (d) The Poynting vector distributions inside a ferrite
disk at the frequency of the first resonance. (e) The same at the frequency between resonances. (f) The same at the frequency of the second
resonance.

diameter equal approximately to the ferrite disk diameter, is
impenetrable for the TE10 waveguide mode. It is a singular
region (a topological defect) for the TE10 waveguide mode.
Unique topological properties of the scattered EM spiral
waves can be revealed based on an analysis of the structure
of the electric fields. Incline views of the electric field
distributions on plane A for the first resonance frequency
(f = 8.5225 GHz) at two phases (ωt = 0◦ and ωt = 90◦) are
shown in Fig. 10. One can see that the electric field preserves
its TE polarization (with respect to the z direction), with the
exception of the disk region. At the core region, the electric
field has dominating in-plane (xy plane) components. It is
evident (compare the magnetic and electric field distributions
in Figs. 9 and 10, respectively) that in the region of a disk
center, the in-plane magnetic and electric fields are mutually
parallel and so the Poynting vector in the vortex core is equal to
zero.

For TE polarized (with respect to the z direction) elec-
tromagnetic waves, the singular features of the complex
electric field component Ez(x,y) can be related to those that
will subsequently appear in the associated 2D time-averaged
real-valued Poynting vector field �S(x,y). The transport of
electromagnetic energy through the waveguide is described
by the Poynting vector

�S = c

4π
[Re( �Ece

iωt) × Re( �Hce
iωt)], (9)

where �Ec and �Hc are complex amplitudes of the field vectors.
From the Maxwell equation in a vacuum one has

Re( �Hce
iωt) = c

ω
Im [∇ × ( �Ece

iωt)]. (10)

Thus, Eq. (9) can be rewritten as

�S = c2

4πω
{Re( �Ece

iωt) × [∇ × Im ( �Ece
iωt)]}. (11)

We take advantage now of the following vector relation for two
arbitrary vectors �a and �b. If one supposes that these vectors
have only one component (let it will be the z component),
one evidently has �a × (∇ × �b) = az

�∇⊥bz, where ∇⊥ is the
differential operator with respect to the x and y coordinates.
When electromagnetic fields are invariant with respect to the
z direction, it is possible to represent a time-averaged part of
the Poynting vector as

〈�S〉 = c2

8πω
Im (E∗

z
�∇⊥Ez), (12)

where Ez is a complex vector of the z component of the electric
field: Ez ≡ (Ec)zeiωt . The fact that, for electromagnetic fields
invariant with respect to a certain coordinate, a time-averaged
part of the Poynting vector can be approximated by a scalar
wave function, makes it possible to analyze the vortex
phenomena. For a TE-polarized field, we can write

Ez(x,z) ≡ 
(x,y) = ρ(x,y)eiχ(x,y), (13)

where ρ is an amplitude and χ is a phase of a scalar wave
function 
. One can rewrite Eq. (12) as

〈�S〉 = ρ(x,y)2∇⊥χ (x,y). (14)

This representation of the Poynting vector in a quasi-2D system
allows one to clearly define a phase singularity as a point
(x,y) where the amplitude ρ is zero and hence the phase χ

053823-7



E. O. KAMENETSKII, M. SIGALOV, AND R. SHAVIT PHYSICAL REVIEW A 81, 053823 (2010)

FIG. 9. (Color online) Evidence for correlation between strong field concentrations and symmetry violations at MDM resonances. (a) The
magnetic field distributions on plane A at the frequency (f = 8.5225 GHz) of the first resonance for the two phases ωt = 0◦ and ωt = 90◦.
(b) The same at the frequency (f = 8.5871 GHz) between the resonances. (c) The same at the frequency (f = 8.6511 GHz) of the second
resonance.

is undefined. Such singular points of Ez(x,z) correspond to
vortices of the power flow 〈�S〉, around which the power flow
circulates. A center is referred to as a (positive or negative)
topological charge. Since such a center occurs in free space
without energy absorption, it is evident that ∇⊥ · 〈�S〉 = 0.
When we take a certain circle C of radius R surrounding

a vortex core (R > �), a topological charge is defined as a
circulation around C:

γ = 1

2πR

∮
C

∇⊥χ · d �C = 1

2π

∫ 2π

0
∇⊥χ · d �θ, (15)
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FIG. 10. (Color online) Electric field distributions on plane A at the frequency (f = 8.5225 GHz) of the first resonance for the two phases
ωt = 0◦ and ωt = 90◦ (inclined views). The guide wavelength is λg .

where we used d �C = Rd �θ , with θ being an azimuth coordinate
for rotations along a circle C.

