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In 1948 Tellegen �Philips Res. Rep. 3, 81 �1948�� suggested that an assembly of the lined up
electric-magnetic dipole twins can construct a new type of an electromagnetic material. Until now,
however, the problem of creation of the Tellegen medium is a subject of strong discussions. An
elementary symmetry analysis makes questionable an idea of a simple combination of two �electric
and magnetic� dipoles to realize local materials with the Tellegen particles as structural elements. In
this paper we show that in search of sources with local junctions of the electrical and magnetic
properties one cannot rely on the induced parameters of small electromagnetic scatterers. No
near-field electromagnetic structures and no classical motion equations for point charges give a
physical basis for realization of sources with a local junction of the electrical and magnetic
properties. We advance a hypothesis that local magnetoelectric �ME� particles should be physical
objects with eigenmode oscillation spectra and nonclassical symmetry breaking effects. Our studies
convincingly prove this assumption. We show that a quasi-two-dimensional ferrite disk with
magnetic-dipolar-mode oscillations is characterized by unique symmetry features with topological
phases resulting in appearance of the ME properties. An entire ferrite disk can be characterized as
a combined system with the eigenelectric and eigenmagnetic moments. The fields near such a
particle are distinguished by special symmetry properties. The questions raised in this paper give
new insights into a problem of realization of local ME composites. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3054298�

I. INTRODUCTION

The question on relations between magnetoelectricity
and electromagnetism is a subject of a strong interest and
numerous discussions in microwave and optical wave phys-
ics and material sciences. An idea about a local magnetoelec-
tric �ME� effect in media goes back to Debye1 who suggested
in 1925 the possible existence of molecules which have a
permanent electric dipole moment as well as a permanent
magnetic dipole moment. Tellegen2 considered an assembly
of electric-magnetic dipole twins, all of them lined up in the
same fashion �either parallel or antiparallel�. Since 1948,
when Tellegen suggested such “glued pairs” as structural el-
ements for composite materials, electromagnetic properties
of these complex media were a subject of serious theoretical
studies �see, e.g., Refs. 3–5�. Until now, however, the prob-
lem of creation of the Tellegen medium is a subject of strong
discussions. The questions—How can the glued pairs of two
small �electric and magnetic� dipoles be realized as local ME
sources for electromagnetic waves? And, more generally, do
the Tellegen particles really exist in electromagnetics?—are
still open.

The electric polarization is parity-odd and time-reversal-
even. At the same time, the magnetization is parity-even and
time-reversal-odd.6 These symmetry relationships make
questionable an idea of a simple combination of two �electric
and magnetic� small dipoles to realize local ME materials for
electromagnetics. If one supposes that he has created a par-
ticle with the local cross-polarization effect, one, certainly,
should demonstrate a special ME field near this particle. It

means that using a gedanken experiment with two quasi-
static, electric and magnetic, point probes for the ME near-
field characterization, one should observe not only the
electrostatic-potential distribution �because of the electric
polarization� and not only the magnetostatic �MS�-potential
distribution �because of the magnetic polarization�, one also
should observe a special cross-potential term �because of the
cross-polarization effect�. This fact contradicts to classical
electrodynamics. What will be an expression for the Lorentz
force acting between these particles? This expression should
contain the “electric term,” the “magnetic term,” and the
“ME term.” Such an expression is unknown in classical elec-
trodynamics. One cannot consider �in classical electrody-
namics� a system of two coupled electric and magnetic di-
poles as local sources of the ME field and there are no two
coupled Laplace equations �for the MS and electrostatic po-
tentials� in the near-field region.6 In a presupposition that a
particle with the near-field cross-polarization effect is really
created, one has to show that inside this particle there are
internal dynamical motion processes with special symmetry
properties.

Such well known “electromagnetic ME scatterers” as
small helices,4 �-particles,7 and split-ring resonators8

�SRRs� are, in fact, small delay-line sections with distinctive
inductive and capacitive regions. In microwave experiments
with these particles, no “ME coupling” was shown in the
standing-wave systems. For realization of the effect of ME
coupling in these special-form small scatterers one should
have the propagating-wave behavior. Moreover, the “ME re-
sponse” will be dependable on the type of propagating elec-
tromagnetic fields. For the plane, cylindrical, and sphericala�Electronic mail: kmntsk@ee.bgu.ac.il.
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electromagnetic waves, there will be different ME responses.
The question is still open: What kind of the near-field struc-
ture surrounding such an electromagnetic ME scatterer can
one expect to see? Any quasistatic theories �similar, for ex-
ample, to the quasistatic Lorentz theory used for artificial
dielectrics9� are not applicable for such metallic-inclusion
composites. In Ref. 10, the authors declared about experi-
mental realization of the ferrite-based Tellegen particle in
microwaves. The particle, created as a small ferrite sphere
combined with a small piece of a thin metal wire, was placed
in a rectangular waveguide cavity. The “ME parameter” of
this particle was estimated via such a physically unclear pa-
rameter as “the amplitude of the cross-polarized wave.” It is
well known, however, that for a microwave resonator con-
taining enclosed gyrotropic-medium samples, the
electromagnetic-field eigenfunctions will be complex, even
in the absence of dissipative losses. It means that one does
not have the standing-wave fields in spite of the fact that the
eigenfrequencies of a cavity with gyrotropic-medium
samples are real.11 A microwave resonator with a ferrite in-
clusion acting in the proximity of the ferromagnetic reso-
nance is a nonintegrable system with the time-reversal sym-
metry breaking effect. The waves reflected from the ferrite
boundary are chaotic random waves in a cavity.12–14 Since no
eigenoscillations inside a ferrite sphere are observed, the mi-
crowave responses will be dependable on a type of the ex-
citing field. So for a particle described in Ref. 10 no definite
and stable polarizability parameters characterizing the ME
properties can be found.

The Tellegen proposition was about the particles with
permanent coupled electric and magnetic dipole moments. In
all the above “ME scatterers” we have the induced effects. It
was stated in Ref. 15 that so-called Janus particles can be
considered as the Tellegen particles with permanent �electric
and magnetic� moments. Janus particles are bifacial
nanoparticles.16 They may be separately electrically dipolar
or ferromagnetic. The lack of centrosymmetry in synthetic
Janus systems may lead to the discovery of novel material
properties. Probably, there can be the ME properties. These
properties were observed, however, at dc fields and no-wave
dynamics effects were shown in the studies.15 On the other
hand, the question on the role of symmetry breaking in ME
coupling is essential in ME crystals and piezocomposites.
There are well known ME materials which are single-phase
noncentrosymmetric magnetic crystals or composites that
contain a piezoelectric phase.17,18 One can change the mate-
rial parameters by a bias electric field and observe the ME
properties for different wave dynamics processes, even at
microwaves.17–19 At the same time, natural ME crystals and
complex ferrite/piezoelectric structures are not particulate
composites with ME �Tellegen-type� particles as structural
elements. In a proposition of particulate ME composites one
may suppose that the unified ME fields originated from a
point ME particle �when such a particle is created� will not
be the analytically described classical electromagnetic fields.
It is known that in solids effective interactions of charges and
spins are often quite different from the fundamental laws of
electrodynamics, which may give rise to unusual phenom-

ena. One can expect that the motion equations inside a con-
jectural local ME particle may lead to nonclassical fields
with special symmetry properties.

Recently it was found that magnetic-dipolar-mode
�MDM� oscillations in a quasi-two-dimensional �2D� ferrite
disk are characterized by the dynamical symmetry breaking
effects20 resulting in the near-field structures with unique to-
pological properties. These properties are reflected in micro-
wave experiments by specific responses.21–25 Based on ana-
lytical and numerical studies, in this paper we show that
MDM ferrite disk particles exhibit special topological effects
and can be observed �by the external near fields� as local
systems of two, electric and magnetic, eigenmoments. These
ferrite ME particles cannot be considered, however, as clas-
sical electromagnetic ME scatterers.

