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Dielectric Cover Effect on Rectangular
Microstrip Antenna Array

Reuven Shavit

Abstract—A theoretical model to analyze a covered rectangular an-
tenna with an arbitrary dielectric constant superstrate is developed. The
antenna is simulated by the radiation of two magnetic dipoles located at
the radiating edges of the patch. The Green’s function of an elementary
magnetic dipole in a superstrate—substrate structure, utilizing spectral-
domain analysis, is formulated, and the surface-wave and radiation field
are computed. An improved transmission line model, which considers the
stored energy near the radiating edges and the external mutual coupling,
is used to compute the input impedances and radiation efficiency. Design
considerations on the superstrate thickness and its dielectric constant are
discussed. Experimental data for a single element and a 4 x 4 microstrip
array is presented to validate the theory.

I. INTRODUCTION

The increasing use of microstrip antennas in the electronic commu-
nication market requires simple models to analyze their performance.
The transmission line model [1] is one of the simplest of the
somewhat successful models for analyzing uncovered rectangular
microstrip antennas. This paper attempts to implement the same
concepts to the analysis of a rectangular microstrip antenna covered
with a dielectric superstrate layer. In many applications a radome
to protect the antenna is required. The dielectric cover offers such
a protection and keeps the antenna low profile. However, it has
impedance matching and radiation effects that must be considered.

Few attempts have been made to solve this problem. Alexopoulos
and Jackson [2] solved the problem of an electric dipole radiating in
a substrate-superstrate structure by formulating the Green’s function.
The basic properties of radiation in such an environment have been
discussed in their paper. One significant result in their work was that
a superstrate with dielectric constant higher than that of the substrate
may, at the proper thickness, reduce to a minimum the surface-wave
excitation and increase the radiation efficiency. This result motivated
our inquiry and interest into the possibility of increasing the dielectric
cover thickness to a maximum (mechanical considerations) without
paying a significant price in extra losses due to radiation efficiency
decrease (excessive surface-wave excitation).

Bhattacharyya and Tralman [3] have conducted an empirical study
of the dielectric superstrate effects on a patch antenna. Bhattacharyya
[4] analyzed the radiation properties of a circular patch in a sub-
Strate-superstrate structure by implementing the cavity model to
solve the problem. Benalla and Gupta [5] have introduced the
multiport network model to analyze the radiation from a rectangular
microstrip antenna covered with a dielectric layer. In their analysis
they considered the special case in which the dielectric constants of
the superstrate and substrate are equal. Tu and Chang [6] used the
Wiener—Hopf technique to compute the effect of the cover layer on
the edge admittance of a semiinfinite microstrip line as an interim
step to compute the performance of a covered patch antenna.

In the work reported in this paper the substrate and superstrate can
have arbitrary dielectric constants. An improved transmission line
model, which accounts for the external mutual coupling between
the two equivalent slots of the radiating patch, is used, and a
4 x 4 microstrip array was designed, built, and tested to validate
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the analysis. Section II describes the theory of the method. The
general Green’s function of an elementary magnetic dipole in a
superstrate-substrate structure, utilizing spectral domain analysis, is
formulated, and the surface-wave and radiation fields are computed.
The transmission line model is used to compute the input impedance
and the radiation efficiency. Section III compares numerical results
to measured results for a single patch and a 4 x 4 element array.

II. THEORY

A. Green’s Function Formulation

The basic geometry of a rectangular microstrip antenna covered
by a dielectric layer is shown in Fig. 1. The patch is rectangular
with width b and length a. The substrate-superstrate thickness and
dielectric constants are d1, £, and da, €2, respectively. The substrate
used is assumed to be thin so that the fields underneath the patch have
no = variations. The patch constitutes a cavity with radiating magnetic
walls. By the Schelkunoff equivalence principle the radiation from
the cavity magnetic walls can be approximated by two z-directed
magnetic current sheets with spacing a, length b, width d;, and
located at a height d, above the ground plane. Near resonance of the
dominant mode, the patch radiation is due to the fringing fields of the
radiating edges at y = +a /2. For the purposes of the computation of
the edge admittances, the fields of an elementary z-directed magnetic
dipole located at the interface between the substrate and superstrate
layers at (zo, Yo, d1) is needed. The = and y components of the
electric field in terms of the plane-wave spectrum can be written as

1
E (x,y,2) = i

X /érz(kr,]Cy)BJkI(I_IOH-]ky(y_yO)dedky’

1¢Y)
1
Ey(z,y,2) = P
x /éw(kmky)ejkz(r—ro)+1ky(y*uo)dkzdky.
)