Scattering of the EM fields from the MDM-vortex particle is
purely topological. In Fig. 10, one can see a strong distortion of
the wave front in a region of an MDM vortex. For an incident
microwave flow of a TE mode, a rotating-magnetic-dipole
ferrite particle appears as a small region of a moving (rotating)
medium. The flow velocity of such a rotating medium can be
estimated as vm

g . As we discussed above, the group velocity
of azimuthally-propagating modes inside a ferrite disk should
be much smaller than the group velocity of EM waves in
a hollow waveguide: vm

g 
 vw
g , which means that for an

incident microwave flow of a TE mode, an MDM ferrite disk
is represented as a slowly moving medium. Berry et al. [33]
showed an analogy between waves in the presence of a vector
potential (the Aharonov-Bohm effect [34]) and waves in a
slowly moving (rotating) medium. In the case of waves in a
moving medium, the analog of the quantum flux parameter
(which gives a geometric phase in the Aharonov-Bohm effect)
α is defined via a circular integration of the flow velocity in a
medium [33]. In Refs. [33,35], the regions of contrast phases
of the water waves in a tank were experimentally studied on a
subject of influence of a filamentary vortex. The experiments
verified the analogy between such a classical mechanics
system and the quantum mechanical Aharonov-Bohm effect.
It was pointed out also [35] that the most striking difference
between the quantum mechanical case and the case of water
waves in a filamentary vortex is nonsymmetry of the classical
scattered waves due to the vortex core rotation. Our studies of
the interaction of a TE mode with MDM vortices show effects
similar to those shown in the water experiments [33,35]. We
also observe nonsymmetry for electromagnetic-field-scattered
MDM vortices. From Fig. 10, it follows that an electric field is
a nonsymmetric function: Ez(θ (+)) �= Ez(θ (−)), where θ (±) is
an azimuth coordinate for counterclockwise (+) and clockwise
(–) rotations along a circle C. The power-flow-density vortices
in Figs. 8(a) and 8(c) are similar to water spiral waves scattered
from a filamentary vortex in Ref. [35]. Spiral waves appear
when the rotation symmetry at the vortex core is broken and
takes place due to a phase shift in a dislocated plane wave.

A geometrical phase can be calculated from the dislocation
structure of the waves, which depends, in turn, on the flux
parameter α [33].

In this section of the article, we showed that the observed
bound states in a microwave waveguide inspired by magnetic-
dipolar-mode vortices are characterized by strong energy
localization in the vicinity of the ferrite particle. We gave a
preliminary analysis of topological properties of the localized
resonant states of EM energy. Unique symmetry violation
effects for microwave fields due to MDM vortex particles need
a more detailed analysis. This should be a subject for further
considerations.

III. MDM-VORTEX-PARTICLE ARRAYS: PROPOSAL FOR
MICROWAVE SUBWAVELENGTH METAMATERIALS

The MDM ferrite disks have very peculiar near-field-
interaction behavior. The fact that every disk acts as a
rotating magnetic dipole and has a vortex behavior makes

FIG. 11. (Color online) Splittings of the MDM resonance peaks
in a chain of quasi-magnetostatically interacting ferrite disks. In an
analysis of a disk chain, two resonance frequencies f ′

1 = 8.5248 GHz
and f ′′

1 = 8.5356 GHz are chosen.
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FIG. 12. (Color online) The field confinement originating from the MDM vortices in a chain of interacting ferrite disks. (a) The Poynting
vector distribution on plane A at resonance frequency f ′

1 = 8.5248 GHz. (b) The same at resonance frequency f ′′
1 = 8.5356 GHz. (c) The

pictures of the Poynting vector distributions inside every ferrite disk in a chain at resonance frequency f ′
1 = 8.5248 GHz. (d) The same at

resonance frequency f ′′
1 = 8.5356 GHz.

the problem solution nontrivial. The G-mode and L-mode
approaches used in an analysis of the magnetic-dipolar spectra
[5,29] presume different mechanisms in describing MDM-
particle interactions. Recently, an analytical model for G-mode
interacting MDM-vortex particles has been developed [36]. It
was shown that an interaction between such particles differs
from purely magnetostatic interactions between two magnetic
dipoles. There is an essential role of the electric fields in such
interactions. In the present article, we study numerically (based
on the HFSS program) the near-field structures of interacting
L-mode ferrite disks with power-flow-density vortices. One
can suppose that, in such structures, interactions between
adjacent ferrite-disk particles will set up coupled MDM-EM
modes with coherent energy transport along the particle arrays.
The vortex behaviors of the MDM ferrite particles should
presume the microwave field properties very different from the
point-dipole-array fields in optical-frequency structures with
plasmonic oscillations [21,22].