This paper will begin with Sec. II giving an analysis of
different classical aspects in problems of realization of local
ME particles. Section III will be devoted to consideration of
special mechanisms of generation of magnetoelectricity by
magnetic chirality. ME properties of quasi-2D ferrite disk
particles with MDM oscillations will be shown in Sec. IV.
From the electromagnetic point of view, a ferrite ME particle
behaves as a nonintegrable object. Such an electromagneti-
cally chaotic system can be well modeled, however, by nu-
merical studies based on the commercial numerical
electromagnetic-simulation programs. We present numerical
verifications for unique ME properties of thin-film ferrite
disks. Section V is devoted to numerical studies of ME prop-
erties of MDM ferrite disks with special geometries. This
paper will be concluded by a summary in Sec. VI with an
outlook to future developments of structures with local ME
properties and a discussion on properties of dense ME com-
posites.

II. SEARCH OF CLASSICAL SOURCES WITH LOCAL
JUNCTIONS OF THE ELECTRICAL AND
MAGNETIC PROPERTIES

As worthy argumentation, we should forestall our main
analysis with necessary discussions on possible classical
point sources with local junctions of the electrical and mag-
netic properties. Presently, there are numerous publications
regarding different classical ways of realization of a Tellegen
particle. We will give now some basic aspects in local elec-
tromagnetic scatterers, near-field structures, and motion
equations, which clearly prove our standpoints that no par-
ticles with the local cross-polarization effect can be realized
from a classical point of view.

A. Local electromagnetic scatterers

In electromagnetics, local scatterers are systems whose
individual dimensions are small compared with a wave-
length. It is evident that if a ME scatterer exists as a classical
object, the fields and radiation of such a conjectural scatterer
should be the fields and radiation of a localized oscillating
source in classical electrodynamics. In Maxwell equations,
the potentials, fields, and radiation can be considered as be-
ing originated from a localized system of charges and cur-
rents which vary sinusoidally in time:
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��r�,t� = ��r��ei�t,

J�r�,t� = J�r��ei�t. �1�

For a case when the wavelength is much bigger than sizes of
a region occupied by charges and currents, the incident fields
induce electric and magnetic multipoles that oscillate in defi-
nite phase relationship with the incident wave. There are two
limit regions: �a� the near �static� zone and �b� the far �radia-
tion� zone. The near fields are quasistationary, i.e., they are
oscillating harmonically as ei�t, but otherwise static in char-
acter. Since the fields are static in character, no interactions
between the electric and magnetic multipoles are presumed.
A general solution of Maxwell equations can be represented,
for example, as a series for the Hertzian-vector solution.26 A
character of the expansion depends on the frequency and
geometrical properties of the current distribution. The first
term in the expansion describes the field exciting by an os-
cillating electric dipole, while the second term in the expan-
sion represents the field stipulated by an oscillating magnetic
dipole and electric quadrupole.26 Only the lowest multipoles,
usually electric and magnetic dipoles, are important. These
induced dipoles can be calculated from static or quasistatic
boundary-value problems.6,26 The electric dipole moment p�e

is defined by the electric polarizability and an electric com-
ponent of an incident field, while the magnetic dipole mo-
ment p�m is defined by the magnetic polarizability and a mag-
netic component of an incident field. For example, for a
small dielectric �with a dielectric constant �� sphere of radius
a one has6

p�e =
� − 1

� + 2
a3E� inc. �2�

There is no magnetic dipole moment. For a small perfectly
conducting sphere of radius a one has

p�e = a3E� inc, p�m = −
1

2
a3B� inc. �3�

So a small conducting obstacle exhibits an electric dipole
polarization as well as magnetic dipole polarization. One
also has the induced electric and magnetic moments for a
more complicated case of scattering of electromagnetic fields
by a small gyrotropic sphere. In this case, as well the electric
dipole is induced by the electric component of the incident
field and the magnetic dipole is induced by the magnetic
component of the incident field.27 From a classical point of
view, there is no physical mechanism for interaction between
electric and magnetic dipoles in the near �static� zone. The
total field is a superposition of the partial fields originated
from uncoupled electric and magnetic dipoles and no cross-
polarization effects take place. Far away from the scatterer
�in the radiation zone� the fields are found to be28

E� �r�,�� = �k0
2p�e + �� �p�e · �� � + ik0 � � p�m�

eik0�r�−r�0�

�r� − r�0�
, �4�

H� �r�,�� = �k0
2p�m + �� �p�m · �� � − ik0 � � p�e�

eik0�r�−r�0�

�r� − r�0�
, �5�

where k0=� /c. The role of the electric dipole p�e in the mag-
netic field structure as well as the role of the magnetic dipole
p�m in the electric field structure become evident only in the
far-field zone.

The fact that there is no physical mechanism for interac-
tion between electric and magnetic dipoles in the near �static�
zone and that only in the far �radiation� zone one can observe
the effect of “ME interaction” becomes evident not only for
small scatterers with simple geometry but also for small scat-
terers with complicated geometry. This clearly follows from
a classical multipole theory. Multipole expansions in electro-
dynamics provide a powerful method of characterizing elec-
tromagnetic fields.29 A classical multipole theory describes
an effect of “ME coupling” when there is time retardation
between the points of the finite-region charge and current
distributions and this time retardation is comparable with
time retardation between the origin and observation points.
In such a case, an expression for the field contains combina-
tions of both magnetic and electric multipole moments.29

One may obtain the EM-wave phase shift between the points
of the finite-region charge and current distributions, �1, com-
parable with the EM-wave phase shift between the origin and
observation points, �0, even for a very small scatterer. To
obtain such an effect of “ME coupling” one should make a
scatterer in a form of a small LC delay-line section. In the far
zone of this scatterer we will observe “ME coupling”. This
can be explained with the help of Fig. 1. Let a characteristic
size of a scatterer be r and r�R, where R is a distance
between the origin point and the observation point P. Let k1

be the wavenumber of the EM wave propagating in the LC
delay line and let k0 be the wavenumber of the EM wave in
vacuum. In the case when k1�k0, one may obtain �1=kr
��0=k0R. All the proposed electromagnetic ME
scatterers4,7,8 have a typical form of a delay-line section with
distinctive inductive and capacitive regions. In a series of
experimental papers one can see that the “ME coupling” ef-
fect in these particles was observed only in the propagation-
wave behavior, without any near-field characterizations.30–34

This fact has a clear explanation. When a small special-form
“ME coupling” scatterer is located in a cavity, both phase
shifts �1 and �0 become equal to zero. Thus, no “ME cou-
pling” takes place in the standing-wave systems. The ob-
served special properties of the fields scattered from a small
“ME particle” are caused, in any event, by the field retarda-
tion effects. No such scatterers with local cross-polarization

FIG. 1. Effect of “ME coupling:” a small electromagnetic scatterer in a form
of an LC delay-line section has phase shifts �1=kr��0=k0R.
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effects can be presumed from classical electrodynamics. This
gives evidence relating to the question why the multipole
theory demonstrates the “ME coupling” in a nonlocal
medium.29 It follows then that retrieval of the effective con-
stitutive parameters of bianisotropic metamaterials from the
measurement of the S parameters35 should be relied only on
the far-field characterization.