The transverse field (in = and y directions) and their Fourier transform
in all three regions under consideration (substrate, superstrate, and
free space above) can be expressed in terms of their = components,
E., H, and E,, H =, respectively. The next step would be to
impose the boundary conditions in all three regions for the transverse
electric and magnetic components. On the ground plane (z = 0) the
transverse electric fields vanish. At the interface between the substrate
and superstrate (z = d;) we impose the continuity of the magnetic
fields and the jump condition for the electric fields on an elementary
z-directed magnetic dipole. At the interface of the superstrate and
free space (z = d,d = d; + d) the transverse electric and magnetic
fields are continuous. Proceeding through all these steps we obtain
after some algebraic manipulations the fields in all three regions. The
= components of the Fourier transform electric and magnetic fields
can be written in the form

E. = kyQu(B, z)e k=m0 shwwo
i=(1,2,3) 3
H, = k. Pi(5, Z)e—jero—jkyuo

in which
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Fig. 1. The geometry of a covered rectangular microstrip antenna,
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Region 3: (z > d)
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Using (3) we can take the inverse Fourier transform to obtain the
real fields

E,:#/ /kyQi(ﬂyz)ejkzu—romky(y—yo)dkzdky
—o0 —oo
(13)
o oo
HZ=$ / /kIR(ﬁ,z)ejkz(r_rM_Hky(y_yO)dedky.
—00 —o0

Given the z components of the fields, the transverse components can
be computed through Maxwell equations.
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B. Surface-Wave Contribution

The poles 3o of E. and H. are determined by the zeros of T.,
and T and represent the transverse magnetic (TM) and transverse
electric (TE) surface-wave poles, respectively. For lossless mediums
these poles, 3o, are real and their locations occur in the range
ko < Bo < max(y/Erko, \/Ezko). In this work we have considered
only the dominant TM surface-wave mode, since it has the major
effect in most applications. However, the same procedure can be
applied for higher order modes. Evaluation of E. in (13) gives the
total field, which is composed from the radiated and the surface-wave
fields. Analytical evaluation of the integral in (13) requires a change
of coordinates to k. = Jcosa, ky = 3sina and * = pcosg,
y = psin . The new integration range is 3 = 0 to oo and & = 0
to 2m. The integration on « can be performed analytically [7] using
the integral form of the first-order Bessel function. The integration
on 3 is extended from —oo to oo by replacing the Bessel function
with Hankel function, to obtain

N
Ez(p.o,:):—ﬂrsmo/—Q(B,Z)Hl(z)(dp)dﬂ

ir? a4

—oo

in which H. }”(ﬁp) is the second Hankel function of the first order.
The path of integration from —oo to oc can be extended as shown in
Fig. 2. The integration path is deformed to avoid crossing the branch
cut at —ko and includes the surface-wave pole at —3y. Using the
theory of residues the value of the contour integral can be computed
by

FB) . (B
/ () 10 = T2 1

T, T} (Bo)

where T,,(i3) is T, derivative. The integration over the portion of
the contour with |3| — oo vanishes. Thus, the integral given by (14)
(the total field) is equal to the integration around the branch cut plus
the residue contribution. The integration around the branch cut gives
the radiated field, while the residue contribution gives the surface
wave field. A simpler way to compute the radiated field is through the
steepest descent method as explained in the next section. Evaluation
of the RHS of (15) in all three regions gives the surface-wave fields.

£

EX(p.o,z) = %sinwmo,:)flf”(au lp=pol)  (16)
where i = 1,2,3 stand for regions 1, 2, and 3, and U; is equal
to the expressions (4), (9), or (11) in which T}, is replaced by its
derivative T},.

Integration of EZ" over each of the patch edges of length b results
in the total surface-wave field radiated. Near resonance, the current
distribution of the equivalent magnetic current on the edge is constant,
an assumption used in the integration over the edge. The fringing
fields at the nonradiating edges (of length a) are accounted for by
moving the location of the magnetic walls outward by an appropriate
amount. The new radiating edge length is denoted by beg [8]. The
surface-wave power radiated by each of the two radiating edges is
given by

oc 2m

Py = %Re//Eiva;W‘pdasdqu. a7
0 0

The integration is performed in all three regions, and the sum of
the results yields the total surface wave radiated by each of the two
radiating edges. The integration on > can be performed analytically,
while the integration over ¢ must be performed numerically. The
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Fig. 2. The integration path contour in 3 plane.

power coupled to the surface wave can be represented by an edge
conductance G, [5]

G, = L (18)

L [ve(s)ds
where the integration is along the patch edge of length b and V'(s)
is the voltage distribution along the edge. F.w is the power radiated
by the surface wave and is computed in (17). For a rectangular patch
operating near resonance of the dominant mode, V'(s) is uniform,
and in this case (18) simplifies to G5 = 2Puw.