As an initial stage of an analysis, we consider a chain of
ferrite magnetic-dipolar-vortex particles with the evanescent-
tail coupling between adjacent MDM resonators. In our

numerical study, an in-plane chain of three quasi-2D normally
magnetized ferrite disks is placed inside a TE10-mode rect-
angular waveguide symmetrically with respect to its walls.
The chain is stretched along a waveguide axis. The disk
diameters are 3 mm and distances between the disk centers
are 3.2 mm. By virtue of the near-field interactions between
the disks, there are splittings of MDM resonance peaks.
Figure 11 shows such splitting in the reflection coefficient
characteristic of the first resonance peak [see Fig. 6(a)]. For
our analysis of a disk chain, we will choose two resonance
frequencies designated in Fig. 11 as f ′

1 and f ′′
1 . In Figs. 12(a)

and 12(b), we show the Poynting vector distributions on
plane A at resonance frequencies f ′

1 = 8.5248 GHz and f ′′
1 =

8.5356 GHz, respectively. The pictures of the Poynting vector
distributions inside every ferrite disk in Figs. 12(c) and 12(d)
show that the observed effect of subwavelength confinement of
the electromagnetic fields by a disk chain is due to the MDM-
resonance vortex behaviors of the particles. For a ferrite-disk
chain, the magnetic field distributions on plane A at resonance
frequencies f ′

1 = 8.5248 GHz and f ′′
1 = 8.5356 GHz and for

two phases ωt = 0◦ and ωt = 90◦ are shown in Fig. 13. There
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FIG. 13. (Color online) Magnetic field distribution vortices in a chain of interacting ferrite disks. (a) The magnetic field distributions
on plane A at the resonance frequency f ′

1 = 8.5248 GHz for the two phases ωt = 0◦ and ωt = 90◦. (b) The same at the resonance
frequency f ′′

1 = 8.5356 GHz. There is evidence of field enhancement in a region near a disk chain. One can clearly observe
the rotating-magnetic-dipole behavior of every ferrite disk in the chain. At resonant frequency f ′

1, all disks oscillate in phase.
At resonant frequency f ′′

1 , there are in-phase oscillations for two extreme disks, while an interior disk oscillates in an opposite
phase.

is evident field enhancement in a region near a disk chain. One
can clearly observe the rotating-magnetic-dipole behavior of
every ferrite disk in the chain. At two resonance frequen-
cies, there are different relationships between magnetic field
phases in ferrite disks. At resonant frequency f ′

1, all disks oscil-
late in phase [see Fig. 13(a)]. At resonant frequency f ′′

1 , there
are in-phase oscillations for two extreme disks, while an inte-
rior disk oscillates in an opposite phase [see Fig. 13(b)]. Here,
we considered a terminated chain of quasi-2D ferrite disks.
There are standing magnetic-dipolar waves along such a chain.
One can expect that for an infinite structure, an interaction
between a chain of magnetic-dipole particles and the electro-
magnetic field will give the propagation behavior of magnetic-
dipolar waves along the chain. At the same time, in the direc-
tions perpendicular to the chain, the fields will exponentially
decay.

Very unique properties of the MDM-vortex-particle arrays
become apparent when a structure has a center of symmetry.
Figures 14 and 15 show, respectively, the frequency charac-
teristics of the reflection and transmission coefficients, while
Figs. 16 and 17 show, respectively, the power-flow-density
distribution and the magnetic-field picture for a structure of
an in-plane nine-particle array with a center of symmetry.
The transmission and reflection frequency characteristics in
Figs. 14 and 15 have very rich and non-regular multiresonance
spectra. One can observe a certain frequency band behavior.
A peculiar property of a structure with a center of symmetry
is a rotating wave running around the entire array. The power-
flow-density distribution on plane A shown in Fig. 16 for
frequency f = 8.5225 GHz gives evidence for the Poynting
vector rotations in the regions above every ferrite disk with the
exception of the region above a central disk. There is a resulting
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FIG. 14. The frequency characteristics of the reflection coefficient for MDM resonances in a nine-disk array of quasi-2D ferrite disks.
(a) General picture and (b) a zoomed picture of splittings of the MDM resonance peaks.

counterclockwise rotation of the Poynting vector around the
entire array. For the same frequency of f = 8.5225 GHz,
the magnetic-field picture on plane A gives evidence for
magnetic dipoles rotating around centers of the disks and
around a center of the structure (see Fig. 17). These magnetic
dipoles are conventionally shown by black arrows in Fig. 17.
Every magnetic dipole has the counterclockwise rotation in
time. For a certain phase of time, a circulation around the
entire array shows a dynamics process in correlation with
cyclic geometrical phase evolution of the disk-magnetic-dipole
moments. For 2π circulation, the magnetic-dipole vector
accomplishes the 2π geometric-phase rotation. It is worth
noting that the direction of the geometric-phase rotation is
opposite to the direction of circulation. The results give
evidence for a unique property of circulation of topological
excitations around a center of symmetry of an array. One of

the important features of an array structure with a center of
symmetry is a very strong field localization in comparison
with other MDM-vortex structures [compare, for example,
Figs. 8(a) and 16].