A dense composite material means an artificial structure
with characteristic sizes of structural elements and distances
between them much less than the electromagnetic-wave
wavelength. One can realize dense composite dielectric and
magnetic materials. There is pure static �quasistatic� electric
interaction between neighboring metallic rods in an artificial
dielectric9 and there is pure static �quasistatic� magnetic in-
teraction between neighboring dielectric resonators36 and
SRRs37 in artificial magnetic materials. Physically, one can
create a dense composite based on small delay-line-section
ME particles as structural elements, but this will not be a
composite with local �quasistatic� cross-polarization cou-
pling. So no quasistatic theories �similar, for example, to the
quasistatic Lorentz theory used for artificial dielectrics� are
applicable for such “ME composites.” It is stated in Ref. 38
that the separation between the macroscopic and microscopic
electromagnetic descriptions is not quite as sharp in bianiso-
tropic media as it is in pure dielectrics due to the fact that the
cross-polarization coupling vanishes in the long-wavelength
limit. The supposition that one can realize dense particulate
composites based on “electromagnetic ME scatterers” raises
also a question of the boundary conditions. It is well known
that for materials with nonlocal properties there should be
introduced so-called additional boundary conditions �ABCs�.
The ABCs, being considered as supplementary to standard
electromagnetic boundary conditions, are derived from some
motion equations in a medium.39,40 In the case of nonlocal
structures composed by “electromagnetic ME scatterers” no
motion equations can be presupposed and so no reliable so-
lutions of the boundary-value problems can be obtained. The
known “electromagnetic ME composites” are, in fact, vari-
ous diffracting structures, which do not have any inherent
�different from pure electromagnetic� mechanism of ME in-
teraction. In the case of an “electromagnetic ME particle”
one has only imagination of the ME coupling in the far-field
region. All the proposed ME particles are, in fact, open elec-
trical contours oscillating at a resonance frequency and inter-
acting with an external electromagnetic field as classical ra-
diating systems.

Let us suppose a priori that �in spite of the above argu-
mentations� a small electromagnetic particle with the local
�quasistatic� cross-polarization effect has been created. When
a small electric dipole localizes an electric field and a small
magnetic dipole localizes a magnetic field, a small particle
with the quasistatic cross-polarization effect should have a
special ME field in the near-field region. Our next question
concerns the properties of the near-field electromagnetic
structures: Can the known classical near-field electromag-
netic structures be considered as the fields with specific ME
properties? We will show that an answer to this question is
negative.

B. Near-field electromagnetic structures

One of the main aspects that attracted the concept of
metamaterials was a possibility for the near-field
manipulation.41 In electrodynamics, the near-field EM fields
are considered as the evanescent �exponentially decaying�
modes. In such a sense, metamaterials can be characterized
as structures with tailored electromagnetic response. The im-
portance of phenomena involving evanescent electromag-
netic waves has been recognized over the past years. The fact
that evanescent waves are more confined than the single tone
sinusoid waves and hence contain wider range of spatial fre-
quencies indicates that it may be possible to have no theo-
retical limit of resolution for the near-field patterns. At
present, the near-field manipulation becomes an important
factor in new applications, such as near-field microscopy and
new material structures. Physically, there can be distin-
guished different categories of the near fields.42 For our pur-
pose, we will consider three types of the near-field EM struc-
tures.

1. Evanescent modes

From a general point of view, the near field of evanes-
cent modes can be defined as the extension outside a given
structure �sample� of the field existing inside this structure
�sample�. For the Helmholtz equation,

�	k0
2 = kx

2 + ky
2 + kz

2, �6�

where

k0
2 =

�2

c2 , �7�

kx, ky, and kz are wavenumbers along x, y, and z axes in a
medium: two solutions are possible when kx and ky are real
quantities. The first solution corresponds to the case

�	k0
2 
 kx

2 + ky
2. �8�

It shows that kz is a real quantity and one has, as a result, the
three-dimensional propagating EM process. The second so-
lution takes place when

�	k0
2 � kx

2 + ky
2. �9�

So kz is an imaginary quantity. One has the 2D propagating
EM process along x and y axes and the evanescent-mode
fields �the near fields� in the z direction. The typical ex-
amples of such evanescent modes can be demonstrated in the
field structures of closed below-cut-off microwave wave-
guide sections and open optical waveguides. The importance
of evanescent electromagnetic waves was recently realized in
connection with emergence of near-field optics microscopy.
Taking evanescent waves into account prevents the use of
any approximations and requires the detailed solution of the
full set of Maxwell equations.43 As an effective method to
study evanescent electromagnetic waves for solving Max-
well’s equations one can use expansion in multipoles where
electromagnetic fields are constructed from scalar-wave
eigenfunctions of the Helmholtz equation.43,44

It is evident that to get extremely big quantities of imagi-
nary kz one should have extremely big quantities of real kx
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and ky. In the way to create a perfect lens based on left-
handed metamaterials41 this fact may lead to a strong limita-
tion. Really, the concept of an effective medium cannot be
used for a perfect-lens slab of a left-handed metamaterial
illuminated by a point source when evanescent waves have a
transverse wavelength of the order of or less than the dimen-
sions of the inclusions or their spacings.45 Misunderstanding
of such a limitation can lead to serious flaws in physics of
new material propositions for perfect-lens slabs. As an ex-
ample, we can refer to Ref. 46 where a material for a perfect-
lens slab is conceived as the dilute mixture of helical inclu-
sions. The fact that these nonlocal inclusions are not in each
other near field casts doubts on the vital effect of evanescent
waves in such a slab lens.

The near fields of evanescent modes have a classical
electromagnetic nature and, evidently, are not related to any
specific ME fields.

2. Quasistatic limit

The quasistatic limit means �k�0�→0 and so �kx�, �ky�,
�kz�→0 as well. In this case, no-wave time-dependable qua-
sistatic fields exist. Such quasistatic electromagnetic fields
can be realized only due to local sources: or local-
capacitance alternative electric charges with surrounding po-
tential electric fields:

E� = − �� , �10�

or local-loop conductive electric currents with surrounding
potential magnetic fields:

H� = − �� . �11�

Spatial distributions of potential � as well as potential � are
described by the Laplace equation. Examples are the quasi-
static fields surrounding tip-structure probes in modern
microwave-microscopy devices.47 Certainly, there is no
physical mechanism for possible ME coupling between such
local electric and magnetic sources.

3. Quasistatic oscillations

The symmetry between the electric and magnetic fields
is broken in finite temporally dispersive media. In this case,
quasistatic oscillations may take place. For quasistatic oscil-
lations

k0 � 1/l , �12�

where l is the characteristic size of a body. In such oscilla-
tions, there are no electromagnetic retardation effects since
one neglects electric or magnetic displacement currents. The
following are some examples of quasistatic oscillations.

�a� Quasistationary EM fields in small metal samples.
These fields are described by Maxwell equations with
neglect of the electric displacement currents. Inside a
sample we have the “heat-conductivity-like” equation
for the magnetic field:

�2H� =
4	�

c2

�H�

�t
. �13�

Outside a sample there are the quasistatic-field
equations:

� · B� = 0, � � H� = 0. �14�

The solutions correspond to imaginary numbers of
kx, ky, and kz showing that there are nonstationary de-
caying fields.39

�b� Plasmon-oscillation fields are the fields due to collec-
tive oscillations of electron density. When one consid-
ers a metal or a semiconductor as a composite of posi-
tive ions forming a regular lattice and conduction
electrons which move freely through this ionic lattice,
there can be longitudinal oscillations of the electronic
gas—the plasma oscillations. The interface between
such a sample and a dielectric may also support charge
density oscillations—the surface plasmons. In the case
of surface plasmon modes, the surface plasmon field
decays exponentially away from the interface. For the
electrostatic description �one neglects the magnetic dis-
placement current�, an electric field is the quasielectro-

static field �E� =−���. The plasmon oscillations may be
characterized by electrostatic wave functions, which
are eigenfunctions of the Laplace-like equation. For
negative frequency-dependent permittivity, one can ob-
serve a discrete spectrum of propagating electrostatic
modes48 and electrostatic resonances.49 Surface plas-
mons can interact with photons �with the same polar-
ization state� if the momentum and energy conditions
are right. There is a link between the near-field focus-
ing action and the existence of well-defined surface
plasmons.41

�c� MS oscillations are observed in small temporally dis-
persive ferromagnet samples.11,39 For these quasista-
tionary fields, a MS description �one neglects the elec-
tric displacement current� can be used. So a magnetic

field is the quasimagnetostatic field: H� =−��. Inside a
ferrite sample one has the Walker equation for MS-
potential wave function �:

� · �	J��� � �� = 0, �15�

where 	J is the permeability tensor. Outside a sample,
there is the Laplace equation

�2� = 0. �16�

For a negative diagonal component of the permeability
tensor, the solutions inside a sample may be character-
ized by real wave numbers for all three dimensions. In
this case one can observe a discrete spectrum of propa-
gating MS modes and MS resonances.11

There are no classical physics mechanisms for the inter-
nal coupling between the electrostatic and MS oscillations. If
one conceives realization of a sample with a simple combi-
nation of the plasmon and magnon sources, there will not be
a local ME particle surrounded by the unified ME field.
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C. Classical motion equations for point charges

Could there be any kind of classical motion equations
for point charges giving a physical basis to realize sources
with the local junction of the electrical and magnetic prop-
erties?