C. Radiation Fields

The radiated fields in region 3(z > d) can be computed from (11),
(12), and (13) given that 3 < ko (the visible range). In this instance,
s is replaced by —jks. The computation of the integral in (13) can
be facilitated if we make change of variables to spherical coordinates
z=rsinfcos¢,y =rsinfsing, z = rcosb, k; = ko sinacosé,
ky = kosinasiné. Evaluation of the integrals in (13) for r — oo
and using the steepest descent method gives the field expressions in
spherical coordinates

koc1eabesr €7%07 ug cos kourdy
Ee=3j
2m r Tm

bett .
sin ¢ <ko TH sin 6 cos 45) cos 6 sin @, (19)
E, = — kobesr €757 wyuy cos kourds
=7 27 r T.
bt .
sin ¢ (ko Tﬂ sin 6 cos d)) cos # cos ¢ (20)

where

w1 = Vey —sin?6;  up = V=2 —sin? 6,

T = u1£2 sin kouid (ug cos kouads + j cos g2 sin kouads)

@1

+ uog; cos kourdy
X (ug sin kougdy — j cos Be; cos kouadsa), 22)
T. = uz sin kouyd:(u2 sin kouada — j cos 8 cos kouadz)
— uy cos kouidi(uz cos kouads + j cos 0 sin kouads).
(23)

The power radiated by each of the radiating edges can be evaluated
by integrating the Poynting vector over the upper hemisphere of the
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Fig. 3. The equivalent transmission line circuit of the loaded rectangular
microstrip antenna.

patch.

2r pXZ AR 0
P = %Re / / * EoEy + BoE; sin8déde.  (24)
0 0

Mo

The equivalent conductance of each radiating edge is G and can be
computed by (18), in which Psy is replaced by P; to give G, = 2P;.
This result is obtained based on the assumption that the distribution
of the dominant mode voltage V'(s) over the radiating edge is
uniform. The double integration in (24) is carried out numerically
using Gaussian quadrature [7]. The radiation efficiency 7, of the
covered patch antenna is the ratio of the radiated power P to the
total (radiated plus surface-wave) power.

D. Impedance Model

The transmission line model to analyze rectangular uncovered
patch antennas. was introduced by Munson [1] and improved by
Derneryd {9] and Pues et al. [10] to consider the stored energy near
the edges and the external mutual coupling between the radiating
edges. In the present work this model was adopted for the covered
patch case. The equivalent circuit of the covered rectangular patch is
shown in Fig. 3. G, and G, represent the surface-wave and radiation
conductances of the radiating edges. The susceptance B represents
the stored energy near the edges, and the mutual admittance Yy,
represents the external mutual coupling between the two radiating
edges. The equivalent transmission line connecting the two edges
has a length a, and the feed distance from one of the edges is y:.
The parameters of a covered microstrip line have been computed
by Bahl and Stuchly [11] and used in the present work. The
characteristic impedance Zo, the propagation constant Jo, and the
effective dielectric constant £;,(b) of a covered microstripline of
width b are given by [11].

The edge susceptance B can be expressed in terms of the edge
capacitance C(b) by B = jwC(b). An approximate method for the
computation of the edge capacitance is based on the evaluation of
the edge capacitance of a covered microstripline with width a and
derived by Wolff and Knoppik [12]:

C(b):g( £ra(a) —sosli)

’U()Z()(air) dy (25)

where ¢..(a) and Zo(air) are computed in [11]. The open-end effect
of the radiating edge is represented by the susceptance B and can be
expressed by an open-end extension Al of the covered microstripline.
Given the expressions, of the fields derived by the spectral-domain
analysis (13), the external mutual conductance Y, can be computed.
Alternatively, we can use the expression derived by Pues and Van
De Capelle [10], which gives the external conductance Y, between
two radiating edges

Yiw = (G + G»)Fy + jBF, K. (26)

The parameters Fy, F, and K can be found in [10]. Given all
the circuit parameters as shown in Fig. 3, one can compute the input
admittance Y;, [10] as shown in (27) at the bottom of the page, where
YI =G, +Gs+jBand Yy = 1/Z;. A coaxial probe feed can be
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Fig. 4. Radiation efficiency 7, versus superstrate thickness dz for various dielectric constants €5.

modeled by a coaxial stub in a parallel waveguide [13]. The formula
for the probe input impedance Z; is

Z .2 ko/e17
2y = Zkody (1—];1:1 %)

where Zy = 120w, v = 1.781 and r is the probe radius.