Topological pointlike solutions with coreless 3D textures—
the Skyrmions—are well known in nuclear and elementary
particle physics [37]. Stable pointlike Skyrmions can be
observed in a trapped Bose-Einstein condensate [38]. Based on
an array of interacting MDM ferrite disks, one can realize sub-
wavelength microwave structures (microwave subwavelength
metamaterials) with channeling of Skyrmion-like topological
excitations (channeling of EM power-flow vortices). Special
attention should be paid for novel axially symmetric metama-
terial structures with rotational channeling of Skyrmion-like
topological excitations. The unique symmetry properties of the
system of interacting MDM ferrite disks shown in this article
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FIG. 15. Frequency characteristics of the transmission coefficient for MDM resonances in a nine-disk array of quasi-2D ferrite disks.
(a) General picture and (b) a zoomed picture of splittings of the MDM resonance peaks.

lead to the proposition of a special subwavelength microwave
metamaterial—the singular-microwaves metamaterial.

IV. CONCLUSION AND DISCUSSIONS

In the MDM resonances, precessing electron spins interact
collectively with the microwave fields. Due to this effect, one
can observe strong localization of EM energy at the MDM
resonance frequencies. At the MDM resonance states, the
MDM vortices act as traps, providing purely subwavelength

confinement of the EM field. The fields outside a ferrite disk are
evanescent in nature; they decay exponentially with distance
from the ferrite surface.

Based on the analysis made in this article, some future
directions and challenges can be suggested for discussion:

In optics, it was recently shown that an array of evanescent-
tail-coupling nanoparticle plasmonic resonators is an effective
waveguide structure with low loss [22]. This is the demon-
stration of non-diffraction-limited guiding of electromagnetic
energy over micron and submicron distances. Due to the
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FIG. 16. (Color online) The power-flow-density distribution on
plane A for a structure of an in-plane nine-particle array with a center
of symmetry.

heightened local fields surrounding plasmonic-resonator guid-
ing structures, such optical devices have potential applications
not only in photonics and telecommunications but also in
localized biological sensing of molecules. Similarly to a
system of coupled plasmonic resonators in optics, we have
here effective non-diffraction-limited microwave waveguides.
One can suppose that an array of MDM-disk resonators
coupled by quasi-magnetostatic evanescent tails will be an
effective microwave waveguide structure with low loss. Sym-
metry breakings of near fields in such structures will allow
localized sensing of chiral biological and chemical objects in
microwaves.

The interaction of microwave fields with an MDM ferrite
disk results in Poynting vector singularities. The power-flow-
density vortices in arrays of ferrite disks are well-localized
topological excitations that do not perturb the field at large
distances from the particles. Based on an array of interacting
MDM ferrite disks, one can assume the realization of subwave-
length microwave-photonics crystal structures with channeling
of Skyrmion-like topological excitations (channeling of EM
power-flow vortices).

Interactions between microwave electromagnetic fields and
quasi-2D ferrite disks with MDM oscillations can be limited
not only to the electromagnetic wave propagation in structures
with subwavelength dimensions. Dipolar-mode magnonics of
ferrite particles can also help to generate and manipulate
microwave electromagnetic radiation. As a cogent argument,
one can presuppose that special microwave structures with
rotating magnetic fields can be realized so that the phase
of a rotating magnetic dipole of an MDM ferrite disk,
enclosed in such a microwave structure, will be opposite
to the phase of a microwave magnetic field. In this case,
the rotational energy of a magnetic dipole of the ferrite-
disk particle can be used to create an effective microwave
subwavelength antenna. The microwave radiation in such a
subwavelength antenna will appear as a result of collective
interaction of precessing electron spins in a high-Q-factor
MDM ferrite resonator with a magnetic field of a microwave
structure.

It is worth noting that the effect of the field localization,
observed from our numerical studies, gives evidence for very
large field intensity in a ferrite sample. This, certainly, may
presume the possibility of nonlinear effects in a ferrite. The
question of such nonlinear effects in a ferrite sample is beyond
of the scope the present study. This problem should be one
of the most important subjects in future studies of the field
localization effects due to the MDM ferrite particles.

FIG. 17. (Color online) The magnetic-field picture on plane A for a structure of an in-plane nine-particle array with a center of symmetry.
Magnetic dipoles of the disks are shown conventionally by black arrows.
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