As we all know �see, e.g., Refs. 6 and 39�, electromag-
netic fields in a medium arise from the microscopic Maxwell
equations written for the microscopic electric e� and magnetic

h� fields, microscopic electric charge density ��r� , t�, and mi-
croscopic electric current density �v�:

� � e� = −
1

c

�h�

�t
, � · e� = 4� , �17�

� � h� =
4

c
�v� +

1

c

�e�

�t
, � · h� = 0. �18�

For the averaged fields one defines electric polarization P�

and magnetization M� as

D� � E� + 4P� , H� � B� − 4M� . �19�

Formally, it can be assumed that a medium is composed of
the electric and magnetic dipoles. In this case one can write
the microscopic Maxwell equations with the microscopic
electric charge density �e�r� , t�, electric current density �ev�e,
magnetic charge density �m�r� , t�, and electric current density
�mv�m as50

� � e� = −
4

c
�mv�m −

1

c

�h�

�t
, � · e� = 4�e, �20�

� � h� =
4

c
�ev�e +

1

c

�e�

�t
, � · h� = 4�m. �21�

After the averaging procedure, in this case one obtains
standard-form macroscopic Maxwell’s equations as well, but

for the averaged fields one has the electric polarization P� e

and magnetic polarization P� m:

D� � E� + 4P� e, B� � H� + 4P� m. �22�

An analysis of both the above cases assumes that the motion
equations are local equations: the average procedure for mi-
croscopic current densities takes place in scales much less
than a scale of variation in any macroscopic quantity. At the
same time, no ME couplings on the microscopic level can be
presupposed in these motion equations. In frames of a clas-
sical description, no helical loops �recursion motions� are
possible for bound charges and no classical laws describe
interaction between linear electric and linear magnetic cur-
rents.

Together with electric sources used in the standard elec-
tromagnetism one can presume the presence of magnetic
sources. An analysis made based on the classical Hamilton
principle shows that there cannot be proper equations of mo-
tion in which the fields originated from electrically charged
particles will exert forces on magnetically charged particles
and vice versa.51 From the “electric” Lagrangian density

with an electric current source, one derives the standard set
of Maxwell’s equations with the fields defined as

E� = − �� −
1

c

�A�

�t
, H� = � � A� , �23�

where � and A� are, respectively, the scalar and vector electric
potentials. At the same time, from the “magnetic” Lagrang-
ian density with a magnetic current source, one derives Max-
well’s equations with the fields defined as

H� � = − �� −
1

c

�C�

�t
, E� � = � � C� , �24�

where � and C� are, respectively, the scalar and vector mag-
netic potentials. The Lorentz forces acting on an electric
charge e and a magnetic charge g are defined, respectively, as

F� e = e�E� +
v�

c
� H� 	 �25�

and

F� m = g�H� � −
v�

c
� E� �	 . �26�

One can derive the symmetrized set of Maxwell’s equations
from the summarized, electric plus magnetic, Lagrangian
density, but this will not result in the “magnetoelectric” Lor-
entz forces of the forms

F� ME
e = e
�E� + E� �� +

v�

c
� �H� + H� ��� �27�

and

F� ME
m = g
�H� + H� �� −

v�

c
� �E� + E� ��� , �28�

giving equations of motion in which the fields associated
with electrically charged particles will exert forces on mag-
netically charged particles and vice versa.51 The symmetry
properties of magnetic charge and current densities under
both spatial inversion and time reversal are opposite to those
of electric charge and current densities.6 So coexistence of
electric and magnetic charges must involve some forms of
parity violation which do not correspond to symmetries of
classical laws. One may expect realizing local ME coupling
only when dynamical symmetry breaking occurs.

From the above analysis it follows that in search of
sources with local junctions of the electrical and magnetic
properties—the ME particles—one cannot rely on the in-
duced parameters of small electromagnetic scatterers �irre-
spective of material and geometry of these scatterers�. No
near-field electromagnetic structures and no classical motion
equations for point charges give a physical basis to realize
sources with the local junction of the electrical and magnetic
properties. It becomes evident that the unified ME fields
originated by local ME particles should appear with the near-
field symmetry properties distinguishing from that of the
electromagnetic fields.

While a local ME particle cannot be realized as a clas-
sical scatterer with the induced parameters, it can be created
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as a small magnetic sample with eigenmagnetic oscillations
having special symmetry breaking properties. In some mag-
netic structures one can observe effective interaction of the
polarization and magnetization which is described by the
laws quite different from the fundamental laws of electrody-
namics. These peculiar phenomena will constitute a basis for
our search of local ME particles.

III. MAGNETOELECTRICITY GENERATED BY
MAGNETIC CHIRALITY

The interplay between the spin and charge degree of
freedom is one of the central issue in solid state physics and
the cross correlation between these two degrees of freedom
is of particular interests. In solid state structures, one can
observe the ME effect from the viewpoint of the electric
polarization induced by the applied magnetic fields. This can
show a proper way for realization of local ME particles for
dense composite materials.

In some magnetic structures, symmetry arguments are
used to construct the coupling between the magnetization
vector and the electric polarization vector. For a magnetic
crystal an electric polarization can arise in the vicinity of the
magnetic inhomogeneity.52,53 The polarization has direction-
ality with inversion symmetry breaking. So the polarization
can couple to magnetization if the magnetization distribution
shows the inversion symmetry breaking properties. This im-
plies that the chiral magnetic ordering can induce an electric
polarization. From general symmetry arguments, one has the
phenomenological coupling mechanisms between the electric
polarization p�e and magnetization m� . The invariance upon
the time reversal, t→−t, which transforms p�e→p�e and m�
→−m� , requires the ME coupling to be quadratic in m� . The
symmetry with respect to the spatial inversion, r�→−r�, upon
which p�e→−p�e and m� →m� , is respected when the ME cou-
pling of a uniform polarization to an inhomogeneous magne-
tization is linear in p�e and contains one gradient of m� .

Within a continuum approximation for magnetic proper-
ties, the ME interactions responsible for long-range spatial
modulations of magnetization contribute to the Landau-type
free energies and are known as Lifshitz invariants. In particu-
lar, chiral structures in achiral magnetic systems can arise
from the presence of the Lifshitz invariant in the free energy.
Without requirements of a special kind of a crystal lattice,
the symmetry considerations lead to a ME coupling term in
the Landau free energy of the form53,54

FME�r�� � p�e · �m� �� · m� � − �m · ��m� � . �29�

The term on the right-hand side �RHS� of Eq. �29� is nonzero
only if the magnetization m� breaks chiral symmetry, which is
the canonical route toward a strong dependence between p�e

and m� . On physical grounds, this term can readily be under-
stood. The system sustaining a macroscopic electric polariza-
tion p�e points out a particular direction in space. Therefore,
this polarization can only couple to the magnetization if and
only if m� also has directionality and lacks a center of inver-
sion symmetry. One immediately understands that this occurs
when the magnetization is spiraling along some axis. Based
on standard vector-algebra transformations, it can be shown

from Eq. �29� that the relationship between the electric po-
larization and the chiral-order magnetization is given by

p�e � m� � ��� � m� � . �30�

It was shown, in particular,53 that magnetic vortices in mag-
netically soft nanodisks are the inhomogeneous magnetiza-
tion structures with the induced electric polarization proper-
ties.