(28)

III. RESULTS

In this section numerical and measured results will be presented to
validate the theory developed in Section II.

Fig. 4 shows the dependence of the radiation efficiency 7, on the
superstrate thickness d2 for various dielectric constants . The patch
dimensions are ¢ = 1.2 cm, b = 1.6 cm, d; = 0.1575 cm, £, = 2.2,
tan §; = 0.001, tan 8, = 0.0007, and frequency is 6.4 GHz. One can
observe that the efficiency drops monotonically with the increase in
the superstrate thickness up to a breaking point, with the approximate
value of d2 = 0.2X0//22. Beyond this point a significant drop in the
efficiency occurs. In the vicinity of the breaking point, we obtain a
local increase in the radiation efficiency due to a local increase in the
radiated power P,. These results confirm those reported in [2]. This
phenomenon is especially accentuated for high e.. Fig. 4 indicates
that lower £ and d; should be favored to minimize the decrease in
the antenna efficiency. However, there are cases in which materials
with low 2 and dz don’t fulfill the mechanical requirements from
the cover. In these cases Fig. 4 suggests upper bounds (the breaking
points) on ¢z and dz with relatively affordable losses due to the
surface-wave excitation. Beyond these upper bounds the decrease in
the antenna efficiency is significant.

The increase in <2 results in a decrease in the resonance frequency,
the impedance of the patch, and the characteristic impedance of the
feeding microstrip lines. The decrease in the characteristic impedance
of the feeding lines results in an increase in the radiation loss of the
network [14]. To restore the characteristic impedance level of the

computed
measured

Fig. 5. Comparison between computed and measured data of the input
impedance of a single patch (¢ = 1.2 cm, b= 1.6 cm,e; = 2.2, €9 = 4.2,
di = 0.1575 cm, d2 = 0.21 cm).

network to that of the uncovered case, the size of the feeding lines
must be reduced. In some cases production considerations limit the
minimum width of the microstrip lines and extra losses should be
expected in the covered case beyond those outlined in the previous
paragraph. Moreover, to minimize the dielectric loss of the feeding
network low-loss superstrate and substrate materials are required.

Yin = 2Y0

(Y& + Y2 = Y2) + j2Yo(Ymese(Boa) — Vi cot(Boa))

2YoY: — j((YE + Y2 — Y2) cot(Boa) + (Y2 — Y2 — Y.2) cos (Bo(yz — v1))esc(Boa))

e2))
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Fig. 6. H-plane radiation pattern of 4 X 4 microstrip array at 6.4 GHz.

As a consequence of these considerations we chose to cover the
patch with €2 = 4.2 and tan 62 = 0.0007. The superstrate thickness
was 0.21 cm. Fig. 5 shows a comparison of the measured and
computed values of the patch input impedance for a feeding distance
y1 = 0.28 cm (see Fig. 1). The patch was fed coaxially. The
computed resonance of the patch was 6.37 GHz, and the measured
value was 6.4 GHz. As discussed previously, the dielectric cover
decreases the resonance frequency, the resonance impedance, and to
some extent the radiation efficiency. Based on the results obtained
for a single patch, an array of 4 x 4 elements with a squinted beam
(15°) in the H plane was designed and built. The spacing among the
elements was d, = 0.75X and d, = 0.84)\,. The feeding network
was corporate, and the characteristic impedance of the loaded lines
was computed based on [11]. The radiation pattern was measured
in a planar near field range. Fig. 6 shows a comparison between
the computed and measured H-plane patterns of the array at the
resonance frequency 6.4 GHz. One can observe a good agreement
between the two. The directivity of the array was 20.4 dBi, while
the measured gain was 19 dBi. An equivalent uncovered array has a
gain of 20 dBi, and the difference of 1 dB can be attributed to the
difference in the efficiencies, 85% in the uncovered case and 65%
for the covered case. An attempt was made to cover the array with
a dielectric sheet of the same dimensions and =2, but with a higher
loss tangent, tan 8, = 0.0245, this resulted in an additional loss of
1 dB due to the extra loss of the feeding structure. Consequently,
low-loss materials for the cover or, alternatively, separation of the
feeding network from the radiating elements, a technique discussed
in [15], must be used to insure high radiation efficiency.

IV. CONCLUSION

This paper presents the analysis of a rectangular microstrip antenna
covered with an arbitrary dielectric layer. In the analysis, the Green’s
function of an elementary magnetic dipole is evaluated and the
transmission line model is used to compute the input impedance.
Numerical results on the effect of the dominant TM surface wave
excited and its impact on the radiation efficiency and input impedance

are presented. A single patch and a 4 x 4 microstrip array were built.
The theoretical and measured results are in good agreement.
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