Let us consider a magnetically saturated ferrite disk with
a normal bias magnetic field directed along the z axis. For
negligibly small magnetic losses, one has from the Landau–
Lifshitz magnetization motion equation the linear relation
between the harmonically time-varied ��ei�t� local precess-

ing magnetization m� and rf magnetic field H� :11

m� = �J · H� , �31�

where

�J =  � i�a 0

− i�a � 0

0 0 0
� �32�

is the magnetic susceptibility tensor. Components of tensor �J
are defined as �=�M0�0 / ��0

2−�2� and �a=�M0� / ��0
2

−�2�, where H0 is a bias magnetic field, M0 is the saturation
magnetization, �0=�H0, �M =�4M0, and � is the gyromag-
netic ratio. For such a structure, the vector relation �30� has
the following components:

�p�e�x = K�m� � ��� � m� ��x = Kmy� �my

�x
−

�mx

�y
	 , �33�

�p�e�y = K�m� � ��� � m� ��y = − Kmx� �my

�x
−

�mx

�y
	 , �34�

�p�e�z = K�m� � ��� � m� ��z = K�mx
�mx

�z
+ my

�my

�z
	 , �35�

where K is a coefficient of proportionality.
With representation of the in-plane components of a

magnetization vector in a ferrite disk as

mx � A�x,y���z�ei�t �36�

and

my � B�x,y���z�ei�t, �37�

one can rewrite Eqs. �33�–�35� for the real-time electric po-
larization components as

�p�e�x = K
1

2
Re �
B� �B

�x
	�

− B� �A

�y
	�

+ �B
�B

�x
− B

�A

�y
	e2i�t� , �38�

�p�e�y = − K
1

2
Re �
A� �B

�x
	�

− A� �A

�y
	�

+ �A
�B

�x
− A

�A

�y
	e2i�t� , �39�
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�p�e�z = K
1

2
Re �

��

�z
�AA� + BB� + �AA + BB�e2i�t� . �40�

Let us represent the amplitude coefficients A and B as
A= �A�ei�A and B= �B�ei�B, respectively. It is evident that for
the case of the circularly polarized magnetization, when �A�
= �B� and �B−�A= � /2, a component �p�e�z will not be a
time-varying quantity and one has precession of a vector p�e

around the z axis with frequency 2�. In the case of the el-
liptically polarized magnetization, all three components of a
vector p�e are time varying.

Let z=0 corresponds to the middle plane of a ferrite disk
and let media surrounding a ferrite disk have identical pa-
rameters above and below the disk planes. If one assumes
that the function ��z�, giving a distribution of magnetization
along the z axis, is the standing-wave function, even or odd
with respect to the disk thickness, one obtains from Eq. �40�
that for z
0 and z�0 components �p�e�z have different signs.
So no total electric flux penetrates through the disk. When,
however, media surrounding a ferrite disk above and below
the disk planes have different parameters, a total nonzero
electric flux through the disk may occur.

The above consideration can be used for an analysis of
an external-factor action when an electric field is applied to a
sample with magnetic chirality. The ME interactions of fer-
rite samples with external fields can be observed if there are
eigenchiral states in a particle. We will show now that a
quasi-2D ferrite disk with MDM oscillations is characterized
by unique symmetry features with topological phases result-
ing in appearance of eigenchiral states and ME properties.

IV. ME PROPERTIES OF QUASI-2D FERRITE DISK
PARTICLES WITH MDM OSCILLATIONS

Generally, in classical electromagnetic problem solutions
for time-varying fields, there are no differences between the
methods of solutions based on the electric- and magnetic-
field representations or based on the potential representation
of the Maxwell equations. For the wave processes, in the
field representation we solve a system of first-order partial
differential equations �for the electric and magnetic vector
fields� while in the potential representation we have a smaller
number of second-order differential equations �for the scalar
electric or vector magnetic potentials�. The potentials are in-
troduced as formal quantities for a more convenient way to
solve the problem and a set of equations for potentials is
equivalent in all respects to the Maxwell equations for
fields.6 The situation becomes completely different, however,
if one supposes to solve the boundary problem for
electromagnetic-wave processes in small samples of a
strongly temporally dispersive magnetic medium.39 For such
magnetic samples with the MS resonance behaviors in mi-
crowaves, the spectral problem for magnetic-dipolar modes
cannot be formally reduced to the complete-set Maxwell-
equation representation and one becomes faced with a spe-
cial role of the MS-potential wave function ��r� , t�, which
acquires a physical meaning in the MDM spectral
problem20,55 and results in an experimental observation of
energy shifts of oscillating modes and eigenelectric moment
properties.21–25,56,57

In an assumption of separation of variables for MS-
potential wave functions in a quasi-2D ferrite disk, a spectral
problem in cylindrical coordinates z, r, and � is formulated
with respect to membrane MS functions �described by coor-
dinates r and �� with amplitudes dependable on the z coor-
dinate. The main features of the spectrum become evident
from boundary conditions on a lateral surface of a disk.20 An
orthogonal spectrum of oscillations is obtained when one
solves the characteristic equation for MS waves in an axially
magnetized ferrite rod:

�− 	�1/2J��

J�

+
K��

K�

= 0, �41�

where J�, J��, K�, and K�� are the values of the Bessel func-
tions of an order � and their derivatives �with respect to the
argument� on a lateral cylindrical surface �r=R�, together
with the characteristic equation for MS waves in a normally
magnetized ferrite slab:

tan��h� = −
2�− 	

1 + 	
, �42�

where h is a disk thickness and � is a propagation constant
along the z axis. A quantity 	 is a diagonal component of the
permeability tensor 	J. A constant � is an integer quantity.

In solving Eqs. �41� and �42� one uses homogeneous
boundary conditions for a dimensionless membrane MS-
potential wave function �̃�r ,��:

	� ��̃

�r
	

r=R−
− � ��̃

�r
	

r=R+
= 0. �43�

A boundary condition �43� corresponds to the so-called es-
sential boundary condition.58,59 It appears, however, that so-
lutions for a function �̃, obtained based on Eqs. �41� and
�43�, do not satisfy the conditions of continuity of the mag-
netic flux density on a lateral surface of a disk. There exists
another type of a dimensionless membrane MS-potential
wave function �̃ �different from the wave function �̃�, which
satisfies the conditions of continuity of the magnetic flux
density on a lateral surface of a disk. For function �̃ one has
the following boundary condition on a lateral surface of a
ferrite disk:

	� ��̃

�r
	

r=R−
− � ��̃

�r
	

r=R+
= − i

	a

R
� ��̃

��
	

r=R−
, �44�

where 	a is an off-diagonal component of the permeability
tensor 	J. The boundary condition �44� is the so-called natu-
ral boundary condition.58,59 From Eq. �44� it evidently fol-
lows that for a given sign of a parameter 	a there are differ-
ent functions, �̃+ and �̃−, corresponding to the positive and
negative directions of an angle coordinate when 0���2.
So a function �̃ is not a single-valued function. It changes a
sign when � is rotated by 2. At the same time, a function �̃
is a single-valued function.

For functions �̃ one has the path-dependent �that is, non-
integrable� solutions. In such a case, one cannot use separa-
tion of variables in solving the boundary problem for a
MDM ferrite disk. This takes place due to the time-reversal
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symmetry breaking effect �gyrotropy� on a surface of a fer-
rite disk. It is well known that because of gyrotropy, electro-
magnetic waves incident on a ferrite-dielectric interface have
reflection symmetry breaking.13,60 This effect takes place
also for MS waves propagating in a normally magnetized
ferrite film and incident on the film edge.61 Figure 2 illus-
trates this situation. As a result of reflection on the film edge
at point A, the MS-wave rays 1→A→1� and 1�→A→1
shown in Figs. 2�a� and 2�b�, respectively, acquire different
phases. In a ferrite disk, this results in appearance of azi-
muthally running waves.

Let, for a given direction of a bias magnetic field, an
azimuthally running MS wave acquire a phase �1 after a
rotation around a disk. For an opposite direction of a bias
magnetic field such a phase will be �2. It is evident that
��1�= ��2��� and there should be �1+�2=2p or �= p.
Quantities p are odd integers. This follows from the time-
reversal symmetry breaking effect. A system comes back to
its initial state after a full 2 rotation. But this 2 rotation
can be reached if both partial rotating processes, with phases
�1 and �2, are involved. So minimal p=1 and, generally,
quantities p are odd integers. It means that for a given direc-
tion of a bias magnetic field, a function �̃ behaves as a
double-valued function.

Such a nonintegrable problem has two different analyti-
cal solutions for the MDM spectral problem. One of the ana-
lytical solutions is based on the concept of the path-
dependent �or topological� phase factor for orthogonal MS-
potential wave functions. In this case, one uses Bessel
functions of integer order � as basis functions for represen-
tation of orthogonal functions �̃ with an introduction of a
special phase factor on a lateral border of a ferrite disk. On a
lateral border of a ferrite disk one has the following corre-
spondence between double-valued functions �̃ and single-
valued functions �̃:20

��̃��r=R− = ����̃�r=R−, �45�

where

�� � f�e−iq�� �46�

is a double-valued function. The azimuth number q� is equal
to �

1
2 and for amplitudes we have f+=−f− and �f��=1. Func-

tion �� changes its sign when � is rotated by 2 so that
e−iq�2=−1. One obtains the energy-eigenstate spectrum of
MDM oscillations with topological phases accumulated by

the boundary wave function �. The topological effects be-
come apparent through the integral fluxes of the pseudoelec-
tric fields.20 There should be the positive and negative fluxes
corresponding to the counterclockwise and clockwise edge-
function chiral rotations. The different-sign fluxes are in-
equivalent to avoid cancellation. Every MDM in a thin fer-
rite disk is characterized by a certain energy eigenstate and
two different-sign fluxes of the pseudoelectric fields which
are energetically degenerate. The spectral theory developed
based on orthogonal single-valued membrane functions �̃
and topological magnetic currents shows the ME effect from
a viewpoint of the Berry phase connection.20

Another type of an analytical solution for the MDM
spectral problem is to introduce an additional phase factor so
that functions �̃ are represented as “rotating Bessel func-
tions” with an integer azimuth number. This additional phase
factor appears when one considers function �̃ as an “in-
plane” projection of a helical MS wave. Based on this ap-
proach one obtains a picture of the fields of oscillating
MDMs derived from nonorthogonal functions �̃. An initial
stage of studies of helical MS waves in a ferrite disk is given
in Ref. 62. In the case of rotating magnetic fields in a nor-
mally magnetized ferrite disk, the clockwise and counter-
clockwise rotations are strongly different. One has to distin-
guish the field rotating in the same direction as the
precessing spins rotate and the field rotating in an opposite
direction with respect to the spins. It is evident that energeti-
cally preferable is the resonance interaction when the mag-
netic field rotates in the same direction as the precessing
spins.

The first-type MDM spectral problem solutions �based
on orthogonal MS-potential wave functions with the
topological-phase factors� we will conventionally call as the
G-modes while the second-type MDM spectral problem so-
lutions �based on the rotating Bessel functions� we will con-
ventionally call as the L-modes. This arises from the fact that
the G-modes are described by the second-order differential

operator Ĝ, while the L-modes are described by the first-

order differential-matrix operator L̂.20,55 In the case of the
G-modes, loop topological magnetic currents lead to the ap-
pearance of eigenelectric �anapole� moments. This fact
clearly shows �both in theory20 and experiments24,25� the
presence of the ME properties of a MDM ferrite disk. The
G-mode ferrite particle has special symmetry breaking prop-
erties and is not a classical scatterer with the induced param-
eters. In this paper, we will mainly use the rotating Bessel
functions �the L-modes� for demonstration of the ME effect
in a ferrite particle. In such a representation, the ME proper-
ties of a ferrite disk can be analyzed based on the Lifshitz
invariant discussed in Sec. III of this paper. Moreover, for the
L-modes the structures of the fields inside a ferrite disk and
in the quasistatic �near-field� region surrounding a ferrite
disk can be numerically modeled based on the HFSS-program
studies63 with a very good correspondence between the nu-
merical and analytical results.

Taking into account Eq. �42� we write a solution for the
function �̃ in the form

FIG. 2. MS waves propagating in a normally magnetized ferrite film and
incident on the film edge. As a result of reflection on the film edge at point
A, MS-wave rays 1→A→1� �a� and 1�→A→1 �b� acquire different
phases.
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�̃ � J�� �r
�− 	

	e−j��, �47�

where � is a positive integer quantity. For this type of a
solution, the characteristic equation �44� is written as

�− 	�1/2J��

J�

+
K��

K�

−
	a�

���R
= 0. �48�

When a magnetic field is varied in such a manner that every
point on a disk surface describes a closed loop, then the
system should return to its original state at the end of this
excursion. This will give a phase factor e−i�� for each eigen-
state. For a very thin disk one can use separation of vari-
ables. For a certain magnetic-dipolar mode one has for the
MS-potential wave function:20,55,59

� = C��z��̃�r,�� , �49�

where ��z� is an amplitude factor and C is a dimensional
coefficient. Inside a ferrite disk �r�R, 0�z�h� one has

��r,�,z� = C�J�� �r
�− 	

	�cos �z +
1

�− 	
sin �z	e−j��.

�50�

This function satisfies the characteristic equations �42� and
�48�. Based on such a MS-potential function one defines the

magnetic field �H� =−�� �� inside a ferrite disk as the azimuth
propagating wave:

Hr�r,�,z,t� = C�

�

�− 	
J��� �r

�− 	
	�cos �z +

1
�− 	

sin �z	
�e−i��ei�t, �51�

H��r,�,z,t� = C�

− i�

r
J�� �r

�− 	
	�cos �z +

1
�− 	

sin �z	
�e−i��ei�t, �52�

Hz�r,�,z� = C��J�� �r
�− 	

	�− sin �z +
1

�− 	
cos �z	

�e−i��ei�t. �53�

With use of Eqs. �51�–�53� we calculated the magnetic field
distributions for a normally magnetized ferrite disk. A ferrite
disk has the following material parameters: the saturation
magnetization is 4Ms=1880 G and the linewidth is �H
=0.8 Oe. The disk diameter is D=3 mm and the thickness
is t=0.05 mm. The disk is normally magnetized by the bias
magnetic field H0=4900 Oe. We analyzed the MDMs which
are classified by the numbers n—the numbers of zeros in the
Bessel function, corresponding to different radial
variations—for the order parameter �= +1. We considered
the field distributions for the first two modes �n=1,2�. The
MDM resonance frequencies are obtained from solutions of
Eqs. �42� and �48�. In Fig. 3 we show a gallery of the ana-
lytically derived in-plane magnetic field distributions on the
upper plane of a ferrite disk for the first MDM �f
=8.548 GHz� at different time phases. The magnetic field

distributions for the second MDM �f =8.667 GHz� at some
time phases are shown in Fig. 4. For the known mode mag-

netic fields we can calculate the vector m� � ��� �m� �. The

space orientations of the vector m� � ��� �m� � on the upper
and lower planes of a ferrite disk at different time phases �t
are shown in Fig. 5 for the first MDM �f =8.548 GHz�. It is
very interesting to find that the electric polarization vectors

�p� �m� � ��� �m� �� exhibit precessing behaviors. These pre-
cessing motions are in the same directions for the upper and
lower halves of a disk. We also have to note that whereas the
magnetization precession occurs with the frequency �, the
electric polarization precession is with the double frequency
2�. The z components of the electric polarization vectors are
oppositely directed on the upper and lower planes of a disk.

The MDMs in a thin ferrite disk can be well analyzed
based on the HFSS numerical electromagnetic-simulation
program.63 Figure 6�a� shows a model of a short-wall rect-
angular waveguide section with an enclosed normally mag-
netized ferrite disk used for the HFSS studies. The spectral
characteristics for a thin ferrite disk shown in Figs. 6�b� and
6�c� give a very good correspondence between the absorp-

FIG. 3. A gallery of the analytically derived in-plane magnetic field distri-
butions on the upper plane of a ferrite disk for the first magnetic-dipolar
mode �f =8.548 GHz� at different time phases �a qualitative picture�.

FIG. 4. A gallery of the analytically derived in-plane magnetic field distri-
butions on the upper plane of a ferrite disk for the second magnetic-dipolar
mode �f =8.667 GHz� at some time phases �a qualitative picture�.
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tion peak positions obtained from the numerical simulation
and the calculated peak positions for the G- and L-MDMs
�for the order parameter �= +1�. The HFSS-program magnetic
field distributions in a ferrite disk shown in Figs. 7 and 8,
respectively, for the first �f =8.52 GHz� and second �f
=8.66 GHz� resonance states at different time phases are in
a clear correspondence with the analytically derived mag-
netic field distributions for the L-MDMs �see Figs. 3 and 4�.
Based on the HFSS model we can study also the electric field
distributions inside a ferrite disk. The electric field distribu-
tions for the first �f =8.52 GHz� and the second �f
=8.66 GHz� resonance states at different time phases are
shown, respectively, in Figs. 9 and 10.

An analytical study of the electric field distributions for
MDMs appears as a very complicated problem. We can,
however, use a simple analytical model. The assumptions
used in this analytical model are not well defined. Neverthe-
less, the model shows a very good correspondence with the
numerical results of the electric field pictures. Formally, one
can suppose that for the monochromatic MS-wave process

there exists a curl electric field E� defined by the Faraday–
Maxwell law. One can represent the electric field as follows:

�� � E� = −
i

c
�B� = −

i

c
�H� −

i

c
4�m� , �54�

where m� is the rf magnetization. With use of the �� � differ-
ential operation for the left-hand and right-hand sides of Eq.

�54� and taking into account that �� �H� =0, one obtains

�2E� =
i

c
4� � � m� . �55�

Here we used the relation � ·E� =0 which is relevant if one
assumes that the permittivity of a disk is a scalar. The electric

field can be formally represented as being originated from an
effective electric current:

�2E� = i�
4

c2 j��e�, �56�

where

FIG. 5. Space orientations of the vector m� � ��� �m� � on the lower �a� and
upper �b� planes of a ferrite disk at some time phases for the first MDM
�f =8.548 GHz�. �A qualitative picture�.

FIG. 6. �Color online� Spectral characteristics for a thin ferrite disk. �a� The
HFSS model of a short-wall rectangular waveguide section with a normally
magnetized ferrite disk, �b� absorption peak positions obtained from the
numerical simulation, and �c� the calculated peak positions for the G-MDM
and L-MDM �for the order parameter �= +1�.

FIG. 7. �Color online� A perspective view for the numerically modeled
magnetic field distributions on the upper plane of a ferrite disk for the first
resonance state �f =8.52 GHz� at different time phases.
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j��e� � c�� � m� . �57�

With use of Eqs. �31�, �32�, and �51�–�53� we can obtain
the components of the magnetization m� and then derive the

components of the vector �� �m� . The components of the ef-
fective electric current are the following:

jr
�e��r,�,z,t� = icC�
 �a�2

�− 	
J��� �r

�− 	
	 +

���

r
J�� �r

�− 	
	�

��sin �z −
1

�− 	
cos �z	e−i��ei�t, �58�

j�
�e��r,�,z,t� = cC�
 ��2

�− 	
J��� �r

�− 	
	 +

��a�

r
J�� �r

�− 	
	�

��sin �z −
1

�− 	
cos �z	e−i��ei�t, �59�

jz
�e��r,�,z,t� = − icC�

1

4

	a

	
J�� �r

�− 	
	�cos �z

+
1

�− 	
sin �z	e−i��ei�t. �60�

The in-plane effective-electric-current distributions on
the upper plane of a ferrite disk for the first �f
=8.548 GHz� and the second �f =8.667 GHz� MDMs at dif-
ferent time phases are shown, respectively, in Figs. 11 and
12. As it follows from Eq. �56� the electric field should be
90° shifted with respect to the effective electric current. So
from the effective-electric-current distributions one can ob-
tain qualitative pictures for the electric field distributions.
There is a very good correspondence between the pictures of

FIG. 8. �Color online� A top view for the numerically modeled magnetic
field distributions on the upper plane of a ferrite disk for the second reso-
nance state �f =8.66 GHz� at different time phases.

FIG. 9. �Color online� A top view for the numerically modeled electric field
distributions on the upper plane of a ferrite disk for the first resonance state
�f =8.52 GHz� at different time phases.

FIG. 10. �Color online� A top view for the numerically modeled electric
field distributions on the upper plane of a ferrite disk for the second reso-
nance state �f =8.66 GHz� at different time phases.

FIG. 11. A gallery of the analytically derived in-plane effective-electric-
current distributions on the upper plane of a ferrite disk for the first
magnetic-dipolar mode �f =8.548 GHz� at different time phases �a qualita-
tive picture�.
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the analytically derived electric field distributions and the
pictures of the electric field distributions obtained from the
numerical studies �see Figs. 9 and 10�.

From the field structures of the L-MDMs �as well as
from the HFSS-program field structures� it becomes evident
that an entire ferrite disk does not exhibit any electric-
moment properties. The field pictures show, however, the
presence of the magnetic-moment behavior. One can see that
the in-plane electric fields on the upper and lower planes of a
ferrite disk are in the opposite directions at any time phase.
Since the disk thickness is much less than the free-space
electromagnetic wavelength, the disk can be clearly replaced
by a sheet with effective linear magnetic currents. A surface
density of the effective magnetic current is expressed as

n� � �E� upper − E� lower� = −
4

c
i�m, �61�

where E� upper and E� lower are, respectively, the in-plane electric
fields on the upper and lower planes of a ferrite disk and n� is
the normal to the disk plane directed along the bias magnetic

field. It is evident that E� upper=−E� lower. Following the electric
field pictures, one can conclude that there are the rotating
linear surface magnetic currents. Nonzero current-line diver-
gence of such magnetic currents gives equivalent magnetic
charges. As a result of this equivalent representation, one has
evidence of in-plane rotating magnetic dipoles for an entire
ferrite disk with MDM oscillations. Excitation of the
L-MDMs in a quasi-2D ferrite disk shown in well known
experiments56,57 is due to such in-plane rotating magnetic
dipoles.

At the same time, microwave experiments24 give also an
evidence for the MDM excitation by the rf electric fields
oriented normally to a ferrite disk. This excitation takes place
because of the electric �anapole� moments of the G-MDMs.
The mechanisms of an interaction of the MDM anapole mo-
ments with the external rf electric fields are discussed in
Refs. 20 and 25. Since the spectra of the G- and L-MDMs
are almost degenerate �see the peak positions of the G- and
L-MDMs in Fig. 6�c��, the ME properties of a ferrite disk are
experimentally observed as the G-mode electric �anapole�
moment normal to a ferrite disk together with the L-mode
magnetic moment rotating in the disk plane. Figure 13 shows

the MDM ferrite disk as a ME particle with a normal electric
moment and a rotating in-plane magnetic moment.

V. ME PROPERTIES OF MDM FERRITE DISKS WITH
SPECIAL GEOMETRIES

We consider now the MDM ferrite disk with special ge-
ometry properties. There will be a ferrite disk with a dielec-
tric loading and a ferrite disk with a wire surface metalliza-
tion. Presently, for these structures we do not have analytical
models and so we will use the HFSS-program numerical
simulation results. It will be shown that in this case the
MDM ferrite disk has evident ME properties which are well
verified by experimental results.

As we showed above, when media surrounding a ferrite
disk have identical parameters above and below the disk
planes, no electric-moment properties of an entire ferrite disk
with the L-mode oscillations take place. When, however, the
media surrounding a ferrite disk above and below the disk
planes have different parameters, distribution of the electric

polarization vectors �p� �m� � ��� �m� �� may lead to a total
electric flux through the sample. In Fig. 14 we show the
HFSS-program electric field distributions for the first reso-
nance state for a sample composed of a thin ferrite disk �with
the same parameters as in the above studies� loaded with a
dielectric disk with a dielectric constant �r=15. One clearly
sees that in this case topological electric charges appear and,
as a result, one has an in-plane rotating electric dipole. It is
interesting to note that a rotating electric dipole is in the
same orientation as an in-plane rotating magnetic dipole.

Figure 15 shows the electric field distributions for the
first resonance state for a sample composed of a thin ferrite
disk with a wire surface metallization. In this case one has an
in-plane nonrotating electric dipole and in-plane rotating
magnetic dipole. A concept of such a ME particle was put
forth in 1996.64 Then microwave experiments clearly verified
the ME properties in such a structure.21–23 Our present results
give pictures for the field distributions in these ME particles.

VI. SUMMARY AND DISCUSSION

Understanding a fundamental mechanism of a “junction”
of electricity and magnetism in a point source underlies com-
prehensive solution of a problem of unification of electro-

FIG. 12. A gallery of the analytically derived in-plane effective-electric-
current distributions on the upper plane of a ferrite disk for the second
magnetic-dipolar mode �f =8.667 GHz� at some time phases �a qualitative
picture�.

FIG. 13. The ME-particle model of a MDM ferrite disk. Since the spectra of
the G- and L-MDMs are almost degenerate the ME properties of a ferrite
disk are observed as the G-mode electric �anapole� moment a�e normal to a
ferrite disk together with the L-mode magnetic moment p�m rotating in the
disk plane.

013537-13 Kamenetskii, Sigalov, and Shavit J. Appl. Phys. 105, 013537 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



magnetism and magnetoelectricity. From our analysis it fol-
lows that in search of sources with local cross-polarization
properties one cannot rely on the induced parameters of
small electromagnetic scatterers �irrespective of material and
geometry of these scatterers�. No near-field electromagnetic
structures and no classical motion equations for point
charges give a physical basis for realization of sources with
the local magnetoelectricity. In the near-field region with lo-
cal sources, an electromagnetic field falls into an electric and
a magnetic field.

It becomes evident that symmetry properties of the uni-
fied ME fields arising from conjectural local ME particles
should distinguish from symmetry properties of the electro-
magnetic fields. While a local ME particle cannot be realized
as a classical scatterer with the induced parameters, it can be
created as a small magnetic sample with magnetic eigenos-
cillations having special symmetry breaking properties. In

some magnetic structures one can observe effective interac-
tion of the polarization and magnetization which is described
by the laws quite different from the fundamental laws of
electrodynamics. These peculiar phenomena, being a conse-
quence of broken time-reversal and space-inversion symme-
tries, may constitute a basis for realization of local ME par-
ticles.

In thin-film ferrite disks with the MDM vortex structures
one has the chiral states of magnetization which may provide
us with a strong dependence between the electric polariza-
tion and magnetization. Because of the spectral characteris-
tics with energy eigenstates, the MDM ferrite disks are the
particles with strong dynamic localization of the ME fields.
It turns out that a MS-potential wave function stabilizes 2D
states �the membrane states�. At the same time, a quasi-2D
MDM ferrite disk can be considered as a “chiral magnetic
domain.” The chiral-magnetic-ordering dynamics has the
electric polarization properties. For a certain magnetization
texture in a ferrite disk, the in-plane distribution of the elec-
tric polarization will have azimuth variations. It is evident
that a disk will be characterized by such an invariant as the
electric flux only if the azimuth variation in the electric po-
larization is described by a non-single-valued function.

The MDM ferrite ME fields are distinguished by the
topological-phase effects. There are not the Tellegen-particle
fields which are conceptualized as the electric and magnetic
fields of a system with strong quasistatic �dipole-type� local-
izations. We dispute the physical realizability of Tellegen
particles as classical ME particles with the cross-polarization
effects. The questions raised in this paper are very important
in view of the present strong interest in electromagnetic ar-
tificial materials with ME properties. Since for classical
Tellegen-type electromagnetic scatterers the effect of ME
coupling becomes apparent only in the far-field zone, no
dense composites with local �quasistatic� cross-polarization
coupling can be realized based on such particles. At the same
time, the properties of the ME fields shown in this paper give
a proper insight into a problem of realization of dense mi-
crowave ME composites.

A theory of dense ME materials should be based on stud-
ies of interaction of structural elements with space-time sym-
metry violation. It appears that the alignment of toroidal
�anapole� moments is central to ordering phenomena in ME
structures. When we introduce the notion of an elementary

magnet, M� elem�r�� i�e, where i�e is the microscopic electric
current density, we can represent the toroidal dipole moment

as a linear integral around a loop: t�=1 /3c�r��M� elemdl. It is
considered as a ring of elementary magnets. In this formula-
tion, it is clear that a toroidal moment is parity-odd and time-
reversal-odd. Recently, a new type of the microscopic
toroidal-moment ordering—the ferrotoroidicity—was dem-
onstrated in ME multiferroics.65–67

In the case of a ferrite ME particle, one has, however, a
toroidal moment with different symmetry properties. For the
time-varying �due to precession� magnetization m� , there is a

magnetic current i�m���Melem /�t�e��, where e�� is a unit vector
along the tangent of a loop. A linear integral of this current
around a loop defines a moment which is parity-odd and

FIG. 14. �Color online� The electric field distributions for the first resonance
state for a sample composed of a thin ferrite disk loaded with a dielectric
disk. One has an in-plane rotating electric dipole with topological electric
charges. A rotating electric dipole is in the same orientation as an in-plane
rotating magnetic dipole.

FIG. 15. �Color online� The electric field distributions for the first resonance
state for a sample composed of a thin ferrite disk with a wire surface met-
allization. One has an in-plane nonrotating electric dipole and an in-plane
rotating magnetic dipole.
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time-reversal-even. For oscillating MDMs one has the azi-
muth varying border-loop magnetic current im which is de-
scribed by double-valued functions.20 This results in appear-
ance of an anapole �toroidal� moment a�e with the symmetry
of an electric dipole �parity-odd and time-reversal even�.
This type of the anapole �toroidal� moment �parity violating
but preserving invariance under time reversal� was envisaged
by Zel’dovich.68 Based on such anapole moment properties
of ferrite ME particles, the theory of ME “molecules” and
principles of local ME structures were developed in Ref. 69.
While properties of toroidal moments of ferrite ME particles
are different from symmetry characteristics of toroidal mo-
ments in ME multiferroics, a general concept of ferrotor-
oidicity expressed in Refs. 65–67—structural ordering quan-
tified by the toroidization—becomes very important for the
theory and practical realization of dense microwave ME
composites.
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